WH-EXISTENTIAL WORDS: A COMPARATIVE STUDY OF ENGLISH-CHINESE AND KOREAN-CHINESE INTERLANGUAGES

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

SECOND LANGUAGE ACQUISITION

AUGUST 2014

By
Wei Chu

Dissertation Committee:

Bonnie D. Schwartz, Co-chairperson
Robert Bley-Vroman, Co-chairperson
William O’Grady
Thom Hudson
Kamil Deen
ACKNOWLEDGMENTS

My deepest gratitude goes to my advisor and my dissertation committee co-chair, Bonnie D. Schwartz. I can’t see myself getting this far without her all round support. I thank Bonnie for her superb guidance throughout my time as a graduate student, for her rigorous training in formal approaches to L2 acquisition, for her insightful feedback on my term papers, conference abstracts, conference presentations and grant applications, for her encouragements in my moments of doubts, and for being such a wonderful role model as a passionate researcher as well as a devoted teacher. (I don’t know what else one can expect from an advisor.) Her detailed and incisive comments have led to major improvements of this dissertation. I feel tremendously lucky that Bonnie took me under her wing. Her top-notch expertise and her charismatic personality have made working with her a wonderful experience.

I am extremely grateful to my dissertation co-chair, Robert Bley-Vroman. Among the many things that Robert has taught us, the most important one to me is to always keep an open mind. His courses included almost all of the possible perspectives one can find in the L2 acquisition literature: nativism, corpus, constructional grammar, emergentism, psycholinguistics, so on and so forth. Once he even let us read Stephen Jay Gould because he saw some similarities between the emergence of a certain type of constructions in Interlanguage and the distinction of dinosaurs in natural history. Although Robert seems sensitive to the word profound, I cannot help but say that my admirations towards him are profound. In my eyes, he is a Zen master in the field of L2 acquisition. In years to come, I will carry on with the training I got from Robert, hoping that one day I will get enlightened and be able to perceive the interrelatedness of things that I now consider as apples and oranges (well, in fact, it’s constructions and dinosaurs).

I would like to convey my sincere appreciation to William O’Grady for his long-time support. William’s classic course on Government and Binding and his thought-provoking seminars on emergentism will always remain in my memory as
valuable assets. I thank William for his wonderful lectures, for listening to my ideas – some half-baked, some raw, and some probably utter nonsense – with incredible patience, and for always being accessible when I needed his guidance. I am very appreciative to Thom Hudson. Statistics was an intimidating area where I constantly found myself struggle. Thom’s down-to-earth statistics courses have helped me tremendously in that they not only facilitated the understanding of key concepts and the reasoning behind statistical tests but also linked them closely to L2 studies. I owe many thanks to Kamil Deen for critical comments and suggestions on various projects I have taken on. I will never forget his engaging classes on L1 acquisition, his helpful workshops on CHILDES database and abstract writing, and his remark that “all the good stuff is in footnotes.”

A special thanks goes to Theres Grüter, who has generously spent much of her time discussing with me on how to best formulate my research questions, present the data, and interpret the results. Her insights and advice have helped improve the quality of this study.

I am especially grateful to Mari Miyao for scanning and emailing Bonnie’s comments on earlier drafts of this dissertation (400+ pages!) despite the fact that she was under the pressure of completing her own dissertation. I am indebted to Hyeri Joo and Kyae-Sung Park for help with Korean, and to Boping Yuan for sharing the Chinese Cloze Test. I would like to thank Yongshin Kim, Soo-Ok Kweon, Jing Liu, Weihsun Mao and Meiling Wu for assistance in data collection.

I am thankful to the following linguists for helpful discussion: Kook-Hee Gil, Alan Juffs, Ziyin Mai, Heather Marsden, Roumyana Slabakova, Rex Sprouse, and Lydia White. I also appreciate the feedback from the audiences at the 31st Second Language Research Forum (University of Pittsburg and Carnegie Mellon University, 20 October 2012), the 37th annual Boston University Conference on Language Development (Boston University, 3 November 2012), and the 12th Generative Approaches to Second Language Acquisition Conference (University of Florida, 27 April 2013).

I acknowledge with appreciation the financial support from the University of Hawai‘i via the following funds: Elizabeth Carr-Holmes Scholarship Fund (Department
of Second Language Studies), the Ruth Crymes Scholarship Fund (Department of Second Language Studies), and the Graduate Student Organization. I have been honored to receive financial support from Boston University via a 2012 Paula Menyuk Travel Award and from the Linguistic Society of America via a 2007 LSA Summer Institute Fellowship.

I am very thankful to the following colleagues and friends for their support and friendship: Erik Hill, Yao Z. Hill, Qiong Jia, Jung-Hee Kim, Kitaek Kim, So Young Kim, Hye-Young Kwak, On-Soon Lee, Bin Li, Tsai-Hsiu (Dorinda) Liu, Wenjie Qin, Mineko Shiroma, Yijun Shiung, Aya Takeda, Hao Wang, Zhijun Wen, and Wumaier Yilamu.

Finally, I am deeply indebted to my parents, my in-laws and my siblings for their love, support and faith in me. I thank my husband, Allan Sun, and my daughter, Yichen Sun, for absolutely everything.
ABSTRACT

This dissertation looks at native language (L1) influence on adult nonnative language (L2) lexical development, investigating, in particular, whether the syntactic and semantic properties underlying L1 words have effects on the acquisition of lexical equivalents in the L2. The investigation is motivated by the following crosslinguistic differences as instantiated in *wh*-words in Chinese, Korean and English with respect to the existential sense: In Chinese, *wh*-words (e.g., *shenme*) can be used as existentials (i.e., ‘something/anything’) as well as interrogatives (i.e., ‘what’) (Cheng, 1991; Huang, 1982). Chinese *wh*-existentials are confined to syntactico-semantic environments denoting nonveridicality (e.g., negatives, *yes/no* questions, conditionals) (Giannakidou, 2011); in Korean, *wh*-existentials are free of these restrictions (Gil & Marsden, 2013); and in English, *wh*-words can never function as existentials. A comparative Interlanguage study is conducted to examine *wh*-existentials in the L2 Chinese of adult L1-Korean and L1-English speakers. The exploration centers on two main predictions based on Sprouse’s (2006) Lexical Transfer Hypothesis: (i) In nonveridical constructions, lower proficiency L1-Korean L2 learners of Chinese will pattern like Chinese native speakers in allowing *wh*-existentials, whereas lower proficiency L1-English L2 learners will show inhibitions against them; (ii) in veridical constructions, lower proficiency L1-English L2 learners will perform like Chinese speakers in prohibiting nontarget *wh*-existentials, whereas lower proficiency L1-Korean L2 learners will be inclined to allow them.
Intermediate and advanced L1-English and L1-Korean L2 learners of Chinese (English intermediate, \(n = 20 \); English advanced, \(n = 22 \); Korean intermediate, \(n = 21 \); Korean advanced, \(n = 20 \)) and native speakers of Chinese (\(n = 30 \)) completed three experiments targeting the interpretations of *shenme* ‘THING’ in nonveridical negative sentences and veridical present progressive sentences (contextualized multiple-choice interpretation task), the existential use of *shenme* ‘THING’ and *shui* ‘PERSON’ in nonveridical negative sentences and veridical present progressive sentences (elicited production task), and the acceptability judgments of existential *shui* ‘PERSON’ in *yes/no* questions and conditionals (acceptability judgment task). The results of the three experiments generally support the Lexical Transfer Hypothesis, which suggests that a deep level of lexical transfer – transfer of the syntactic and semantic properties underlying L1 lexical items – indeed influences L2 lexical development.
TABLE OF CONTENTS

Acknowledgments.. iii
Abstract.. vi
Table of Contents... viii
List of Tables ... xi
List of Figures .. xiii

Chapter 1: Introduction ...1

Chapter 2: Linguistic Background...8

2.1 The Representation of Lexical Ambiguity... 9
 2.1.1 Several Key Notions .. 9
 2.1.2 Lexical Ambiguity in Psycholinguistic Research .. 10
 2.1.3 The Representation of Polysemous Verbs ... 13

2.2 The Representation of *Wh*-words in Chinese, English and Korean.................... 16
 2.2.1 Preliminaries .. 16
 2.2.2 The Representation of *Wh*-words in Chinese ... 18
 2.2.2.1 Basic Data ... 18
 2.2.2.2 Generalizations ... 23
 2.2.2.3 The Representation ... 26
 2.2.3 The Representation of *Wh*-words in Korean ... 30
 2.2.3.1 Basic Data ... 30
 2.2.3.2 The Representation ... 33
 2.2.4 The Representation of *Wh*-words in English ... 36
 2.2.5 Summary .. 38

2.3 Motivation of the Present Study ... 40

Chapter 3: Previous Research ..41

3.1 Cole, Gil, Hermon and Tadmor (2001). ... 41
3.2 Umeda (2008) .. 43
3.3 Choi (2009) ... 58
3.4 Yuan (2010) ... 66
3.5 Summary and Outstanding Issues ... 75

Chapter 4: Experimental Design, Procedures and Participants77

4.1 Premise.. 78
4.2 Overall Experimental Design and Procedures ... 79
<table>
<thead>
<tr>
<th>Appendix D: Multiple-Choice Interpretation Task Directions</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix E: Multiple-Choice Interpretation Task Test Items</td>
<td>177</td>
</tr>
<tr>
<td>Appendix F: Production Task Directions</td>
<td>191</td>
</tr>
<tr>
<td>Appendix G: Production Task Test Items</td>
<td>194</td>
</tr>
<tr>
<td>Appendix H: Acceptability Judgment Task Directions</td>
<td>198</td>
</tr>
<tr>
<td>Appendix I: Acceptability Judgment Task Test Items</td>
<td>201</td>
</tr>
</tbody>
</table>

References..211
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Distributions of Wh-existentials in Chinese</td>
<td>22</td>
</tr>
<tr>
<td>3.1. Umeda (2008): Results of Grammaticality Judgments on the Non-local Licensing of $Dare$ as \forall (Group Mean)</td>
<td>47</td>
</tr>
<tr>
<td>3.2. Umeda (2008): Translation Task Results for -Mo Sentences</td>
<td>49</td>
</tr>
<tr>
<td>3.3. Umeda (2008): Translation Task Results for -Ga Sentences</td>
<td>50</td>
</tr>
<tr>
<td>3.4. Umeda (2008): Q/A Acceptability Judgment Task Results: The Non-local Licensing of $Dare$ as \forall (Group Mean)</td>
<td>52</td>
</tr>
<tr>
<td>3.5. Choi (2009): Listening Translation Task Results (Mean Accuracy)</td>
<td>59</td>
</tr>
<tr>
<td>3.6. Choi (2009): Written Translation Task Results (Mean Accuracy)</td>
<td>60</td>
</tr>
<tr>
<td>3.7. Choi (2009): Truth-Value Judgment Task Results: Type 1 (Mean Judgments)</td>
<td>63</td>
</tr>
<tr>
<td>3.8. Choi (2009): Truth-Value Judgment Task Results: Type 2 (Mean Judgments)</td>
<td>64</td>
</tr>
<tr>
<td>3.10. Yuan (2010): Categories and Types of Experimental Sentences</td>
<td>67</td>
</tr>
<tr>
<td>3.11. Yuan (2010): Results of Wh-existentials in Negative Sentences (Mean)</td>
<td>68</td>
</tr>
<tr>
<td>3.12. Yuan (2010): Results of Wh-existentials in Conditional Sentences (Mean)</td>
<td>70</td>
</tr>
<tr>
<td>3.13. Yuan (2010): Results of Wh-existentials in Yes/No Questions (Mean)</td>
<td>71</td>
</tr>
<tr>
<td>4.1. Overview of the Experimental Design</td>
<td>80</td>
</tr>
<tr>
<td>4.2. Results of the Proficiency Tests</td>
<td>83</td>
</tr>
<tr>
<td>4.3. Background Information of the L2 Participants</td>
<td>84</td>
</tr>
<tr>
<td>4.4. Biographical Information of the Native Participants</td>
<td>85</td>
</tr>
<tr>
<td>5.1. Multiple-Choice Interpretation Task: Types and Examples of Experimental Prompt Sentences</td>
<td>89</td>
</tr>
<tr>
<td>5.2. Multiple-Choice Interpretation Task: Types and Examples of Filler Prompt Sentences</td>
<td>96</td>
</tr>
</tbody>
</table>
5.3. Multiple-Choice Interpretation Task: Natives’ Target Responses to Individual Filler Items ... 97
5.4. Multiple-Choice Interpretation Task: Group Results of Each Filler Type 97
6.1. Elicited Production Task: Distribution of Participants in Terms of Instances of Shenme/Shui Produced in Nonveridical Sentences ... 125
6.2. Elicited Production Task: Distribution of Participants in Terms of Instances of Shenme/Shui Produced in Veridical Sentences ... 127
7.1. Acceptability Judgment Task: Experimental Design .. 138
7.2. Acceptability Judgment Task: Individual Results of Accuracy of -Ma 140
7.3. Acceptability Judgment Task: Yes/No Question Group Results 141
7.4. Acceptability Judgment Task: Consistency of Participants on Yes/No Questions ... 142
7.5. Acceptability Judgment Task: Conditional Group Results 144
7.6. Acceptability Judgment Task: Consistency of Participants on Conditionals 145
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Internal Structure of a Lexical Item</td>
<td>2</td>
</tr>
<tr>
<td>5.1.</td>
<td>Multiple-Choice Interpretation Task: Format of Experimental Items</td>
<td>90</td>
</tr>
<tr>
<td>5.2.</td>
<td>Multiple-Choice Interpretation Task: Type 1 Sample Item</td>
<td>91</td>
</tr>
<tr>
<td>5.3.</td>
<td>Multiple-Choice Interpretation Task: Type 2 Sample Item</td>
<td>92</td>
</tr>
<tr>
<td>5.4.</td>
<td>Multiple-Choice Interpretation Task: Type 3 Sample Item</td>
<td>93</td>
</tr>
<tr>
<td>5.5.</td>
<td>Multiple-Choice Interpretation Task: Type 4 Sample Item</td>
<td>94</td>
</tr>
<tr>
<td>5.6.</td>
<td>Multiple-Choice Interpretation Task: Filler Sample Item</td>
<td>95</td>
</tr>
<tr>
<td>5.7.</td>
<td>Multiple-Choice Interpretation Task: Type 1 Response Distribution</td>
<td>98</td>
</tr>
<tr>
<td>5.8.</td>
<td>Multiple-Choice Interpretation Task: Type 1 Response Consistency</td>
<td>99</td>
</tr>
<tr>
<td>5.9.</td>
<td>Multiple-Choice Interpretation Task: Type 3 Response Distribution</td>
<td>101</td>
</tr>
<tr>
<td>5.10.</td>
<td>Multiple-Choice Interpretation Task: Type 3 Response Consistency</td>
<td>102</td>
</tr>
<tr>
<td>5.11.</td>
<td>Multiple-Choice Interpretation Task: Proportions of the Q Interpretation: Type 1 vs. Type 3</td>
<td>104</td>
</tr>
<tr>
<td>5.12.</td>
<td>Multiple-Choice Interpretation Task: Type 2 Response Distribution</td>
<td>106</td>
</tr>
<tr>
<td>5.13.</td>
<td>Multiple-Choice Interpretation Task: Type 2 Response Consistency</td>
<td>107</td>
</tr>
<tr>
<td>5.14.</td>
<td>Multiple-Choice Interpretation Task: Type 4 Distribution of Responses</td>
<td>109</td>
</tr>
<tr>
<td>5.15.</td>
<td>Multiple-Choice Interpretation Task: Type 4 Response Consistency</td>
<td>111</td>
</tr>
<tr>
<td>5.16.</td>
<td>Multiple-Choice Interpretation Task: Proportions of the \exists Interpretation: Type 2 vs. Type 4</td>
<td>113</td>
</tr>
<tr>
<td>6.1.</td>
<td>Elicited Production Task: Sample Item for Eliciting Existential Shenme in a Nonveridical Sentence</td>
<td>119</td>
</tr>
<tr>
<td>6.2.</td>
<td>Elicited Production Task: Sample Item for Eliciting Existential Shui in a Nonveridical Sentence</td>
<td>120</td>
</tr>
<tr>
<td>6.3.</td>
<td>Elicited Production Task: Sample Item for Eliciting (Nontarget) Existential Shenme in a Veridical Sentence</td>
<td>121</td>
</tr>
</tbody>
</table>
6.4. Elicited Production Task: Sample Item for Eliciting (Nontarget) Existential
 Shui in a Veridical Sentence ... 122
6.5. Elicited Production Task: Existential Shenme/Shui in Nonveridical Sentences –
 Group Results ... 124
6.6. Elicited Production Task: Existential Shenme/Shui in Veridical Sentences –
 Group Results ... 126
CHAPTER 1
INTRODUCTION

Second language (L2) researchers have long been trying to determine whether there is “a principled basis” for characterizing native language (L1) influence, or L1 transfer, in L2 acquisition (Schwartz & Eubank, 1996, p. 3). Decades of L2 research have not resulted in a consensus (Schwartz, 2013). This dissertation is an empirical endeavor in this regard, exploring the possibility that the key component of language, lexical items, functions as the basic packages of L1 transfer, which carry along with them the entirety of their underlying semantic and syntactic properties into the L2 initial state.

