Sex Ratios of Wild Populations of *Psylla uncatoides* (Ferris and Klyver) in Hawaii

JOHN R. LEEPER

DEPARTMENT OF ENTOMOLOGY
UNIVERSITY OF HAWAII, HONOLULU, HAWAII

Madubunyi (1967) and Madubunyi and Koehler (1974) found sex ratios favoring the female (2:1) when *Psylla uncatoides* (Ferris & Klyver) were laboratory-reared at a constant temperature of 15°C. At constant temperatures of 20 and 25°C the sex ratios were about 1:1. They suggested that a differential morality factor, favoring female nymphs, exists at lower temperatures. Madubunyi (1967) hypothesized that this would allow for more rapid growth of the psyllid populations once warmer, more favorable temperatures returned. He also hypothesized that a switch in sex ratios, to one favoring males, was an "in-built" natural control mechanism during times of stress due to an unfavorable physical environment, changes in food quality or quantity, intra- and/or inter-specific competition, or other density-geared regulatory mechanisms.

To evaluate Madubunyi's hypotheses, data collected on *P. uncatoides* populations at four locations on Hawaii Island over a period of three years were subjected to chi-square analysis.

Materials and Methods

Adult psylla populations were sampled by means of a "D-VAC, Model 24" vacuum collecting apparatus. Three minutes was selected as a suitable time unit for taking D-VAC samples. After the excess debris was removed from samples, the arthropods were killed with ethyl acetate and stored in 70% ethyl alcohol until they could be sorted and the psyllids sexed.

The samples were taken at approximately monthly intervals for over three years, from *Acacia koa* Gray at 1280, 1646 and 2043 m elevation along the Mauna Loa Strip Road, Hawaii Volcanoes National Park and from *Acacia koaia* Hillebrand in the Koaia Tree Sanctuary, 975 m elevation Kawaihae Uka, Kohala Mts.

For practical purposes, not all the samples collected over the three year period were sexed. Samples taken between July 19, 1971 and September 10, 1972 from the 1646 m Mauna Loa Strip Road and the Koaia Tree Sanctuary sites were used in determining population sex ratios. Additional sex ratios were later determined from samples taken at the 2043 m site on the Mauna
Loa strip road during periods when the mean monthly temperatures were below 9°C, and from the Koaia Tree Sanctuary site after the establishment of the psyllid predator *Harmonia conformis* (Boisduval).

Chi square tests were used to determine whether there were significant deviations from an expected 1:1 sex ratio. For each location, chi square values were obtained for each sample date. For the entire period a double check on the sex ratios was obtained by both adding the chi square values for each sample date, and by adding the raw data and running a chi square test on these totals. Two hundred fifty *P. uncatoides* adults were sexed for each date, except when the sample contained fewer psyllids. Then the entire sample was sexed.

RESULTS AND DISCUSSION

The sex ratio fluctuated but, overall, significantly favored the males (Tables 1, 2). The sex ratio significantly favored the females in only one instance (January 7, 1972; 1646 m Mauna Loa Strip Road). This occurred during the month with the lowest mean temperature (9°C) for the site (Bridges and Carey, 1973); however, the following month had the same mean temperature, although the sex ratio significantly favored males. Bridges and Carey (1973, 1974) showed two periods, December, 1971 through February, 1972 and February, 1973, when the monthly mean temperatures at the 2043 m Mauna Loa Strip Road site were below 9°C. Table 3 shows that no significant difference from a 1:1 sex ratio was observed for these periods, and indicates that a differential morality factor, favoring female nymphs, apparently does not exist at lower temperatures in wild populations in Hawaii.

Madubunyi's (1967) hypothesis of an “in-built” natural mechanism controlling the population by sex ratio changes, favoring males when food becomes less abundant, was tested by comparing the sex ratios of the psyllid before and after the establishment of a successful biological control agent at the Koaia Tree Sanctuary (Leeper and Beardsley, 1976). For several years prior to the establishment of the coccinellid, *Harmonia conformis*, *A. koaia* at this site had a single flushing of new growth per year. This was followed by a psyllid population explosion and a loss of terminal growth within three months due to over-feeding by the psyllid. After the establishment of *H. conformis*, the psyllid populations were controlled enough to allow continued flushing of new growth throughout the year.

The sex ratios prior to the introduction of *H. conformis* (Table 2), when food quality and quantity were reduced, and after the coccinellid’s establishment (Table 4), when food quality and quantity were stabilized, both significantly favored the males and therefore did not support Madubunyi’s (1967) hypothesis.

Catling (1973) found the sex ratio of the psyllid *Trioza erythreae* (Del Guercio) to favor the females. Working with the psyllid *Cardiospina albitextura* (Taylor), Clark (1962) found that early in the reproductive period males were predominant, during peak abundance the sex ratio was close to 1:1 and towards the end the females were predominant. The net result was a sex ratio close to unity. Burts and Fischer (1967) obtained data
Table 1. Chi squares values of sex ratios of *P. uncatoides* collected at 1646 m Mauna Loa Strip Road (F: Female; M: Male; N: No difference).

<table>
<thead>
<tr>
<th>Date (+ 4 days)</th>
<th>Number of males</th>
<th>Total sexed</th>
<th>Chi square</th>
<th>Sex favored (P= 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-19-71</td>
<td>115</td>
<td>250</td>
<td>1.600*</td>
<td>N</td>
</tr>
<tr>
<td>8- 2-71</td>
<td>137</td>
<td>250</td>
<td>2.304</td>
<td>N</td>
</tr>
<tr>
<td>9- 1-71</td>
<td>129</td>
<td>250</td>
<td>0.256</td>
<td>N</td>
</tr>
<tr>
<td>10- 3-71</td>
<td>134</td>
<td>226</td>
<td>7.805</td>
<td>M</td>
</tr>
<tr>
<td>10-31-71</td>
<td>94</td>
<td>163</td>
<td>3.834</td>
<td>N</td>
</tr>
<tr>
<td>12- 5-71</td>
<td>103</td>
<td>174</td>
<td>5.885</td>
<td>M</td>
</tr>
<tr>
<td>1- 7-72</td>
<td>107</td>
<td>250</td>
<td>5.184*</td>
<td>F</td>
</tr>
<tr>
<td>2- 9-72</td>
<td>141</td>
<td>250</td>
<td>4.096</td>
<td>M</td>
</tr>
<tr>
<td>3- 5-72</td>
<td>128</td>
<td>250</td>
<td>0.044</td>
<td>N</td>
</tr>
<tr>
<td>4- 1-72</td>
<td>131</td>
<td>250</td>
<td>0.576</td>
<td>N</td>
</tr>
<tr>
<td>4-30-72</td>
<td>160</td>
<td>250</td>
<td>19.600</td>
<td>M</td>
</tr>
<tr>
<td>5-16-72</td>
<td>156</td>
<td>250</td>
<td>15.376</td>
<td>M</td>
</tr>
<tr>
<td>6- 1-72</td>
<td>146</td>
<td>250</td>
<td>7.056</td>
<td>M</td>
</tr>
<tr>
<td>6-16-72</td>
<td>152</td>
<td>250</td>
<td>11.664</td>
<td>M</td>
</tr>
<tr>
<td>7- 2-72</td>
<td>65</td>
<td>110</td>
<td>3.636</td>
<td>N</td>
</tr>
<tr>
<td>7-16-72</td>
<td>30</td>
<td>58</td>
<td>0.068</td>
<td>N</td>
</tr>
<tr>
<td>9-10-72</td>
<td>9</td>
<td>12</td>
<td>3.000</td>
<td>N</td>
</tr>
<tr>
<td>Sum of the chi squares</td>
<td>1937</td>
<td>3993</td>
<td>80.116</td>
<td>M (P=0.01)</td>
</tr>
</tbody>
</table>

Chi square of the sum of the sexes 41.558 M (P=0.01)

These sex ratios favor the female, therefore in summing the chi square values to determine if there are significantly more males, these figures are negative.
Table 2. Chi square values of sex ratios of *P. uncatoides* collected at the *Koaia Tree Sanctuary* prior to the introduction of *H. conformis* (M: Male; N: No difference).