At the outset of the inquiry, it helps first to understand what needs to be learned in the lexicon. Traditionally, dating back to Saussurean structuralism, the lexicon was treated as a repertoire of indecomposable signs which arbitrarily associate form with meaning. Thus, there is nothing interesting about lexical learning – it is just a matter of rote memorization. This is perhaps best articulated in Pinker (1994):

The word *dog* does not look like a dog, walk like a dog, or woof like a dog, but it means ‘dog’ just the same. It does so because every English speaker has undergone an identical act of rote learning in childhood that links the sound to the meaning. For the price of this standardized memorization, the members of a language community receive an enormous benefit: the ability to convey a concept from mind to mind virtually instantaneously. (pp. 83-84)

The past two decades have seen dramatic changes in the understanding of the lexicon. Various linguistic phenomena, formerly thought of as syntactic, have now been seen as lexically driven (e.g., Bresnan, 2001; Hale & Keyser, 1993; Pollard & Sag, 1994). The current standard view of the lexicon is Levelt’s (1989) model, which holds that all
lexical entries contain four types of features: semantic, syntactic, morphological and phonological, as illustrated in Figure 1.1:

According to Levelt, the semantic features of a lexical item specify the conceptual conditions in which the meaning of the item is selected. The syntactic specification contains information regarding the syntactic properties of the item (e.g., grammatical category, argument structure, and so forth). The morphological features encode, e.g., affixational information associated with the root item. And finally, the phonological features include information about the pronunciation of the item (e.g., phonological segments, segment structure, stress structure, etc.).

Following the proposal of Kempen and Huijbers (1983), Levelt suggests that the top two cells in Figure 1.1, the semantic and syntactic specifications, make up the lemma component of the lexical entry, which is claimed to be relevant for grammatical encoding, and the bottom two cells, the morphological and phonological specifications, form the

1 Lexical entries, or lexical items, are often understood as words, but as Jackendoff (2002, pp. 152-182) emphasized, lexical entries and words are, in fact, not interchangeable notions, as some lexical entries are smaller than words (e.g., stems and affixes) and some are larger than words (e.g., idioms). The criterion that Jackendoff used for identifying a lexical entry is that it is a unit stored in long-term memory which cannot be “constructed online in working memory” (Jackendoff, 2002, p. 152).
lexeme component of the lexical entry, which is argued to be independent of grammatical encoding.²

In commenting on Levelt’s model, Juffs (2009, p. 183) asserts: “It is worth repeating and emphasizing that a lexical entry is not a single, indivisible ‘slot’ or chunk in a list. Each of the four elements can be stored, manipulated, and learned separately.”

In fact, much empirical research has been devoted to how a certain aspect of lexical knowledge (e.g., meaning) develops (e.g., Bion, Borovsky, & Fernald, 2013; Bloom, 2000; Houston-Price, Caloghiris, & Raviglione, 2010; Markman, 1990) or how different components are integrated in child language acquisition (e.g., Goldrick, Baker, Murphy, & Baese-Berk, 2011; Heisler, Goffman, & Younger, 2010; Pérez-Leroux, Pirvulescu, & Roberge, 2008).

In L2 lexical research, psycholinguists have typically focused on the extent to which forms and meanings of L1 words are activated in L2 lexical processing (e.g., Jiang, 2002; Kroll, Michael, Tokowicz, & Dufour, 2002; Kroll & Stewart, 1994; Sunderman & Kroll, 2006). This strand of research has largely been restricted to nouns and has generally stopped at the word level.

Generative L2 researchers concerned with the L2 lexicon have often directed attention to verbs, examining whether differences in lexicalization patterns – as instantiated in L1 verbs and target language (TL) verbs – influence argument structure in Interlanguage (e.g., Bley-Vroman & Joo, 2001; Inagaki, 2001; Juffs, 1996; Montrul, 1998; Zyzik, 2006).

Results from both lines of L2 research, by and large, have pointed towards transfer of L1 lexical knowledge, at least at early stages of L2 development. A generalization, however, still seems empirically unwarranted, given that they have targeted entirely different grammatical classes. Moreover, it is as yet unclear whether or not the entire set of grammatical information – the lemma component – associated with L1 lexical items influences L2 lexical development.

² In a subsequent elaboration on the lemma/lexeme distinction, Roelofs, Meyer and Levelt (1998) suggested that morphosyntactic diacritics which encode grammatical functions of lexical items (e.g., tense, person, number, gender) are found at the level of lemma, whereas their morpho-phonological specifications (e.g., concrete morphemes, segments) are found at the level of lexeme.
This dissertation is intended as a contribution to this issue by looking into an area that has received little attention in L2 lexical research: *wh*-existential words in Mandarin Chinese (henceforth, “Chinese”). This domain of lexical knowledge is uniquely intriguing as it crosses the boundaries of the two aforementioned areas of L2 lexical research in the sense that *wh*-existentials belong to the category of noun, but structural aspects are relevant to what senses they take on.

It has long been noted that the interpretations of Chinese *wh*-words vary with the linguistic environments in which they occur (Cheng, 1991, 1994, 1997; Huang, 1982; Lin, 1996; inter alia), as illustrated in (1) and (2) below:

(1) Zhangsan zai xie shenme
 Zhangsan ASP write THING
 a. ‘What is Zhangsan writing?’
 b. * ‘Zhangsan is writing something.’

(2) Lisi mei zai xie shenme
 Lisi NEG ASP write THING
 a. ‘What isn’t Lisi writing?’
 b. ‘Lisi isn’t writing anything.’

When the *wh*-word *shenme* appears in an affirmative present progressive in (1), it is interpreted only as interrogative (Q) ‘what’ (i.e., (1a)); when *shenme* appears in a negative in (2), it is interpreted either as Q ‘what’ (i.e., (2a)) or as existential (∃) ‘anything’ (i.e., (2b)). Clearly, the presence or absence of the ∃ sense of *shenme* is sensitive to the semantico-syntactic differences of the two sentences, whereas the Q sense is not. As a first approximation, Chinese *wh*-words denoting the ∃ sense (henceforth, 3

3 Following Klein and Murphy (2001), in this dissertation we make the distinction between meaning and sense, referring to polysemous words as having different senses, and referring to homonymous words as having different meanings. However, meaning is also used as a generic term for the semantic contents of lexical items. See Chapter 2 for fuller discussion.

4 To save space, the *wh*-word *shenme* ‘what/something/anything’ is glossed as ‘THING’; and the *wh*-word *shui* ‘who/someone/anyone’ is glossed as ‘PERSON’. The same glossary notations are also used for relevant data in other languages such as Korean, Japanese, etc.
“wh-existentials”) are structurally restricted, but those denoting the Q sense (henceforth, “wh-interrogatives”) are free. (We will return to this topic in Chapter 2 with detailed exposition and analyses.)

Somewhat parallel to Chinese, Korean wh-words can also be used as ∃, as evidenced by the Korean data in (3):

(3) Mary-ka mwues-ul ssu-ko iss-ta
Mary-NOM THING-ACC write-PROG-DECL
‘Mary is writing something.’

(K.-S. Park, p.c., 19 Sept. 2012)

However, we see that the ∃ sense is allowed in Korean as in (3), but prohibited in Chinese as in *(1b), suggesting that Korean wh-existentials are free from the constraints governing Chinese wh-existentials.

In contrast to Chinese and Korean, wh-words in English are never used as existentials.

Based on these crosslinguistic differences, we seek empirical data from adult L2 learners (L2ers) of Chinese, whose L1 is either Korean or English, to investigate whether the syntactic and semantic properties of the L1 wh-words will have consequences on the development of wh-existentials in L2 Chinese.

The theoretical framework we adopt for this investigation is Sprouse’s (2006) Lexical Transfer Hypothesis, which claims that the L1 lexicon (minus phonetic matrices) is fully transferred into the L2 initial state via the mental process of relexification. The idea of relexification was originally put forward in the field of creole research (Lefebvre, 1998; Muysken, 1981). Applying this to L2 acquisition, Sprouse proposes, in brief, that (adult) L2ers, in observing the partial semantic overlap between lexical entries in the L1 and the TL, create initial L2 lexical entries with phonological representations derived from the TL and with syntactic and semantic properties copied from their fully established L1 lexical entries.
Using Levelt’s terminology in Figure 1.1, the initial L2 lexical representation envisioned by Sprouse is a lexical complex such that the lemma is borrowed in its entirety from the L1 and the lexeme comes from the TL.\(^5\)

In light of this hypothesis, we investigate whether the initial L2 knowledge of Chinese *wh*-existentials by L1-Korean and L1-English speakers is bounded by semantic and syntactic properties of the corresponding *wh*-words in the L1.

Chapter 2 provides the linguistic background relevant to the study. As our target phenomenon involves lexical ambiguity, we introduce central issues involved in lexical ambiguity and outline previous empirical findings on how lexical ambiguity is represented in the grammar of native speakers. Against this background, we present data and analyses regarding the representation of *wh*-words in native Chinese, Korean and English, and provide theoretical motivation for the present study.

Chapter 3 reviews the very few previous studies which investigated the L1 or L2 acquisition of *wh*-indefinites (i.e., *wh*-existentials and *wh*-universals). All studies found that *wh*-indefinites were substantially delayed relative to *wh*-interrogatives, but the explanations given for this vary from study to study. We comment on these accounts and motivate the present study empirically.

Chapter 4 reports on the research methodology of the present study. We first establish the premise that the overlapped Q sense of *wh*-words forms the basis of L1-TL lexical associations. We then present details regarding the overall experimental design, data collection procedures, L2 Chinese proficiency measures, and the background information of the participants.

Chapters 5, 6, and 7 are devoted to the three experimental studies conducted: the contextualized multiple-choice interpretation task, the elicited production task, and the acceptability judgment task, respectively. The experimental specifics, data analysis, and results of the three experiments are presented.

\(^5\) Jiang’s (2000) model of L2 lexical development also hypothesizes that the L1 lemma information is copied to the L2 lexical representations, but this model postulates that this occurs at a later stage, with the L2 initial lexical entries containing only lexemes derived from TL but no lemmas. According to Jiang, at the L2 initial stage, L2ers may make use of explicit grammatical rules about L2 words, but such information is not integrated into the mental lexicon and is stored in general memory.
Chapter 8 concludes the dissertation by summarizing the main findings of the study, discussing implications and outstanding issues, and suggesting directions for future research.
CHAPTER 2
LINGUISTIC BACKGROUND

This chapter sets the stage for the study by discussing issues regarding the mental representations of *wh*-words in native Chinese, Korean and English. This domain of knowledge is intriguingly complex in that (i) besides the universally attested interrogative (Q) sense, *wh*-words in a subset of languages are also used as existential (∃) (and/or as universal (∀); and (ii) the distributions of *wh*-existentials are crosslinguistically different, i.e., in some languages, they are used in a wide range of constructions, whereas they are structurally restricted in other languages.

For the purpose of our study, these crosslinguistic differences come down to two basic observations. First, *wh*-existentials are allowed in Chinese and Korean, but prohibited in English. Second, *wh*-existentials in Chinese are limited to a smaller number of constructions than in Korean. The broad question we set out to answer is whether the representations of *wh*-words in the L2 Chinese of L1-Korean and L1-English speakers are influenced by the L1 lexical representations.

It is thus essential to understand how *wh*-words are represented in Chinese, Korean and English. Tackling this issue necessitates an understanding of two theoretically relevant questions. First, when a lexical item contains multiple meanings, how are these meanings represented in the lexicon? Second, when structural aspects are relevant to the meaning differences of a lexical item, where are these differences located? Section 2.1 introduces relevant literature which addresses these two issues. Against this background, Section 2.2 presents data and analyses with respect to the representation of *wh*-words in Chinese, Korean and English. Section 2.3 wraps up this chapter and motivates the present study.
2.1 The Representation of Lexical Ambiguity

2.1.1 Several Key Notions

Lexical ambiguity is prevalent in natural languages. A quick look at any dictionary in any language will show that a great majority of words have more than one meaning. Depending on whether the different meanings are related or not, lexical ambiguity is divided into two categories: homonymy and polysemy.

Homonyms are words that have two or more unrelated meanings. For example, *bark* can refer either to the sound of a dog or to the skin of a tree, and it is hard to see any connection between these two meanings. The emergence of homonyms is usually attributed to arbitrary historical coincidence, where two distinct meanings converge on a single form (Klein & Murphy, 2001).

Polysemous words, on the other hand, have 2+ senses that are related to one another in some way. An oft-cited example is *paper*, which can refer to a thin material made of cellulose pulp, a publication that is printed on this material, or a short piece of writing that is written on this material, etc. Clearly, the latter two senses were extended from the material sense. The sense which links all alternative senses of a polysemous word together is commonly referred to as the prototype, or the core sense.

It has been suggested that there exist certain systematic relations between different senses of polysemous words (Nunberg, 1979), including, for example, animal/meat (e.g., *My fish is darting erratically*/ *These fish sticks are really nice*), material/product (e.g., *The most common crystals are made of glass*/ *Give me a glass of water*), object/substance (e.g., *an oak tree*/ *an oak bookcase*), body part/object part (e.g., *The little girl broke her leg*/ *The legs of the table are sturdy*), place/institution (e.g., *His parents live in Beijing*/ *Beijing is taking an emergency action*), space/time (e.g., *There is a long way to drive*/ *Many people fell asleep in that long meeting*), etc. These semantic relations are often taken as lexical rules or conceptual structures which “permit the meanings of known words to shift along polysemous relations and that further allow these relations to generalize to novel words” (Srinivasana & Snedeker, 2011, p. 246). For instance, Klein and Murphy (2001, p. 260) coined a novel word *delgar* as the name for a hypothesized plant, and they argued that the presence of the object/substance semantic relation allows language users to produce and understand the alternative meanings of
delgar in sentences like “There is a *delgar* growing in my yard” (individual plant) and “This pen is made out of *delgar*” (the substance derived from that plant).

2.1.2 Lexical Ambiguity in Psycholinguistic Research

The central question that lexical ambiguity poses is how different meanings are represented in the lexicon, i.e., whether there is a separate representation for each meaning or whether the different meanings share a single representation. Psycholinguistic studies in this area have focused mainly on nouns, comparing the processing of different meanings of ambiguous words vis-à-vis the processing of unambiguous words. Although there is a general consensus that homonyms are stored in memory as separate lexical entries, there have been controversies regarding the representation of polysemes (e.g., Klein & Murphy, 2001; Klepousniotou, Titone, & Romero, 2008; Pylkkänen, Llinás, & Murphy, 2006; Simpson, 1994).

In an early eye-tracking study, Frazier and Rayner (1990) recorded participants’ fixation times for homonymous words (e.g., *record* in (1)) and polysemous words (e.g., *newspaper* in (2)) when the disambiguating subordinate contexts either preceded the target words (e.g., (1a-b) and (2a-b)) or followed them (e.g., (1c-d) and (2c-d)):

Homonymy

a. After they were scratched, the *records* were carefully guarded.
b. After the political takeover, the *records* were carefully guarded.
c. The *records* were carefully guarded after they were scratched.
d. The *records* were carefully guarded after the political takeover.

Polysemy

a. Lying in the rain, the *newspaper* was destroyed.
b. Managing advertising so poorly, the *newspaper* was destroyed.
c. Unfortunately the *newspaper* was destroyed, lying in the rain.
d. Unfortunately the *newspaper* was destroyed, managing advertising so poorly.
Two main results were obtained. First, when the disambiguating contexts preceded the target words, reaction times (RTs) were marginally longer for polysemous words and were significantly longer for homonymous words, as compared to unambiguous controls (e.g., *door, window*); in the post-critical region, RTs were significantly longer only for homonymous words. Second, when the disambiguating contexts followed the target words, RTs were significantly longer for homonymous words than for polysemous words.

Frazier and Rayner argued in favor of the Minimal Semantic Commitment Hypothesis, which claims that the human parser makes semantic decisions only when this becomes necessary. For homonymous words, the parser has no choice but to make immediate semantic decisions because the two distinct meanings are represented separately in the lexicon, and this resulted in the lengthened RTs in the study. For polysemous words, by contrast, the different senses share a core representation, with distinguishing semantic features unspecified, and the selection between the two related senses is delayed until context or discourse makes it indispensable. On this view, the different senses of a polysemous word share a single abstract underspecified representation in the lexicon, and the semantic differences are computed on the fly in sentential or pragmatic contexts.

This hypothesis, however, was challenged by Klein and Murphy’s (2001) study, which examined in a series of experiments whether sense (in)consistency will have effects on the retrieval of different senses of polysemous words. The logic of this study is that if polysemous words have a separate representation for each sense, participants’ performance should be better if the word is used in the same sense than if it is used in a different sense; if, on the other hand, the different senses share one representation, no such difference should be found, as the same representation will be accessed every time this word is encountered. In the crucial experiment (Experiment 3), Klein and Murphy compared the priming effects of sense (in)consistency on polysemous words, e.g., (3), with those on homonymous words, e.g., (4).
(3) **Polysemy**

Prime: wrapping paper
Target: shredded paper (consistent condition)
daily paper (inconsistent condition)

(4) **Homonymy**

Prime: savings bank
Target: commercial bank (consistent condition)
creek bank (inconsistent condition)

Participants were presented with prime phrases, followed by target phrases where the nouns were used either in the same sense (consistent condition) or in a different sense (inconsistent condition). The participants’ task was to judge whether each phrase makes sense or not. Results show that judgments were significantly faster and significantly more accurate in the consistent condition than in the inconsistent condition, and there was no difference between polysemous words and homonymous words. Klein and Murphy thus concluded that polysemous words have separate representations for each sense just like homonymous words.

In a more recent study, employing magnetoencephalographic (MEG) techniques, Pylkkänen, Llinás and Murphy (2006) compared the processing of polysemous and homonymous words by investigating whether activation of one meaning will prime the other meaning. The main MEG dependent measure was the M350, a response component generated in the left hemisphere at 300-400 ms after stimulus onset. The M350 component is sensitive to semantic integration processes. Related meanings are expected to elicit earlier peak latencies of the M350 as opposed to unrelated ones. The stimuli included three types, as shown in (5):

<table>
<thead>
<tr>
<th>(5)</th>
<th>Related Prime</th>
<th>Unrelated Prime</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homonymous:</td>
<td>river bank</td>
<td>salty fish</td>
<td>savings bank</td>
</tr>
<tr>
<td>Polysemous:</td>
<td>lined paper</td>
<td>military post</td>
<td>liberal paper</td>
</tr>
<tr>
<td>Semantic:</td>
<td>lined paper</td>
<td>clock tick</td>
<td>monthly magazine</td>
</tr>
</tbody>
</table>
Results show that homonymous targets had significantly later M350 latencies than the unrelated primes, indicating inhibition of identical forms with different meanings, whereas the polysemous targets elicited priming, with the M350 peaking earlier for related primes than for unrelated primes. Based on these results, Pylkkänen et al. argued that “the representation of polysemy involves both representational identity and difference: Related senses connect to [the] same abstract lexical representation, but are distinctly listed within that representation” (p. 97).

Note that what Pylkkänen et al. envisioned for polysemy is a representational complex, with one identical abstract representation but distinct sub-representations for each sense. In other words, the semantic relatedness and semantic differences associated with polysemous words are both encoded in the lexicon. This is clearly different from the underspecified representation that Frazier and Rayner’s (1990) proposed.

While the debate regarding the representation of polysemy continues, much empirical evidence obtained so far has pointed towards single-representation (e.g., Azuma & Van Orden, 1997; Beretta, Fiorentino, & Poeppel, 2005; Frazier & Rayner, 1990; Klepousniotou & Bauma, 2007; Klepousniotou et al., 2008; Williams, 1992), though nuanced technical details often vary from one another.

2.1.3 The Representation of Polysemous Verbs

Things get trickier when it comes to polysemy in verbs, as subtle semantic differences are often tied to the syntactic constructions in which they occur. For example, it has long been observed that the meanings of a class of verbs, commonly known as locative alternation verbs, vary with the sentences in which they occur (Anderson, 1971; Fillmore, 1968; cited in Goldberg, 1995, p. 2):

(6) a. Bees are swarming in the garden.
 b. The garden is swarming with bees.

(7) a. I loaded the hay onto the truck.
 b. I loaded the truck with the hay.
According to Goldberg, (6b) implies that the whole garden is full of bees, whereas (6a) could mean that only a part of the garden has bees. Similarly, (7b) suggests that the entire truck is filled with hay, whereas (7a) does not entail such an implication.

The issue that arises here is: How are such syntactically relevant meanings represented in the mind? One line of thinking is that these differences have their roots in the verbs and the syntactic differences are the consequence of distinctions in lexical semantics (e.g., Bresnan, 1995, 2001; Levin, 1985; Levin & Rapoport, 1988; Pinker, 1989). The basic idea is that meanings of verbs determine how many and what types of arguments that they take, which, in turn, leads to differences in syntactic structure. This is schematized in Bresnan (1995, p. 1) as in (8):

(8) lexical semantics
 ↓
 argument structure
 ↓
 syntactic structure

Consider the alternative senses of *bark* in (9):

(9) a. The dog barked. (activity)
 b. The dog barked the neighbors awake. (accomplishment)

The activity of *bark* involves only one participant, so the argument structure encoded in the activity sense is BARK_{activity} <external argument>, and this is reflected in the syntax as: NP BARK, as in (9a). By contrast, the accomplishment sense of *bark* entails a sub-event, where another participant is put in a certain state. This gives rise to the argument structure BARK_{accomplishment} <external argument, internal argument>, and it is realized in the syntax as: NP₁ BARK NP₂ AdjP as in (9b).

Crucially, the verb’s argument structure is conceptualized as a lexical syntactic construct, which serves to mediate mapping semantic structures onto syntactic structures. The primary goal for this approach is to work out lexical rules which operate on argument structures so that changes of verb senses can be used to predict changes in overt syntax.
For example, Pinker (1989, pp. 110-111) identified a sub-class of verbs of ‘giving’ (e.g., feed, give, hand, lend, loan, pass, pay, sell, serve, trade) which can alternate between the prepositional construction (e.g., (10a)) and the double object construction (e.g., (10b)):

(10) a. John gave some books to the student.
 b. John gave the student some books.

He argued that there were two ways to conceptualize a giving event, namely, (i) ‘X causing Y to go to Z’ and (ii) ‘X causing Z to have Y’, and a lexical rule can take a verb with the first semantic structure as input and produce the second semantic structure. Open arguments of the converted semantic structure are mapped onto the syntactic structure of the double object construction by canonical linking rules.

A second approach to syntactically relevant polysemy is a family of theories known as Construction Grammar, which treats constructions as the basic form-meaning mapping units (e.g., Fillmore, 1985; Fillmore, Kay, & O’Connor, 1988; Lakoff, 1987; Michaelis & Lambrecht, 1996). Goldberg’s (1995) work on argument structure has been particularly influential, as it has broadened our perspectives on form-meaning mapping in several aspects.

First, constructions are conceptualized as declaratively represented entities which map form with meaning independent of the verbs that participate in them. For example, the double object construction pairs the form [Subj V Obj₁ Obj₂] with the meaning ‘X causing Y to receive Z’ (e.g., Pat faxed Bill the letter); the resultative construction pairs the form [Subj V Obj Xcomp]⁶ with the meaning ‘X causing Y to become Z’ (e.g., She kissed him unconscious).

Second, when a verb is integrated with a certain construction, it retains its inherent semantic representation. For sentences like He sneezed the napkin off the table, one does not have to postulate in an ad hoc fashion that the verb sneeze is polysemous between its basic sense and the additional sense of ‘X causing Y to move by sneezing’.

⁶ “Xcomp” stands for an AdjP or an open clausal complement of a VP, which is always nonfinite.
The original meaning of *sneeze* is kept intact; the caused-motion meaning is attributed to the syntactic construction [Sub V Obj Obl].

Third, polysemy is posited to occur in constructions in the same way as in lexical items. Specifically, general polysemy links which capture the semantic relation between a prototypical sense and the extended senses of a lexical item also apply to constructions, which allow them to take on a family of related senses. For example, Goldberg listed the following pattern of polysemy associated with the double object construction:

\[(11) \quad \begin{align*}
 \text{a.} & \quad \text{‘X causes Y to receive Z’ (central sense)} \\
 & \quad \text{Joe gave Sally the ball.} \\
 \text{b.} & \quad \text{Conditions of satisfaction imply ‘X causing Y to receive Z’} \\
 & \quad \text{Joe promised Bob a car.} \\
 \text{c.} & \quad \text{‘X enables Y to receive Z’} \\
 & \quad \text{Joe permitted Chris an apple.} \\
 \text{d.} & \quad \text{‘X causes Y not to receive Z’} \\
 & \quad \text{Joe refused Bob a cookie.} \\
 \text{e.} & \quad \text{‘X intends to cause Y to receive Z’} \\
 & \quad \text{Joe baked Bob a cake.} \\
 \text{f.} & \quad \text{‘X acts to cause Y to receive Z at some future point in time’} \\
 & \quad \text{Joe bequeathed Bob a fortune.}
\end{align*}\]

(Goldberg, 1995, p. 75)

This brief introduction to the representation of polysemy is intended to pave the way for our discussion of the representation of *wh*-words in Chinese, Korean and English, to which we now turn in the next section.

2.2 The Representation of *Wh*-words in Chinese, English and Korean

2.2.1 Preliminaries

It is claimed that all languages have interrogative substitutes for nouns and some adverb-like expressions denoting location, temporality, purpose, manner, etc. (Ultan,
1978). This group of words, represented by the English what, who, which, where, when, why and how, are commonly referred to as wh-words.

Two well-known observations characterize crosslinguistic differences associated with wh-words. In terms of syntax, in some languages (e.g., English), wh-words have to occur in clause-initial position in mono-clausal wh-questions as in (12), whereas in other languages (e.g., Chinese), wh-words stay in their base-generated positions as in (13):

(12) What are you doing ti?

(13) Ni zai zuo shenme?
 ‘What are you doing?’

In terms of semantics, in some languages, wh-words may also be used as indefinite pronouns, with senses on a par with existential quantifiers (e.g., ‘some’, ‘any’) or universal quantifiers (e.g., ‘every’, ‘all’) (e.g., Cheng, 1991; Huang, 1982; Kim, 1989; Lin, 1996; Nishigauchi, 1990; Shin, 2005), as in (14), whereas the indefinite senses are ruled out in other languages:

(14) a. Wo mei chi shenme. (existential)
 ‘I didn’t eat anything.’

 I NEG eat THING

b. Wo shenme dou chi. (universal)
 ‘I eat everything.’

 I THING all eat

Wh-based indefinites are widespread typologically. In his 100-language sample, Haspelmath (1997, p. 174) found 31 languages whose indefinites were formally identical to bare interrogatives (i.e., without morphological marking). A typical example is Chinese (e.g., (14)). He also found 33 languages whose indefinites were derived from
interrogatives by attaching an affix to the interrogative root, as can be seen in the Japanese examples in (15):

(15) interrogative existential universal
 nani ‘what’ nani-ka ‘something’ nani-mo ‘everything’
 dare ‘who’ dare-ka ‘someone’ dare-mo ‘everyone’

(Haspelmath, 1997, p. 165: (362))

Putting aside the morphologically marked wh-indefinites, the typological fact that interrogatives and indefinites converge on identical forms in nearly a third of Haspelmath’s sample suggests that “we are dealing with systematic polysemy rather than with accidental homonymy” (Haspelmath, 1997, p. 174).

2.2.2 The Representation of Wh-words in Chinese

2.2.2.1 Basic Data

Chinese wh-words are polysemous with three senses: interrogative (Q), existential (∃) and universal (∀). Wh-interrogatives can occur freely as long as there is no subcategorization violation, whereas wh-existentials and wh-universals are restricted in distribution. For the purpose of the present study, we focus on the wh-existentials.

Constructions in Chinese which sanction wh-existentials include negatives (16), yes/no questions (17), conditionals (18), A-not-A questions,7 complements of non-factive

7 A-not-A questions are a type of disjunctive question formed by combining the affirmative and negative sentences together with redundant elements deleted. An A-not-A question is shown in (i):

(i) Zhangsan jiang bu jiang yingyu?
 Zhangsan speak NEG speak English
 ‘Does Zhangsan speak English or not?’
verbs,8 imperatives, constructions involving adverbs of uncertainty,9 constructions involving inference -\textit{le},10 and uncertain modalities, etc., the first three of which are illustrated below (see Lin, 1996, Chapter 4, for extensive data):

8 Factive verbs presuppose that the proposition they introduce is true. Verbs such as \textit{know}, \textit{learn}, \textit{regret}, etc. are typical factive verbs (e.g., from the truth of \textit{John knew/learned/regretted that dinosaurs are extinct}, we can infer that dinosaurs actually died out). Non-factive verbs, by contrast, do not make commitments to the truth of the embedded proposition. The truth of the sentence \textit{John believed/suggested/thought that dinosaurs are extinct}, for example, does not entail the truth of ‘dinosaurs are extinct’, so verbs such as \textit{believe}, \textit{suggest} and \textit{think} are non-factive. The following is an example of existential \textit{shenme} licensed by the non-factive verb \textit{yiwei} ‘think’:

(ii) \textit{Zhangsan yiwei Lisi tingdao-le shenme.}
\hspace{1cm} \textit{Zhangsan think Lisi hear-ASP THING}
\hspace{1cm} ‘Zhangsan thought that Lisi heard \textit{something}.’

9 A typical adverb of uncertainty is \textit{keneng} ‘probably’. It does not make a commitment to the truth of the proposition it introduces (e.g., from \textit{John has probably finished his homework}, we cannot tell for sure whether John actually completed his homework). The following is an example of existential \textit{shenme} licensed by \textit{keneng} ‘probably’:

(iii) \textit{Zhangsan keneng shuo-le shenme.}
\hspace{1cm} \textit{Zhangsan probably say-ASP THING}
\hspace{1cm} ‘Zhangsan probably said \textit{something}.’

10 Inference -\textit{le} functions to indicate that the proposition it introduces is inferred rather than derived from an episodic fact. Consider the sentence in (iv):

(iv) \textit{Lisi qu duanlian shentie le.}
\hspace{1cm} \textit{Lisi go exercise body inference particle}
\hspace{1cm} ‘Lisi may have gone exercising.’

The presence of -\textit{le} suggests that this statement was made by inference. An example of existential \textit{shenme} licensed by inference -\textit{le} is given in (v):

(v) \textit{Zhangsan kandao shenme le.}
\hspace{1cm} \textit{Zhangsan see THING inference particle}
\hspace{1cm} ‘Zhangsan may have seen \textit{something}.’
Negatives

(16) a. Zhangsan *mei* mai *shenme*
Zhangsan NEG buy THING
(i) ‘*What* didn’t Zhangsan buy?’
(ii) ‘Zhangsan didn’t buy *anything*.’

b. Zhangsan *mei* jian Lisi mai *shenme*
Zhangsan NEG see Lisi buy THING
(i) ‘*What* didn’t Zhangsan see Lisi buy?’
(ii) ‘Zhangsan didn’t see Lisi buy *anything*.’

c. *Shenme* mei you fuzuoyong
THING NEG have side effects
(i) ‘*What* doesn’t have side effects?’
(ii) * ‘Something* doesn’t have side effects.’

All three sentences in (16) are negatives. When the *wh*-word *shenme* occurs in the direct object position of a monoclausal negative sentence (16a) or in the embedded clause of sentence with negation in the higher clause (16b), *shenme* is interpreted as either Q (i) or ∃ (ii); when *shenme* occurs in the subject position of a monoclausal negative sentence (i.e., higher than negation) as in (16c), the ∃ interpretation is banned (i.e., *(ii)). This indicates that *wh*-existentials have to be lower than negation and that there is no clause-mate constraint on existential licensing for negation.

11 There are two negative markers in Chinese: *bu* and *meiyou*. According to Li and Thompson (1981, p. 421), *bu* provides neutral negation, whereas *meiyou* negates the completion of an event. This is illustrated in (via) and (vib), respectively:

(vi) a. Zhangsan *bu* he jiu.
Zhangsan NEG drink wine
‘Zhangsan doesn’t drink wine.’

b. Zhangsan *meiyou* he jiu.
Zhangsan NEG drink wine
‘Zhangsan didn’t drink wine.’
Yes/No Questions

(17) a. Zhangsan mai-le shenme ma?
 Zhangsan buy-ASP THING Q\text{yes/no}
 (i) ‘Did Zhangsan buy something/anything?’
 (ii) * ‘What did Zhangsan buy?’

b. Shenme chucuo-le ma?
 THING go-wrong-ASP Q\text{yes/no}
 (i) ‘Did something/anything go wrong?’
 (ii) * ‘What went wrong?’

The sentence final particle -ma is a question marker exclusively for yes/no questions, so wh-interrogatives cannot co-occur with it; this is why the shenme cannot be interpreted as Q in the two questions in (17) (i.e., *(ii)). In terms of syntax, we can see that shenme is interpreted as \(\exists\) no matter whether it occurs in direct object position (17a) or in subject position (17b).