<table>
<thead>
<tr>
<th>Date (+ 4 days)</th>
<th>Number of males</th>
<th>Total sexed</th>
<th>Chi square</th>
<th>Sex favored (P =0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-19-71</td>
<td>119</td>
<td>204</td>
<td>5.020</td>
<td>M</td>
</tr>
<tr>
<td>8- 1-71</td>
<td>131</td>
<td>250</td>
<td>0.576</td>
<td>N</td>
</tr>
<tr>
<td>9- 1-71</td>
<td>138</td>
<td>250</td>
<td>2.704</td>
<td>N</td>
</tr>
<tr>
<td>10- 3-71</td>
<td>154</td>
<td>250</td>
<td>13.456</td>
<td>M</td>
</tr>
<tr>
<td>10-31-71</td>
<td>154</td>
<td>250</td>
<td>13.456</td>
<td>M</td>
</tr>
<tr>
<td>12- 5-71</td>
<td>167</td>
<td>250</td>
<td>28.224</td>
<td>M</td>
</tr>
<tr>
<td>1- 7-72</td>
<td>152</td>
<td>250</td>
<td>11.664</td>
<td>M</td>
</tr>
<tr>
<td>2- 9-72</td>
<td>127</td>
<td>250</td>
<td>0.064</td>
<td>N</td>
</tr>
<tr>
<td>3- 4-72</td>
<td>127</td>
<td>250</td>
<td>0.000</td>
<td>N</td>
</tr>
<tr>
<td>4- 1-72</td>
<td>140</td>
<td>250</td>
<td>3.600</td>
<td>N</td>
</tr>
<tr>
<td>4-30-72</td>
<td>157</td>
<td>250</td>
<td>16.384</td>
<td>M</td>
</tr>
<tr>
<td>6- 1-72</td>
<td>162</td>
<td>250</td>
<td>21.904</td>
<td>M</td>
</tr>
<tr>
<td>7- 2-72</td>
<td>151</td>
<td>250</td>
<td>10.816</td>
<td>M</td>
</tr>
<tr>
<td>7-29-72</td>
<td>117</td>
<td>250</td>
<td>1.024*</td>
<td>N</td>
</tr>
<tr>
<td>9-10-72</td>
<td>161</td>
<td>250</td>
<td>20.736</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>2154</td>
<td>3704</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chi square of the sum of the sexes</td>
<td>98.492</td>
</tr>
</tbody>
</table>

This sex ratio favors the female, therefore in summing the chi squares to determine if there are significantly more males, this figure is negative.
Table 3. Chi square values of sex ratios of P. uncatoides collected at 2043 m Mauna Loa Strip Road before, during and after two periods when the monthly mean temperatures were below 9°C (M: Males; N: No difference).

<table>
<thead>
<tr>
<th>Date (+ 4 days)</th>
<th>Number of males</th>
<th>Total sexed</th>
<th>Chi square</th>
<th>Sex favored (P = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-31-71</td>
<td>45</td>
<td>75</td>
<td>3.000</td>
<td>N</td>
</tr>
<tr>
<td>12- 5-71</td>
<td>9</td>
<td>20</td>
<td>0.200</td>
<td>N</td>
</tr>
<tr>
<td>1- 5-72</td>
<td>45</td>
<td>87</td>
<td>0.103</td>
<td>N</td>
</tr>
<tr>
<td>2- 3-72</td>
<td>96</td>
<td>165</td>
<td>4.418</td>
<td>M</td>
</tr>
<tr>
<td>3- 5-72</td>
<td>80</td>
<td>160</td>
<td>0.000</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sum of the chi squares</th>
<th>Chi square of the sum of the sexes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10-31-71</td>
<td>7.521</td>
<td>3.647</td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>12- 5-71</td>
<td></td>
<td></td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>1- 5-72</td>
<td></td>
<td></td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>2- 3-72</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>3- 5-72</td>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