Conditionals
text

As we can see in (18) below, when the wh-word shui occurs in the protasis, whether as subject (18a) or direct object (18b), it is interpreted only as \(\exists\) (i.e., (18ai/bi)); the Q interpretation is prohibited (i.e., *(18ai/bii)). By contrast, when shui appears in the apodosis such as in (18c), it is only interpreted as Q (i.e., (18cii)); the \(\exists\) reading is ruled out (i.e., *(18ci)).

\[12\] There are two conditional markers in Chinese: ruguo and yaoshi, each of which has a colloquial variant, i.e., ruguo…de hua, yaoshi…de hua, with the clausal-final particle -de hua indicating an afterthought (Paul, to appear).
(18) a. *Ruguo shui jiandao Zhangsan de hua*, ta hui gaosu Lisi
If PERSON see Zhangsan he would tell Lisi
(i) ‘If someone/anyone saw Zhangsan, he would tell Lisi.’
(ii) * ‘If who saw Zhangsan, he would tell Lisi?’

b. *Ruguo Zhangsan jiandao shui de hua*, ta hui gaosu Lisi
If Zhangsan see PERSON he would tell Lisi
(i) ‘If Zhangsan saw someone/anyone, he would tell Lisi.’
(ii) * ‘If Zhangsan saw who, he would tell Lisi?’

c. *Ruguo Zhangsan jiandao Lisi de hua*, ta hui gaosu shui
If Zhangsan see Lisi he would tell PERSON
(i) * ‘If Zhangsan saw Lisi, he would tell someone/anyone.’
(ii) ‘If Zhangsan saw Lisi, who would he tell?’

Table 2.1 presents a brief summary of what we have discussed so far.

<table>
<thead>
<tr>
<th>Syntactic Position of Wh</th>
<th>Negatives</th>
<th>Yes/No Questions</th>
<th>Conditionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>X</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Object</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

NB: (i) √ = wh-existentials allowed; X = wh-existentials prohibited
(ii) wh-existentials allowed within the protasis, but not in the apodosis

Constructions which Prohibit Wh-existentials

Constructions which strictly repel wh-existentials are affirmative sentences in the episodic past, e.g., (19a), or in the present progressive, e.g., (19b):
(19) a. Zhangsan mai-le shenme
Zhangsan buy-ASP THING
(i) ‘What did Zhangsan buy?’
(ii) *‘Zhangsan bought something.’

b. Lisi zai chi shenme
Lisi ASP eat THING
(i) ‘What is Lisi eating?’
(ii) *‘Lisi is eating something.’

Both sentences are ill-formed on the \exists reading of shenme (i.e., *(ii)), but become fine on the Q reading (i.e., (i)).

2.2.2.2 Generalizations

Semantic Constraints

We have seen that Chinese wh-existentials are allowed in a variety of constructions (e.g., negatives, yes/no questions, conditionals), which do not seem to relate to each other in obvious ways.

Huang (1982, p. 168) made an important contribution by proposing that Chinese wh-existentials are negative polarity items (NPIs), and therefore must be licensed by ‘affective’ contexts, a term borrowed from Klima (1964). Klima coined this term to unify negatives, questions, conditionals, etc. as a syntactico-semantic feature that licenses NPIs.13 This generalization, however, is only a terminological one since we are still left without knowing what exactly it is that characterizes negatives, questions, conditionals, etc. as a group, and why these contexts should be associated with NPIs.

Li (1992) contended that the constructions which sanction Chinese wh-existentials actually go beyond the common NPI contexts (i.e., negatives, questions, conditionals).

13 A typical example of an NPI is anything in English, which is well-formed under negation (viia), in yes/no questions (viib), or in the protases of conditionals (viic), but is ill-formed in positive assertions (*viid):

(vii) a. John didn’t buy anything.
b. Did John buy anything?
c. If John buys anything, keep a record of it.
d. *John bought anything.
Two such extensions are non-factive verbs (see fn. 8) and elements indicating tentativeness and uncertainty such as adverbs of uncertainty (see fn. 9) and inference -le (see fn. 10). Note that in these environments, common NPIs are banned (e.g., *I think John bought anything; *John probably bought anything).

Li proposed that these constructions share one common semantic property, namely, the truth value of the propositions contained therein is not asserted. In the cases of questions, non-factive verb complements and sentences with elements denoting uncertainty, the truth value is undetermined. For example, the truth of Does John like cats? does not entail or imply the truth of John likes cats. In the case of negatives, the truth value is reversed: If John doesn’t like cats is true, then John likes cats must be false.

In her seminal work on polarity, Giannakidou (2011) introduced the term ‘veridicality’ from philosophy and proposed that polarity items are excluded from veridical sentences but are allowed in nonveridical ones. Giannakidou (2011, pp. 1674-1675) defined (non)veridicality as follows:

Veridicality is a property of sentence embedding functions: such a function F is veridical if Fp entails or presupposes the truth of p. If inference to the truth of p under F is not possible, F is nonveridical. More specifically, veridical operators express certainty and an individual’s commitment to the truth of a proposition, but nonveridical expressions express uncertainty and lack of commitment.

Giannakidou further argued that polarity items are lexically deficient in the sense that they contain a non-deictic variable that makes them unable to refer. In veridical contexts such as the affirmative episodic past, polarity items are forced to refer, but they cannot (e.g., *John saw anything). This explains why polarity items are restricted to nonveridical environments, where there is no such pressure for reference (e.g., John didn’t see anything).

We follow Giannakidou’s generalization, taking nonveridicality as the underlying semantic property that licenses polarity in general, and Chinese wh-existentials in particular.
Syntactic Constraints

Following Progovac’s (1988) binding approach to NPI licensing, Li (1992) suggested that the syntactic relation between a *wh*-existential licensor and licensee is that of structural c-command. According to Li’s analysis of Chinese, negation adjoins to the VP containing V and its complements, having a phrase structure shown in (20):

\[
\text{(20) } [\text{IP NP1 } [\text{VP NEG [VP V NP2]]}]
\]

We can see that negation c-commands NP2 (i.e., the direct object), but not NP1 (i.e., the subject). In other words, for monoclusal negative sentences, *wh*-words appearing in the direct object position can be interpreted as \exists, whereas those appearing in the subject position cannot.

To account for the absence of a subject-object asymmetry in *yes/no* questions, Li proposed that the *yes/no*-question marker *-ma* is merged in the C position (CP is claimed to be head final in Chinese), with a structure shown in (21):

\[
\text{(21) } \begin{array}{c}
\text{CP} \\
\text{IP} \\
\text{C} \\
\text{-ma}
\end{array}
\]

Since *-ma* c-commands the entire IP, it follows that the \exists interpretation is available when a *wh*-word occurs in either subject position or object position.

As for conditionals, it is clear that the conditional marker *ruguo, yaoshi* “if” c-commands the protasis but not the apodosis. It follows that *wh*-existentials are allowed only within the clause boundary of the protasis.

Li also included syntactic analyses for constructions involving inference *-le*, non-factive verbs and A-not-A, all of which provide empirical support for her generalization that *wh*-existentials require c-commanding licensors in overt syntax.

To sum up, while *wh*-interrogatives in Chinese are syntactically free, *wh*-existentials are subject to semantico-syntactic licensing. Semantically, they must
occur in nonveridical contexts where the truth value of the proposition is not asserted; syntactically, they must be c-commanded by nonveridical licensors. This constraint is manifested as a limited distribution of wh-existentials, typically, in the scope of negative markers (i.e., mei, bu), the yes/no-question marker $-ma$, and conditional protasis, etc.

2.2.2.3 The Representation

This section discusses issues regarding how the Q sense and the \exists sense of wh-words are represented in native Chinese. Clearly, the phenomenon we are faced with constitutes a special case of polysemy. Although wh-arguments such as $shenme$ ‘THING’ and $shui$ ‘PERSON’ belong to the noun class, structural aspects determine what senses they take on, which is, in a way, similar to polysemy associated with verbs.

The initial question that concerns us is whether the Q sense and the \exists sense of a given wh-word share a single representation or have separate representations. To our knowledge, no empirical work has been done to address this issue directly, so we have to make reference to empirical studies which investigated common polysemous nouns.

As discussed in Section 2.1.2, with only the exception of the Klein and Murphy (2001) study, much psycholinguistic research on the representation of polysemy (e.g., Azuma & Van Orden, 1997; Frazier & Rayner, 1990; Klepousniotou & Bauma, 2007; Klepousniotou et al., 2008; Pylkkänen et al., 2006) has provided evidence showing that different senses of a polysemous noun share a single representation.

If we assume that the Q and \exists senses of a wh-word are unified under a shared lexical representation, we need to specify how this is implemented, especially since the \exists sense is subject to semantico-syntactic licensing.

Let us see whether we can gain insights from Goldberg’s (1995) constructionist approach to polysemy associated with verbs. The central idea behind Goldberg’s proposal is that the semantics of a verb is constant; the polysemy observed in a verbal construction results from fusion of the meaning of the verb and the meaning of the relevant construction.

To adopt this approach to account for polysemy associated with Chinese wh-words, one would have to argue that the core sense of a wh-word – presumably the Q sense – is constant, and the \exists sense is the consequence of incorporating the Q sense with
the sense of nonveridicality conveyed by a number of constructions (as reviewed above). Such semantic analyses are difficult to come by.

Pinker’s (1989) lexical rule approach, in its strict sense, is not very helpful either. Recall that Pinker claims that the related senses of a verb are each explicitly represented under one lexical entry. Lexical rules operate on semantic structures, converting the prototypical sense into the extended sense, and this newly converted sense brings about a different argument structure, which, in turn, gives rise to differences in syntax. Crucially, argument structure plays a central role in form-meaning mapping. For our phenomenon, we do not have argument structure to resort to, as *wh*-arguments are nominal in nature.

Then how are the set of related senses (i.e., Q, ∀, ∃) of Chinese *wh*-words represented? Building on Heim’s (1982) theory on indefinites, Cheng (1991) argued that *wh*-words in Chinese are variables without quantificational force, and their quantificational force is determined by other elements which have inherent quantificational force.

In Heim’s theory, indefinite NPs are variables, and they get their quantificational force in one of the two ways: (i) by being bound by adverbs of quantification; (ii) by being bound by a non-overt operator via the rule of existential closure.\(^\text{14}\) For example, in (22a), the adverb of quantification *always* acts as an unselective binder, contributing the universal quantificational force to both indefinite NPs in the sentence (i.e., *a man* and *a donkey*); in (22b), the adverb of quantification *sometimes* binds the indefinite NP *a cat*, giving its existential interpretation; in (22c), the rule of existential closure introduces a non-overt quantifier, which binds the indefinite NP *a cat* and determines its existential interpretation.

\(^{14}\) Heim (1982) proposed that quantified sentences have the tripartite logical structure of (viii):

\[
\text{(viii) } \quad \begin{array}{ccc}
\text{quantifier} & \text{restrictive clause} & \text{nuclear scope}
\end{array}
\]

For a quantified sentence such as (ixa), it has the tripartite logical structure shown in (ixb). In the absence of an adverb of quantification, the indefinite NP, *a case*, gets its ∃ interpretation via the rule of existential closure, which applies to the nuclear scope. The output of this operation is given in (ixc):

\[
\text{(ix) } \quad \begin{array}{ccc}
\text{quantifier} & \text{restrictive clause} & \text{nuclear scope}
\end{array}
\]

\[
\begin{array}{ll}
\text{a. } & \text{Every private investigator solves a case.} \\
\text{b. } & \text{every (x) } x \text{ is a private investigator} \\
\text{c. } & \text{every (x) } x \text{ is a private investigator}
\end{array}
\]

We see that existential closure applies at the level of VP. Heim further argued that existential closure may also apply to the entire text (for detailed discussion, see Heim, 1982).
(22) a. If a man owns a donkey, he always beats it.
 b. Sometimes, if a cat falls from the fifth floor, it survives.
 c. Every man saw a cat.

 (Heim, 1982, p. 82: (1) and (3); p. 89: (5))

Applying this of line of reasoning to Chinese, Cheng argued that \textit{wh}-words in Chinese are variables and they get their quantificational force in the following ways:

(i) When bound by an interrogative operator, which spells out either as the overt \textit{wh}-question particle \textit{-ne} or as null, the \textit{wh}-word is interpreted as Q; when bound by a universal operator, which spells out as the adverb of quantification \textit{dou} ‘all’, the \textit{wh}-word is interpreted as \forall.\footnote{The universal use of \textit{wh}-words in Chinese is illustrated in (x):}

As for the \exists interpretation, Cheng argued that the rule of existential closure alone is not sufficient. For example, in (23a), the indefinite NP \textit{yiben wuxia-xiaoshuo} ‘a Kungfu-novel’ is interpreted as \exists by means of existential closure, whereas in (23b), the \textit{wh}-word \textit{shenme} ‘THING’, occurring in the same environment, can never be interpreted as \exists:

(23) a. Botong kan-wan-le yi-ben wuxiao-xiaoshuo.
 Botong read-finish-ASP one-CL Kungfu-novel
 ‘Botong finished reading a Kungfu novel.’

 b. *Botong kan-wan-le \textbf{shenme}.
 Botong read-finish-ASP THING
 ‘Botong finished reading \textbf{something}.’

 (Cheng, 1991, p. 124: (25))

Cheng contended that Chinese \textit{wh}-existentials differ from ordinary indefinites in that they are polarity items, which dictates that they not only need to be bound by existential
closure but also need to have polarity triggers (e.g., negatives, yes/no-question marker, etc.). In other words, the \exists quantificational force of a Chinese wh-word is derived from existential closure as a binder and a polarity licensor as a trigger. Cheng (1991) suggested that “Mandarin Chinese wh-words do not have an existential reading which is separated from the polarity reading” (p. 125).

Bringing Cheng’s (1991) work on Chinese wh-words and Giannakidou’s (2011) work on polarity together, Gil and Marsden (2013) suggested that when functioning as existentials, Chinese wh-words bear an uninterpretable nonveridical feature, which is checked and deleted by a nonveridical operator. This nonveridical operator feature, according to Gil and Marsden, is hosted by lexical items that Cheng dubbed polarity triggers (e.g., negators mei(you) ‘not’ or bu ‘not’, yes/no-question particle -ma, conditional markers ruguo ‘if’, yaoshi ‘if’, etc.). We should bear in mind that Chinese wh-existentials are polarity sensitive and their quantificational force is dependent upon an operator which is associated with polarity items, namely, the nonveridical operator. We will come back to this important point when we discuss the differences between Korean wh-existentials and Chinese wh-existentials in the next section.

Now let us summarize this section. The polysemy we have observed with Chinese wh-words is the result of variable binding mechanisms. Lexically, these words are variables and do not have inherent quantificational force. This variable status requires that they be bound by quantificational operators. Three types of quantificational operators may serve as the potential binders in Chinese, i.e., interrogative, universal, and nonveridical, which gives rise to, respectively, the interrogative, universal and existential/polarity readings of Chinese wh-words. The schematic representation of the three different senses of the Chinese wh-word shenme ‘THING’, for example, is something like (24). Here Q, \forall and NV stand for interrogative, universal and nonveridical operators, respectively; SHENME stands for the variable, i.e., the underspecified lexical representation, which presumably contains information such as the entry’s categorical feature (i.e., [+N]), core semantics (i.e., [–HUMAN]), etc.; and the binding relation between the operator and the variable is indicated by subscript.
(24) a. \(Q(x) \ldots \text{SHENME}(x) \rightarrow \text{shenme} \) ‘what’
 (interrogative reading)

 b. \(\forall(x) \ldots \text{SHENME}(x) \rightarrow \text{shenme} \) ‘everything’
 (universal reading)

 c. \(NV(x) \ldots \text{SHENME}(x) \rightarrow \text{shenme} \) ‘something/anything’
 (existential/polarity reading)

Note that the quantificational operators are manifested as distinct lexical items in Chinese. Specifically, the Q operator is realized as the overt wh-question particle -ne or as null; the \(\forall \) operator is realized as the adverb of quantification dou ‘all’; and the nonveridical operator is realized as negators mei(you) ‘not’ or bu ‘not’, yes/no-question particle -ma, conditional markers ruguo ‘if’, yaoshi ‘if’, etc. The binding relation between the operator and the variable demands that these quantificational elements c-command the relevant wh-words in overt syntax. This explains why Chinese wh-existentials, for instance, have to occur in the scope of their licensors, as was discussed in Section 2.2.2.2.

2.2.3 The Representation of Wh-words in Korean

2.2.3.1 Basic Data

Bare wh-words in Korean are polysemous between Q and \(\exists \) interpretations (Kim, 1989; Shin, 2005).\(^\text{16}\) We now present data to illustrate the distribution of Korean bare wh-existentials vis-à-vis that of Chinese wh-existentials.

\(^{16}\) Shin (2005) observed another type of wh-existential and wh-universal in Korean, which are derived by attaching an existential particle (i.e., -(i)nka or -(i)nci) or a universal particle (i.e., -(i)na or -(i)tunci) to the interrogative roots:

(xii) a. Nwukwu-\((i)\text{inka/inci-} \)ka wass-ni?
 PERSON-incka/inci-NOM came-Q
 ‘Did someone come?’

 b. Nwukwu-\((i)\text{na/tunci-} \)ka Minswu-lul cohahan-ta.
 PERSON-intunci-NOM Minswu-ACC like-DECL
 ‘Everyone likes Minswu.’

 (Shin, 2005, p. 49: (3))
Negatives

 Minho-NOM THING-ACC NEG bring-PAST-DECL
 ‘Minho didn’t bring something.’

 (Yun, 2011)

 PERSON book-ACC NEG bring-PAST-DECL
 ‘Someone didn’t bring a book.’

 (O’Grady & M. Choo, p.c., 21 May 2010)

Recall that in negative sentences, Chinese wh-existentials are confined to the scope of negation (i.e., structurally lower than negation) (e.g., (16)). This restriction does not apply to Korean wh-existentials. As we can see, the \(\exists \) reading is available not only when the wh-word occurs in the direct object position of a negative sentence, as in (25a), but also when it is in the subject position, as in (25b).

Questions

(26) Nwu-ka cha-lul masiko iss-nayo?
 PERSON-NOM tea-ACC drink PROG-Q
 a. ‘Who is drinking tea?’
 b. ‘Is anyone/someone drinking tea?’

 (Gil & Marsden, 2013, p. 124: (18a))

Korean does not have separate question markers for yes/no questions and wh-questions. In (26), in the presence of the general question marker -nayo, the wh-word nwukwu ‘PERSON’ is interpreted either as Q as in (26a) or as \(\exists \) as in (26b). This contrasts with

17 When the nominative marker -ka is attached to the wh-word nwukwu ‘PERSON’, the form is realized as nwu-ka, namely, nwukwu + ka \(\rightarrow \) nwu-ka (Lee & Ramsey, 2001, p. 93).
Chinese, where the question marker -ma is exclusively for yes/no questions, and wh-questions either are marked with the (optional) wh-question marker -ne or go without any overt question marker. When a wh-word in Chinese co-occurs with the yes/no-question marker -ma, it is unambiguously interpreted as Ǝ (e.g., (17)).

Conditionals

(27) **Nwu-ka sen-ul nemu-myen, kispal-ul tul-era.**

 PERSON-NOM line-ACC cross-if flag-ACC raise-IMPER

 ‘If anyone crosses the line, raise the flag.’

 (Gil & Marsden, 2010, p. 41: (3c))

In the protasis of conditional sentences such as (27), wh-words are interpreted as Ǝ, similarly to Chinese wh-words (e.g., (18)).

Affirmative Declaratives

(28) a. **John-i mwues-ul mek-ess-ta.**

 John-NOM THING-ACC eat-PST-DECL

 ‘John ate something.’

 (Choi, 2009, p. 21: (2.7a))

b. **Mary-ka mwues-ul ssu-ko iss-ta.**

 Mary-NOM THING-ACC write-PROG-DECL

 ‘Mary is writing something.’

 (K.-S. Park, p.c., 19 Sept. 2012)

We see a crucial contrast between Korean and Chinese in (28) above. Korean wh-existentials can occur happily in affirmative declaratives, which make reference to past events (e.g., (28a)) or on-going events (e.g., (28b)), whereas in these same environments, Chinese wh-existentials are prohibited (e.g., (19aii/bii)).
Taken together, these data show that Korean wh-existentials are allowed in a wider range of environments than the Chinese counterparts. More specifically, Korean wh-existentials can occur not only in all environments where Chinese wh-existentials are licensed (e.g., in the scope of negatives, (yes/no) questions, conditionals) but also in environments where Chinese wh-existentials are ruled out (e.g., the subject position of negative sentences, affirmative declaratives), indicating, at the least, that Korean wh-existentials are free from the licensing conditions which constrain Chinese wh-existentials.

2.2.3.2 The Representation

Although wh-words in both Chinese and Korean can be interpreted as existential, their representations are different. It has been proposed that Korean wh-words are variables with no quantificational force of their own, and their quantificational force is determined by quantificational operators with which they are associated (Aoun & Li, 2003; Gil, 2004; Kim, 1989; inter alia). Building on this proposal, Choi (2009) and Lardiere (2009) argued that Korean wh-words are variable expressions and their interpretations are determined by whether the morphological particle inflected on the verb bears a [+Q] feature or a [–Q] feature. Consider bi-clausal sentences such as (29):

(29) a. John-un Mary-ka mwues-ul sassnun-ci an-ta
 John-TOP Mary-NOM THING-ACC bought-Q know-DECL
 ‘John knows what Mary bought.’

 b. John-un Mary-ka mwues-ul sass-ta-(ko) an-ta
 John-TOP Mary-Nom THING-ACC bought-DECL-C know-DECL
 ‘John knows (that) Mary bought something.’

 (Lardiere, 2009, p. 186: (2))

In (29), the particle on the matrix verb in both sentences is identical (i.e., the declarative -ta), but the particles on the verb of the embedded clause (which contains the wh-word mwues ‘THING’) vary. When the question particle -ci is used in (29a), the
wh-word *mues* is interpreted as Q ‘what’; when the declarative particle *-ta* is used in (29b), *mues* is interpreted as Ǝ.

However, if we look at the monoclausal sentence shown in (26), repeated in (30) below, we find that with the presence of the question particle *-nayo*, the wh-word *nwukwu* is interpreted either as Q in (30a) or as Ǝ in (30b):

(30) **Nwu-ka cha-lul masiko iss-nayo?**

PERSON-NOM tea-ACC drink PROG-Q

a. ‘**Who** is drinking tea?’

b. ‘Is **anyone/someone** drinking tea?’

To account for the ambiguity involved in monoclausal sentences such as (30), we need to consider the functional properties of Korean question particles (e.g., *-nayo*). It is well-known that a question particle functions to seek information, and the information requested is the focus of the question (Bencini, 2003). In terms of a wh-question, the focus is generally considered to be on the wh-expression (Erteschik-Shir, 1986). In terms of a yes/no question, the focus can be assigned either to the whole proposition or to one particular constituent in the question (Bencini, 2003).

Recall that Korean does not differentiate wh-question particles and yes/no particles. So propositional focus and constituent focus are both possible with Korean question particles, even with the presence of wh-words. Take (30) for example, when the wh-word *nwu* ‘PERSON’ functions as the focus domain, the question is a wh-question (30a); when the whole proposition functions as the focus domain, the question is a yes/no question (30b).

Using terminologies adopted in the previous literature (e.g., Aoun & Li, 2003; Choi, 2009; Gil, 2004; Kim, 1989), the question particle *-nayo* in (30) can be viewed as the lexical host of a question operator. When the question operator binds the wh-word *nwu* ‘PERSON’ (i.e., *nwu* ‘PERSON’ is the focus), *nwu* ‘PERSON’ gets the interrogative force as in (30a). When the question operator binds the whole proposition (i.e., the whole proposition is the focus), the entire sentence gets the interrogative force as in (30b). In the latter case, the question operator is no longer able to ‘see into’ the proposition and
bind a variable contained within the proposition. This means that *nwu* ‘PERSON’ cannot derive its quantificational force from the question operator. Then how does *nwu* ‘PERSON’ get bound in this case? Following Heim’s (1982) line of reasoning, we suggest that when no overt quantificational element is available, *nwu* ‘PERSON’ is bound by a non-overt existential operator via the rule of existential closure, resulting in the \(\exists \) reading of *nwu* ‘PERSON’ in (30b).

Note that in our account of the availability of both the Q and \(\exists \) interpretations of *nwu* ‘PERSON’ in (30), the placement of focus is crucial. Since focus is often signaled by prosodic cues (e.g., stress, pitch accent, amplitude, etc.) (e.g., Féry, 2013; Meyer & Mleinek, 2006; Schafer, Carlson, Clifton, & Frazier, 2000), one would expect that prosody has an important role to play in disambiguating the *wh*-question reading (where the *wh*-word is interpreted as Q) and the *yes/no*-question reading (where the *wh*-word is interpreted as \(\exists \)) of monoclausal questions in Korean (e.g., (30)). In fact, this claim has repeatedly been proposed in the literature over the years (e.g., Cho, 1990; Choe, 1985; Choi, 2009; Park, 2009). Empirical findings from Jun and Oh’s (1996) speech production and perception study indicated that the different senses of *wh*-words involved in Korean monoclausal questions (e.g., (30)) were distinguished by “the combination of boundary tones, accentual phrasing, pitch ranges and peak amplitude” (p. 58). As prosody goes beyond the scope of the present study, we will not get into further details here.

To summarize what we have discussed in this section, *wh*-words in Korean are variables and their quantificational force is contributed by quantificational operators associated with them. When bound by an interrogative operator, which is realized overtly as question particles such as -ci and -nayo, the *wh*-word is interpreted as Q; when bound by an existential operator, which is realized either overtly as declarative particles such as -ta or covertly by means of existential closure. The representation of the two different sense of the *wh*-word *mwues* ‘THING’ can thus be schematized as in (31). The notations used here parallel those used in (24).

\[
(31) \quad \begin{align*}
\text{a.} & \quad Q(x) \cdot \text{MWUES}(x) \rightarrow mwues \text{ ‘what’} & \quad \text{(interrogative reading)} \\
\text{b.} & \quad \exists(x) \cdot \text{MWUES}(x) \rightarrow mwues \text{ ‘something/anything’} & \quad \text{(existential reading)}
\end{align*}
\]
It is worth emphasizing that the existential quantificational force of Chinese *wh*-words vs. Korean *wh*-words comes from two different types of operators. Chinese *wh*-existentials, with their polarity sensitivity, are derived from the underspecified lexical representation being bound by a nonveridical operator (see (24c)), the consequence being that Chinese *wh*-existentials are strictly restricted to nonveridical environments. By contrast, Korean *wh*-existentials are not polarity items and their existential quantificational force is derived from the underspecified representation being bound by an existential operator (see (31b)). This is manifested as the relatively free distribution of Korean *wh*-existentials (Gil, 2004; Gil & Marsden, 2013).

2.2.4 The Representation of *Wh*-words in English

Bare *wh*-words in English\(^{18}\) mainly have two different uses: interrogatives, e.g., (32), and relative pronouns, e.g., (33):

(32) \textit{Who} did you see ti?

(33) I saw the person, \textit{who} plays guitar nicely.

When used as interrogatives, *wh*-words have to be fronted to clause-initial position in monoclausal sentences. The syntactic movement is claimed to be semantically motivated, i.e., to mark the interrogative sense (Cheng, 1991). When used as relative pronouns, *wh*-words are usually adjacent to the head noun of the relative clause, and their function is to mark relative clauses (Baker, 1995).

In line with the idea that *wh*-words in East Asian languages are variables (Cheng, 1991; Kim, 1989; Nishigauchi, 1990), Tsai (1999) proposed that *wh*-words in English are

\(^{18}\) It has been suggested that English has morphologically marked *wh*-indefinites similar to those in Japanese (e.g., (15)) (Tsai, 1999; Zavitnevich-Beaulac, 2005):

\begin{verbatim}
 (xii) interrogative existential universal
 what somewhat whatever
 where somewhere wherever
\end{verbatim}

This claim seems strained in two ways. First, note that \textit{somewhat} does not behave like common *wh*-derived existentials (e.g., \textit{nani}-\textit{ka} in Japanese) in that it is an adverbial, meaning ‘to some extent’. Second, some predicted forms such as \textit{somewho}, \textit{somewhen}, etc. do not actually exist.
also variables without intrinsic quantificational force, and the interrogative and relative senses are determined by interrogative and relative operators that bind them. According to Tsai, both operators are phonologically null in English. The null interrogative operator is fused with the underspecified wh-entry as its binder. The operator-variable pair has to move to the Spec of CP position for the purpose of checking the interrogative feature. This is why the wh-word in a single wh-question in English, e.g., (32), must occur in clause-initial position. For multiple wh-questions like (34), Tsai argued that the null interrogative operator is incorporated with the first wh-word, here what; as this what is in the Spec of CP position, the interrogative operator fused with what acts as an unselective binder and binds the in-situ wh-word, here whom, contributing to the interrogative interpretation of this second wh-word.

(34) What did you give t_i to whom?

As for the null relative operator, Tsai offered two possibilities. One is that it is fused with the wh-entry, in which case relative wh-words functioning as relative pronouns are essentially null operators plus a set of φ-features. The second possibility is that the null relative operator is inserted in the specifier position of the relative clause, serving as “a medium for identification” (Tsai, 1999, p. 23). The first option seems more appealing, given that it is consistent with how the interrogative sense is derived, i.e., the operator is inserted word-internally in both cases.

B.D. Schwartz (personal communication, 18 July 2013) pointed out the ambiguity involved in sentences like (35), where the wh-word can introduce either an embedded wh-question or a free relative:

(35) I don’t know who you know.

In Tsai’s story, the two different senses of who in (35) can be argued to result from two different operators at work. When bound by an interrogative operator, who is interpreted as Q; when bound by a relative operator, who is interpreted as a relative pronoun. Since
both operators are realized as null, the two different senses of who in (35) cannot be differentiated at the level of overt syntax.

In parallel with the previous two sections, let us now present the schematic representation for the two different senses of the English who ‘PERSON’ in (36):

\[(36) \begin{align*}
a. \ [CP[Q(x)\text{-}\text{WHO}_x]][\text{IP}\ldots t_i\ldots]] & \rightarrow \text{who (interrogative reading)}^{19} \\
b. \ REL(x)\text{-}\text{WHO}_x & \rightarrow \text{who (relative pronoun reading)}^{20}
\end{align*}\]

Here \([Q(x)\text{-}\text{WHO}_x]\) indicates that the interrogative (Q) operator binds the lexical entry WHO word-internally. The movement of the operator-variable pair is co-indexed with its trace \((t)\) by subscript. Similarly, \([REL(x)\text{-}\text{WHO}_x]\) shows that the relative operator binds the lexical entry WHO word-internally.

2.2.5 Summary

Wh-words in Chinese, Korean and English show contrasting properties in several aspects. First, bare wh-words in Chinese and Korean can be interpreted as existential as well as interrogative, whereas the existential sense is absent with bare wh-words in English. Second, Chinese wh-existentials are restricted to nonveridical environments; no such restrictions are found with Korean wh-existentials. Third, wh-interrogatives in English have to undergo syntactic movement, whereas those in Chinese and Korean stay in their base-generated positions.

The discussions regarding the representations suggest that wh-entries in the three languages are underlying the same in that they are variables.\(^{21}\) Crosslinguistic differences we have seen arise from differences in operator selection or differences in operator instantiations. In the case of wh-interrogatives, despite the fact that an

\(^{19}\) This schematic representation was proposed in Tsai (1999, p. 22: (18b)). In case of multiple wh-questions, Tsai argued that the interrogative operator in the Spec of CP binds all non-fronted whs, giving their interrogative interpretation.

\(^{20}\) As the relative pronoun sense goes beyond the scope of the present study, the detailed phrase structure is omitted.

\(^{21}\) In fact, by analyzing a wide range of crosslinguistic data, Zavitnevich-Beaulac (2005) argued that the nature of wh-words is universally identical in that they are “wh-proforms” without quantificational force of their own, and their semantic content depends on which element they are combined with (p. 97).
The interrogative operator acts as the binder of wh-entries in all three languages, it is hosted by question particles (overt or null) in Chinese and Korean, the consequence of which is that wh-words in these two languages stay in their base-generated positions. By contrast, the interrogative operator is merged with wh-entries in English, which drives wh-words involved in single wh-questions in English to move to the clause-initial position.

In the case of wh-existentials, the existential quantificational force is contributed by a nonveridical operator in Chinese and by an existential operator in Korean. This results in the restricted distribution of Chinese wh-existentials (e.g., in the scope of negators mei(you) ‘not’ or bu ‘not’, yes/no-question particle -ma, conditional markers ruguo ‘if’, yaooshi ‘if’, etc.) and a relatively free distribution of Korean wh-existentials. As wh-entries in English cannot be bound by operators with existential quantificational force, the existential sense is ruled out with bare wh-words in English.