11- 2-72	14	26	0.154	N
1- 5-73	95	201	0.620*	N
3- 6-73	133	250	1.024	N
3- 5-73	141	250	4.096	M

<table>
<thead>
<tr>
<th></th>
<th>Sum of the chi squares</th>
<th>Chi square of the sum of the sexes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11- 2-72</td>
<td>5.274</td>
<td>2.092</td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>1- 5-73</td>
<td></td>
<td></td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>3- 6-73</td>
<td></td>
<td></td>
<td>N (P=0.05)</td>
</tr>
<tr>
<td>3- 5-73</td>
<td></td>
<td></td>
<td>N (P=0.05)</td>
</tr>
</tbody>
</table>

*These sex ratios favor the female, therefore in summing the chi square values to determine if there are significantly more males, these figures are negative.
Table 4. Chi square values of sex ratios of P. uncatoides at the Koaia Tree Sanctuary after the establishment of H. conformis (M: Male; N: No difference).

<table>
<thead>
<tr>
<th>Date (+ 4 days)</th>
<th>Number of males</th>
<th>Total sexed</th>
<th>Chi square</th>
<th>Sex favored (P = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-9-73</td>
<td>149</td>
<td>250</td>
<td>9.216</td>
<td>M</td>
</tr>
<tr>
<td>12-13-73</td>
<td>121</td>
<td>250</td>
<td>0.256*</td>
<td>N</td>
</tr>
<tr>
<td>1-16-73</td>
<td>127</td>
<td>250</td>
<td>0.064</td>
<td>N</td>
</tr>
<tr>
<td>2-19-74</td>
<td>139</td>
<td>250</td>
<td>3.136</td>
<td>N</td>
</tr>
<tr>
<td>3-17-74</td>
<td>148</td>
<td>250</td>
<td>8.464</td>
<td>M</td>
</tr>
<tr>
<td>4-12-74</td>
<td>110</td>
<td>250</td>
<td>3.600*</td>
<td>N</td>
</tr>
<tr>
<td>5-16-74</td>
<td>145</td>
<td>250</td>
<td>6.400</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>939</td>
<td>1750</td>
<td>27.280</td>
<td></td>
</tr>
</tbody>
</table>

Chi square of the sum of the sexes: 9.362

*These sex ratios favor the female, therefore in summing the chi square values to determine if there are significantly more males, these figures are negative.
similar to Clark (1962) working with the pear psylla, *Psylla pyriocola* Forester, and concluded that differences in psyllid sex ratios reported by various researchers could be due to the period in the psyllid population cycle in which the ratios were taken. My data, which were taken at approximately monthly intervals and entirely from field samples, indicate that this phenomenon does not occur in wild *P. uncatoides* populations. It would appear, therefore, that some factor, such as differential morality or migration, acts to reduce the number of females in wild *P. uncatoides* populations.

ACKNOWLEDGEMENTS

This research was funded in part by the National Science Foundation, Island Ecosystems Integrated Research Program of the US/International Biological Program and McIntire-Stennis Forestry Research funds through the College of Tropical Agriculture, University of Hawaii.

I would like to thank the Hawaii Volcanoes National Park and the Hawaii State Department of Forestry for allowing me to conduct the research on lands under their control.

ABSTRACT

Research by Madubunyi and Koehler on laboratory-reared *Psylla uncatoides* (Ferris & Klyver) led to several hypotheses to explain the occurrence of several sex ratio differences and what benefit these differences were to psyllid populations. Data on sex ratios of wild *P. uncatoides* populations failed to substantiate the hypotheses, yet indicated that some factor is regulating the sex ratios in wild populations.

LITERATURE CITED