Before we turn to the motivation of the present study, there are two important points to spell out. First, in classical generative grammar, linguistic knowledge is partitioned into “information and processes that reside in the lexicon and those rules and processes that are part of syntax” (Ramchand, 2008, p. 1). Over the past two decades, however, a strict separation between the lexicon and syntax has been challenged (e.g., Bresnan, 2001; Hale & Keyser, 1993; Pollard & Sag, 1994). For example, Jackendoff (2011, p. 4) contended: “Syntactically composite expressions within the lexicon create a sort of ordering paradox: generalization in the lexicon can be stated only in terms of rules that apply outside or ‘after’ the lexicon.” Following Zwarts’s (1998) analysis of the phenomenon of polarity, Gil and Marsden (2013) argued, in particular, that the crosslinguistic variations of existential quantifiers, e.g., Chinese wh-existentials, Korean wh-existentials and English any, are of a lexical nature. In the present study, we thus consider knowledge of the semantic and syntactic properties of wh-words as lexically rooted. Second, as current linguistic theory does not yet have a feature-based account for the crosslinguistic differences of wh-words (Gil & Marsden, 2013), we leave the issue open as to how different operator features – interrogative, nonveridical, existential, relative, etc. – are represented in the lexicon. This does not have serious consequences on the present study, because our goal is to test Sprouse’s (2006) Lexical Transfer Hypothesis.
2.3 Motivation of the Present Study

Given the crosslinguistic differences instantiated by *wh*-words in Chinese, Korean, and English, the present study seeks to understand whether the L1 lexical knowledge will have effects on the representations of *wh*-words in the L2. More specifically, we zoom in on the development of *wh*-existentials in the L2 Chinese of L1-Korean and L1-English speakers to determine whether the syntactic and semantic properties underlying L1 *wh*-words have interpretive consequences in the L2.

According to Sprouse’s (2006) Lexical Transfer Hypothesis, the entirety of the syntactic and semantic properties of L1 lexical items is copied to the L2 lexical representation at the L2 initial state. In light of this hypothesis, at the L2 initial state, the properties of *wh*-words in the L2 Chinese of L1-Korean and L1-English speakers are expected to show resemblance to properties of the L1 counterparts. Consequently, lower-proficiency L1-English L2ers are expected to disallow *wh*-existentials, even in cases where pragmatic contexts make the existential sense appropriate, because such uses are incompatible with their L1 knowledge, i.e., bare *wh*-words are never existential in English. Lower-proficiency L1-Korean L2ers, on the other hand, are expected to allow *wh*-existentials not only in nonveridical environments, where Chinese *wh*-existentials are licensed, but also in veridical environments, where Chinese *wh*-existentials are prohibited, the reason being that Korean *wh*-existentials are well-formed in both environments. In addition, restructuring of the L1-based lexical knowledge is predicted to be immensely difficult for Korean L2ers of Chinese, as unlearning the overgeneralized existential sense demands negative evidence (i.e., evidence showing that *wh*-existentials are prohibited in veridical environments in Chinese), which is argued to be non-existent in the input (Schwartz & Gubala-Ryzak, 1992).

Three different tasks are employed to test the interpretation, production and acceptability of constructions involving *wh*-existentials (i.e., negatives, *yes/no* questions, and conditionals) against the above predictions.

Although lexical semantics of *wh*-words is a very under-investigated area in acquisition research, we do find a few studies which specifically addressed this issue, to which we turn in Chapter 3.
CHAPTER 3
PREVIOUS RESEARCH

The lexical semantics of *wh*-words is seldom touched upon in acquisition research. To the best of my knowledge, there are only four existing studies that have specifically addressed this topic. In this chapter, we consider these studies in detail. Section 3.1 reviews the study by Cole, Gil, Hermon and Tadmor (2001) on *wh*-interrogatives and *wh*-indefinites in child L1 Jakarta Indonesian. Section 3.2 examines Umeda’s (2008) study on *wh*-universals in the L2 Japanese of L1-English and L1-Chinese learners. Section 3.3 is devoted to Choi’s (2009) study on *wh*-existentials in the L2 Korean of L1-English learners. Section 3.4 discusses Yuan’s (2010) study on *wh*-existentials in the L2 Chinese of L1-English and L1-Japanese learners. Section 3.5 summarizes the findings and outstanding issues, and gives the empirical motivation for the present study.

3.1 Cole, Gil, Hermon and Tadmor (2001)

The Cole, Gil, Hermon and Tadmor (2001) study is concerned with the L1 acquisition of *wh*-interrogatives and *wh*-indefinites in Jakarta Indonesian, a colloquial dialect spoken in Jakarta.

In adult Jakarta Indonesian, *wh*-indefinites take three forms: (i) bare *wh*-form; (ii) *wh*-form + conjunctive *aja* ‘just’ (e.g., *siapa* ‘who’ vs. *siapa aja* ‘everyone’); and (iii) reduplicated *wh*-form (e.g., *siapa* ‘who’ vs. *siapa-siapa* ‘anyone’). Reduplicated *wh*-existentials behave similarly to Chinese *wh*-existentials in that they are restricted to nonveridical environments such as negatives, *yes/no* questions, conditionals, modality, etc. The example in (1) illustrates a case where the reduplicated *wh*-existential *siapa-siapa* is licensed by negation:
Cole et al. analyzed 7,664 \textit{wh}-forms drawn from a spontaneous production corpus, which consisted of bi-weekly naturalistic recordings of 8 L1-Jakarta Indonesian children, aged 18 to 57 months. Results show that \textit{wh}-interrogatives were used productively from early on, whereas \textit{wh}-indefinites were not observed with children under the age of 26 months. Out of the 844 instances of \textit{wh}-forms produced by children aged 26 to 39 months, 14 were \textit{wh}-indefinites (i.e., 1.6%), of which 8 appeared in chunk expressions and 6 were reduplicated \textit{wh}-existentials licensed by negation. Out of the 1020 instances of \textit{wh}-forms produced by children older than 40 months, 42 were \textit{wh}-indefinites (i.e., 4%), of which 22 were used in chunk expressions, 11 were reduplicated \textit{wh}-existentials licensed by negation, and 9 were \textit{wh}-universals licensed by the conjunctive \textit{aja} ‘just’.

Clearly, \textit{wh}-indefinites were limited in child language both in quantity and in the types of constructions in which they occur (reduplicated \textit{wh}-existentials were only found in negatives). However, it was noted that once reduplicated \textit{wh}-existentials were produced, they were always grammatically well-formed, with negation licensing the reduplicated \textit{wh}-existentials. Cole et al. attributed the late use of reduplicated \textit{wh}-existentials to the fact that the licensing conditions took time to acquire.

One serious methodological limitation of the study, as the researchers themselves realized, is that with data entirely from spontaneous production, it is difficult to determine whether the observed delayed emergence of \textit{wh}-indefinites is due to lack of pertinent grammatical knowledge or to lack of required contexts in everyday speech. Moreover, bare \textit{wh}-words can be used as \textit{wh}-indefinites in the adult language, but no such uses were attested in the child data. When exactly the indefinite senses are incorporated into the lexical representation of bare \textit{wh}-words in child Jakarta Indonesian is left unanswered. In addition, as pointed out by B.D. Schwartz (personal communication, 18 July 2013), in the absence of a corpus analysis of child-directed speech, we cannot tell what the input looks like. Therefore, we cannot rule out the
possibility that children prior to the age of 57 months have not yet witnessed sufficient instances of \textit{wh}-indefinites in the input.

3.2 Umeda (2008)

Umeda (2008) investigated two phenomena in L2 Japanese: the scope of \textit{wh}-interrogatives and the non-local licensing of \textit{wh}-universals. We focus on the latter here.

Let us first look at some basic data, which will help us understand the properties of \textit{wh}-words in Japanese. Consider (2a) and (2b):

(2) a. John-ga ringo-o kaimas-\textit{ka}?
John-NOM apple-ACC bought-KA
‘Did John buy apples?’

(Umeda, 2008, p. 31: (7))

b. Dare-ga ringo-o tabemas-\textit{ka}?
PERSON-NOM apple-ACC ate-KA
‘Who ate an apple?’

(Umeda, 2008, p. 2: (3a))

Both sentences in (2) are questions. In the absence of a \textit{wh}-word, (2a) is a \textit{yes/no} question; in the presence of the \textit{wh}-word \textit{dare} ‘PERSON’, (2b) is a \textit{wh}-question. In both cases, we see that the particle -\textit{ka} occurs sentence-finally, suffixed onto the verb. This suggests that -\textit{ka}, when attached to the verb of a sentence, functions as a question particle, which occurs with both \textit{yes/no} questions and \textit{wh}-questions. Note that (2b) is unambiguously a \textit{wh}-question, indicating that when the question particle -\textit{ka} co-occurs with a \textit{wh}-word in a sentence, the relevant \textit{wh}-word has to be interpreted as interrogative (Q) ‘who’. Now compare (2b) with (3):
The particle -ka is also found in (3), but this time it is directly attached to the wh-word dare, and here dare is interpreted as existential (∃) ‘someone’. Clearly, when suffixed to a wh-word itself, -ka serves as a quantificational particle, contributing to the ∃ interpretation of the wh-word.

The contrast between (2) and (3) shows that -ka has two distinct functions in Japanese. First, when suffixed onto the verb of a sentence, e.g., (2), -ka is a question particle, which marks the illocutionary force of the sentence as interrogative. If a wh-word occurs in the sentence, e.g., (2b), the wh-word picks up the Q interpretation. Second, when suffixed to a wh-word, e.g., (3), -ka is a quantificational particle, which gives the ∃ interpretation to the wh-word. Note that the Q interpretation results from the non-local association of the wh-word with -ka, i.e., the two elements are separated from each other, whereas the ∃ interpretation results from local association, with -ka being directly suffixed to the wh-word.

In addition to the Q interpretation and the ∃ interpretation, wh-words in Japanese can also be interpreted as universal (∀):

(4) **Dare-mo-ga** ringo-o tabemasita.
 PERSON-MO-NOM apple-ACC ate
 ‘**Everyone** ate an apple.’

(Umeda, 2008, p. 2: (3))

In (4), the wh-word dare ‘PERSON’ is interpreted as ∀ ‘everyone’ when the particle -mo is suffixed to the wh-word. This is the case where the ∀ interpretation is derived from local association between the wh-word and the quantificational particle -mo. A non-local association between the wh-word and universal particle -mo is also possible, as illustrated in (5):
In (5a), -mo is attached to a PP, which contains the wh-word dare. In (5b), -mo is attached to the complex NP (i.e., the [relative clause + N]), which contains dare. In both sentences, dare is interpreted as \(\forall \), despite the fact that it is separated from the universal particle -mo. In particular, note that although -mo surfaces in a position which is adjacent to the head of the relative clause (i.e., tegami ‘letter’) in (5b), it is, in fact, attached to the complex NP, giving the \(\forall \) interpretation to dare, the subject of the relative clause.\(^{22}\)

Similar to Japanese, bare wh-words in Chinese can also be interpreted as universal when quantified by the particle dou ‘all’. The universal particle dou may be either adjacent to the wh-word (i.e., local association) or separated from the wh-word (i.e., non-local association), as exemplified, in respectively, (6a) and (6b). The contrast between (6b) and *(6c) shows that the non-local association in (6b) is due to the (obligatory) topicalization of the relative clause to which dou was originally attached, stranding dou.\(^{23}\)

\(^{22}\) B.D. Schwartz (personal communication, 27 March 2014) wondered whether -mo also quantifies the head noun of the relative clause in (5b), i.e., whether (5b) can be interpreted as ‘I read every letter that everyone wrote’. Umeda did not discuss this point in her dissertation.

\(^{23}\) This point was suggested by B.D. Schwartz (personal communication, 11 March 2014).
In contrast to Japanese and Chinese, bare *wh*-words in English can never function as universals.

To determine the effects of L1 influence, Umeda tested L1-Chinese and L1-English L2ers of Japanese on their knowledge of the non-local licensing of *wh*-universals in sentences like (5b). Three tasks were employed: grammaticality judgments, translation, and question-answer pair acceptability judgments. Based on the results of a cloze test, L2 participants were divided into 2 proficiency levels: intermediate (Int.) and advanced (Adv.). In addition to the 4 L2 groups (i.e., Chinese_Int. \(n = 27 \); Chinese_Adv. \(n = 25 \); English_Int. \(n = 19 \); English_Adv. \(n = 13 \)), a group of Japanese native speakers \(n = 12 \) also participated in the study as the control group.

In the grammaticality judgment task, participants were given contexts which were intended for the \(\forall \) interpretation of *dare* ‘PERSON’, and were asked to judge the acceptability of sentences such as (7a) and (7b) on a scale of 1 to 4, with 1 designating an impossible sentence and 4 a possible sentence. A ‘don’t know’ option was also provided. Contexts were presented in the participants’ L1, followed by the Japanese test sentences.
Each student from Daisuke’s class read a different book. According to Daisuke,

a. [[Dare-ga yonda hon]-mo] omosirokatta.
 PERSON-NOM read book-MO was-interesting
 ‘The books that everyone read were interesting.’

b. * [[Dare-ga yonda hon]-ga] omosirokatta.
 PERSON-NOM read book-NOM was-interesting

(Umeda, 2008, p. 158: (9) and (10))

Crucially, when the universal particle -mo is present in (7a), the sentence is grammatical; when -mo is replaced by the nominative marker -ga in (7b), the sentence becomes ungrammatical.

Experimental items testing the non-local licensing of wh-universals consisted of 4 grammatical sentences (e.g., (7a)) and 4 ungrammatical sentences (e.g., *(7b)). These 8 experimental items, together with the 8 experimental items testing the scope of wh-interrogatives, were pseudo-randomized with 24 fillers.

Table 3.1 presents the results of the two types of sentences testing the L2 knowledge of non-local licensing of dare as ∀:

<table>
<thead>
<tr>
<th></th>
<th>Grammatical (with -mo)</th>
<th>Ungrammatical (with -ga)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Control</td>
<td>3.38</td>
<td>*</td>
</tr>
<tr>
<td>Chinese_Int.</td>
<td>2.26</td>
<td>2.50</td>
</tr>
<tr>
<td>Chinese_Adv.</td>
<td>2.35</td>
<td>2.16</td>
</tr>
<tr>
<td>English_Int.</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>English_Adv.</td>
<td>2.54</td>
<td>*</td>
</tr>
</tbody>
</table>

NB: * = statistical difference between the grammatical and ungrammatical sentences (adapted from Umeda, 2008, p. 162: Table 21)
As we can see, the English_Adv. group, along with the natives, differentiated grammatical vs. ungrammatical sentence types, suggesting that they knew that *dare* must co-occur with -*mo* under the given contexts. The mean ratings by the English_Int. group and the 2 Chinese L2 groups were slightly above 2 (out of 4) for both the grammatical and ungrammatical types, showing that these 3 groups were unable to establish the association between *dare* and -*mo* under the given the contexts. (Note that we deliberately use the vague term “under the given contexts” for now because our interpretation of these results will be left open until we get to the critique of the study.)

In the translation task, the L2 participants were provided with contexts in their L1, where both Q and ∀ interpretations of *dare* are plausible, and were asked to translate sentences such as (8a) and (8b) into their L1:

(8) [context, English version]
Kazuo, Kenji, and Naoko each brought wine to Akemi’s place. Akemi’s friend asked her,

a. [[**Dare**-ga mottekita wain]-*mo*] oisikattadesu-ka?
 PERSON-NOM brought wine-MO was-delicious-KA
 ‘Was the wine that **everyone** brought delicious?’

b. [[**Dare**-ga mottekita wain]-*ga*] oisikattadesu-ka?
 PERSON-NOM brought wine-NOM was-delicious-KA
 ‘Who brought the wine that was delicious?’

(Umeda, 2008, p. 168: (17) and (18))

The different interpretations of (8a) and (8b) are determined by the quantificational particle with which *dare* is associated. In (8a), the question particle -*ka* is attached to the matrix verb, and the universal particle -*mo* is attached to the complex NP, which contains *dare*. In the presence of -*mo*, *dare* has to be interpreted as ∀ via non-local association. The sentence-final question particle -*ka* serves to contribute to the interrogative force of the entire sentence. Consequently, (8a) is a yes/no question, where *dare* is interpreted as
∀. In (8b), the question particle -ka is attached to the matrix verb, and the nominative marker -ga is attached to the complex NP. As -ga is not a quantificational particle, dare has to be associated with the sentence-final question particle -ka, the consequence being that the sentence becomes a wh-question, where dare is interpreted as Q.

There were 4 tokens of each sentence type, resulting in 8 experimental sentences testing the ∀ vs. Q interpretations of dare. In addition, there were 8 experimental sentences testing the scope of wh-interrogatives, 8 experimental sentences testing the interrogative complementizer -ka vs. the declarative complementizer -to, and 16 fillers, yielding a total of 40 test items.

Table 3.2 shows the results of sentences involving -mo (e.g., (8a)):

<table>
<thead>
<tr>
<th></th>
<th>Chinese Intermediate</th>
<th>Chinese Advanced</th>
<th>English Intermediate</th>
<th>English Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>∀ (target)</td>
<td>50/108 (46.29%)</td>
<td>53/100 (53.00%)</td>
<td>5/76 (6.58%)</td>
<td>32/52 (61.54%)</td>
</tr>
<tr>
<td>Q</td>
<td>47/108 (43.51%)</td>
<td>43/100 (43.00%)</td>
<td>32/76 (42.11%)</td>
<td>3/52 (5.77%)</td>
</tr>
<tr>
<td>∃</td>
<td>4/108 (3.70%)</td>
<td>4/100 (4.00%)</td>
<td>36/76 (47.37%)</td>
<td>17/52 (32.69%)</td>
</tr>
<tr>
<td>not translated</td>
<td>7/108 (6.48%)</td>
<td>0/100 (0.00%)</td>
<td>3/76 (3.95%)</td>
<td>0/52 (0.00%)</td>
</tr>
</tbody>
</table>

(adapted from Umeda, 2008, p. 174: Table 30)

Results of paired sample t-tests indicate that the Chinese_Int. group was significantly more target-like than the English_Int. group in getting the ∀ reading of dare. Umeda interpreted this result as effects of L1 transfer. Interestingly, the English_Int. group misinterpreted dare as ∃ (i.e., ‘Did someone bring the wine that was delicious?’) at a substantially higher rate than the Chinese_Int. group, showing that to a certain extent, the English intermediate L2ers were aware that a non-interrogative use of dare was possible in Japanese, but their knowledge of the indefinite sense was deviant. As for the two advanced L2 groups, the English_Adv. group was significantly more target-like than the Chinese_Adv. group, a result which is hard to interpret.

Table 3.3 presents the results of sentences with -ga (e.g., (8b)):

24 Some of the percentages in Umeda’s (2008) Table 30 were miscalculated. The percentages presented here are recalculations.
Both English L2 groups were significantly less target-like than the Chinese L2 groups in interpreting *dare* as Q, due to fact that they, again, misinterpreted *dare* as `∃` (i.e., ‘Did *someone* bring the wine that was delicious?’). These results, coupled with the results from the *-mo* sentences, show that the English L2ers had a strong tendency to interpret *dare* as `∃`, not only in sentences where *dare* functions as `∀` (e.g., (8a)) but also in sentences where *dare* functions as Q (e.g., (8b)). Given that bare wh-words are never used as `∃` in English and that *dare*, in the absence of the suffix -*ka*, is never interpreted as `∃` in Japanese, the deviant `∃` sense observed with the English L2ers is surprising, as it is not instantiated in the L1 and it is not instantiated in the input, at least in the strict sense.

In the question-answer pair acceptability judgment task, the participants were given contexts where *dare* can be interpreted either as `∀` or as Q, followed by 3 types of question-answer exchanges. The contexts were presented in the L1 of the participants. Their task was to judge on a scale of 1 to 4 how natural each answer was with respect to the question, with 1 designating very odd and 4 natural. A ‘don’t know’ choice was also provided. Sample items are presented in (9):
Prof. Tanaka, Prof. Suzuki, and Prof. Ito each published a book last year. Akemi knows all three professors, and Hiroko asked her,

[Type 1] With -Mo: Appropriate Q/A pair
Q: [Dare-ga kaita hon]-mo yoku uremasita-ka?
 PERSON-NOM wrote book-MO well sold-KA
 ‘Did the books everyone wrote sell well?’
A: Hai, uremasita-yo.
 Yes, sold-PART.
 ‘Yes, they did.’

[Type 2]: With -Ga: Appropriate Q/A pair
Q: [Dare-ga kaita hon]-ga yoku uremasita-ka?
 PERSON-NOM wrote book-NOM well sold-KA
 ‘Who wrote the book that sold well?’
A: Tanaka-sensei-ga kaita hon-ga yoku uremasita-yo.
 Tanaka-professor-NOM wrote book-NOM well sold-PART
 ‘The book Prof. Tanaka wrote sold well.’

[Type 3]: With -Ga: Inappropriate Q/A pair
Q: [Dare-ga kaita hon]-ga yoku uremasita-ka?
 PERSON-NOM wrote book-NOM well sold-KA
 ‘Who wrote the book that sold well?’
A: Hai, uremasita-yo.
 Yes, sold-PART.
 ‘Yes, it did.’

(Umeda, 2008, pp. 182-183: (27), (28) and (29))

Note that the questions in the 3 types of exchanges in (9) are the same except that in Type 1, -mo is attached to the complex NP (which contains dare ‘PERSON’), whereas in
Types 2 and 3, -mo is replaced with -ga (the questions in Types 2 and 3 are identical). As we discussed earlier, with -mo, the sentence is a yes/no question, where dare is interpreted as ∀. Thus, the yes/no-question response in Type 1 is appropriate. With -ga, the sentence is a wh-question, where dare is interpreted as Q. Therefore, the wh-question response in Type 2 is appropriate, whereas the yes/no-question response in Type 3 is inappropriate. Each of the 3 types had 4 tokens. The 12 question-answer pairs, together with 16 question-answer pairs testing the scope of wh-interrogatives, were mixed with 20 fillers.

The results of the 3 types of question-answer pairs testing the non-local licensing of the ∀ interpretation of dare are presented in Table 3.4 below:

<table>
<thead>
<tr>
<th></th>
<th>Type 1 (with -mo)</th>
<th>Type 2 (with -ga)</th>
<th>Type 3 (with -ga)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Control</td>
<td>3.85</td>
<td>4.00</td>
<td>1.31</td>
</tr>
<tr>
<td>Chinese_Int.</td>
<td>1.65*</td>
<td>3.68</td>
<td>1.50</td>
</tr>
<tr>
<td>Chinese_Adv.</td>
<td>2.07*</td>
<td>3.88</td>
<td>1.08</td>
</tr>
<tr>
<td>English_Int.</td>
<td>1.72*</td>
<td>3.93</td>
<td>1.71</td>
</tr>
<tr>
<td>English_Adv.</td>
<td>3.23</td>
<td>3.90</td>
<td>1.56</td>
</tr>
</tbody>
</table>

NB: * = statistical difference from the native control group
(adapted from Umeda, 2008, p. 187: Table 36)

The result that all L2 groups performed like the natives in accepting Type 2 and rejecting Type 3 suggests that they successfully interpreted dare as Q in the presence of -ga.

To examine whether the L2 participants knew that the ∀ interpretation of dare is possible in the presence of -mo, but impossible in the presence of -ga, Umeda compared the mean ratings of Type 1 and Type 3 by each group. Recall that a yes/no response is provided in both Type 1 and Type 3: It is appropriate in Type 1 (because the question involves -mo) but inappropriate in Type 3 (because the question involves -ga). If the L2 participants had target-like interpretations of the questions in Type 1 and Type 3, a significant difference should be found in the ratings of the 2 types.

The results of paired sample t-tests show that the native control group and the 2 advanced L2 groups rated Type 1 significantly higher than Type 3, suggesting that they assigned target-like interpretations to the questions in light of the two different particles.
(i.e., a yes/no-question interpretation to the -mo question in Type 1, and a wh-question interpretation to the -ga question in Type 3). By contrast, the 2 intermediate L2 groups did not rate the 2 types significantly differently. In fact, Table 3.4 shows that their ratings for Type 1 and Type 3 are both fairly low (out of 4, Chinese_Int.: 1.65 vs. 1.50; English_Int.: 1.72 vs. 1.71), suggesting that they assigned a wh-question reading to the -mo question in Type 1, as they did to the -ga question in Type 3. In other words, the Chinese intermediate L2ers interpreted dare as Q, even in the presence of -mo, just like the English intermediate L2ers did. This seems to show that whether or not wh-universals are instantiated in the L1 has little role to play in the acquisition of the non-local licensing of dare as \(\forall \) in L2 Japanese.

Taken together, the results from the 3 tasks were mixed. In the grammaticality judgment task and the question-answer pair acceptability judgment task, the Chinese_Int. group showed no advantage over the English_Int. group in interpreting dare as \(\forall \), which seems to hint at little effect of L1 knowledge. In the translation task, however, the Chinese_Int. group outperformed the English_Int. group in translating sentences containing universal dare, which seems to point towards L1 influence. Nevertheless, we have reservations about these findings. There are two main reasons for this.

First, Umeda aimed to test whether L2ers of Japanese knew that the wh-word dare ‘PERSON’ can be interpreted as \(\forall \) when it is associated with the non-local universal particle -mo. However, how she set up the grammaticality judgment task and the question-answer pair acceptability judgment task was problematic, which makes it difficult to ascertain what interpretations participants assigned to [dare…mo]. Consider the sample item of the grammaticality judgment in (7), repeated in (10) for convenience:
(10) [context, English version]
Each student from Daisuke’s class read a different book. According to Daisuke,

a. \([\text{Dare}-\text{ga} \ yonda \text{ hon}-\text{mo}] \text{ omosirokatta.} \)
 \(\text{PERSON-NOM read book-MO was-interesting} \)
 ‘The books that everyone read were interesting.’

b. * \([\text{Dare}-\text{ga} \ yonda \text{ hon}-\text{ga}] \text{ omosirokatta.} \)
 \(\text{PERSON-NOM read book-NOM was-interesting} \)
 (Umeda, 2008, p. 158: (9) and (10))

If participants accepted (10a), all it tells us is that they did not interpret \([\text{dare}…\text{mo}] \) as Q. However, there are various correct and incorrect non-interrogative interpretations for (10a), some conceivable ones are listed in (11):

(11) a. The books that everyone read were interesting.
 b. Every book that everyone read was interesting.
 c. All books that everyone read were interesting.
 d. Some books that everyone read were interesting.
 e. The books that someone read were interesting.
 f. Every book that someone read was interesting.
 g. All books that someone read were interesting.
 h. Every book that someone read was interesting.

Any of the interpretations in (11) may lead to acceptance of (10a). Putting aside the different interpretations of \(\text{hon} \) ‘book’, acceptance of (10a) cannot inform us whether participants interpreted \([\text{dare}…\text{mo}] \) as \(\forall \) ‘everyone’ or as \(\exists \) ‘someone’, the former being target-like, the latter, nontarget-like. In other words, target-like judgments, i.e., acceptances of sentences like (10a), do not necessarily entail target-like interpretations, i.e., the \(\forall \) interpretations of \([\text{dare}…\text{mo}] \).
The same problem is also found with the question-answer pair acceptability judgment task. Look at the Type 1 sample item in (9), repeated in (12):

(12) [context, English version]
Prof. Tanaka, Prof. Suzuki, and Prof. Ito each published a book last year. Akemi knows all three professors, and Hiroko asked her,

[Type 1] With -Mo: Appropriate Q/A pair
Q: [Dare-ga kaita hon]-mo yoku uremasita-ka?
 PERSON-NOM wrote book-MO well sold-KA
 ‘Did the books **everyone** wrote sell well?’
A: Hai, uremasita-yo.
 Yes, sold-PART.
 ‘Yes, they did.’

(Umeda, 2008, p. 182: (27))

In this type, a -mo question is followed by a yes/no-question response. If participants judged the yes/no-question response as appropriate, it shows that they interpreted the question as a yes/no question. However, interpreting the question as a yes/no question is not sufficient for arguing that [dare…mo] is interpreted as ∃, because there are many other possible ways to interpret a yes/no question containing [dare…mo]. For example, the question can be incorrectly interpreted as ‘Did the book **someone** wrote sell well?’, where [dare…mo] is assigned the ∃ interpretation. Like in the previous task, target-like responses in this task do not ensure target-like interpretations. However, Umeda interpreted the results of both tasks such that target-like responses were taken as evidence that participants successfully interpreted [dare…mo] as ∃. This methodological oversight is very unfortunate, given that results of the translation task suggest that the English L2ers had a much stronger propensity than the Chinese L2ers to misinterpret [dare…mo] as ∃. This may be the reason why no L1 effect was found in these two judgment tasks, as the ∃ interpretations, incorrectly assigned to [dare…mo] by the English L2ers, were miscoded as the target-like ∀ interpretations.
The second issue is with the translation task. Translation tasks have the strength of revealing how L2ers interpret the sentences under investigation. However, a sentence can be translated in various ways via different lexical items and/or via different sentence patterns. This requires researchers to set criteria to tease apart translations which are considered target-like from those which are considered nontarget-like. The criteria are usually subjective. The problem becomes even more severe when a comparative study is undertaken, because target sentences are translated into different L1s, which means that criteria have to be made for each L1. It is immensely difficult to make these cross-language criteria strictly comparable to each other. Moreover, translation tasks also involve the risk that some L2ers may translate a sentence word for word, without understanding the meaning of the entire sentence. Such translations thus do not reflect the grammatical knowledge of L2ers.

Coming back to Umeda’s translation task, the L2 participants were asked to translate sentences in (8), repeated below in (13):

(13) a. [[Dare-ga mottekita wain]-mo] oisikattadesu-ka?
 PERSON-NOM brought wine-MO was-delicious-KA
 ‘Was the wine that **everyone** brought delicious?’

b. [[Dare-ga mottekita wain]-ga] oisikattadesu-ka?
 PERSON-NOM brought wine-NOM was-delicious-KA
 ‘**Who** brought the wine that was delicious?’

(Umeda, 2008, p. 168: (17) and (18))

For the -mo sentences (e.g., (13a)), Umeda gave the following examples of what were considered target-like Chinese translations (14) and what were considered target-like English translations (15):
(14) Examples of what were considered target-like Chinese translations of *-mo* sentences:

a. **Shei** kan de dianying dou youyisi ma?
 PERSON see DE movie all interesting $Q_{yes/no}$
 ‘Were the movies that everyone saw interesting?’

b. **Dajia** kan de dianying dou heng youqu ma?
 everyone see DE movie all very interesting $Q_{yes/no}$
 ‘Were the movies that everyone saw interesting?’

(Umeda, 2008, p. 173: (19))

(15) Examples of what were considered target-like English translations of *-mo* sentences:

a. Were the movies everyone saw interesting?

b. Did everyone see an interesting movie?

c. Were all the movies they saw interesting?

(Umeda, 2008, p. 173: (20))

In the Chinese examples, two types of expressions were considered target-like translations for [*dare… -mo*]: (i) the *wh*-word *shui* ‘PERSON’ quantified by *dou* ‘all’; and (ii) the lexical universal quantifier *dajia* ‘everyone’. I consulted 7 native speakers of Chinese on their intuitions regarding (14a), and all of them considered it an unacceptable Chinese sentence. Thus, the occurrence of sentences like (14a) in the translation task is very likely to be due to an effect of the task itself, i.e., the L1-Chinese participants simply translated the Japanese sentence verbatim, without comprehending the whole sentence. Yet, translations like (14a) were used to infer the participants’ grammatical knowledge.

25 The examples of what were considered target-like Chinese translations and English translations of *-mo* sentences shown in (14) and (15), respectively, were not for the sample item in (13). Umeda did not give examples of what were considered target-like Chinese translations and English translations for (13).
In the English examples, we see that the translation in (15c) involves a universal quantifier *all* modifying the head noun of the relative clause (i.e., *the movies*) and a pronoun *they* in the subject position of the relative clause, which, we think, was not the interpretation under investigation, i.e., the ∀ interpretation of non-local association between *wh*-words and *-mo*.

To sum up, Umeda (2008) examined the L2 acquisition of *wh*-universals licensed by the non-local quantificational particle *-mo* by L1-Chinese and L1-English speakers to determine the effects of L1 knowledge. Her findings are largely inconclusive. The methodological problems discussed above are likely to be responsible for the mixed results.

3.3 Choi (2009)

Using a listening translation task, a written translation task and a truth-value judgment task, Choi (2009) investigated the L2 development of *wh*-existentials vis-à-vis *wh*-interrogatives in the L2 Korean of native English speakers. Experimental items in all 3 tasks involved 3 different *wh*-words: *nwukwu* ‘PERSON’, *mwues* ‘THING’, *eti* ‘PLACE’. Umeda lumped them together in her analyses. Participants included 24 high-intermediate and 23 advanced L1-English L2ers of Korean as well as 20 Korean native controls. L2 Korean proficiency was determined based on the results of the 24 filler items in the two translation tasks.

As discussed in Chapter 2, monoclausal questions involving *wh*-words are ambiguous in Korean. When focus is assigned to the *wh*-word, the question gets a *wh*-question reading; when focus is assigned to the whole proposition, the question gets a *yes/no*-question reading. The two different focus placements are often accompanied by different prosodic cues. In the listening translation task, Choi examined whether the L1-English L2ers were able to make use of sentence-final falling vs. sentence-final rising intonations to interpret *wh*-words contained in monoclausal questions such as (16) and (17):
Falling intonation: Q

John-i mwues-ul mek-ess-ni?

John-NOM THING-ACC eat-PAST-Q

‘What did John eat?’

(Rising intonation:

John-i mwues-ul mek-ess-ni?

John-NOM THING-ACC eat-PAST-Q

‘Did John eat something?’

(Choi, 2009, p. 123: (4.1))

Each type of intonation pattern had 6 tokens, resulting in a total of 12 experimental items. In addition, 5 yes/no questions which did not contain wh-words and 7 declarative sentences were included as fillers. The 24 test items, together with oral directions, were pre-recorded as an MP3 file, with each item said twice. There was a 32-second pause between two audio stimuli. Participants were asked to listen to the recording and then translate each sentence into English in written form. The results are presented in Table 3.5:

Table 3.5. Choi (2009): Listening Translation Task Results (Mean Accuracy)

<table>
<thead>
<tr>
<th></th>
<th>Falling Intonation</th>
<th>Rising Intonation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Native Control</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>High-Intermediate</td>
<td>96.74%</td>
<td>6.94%</td>
</tr>
<tr>
<td>Advanced</td>
<td>94.20%</td>
<td>68.09%</td>
</tr>
</tbody>
</table>

(adapted from Choi, 2009, p. 141: Table 5.1)

While both L2 groups were very accurate in the Q interpretation, their mean accuracies on the

interpretation were significantly lower. In fact, the high-intermediate group very rarely got this interpretation at all.

In embedded clauses, the interpretation of Korean wh-words is determined by the particles (question vs. declarative) that they are associated with. In the written translation
task, the participants were tested on constructions such as (18) and (19) to see whether they could interpret \textit{wh}-words differently according to the morphological information available to them:

\begin{verbatim}
John-TOP Mary-NOM PERSON-ACC like-PAST-Q remember-DECL
\end{verbatim}
John remembers \textbf{who} Mary liked.'

(Choi, 2009, p. 126: (4.6))

\begin{verbatim}
John-TOP Mary-NOM PERSON-ACC like-PAST-DECL-SUB remember-DECL
\end{verbatim}
‘John remembers that Mary liked \textbf{somebody}.’

(Choi, 2009, p. 126: (4.5))

When the question particle-\textit{nunci} is attached to the verb of the embedded clause, the \textit{wh}-word \textit{nwukwu} is interpreted as \textit{Q} as in (18); when the declarative particle -\textit{ta} is used, the \textit{nwukwu} is interpreted as \textit{∃} as in (19).

The 2 sentence types above had 6 tokens each, forming the 12 experimental items. In addition, 12 sentences which do not involve \textit{wh}-elements were included as fillers. The 24 test items were randomized and presented to all participants in written form. The participants’ task was to read the Korean sentences and translate them into English.26

Table 3.6 summarizes the results:

\begin{table}[h]
\centering
\caption{Choi (2009): Written Translation Task Results (Mean Accuracy)}
\begin{tabular}{|c|c|c|}
\hline
 & \textbf{Question Particle} & \textbf{Declarative Particle} \\
\hline
Native Control & 100.00\% & 100.00\% \\
High-Intermediate & 85.42\% & 14.24\% \\
Advanced & 84.06\% & 60.14\% \\
\hline
\end{tabular}
\end{table}

(adapted from Choi, 2009, p. 148: Table 5.3)

26 It is not clear why the Korean native controls were also asked to translate the Korean sentences into their L2 English. Interestingly, the results of Table 3.6 show that the English translations by the Korean native controls were 100% accurate.
Similar to what was found in the listening translation task, both L2 groups were significantly more target-like at the Q interpretation than at the ∃ interpretation, and this was particularly so with the high-intermediate group.

In the truth-value judgment task, participants were tested on the interpretation of *wh*-words in embedded clauses. Each test item in this task is in the format of a story context followed by 4 Korean sentences. Context stories were presented to the L2 participants in English and to the Korean native controls in Korean. Participants were required to judge whether the sentences were true or false according to the content of the story. A ‘don’t know’ choice was also provided.

Experimental test items fall into two types. The first type is exemplified in (20):

(20) [story context, English version]
John and Mary are close co-workers working in the financial division. One day John saw a large and beautiful flower basket delivered to Mary. Mary was not there at the time. John was so curious about it, and then opened a card attached to the flower basket. A love message was written on the card. But there was no name of the sender on the card.

[Target 1: Q]
John-Top PERSON-NOM Mary-ACC like-Q know-DECL
‘John knows who likes Mary.’

[Target 2: ∃]
John-TOP PERSON-NOM Mary-ACC like-DECL-C know-DECL
‘John knows that somebody likes Mary.’

(adapted from Choi, 2009, p. 130: Figure 4.1)

In this type, the story context involves an indefinite referent, i.e., John knew that someone liked Mary from the fact a flower basket was sent to her with a love message,
but he did not know who exactly this person was. Under this context, Target 2 should be judged as true, because the declarative particle -ta is attached to the verb of the embedded clause, which gives nwukwu the Ǝ reading ‘someone’. On the other hand, Target 1 should be judged as false, because the presence of the question particle -nunci gives nwukwu the Q reading ‘who’, which goes against the story. In addition to the 2 target sentences, 2 bi-clausal declarative sentences were included as fillers, neither of which contained wh-words.

The second type of experimental items is illustrated in (21):

(21) [story context, English version]
Chelswu likes playing with his brother. He was looking for his brother to play with after he came back from school. But, he could not find him. He asked his mother about his brother. His mother told him that his brother was at Yenghi’s home. So, he went to Yenghi’s home to find him.

[Target 1: Q]
Chelswu-TOP brother-NOM PLACE-LOC go-PAST-Q know-DECL
‘Chelswu knows where his brother went.’

[Target 2: Ǝ]
Chelswu-TOP brother-NOM PLACE-LOC go-PAST-DECL-C know-DECL
‘Chelswu knows that his brother went somewhere.’

(adapted from Choi, 2009, p. 131: Figure 4.2)

The story context in this type explicitly specified where exactly Chelswu was, i.e., at Yenghi’s home. Under this context, Target 1 should be judged as true, because the embedded wh-question reading (i.e., ‘Chelswu knows where his brother went’) is consistent with the story. Meanwhile, Target 2 should also be judged as true, because the fact that Chelswu went to Yenghi’s home entails that Chelswu went somewhere, so the Ǝ
interpretation of eti ‘somewhere’ in Target 2 is also compatible with the context. Like in the previous type, 2 bi-clausal declarative sentences without wh-words were included as fillers.

There were 6 tokens of each experimental type, resulting in a total of 12 experimental items. In addition, 8 filler items were also included, all of which were in the same format as the experimental items (i.e., a story context followed by 4 sentences for judgments). The ‘True’ responses and ‘False’ responses were counterbalanced.

Data were coded such that a ‘True’ response receives +1 point and a ‘False’ response gets −1 point. The results of Type 1 are presented in Table 3.7:

<table>
<thead>
<tr>
<th>Group</th>
<th>Q Mean</th>
<th>Q SD</th>
<th>E Mean</th>
<th>E SD</th>
<th>Paired t-test: Q vs. E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Control</td>
<td>−0.98</td>
<td>.086</td>
<td>+0.84</td>
<td>.213</td>
<td>33.085 .000</td>
</tr>
<tr>
<td>High-Intermediate</td>
<td>−0.61</td>
<td>.595</td>
<td>−0.75</td>
<td>.396</td>
<td>−1.096 .285</td>
</tr>
<tr>
<td>Advanced</td>
<td>−0.76</td>
<td>.340</td>
<td>+0.65</td>
<td>.507</td>
<td>10.309 .000</td>
</tr>
</tbody>
</table>

NB: (i) ‘True’ responses are indicated by the ‘+’ sign
(ii) ‘False’ responses are indicated by the ‘−’ sign
(adopted from Choi, 2009, p. 167: Table 5.10)

The data in Table 3.7 reflect mean judgments rather than accuracy. A ‘+’ number indicates acceptance of the relevant interpretation, and a ‘−’ number indicates rejection of the relevant interpretation. Recall that the Q interpretation runs counter to the story context, whereas the E interpretation is consistent with the story. Let us look at the natives first: Out of 1 point, the mean judgments of the Q interpretation is −0.98, and the mean judgments of the E interpretation is +0.84. The paired sample t-test shows that the difference between the two interpretations is significant, suggesting that the native controls differentiated the Q and E interpretations based on the two different particles attached to the verb of the embedded clause. The advanced L2 group followed the natives’ pattern, but the high-intermediate L2 group failed to make such a distinction. Their mean judgment of the E interpretation was very low (i.e., −0.75), showing that, in the presence of declarative particles, they still interpreted the relevant wh-words as Q.

The results of Type 2 are summarized in Table 3.8 below:
Table 3.8. Choi (2009): Truth-Value Judgment Task Results: Type 2 (Mean Judgments)

<table>
<thead>
<tr>
<th>Group</th>
<th>Q Mean</th>
<th>Q SD</th>
<th>∃ Mean</th>
<th>∃ SD</th>
<th>Paired t-test: Q vs. ∃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Control</td>
<td>+0.91</td>
<td>.491</td>
<td>+0.73</td>
<td>.198</td>
<td>t=1.658, sig=.120</td>
</tr>
<tr>
<td>High-Intermediate</td>
<td>+0.86</td>
<td>.345</td>
<td>+0.63</td>
<td>.367</td>
<td>t=2.245, sig=.035</td>
</tr>
<tr>
<td>Advanced</td>
<td>+0.74</td>
<td>.351</td>
<td>+0.75</td>
<td>.245</td>
<td>t=0.238, sig=.814</td>
</tr>
</tbody>
</table>

NB: (i) ‘True’ responses are indicated by the ‘+’ sign
(ii) ‘False’ responses are indicated by the ‘‒’ sign
(adapted from Choi, 2009, p. 170: Table 5.11)

In Type 2, both the Q and ∃ interpretations are accommodated by the story context. The Q interpretation is consistent with the story; the Q interpretation also entails the ∃ interpretation, i.e., if ‘X knows where Y went’ is true, then ‘X knows Y went somewhere’ is also true. Table 3.8 shows that the mean judgments of the two target sentences by all groups are relatively high (at least above +0.63), suggesting that the participants accepted both target sentences in the given context. However, it is not clear how to interpret the results. For the Korean native controls, the results may suggest that they interpreted the two target sentences correctly and determined that both the Q and ∃ interpretations worked fine in the context of the story.

For the L2 groups, there are at least two possibilities for Type 2: (i) They, like the Korean natives, interpreted the two target sentences differently in light of the two different quantificational particles, and judged both the Q and ∃ interpretations as ‘True’ in the context; (ii) they misinterpreted the wh-word associated with the declarative particle as Q, which, by entailment, also makes the target sentence true in the context of the story. Recall that the results of Type 1 showed that the high-intermediate L2 group had a great difficulty in getting the ∃ interpretation when the wh-word co-occurred with the declarative particle. It thus seems likely that the high-intermediate group may have interpreted both target sentences as Q in Type 2. In short, the results of Type 2 are not informative in telling us how the participants interpreted the two target sentences.

To sum up, the overall results of the 3 tasks indicate that the high-intermediate English L2ers were significantly more target-like with wh-interrogatives than with wh-existentials. Following Lardiere’s (2009) Feature Reassembly Hypothesis, Choi suggested that in English, the [Q] feature and the [wh] feature are always fused together
as single lexical items, and consequently, *wh*-words in English are interpreted solely as Q, whereas in Korean, these two features are separately realized, either by means of different prosodic patterns or by means of different morphological particles attached to embedded verbs, resulting in the Q and \exists interpretations of *wh*-words. Choi argued that the nontarget-like performance shown by the intermediate L1-English L2ers of Korean with respect to *wh*-existentials was due to the difficulty they had in re-assembling the L1 features onto different intonation patterns or different lexical items in Korean.

One outstanding issue left here is that in the absence of an L2 comparison group, whose L1 is similar to Korean with respect to *wh*-existentials, it is hard to tell whether the difficulty associated with *wh*-existentials is due to transfer of L1 lexical knowledge or due to factors that may hold true for L2ers across the board. Choi brought up the issue of whether or not the English L2ers’ difficulties with *wh*-existentials as compared to *wh*-interrogatives were due to the possibility that the former were less frequent than the latter in the input. She conducted a corpus search examining the relative frequencies of the Q and \exists uses of *nwukwu* ‘PERSON’, *mwues* ‘THING’ and *eti* ‘PLACE’ in the Sejong corpus collected by the 21st Century Sejong Project. The results are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th></th>
<th>\exists</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>token</td>
<td>%</td>
<td>token</td>
<td>%</td>
</tr>
<tr>
<td>nwukwu ‘PERSON’</td>
<td>58/168</td>
<td>35%</td>
<td>110/168</td>
<td>65%</td>
</tr>
<tr>
<td>mwues ‘THING’</td>
<td>183/314</td>
<td>58%</td>
<td>131/314</td>
<td>42%</td>
</tr>
<tr>
<td>eti ‘PLACE’</td>
<td>22/32</td>
<td>69%</td>
<td>10/32</td>
<td>31%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>263/514</td>
<td>51%</td>
<td>251/514</td>
<td>49%</td>
</tr>
</tbody>
</table>

(adapted from Choi, 2009, p. 236: Table 7.1)

Looking at the 3 *wh*-words as a whole, we find that the frequency of the \exists use is not substantially different from the Q use. Choi thus argued that frequency could not account for the L2ers’ problems with *wh*-existentials. However, if we look at the 3 *wh*-words separately, we see obvious differences. First, *nwukwu* ‘PERSON’ and *mwues* ‘THING’ occur a lot more frequently than *eti* ‘PLACE’. Second, *nwukwu* ‘PERSON’ is more frequently used as \exists than as Q, whereas the opposite pattern is found with *mwues*
‘THING’ and eti ‘PLACE’. Unfortunately, in the analyses of all of her 3 tasks, Choi lumped the 3 wh-words together.\(^{27}\) We are left wondering whether or not the frequency differences exhibited by the 3 wh-words had any effects on the L2 acquisition of wh-existentials.

3.4 Yuan (2010)

On the basis of the results from a Chinese cloze test, the L2 participants were divided into 5 proficiency levels, resulting in 10 L2 groups: L1-English beginner (EB) \((n = 20)\); L1-English post-beginner (EPB) \((n = 20)\); L1-English intermediate (EI) \((n = 28)\); L1-English post-intermediate (EPI) \((n = 25)\); L1-English advanced (EA) \((n = 14)\); L1-Japanese beginner (JB) \((n = 18)\); L1-Japanese post-beginner (JPB) \((n = 17)\); L1-Japanese intermediate (JI) \((n = 25)\); L1-Japanese post-intermediate (JPI) \((n = 29)\); L1-Japanese advanced (JA) \((n = 22)\). A group of Chinese native speakers \((n = 20)\) was also included as the native control group.

Recall our discussion in Chapter 2: Chinese wh-existentials are subject to semantic and syntactic constraints. Semantically, Chinese wh-existentials must occur in nonveridical environments, where the truth of the propositions cannot be asserted. Such environments include constructions involving negatives, non-factive verbs, uncertainty adverbs, conditionals, yes/no questions, inferential -le, A-not-A questions, etc. Syntactically, Chinese wh-existentials must be c-commanded by the nonveridical licensors. To investigate whether L2ers were able to acquire the constraints on Chinese wh-existentials, Yuan employed an acceptability judgment task.

The test materials included 7 categories of sentence types (see the 1st column of Table 3.10). For each category, there is a grammatical type (where the wh-word occurs within the scope of a nonveridical licensor) (see the 2nd column of Table 3.10) and an ungrammatical type (where the wh-word is either outside the scope of a nonveridical licensor or is without any licensor) (see the 3rd column of Table 3.10), except for the

\(^{27}\) Choi did not give detailed information regarding the 3 wh-words in her 3 tasks. The test materials in the appendices were presented in Korean Hangul without English glosses. Readers may refer to the appendices in Choi (2009) if they have sound knowledge of Korean, or contact Choi for further details on this.
category of yes/no questions (which only had 2 grammatical types) and the category of inferential -le (which had 2 grammatical types and 2 ungrammatical types). In these 16 experimental types, 2 wh-arguments were used: shui ‘PERSON’ and shenme ‘THING’. In addition, Yuan also included a control type for each category, except for the category of non-factive verb, which had 2 control types (one for non-factive verbs and one for factive verbs). This yields a total of 8 control types. The control sentence and the corresponding experimental sentence were the same except that the former had the potential wh-existential licenser but no wh-word, whereas the latter had both. These 24 sentence types, i.e., 16 experimental types and 8 control types, had 4 tokens each, yielding a total of 96 sentences. The test sentences were randomized and presented to participants in Chinese characters, preceded by directions in the participants’ L1.

Table 3.10. Yuan (2010): Categories and Types of Experimental Sentences

<table>
<thead>
<tr>
<th>Category</th>
<th>Grammatical</th>
<th>Ungrammatical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Negation</td>
<td>Negator + obj. wh-ɕ + obj. ma</td>
<td>* Subj. wh-ɕ + negator</td>
</tr>
<tr>
<td>2. Non-factive verb</td>
<td>Non-factive V + wh-ɕ</td>
<td>* Factive V + wh-ɕ</td>
</tr>
<tr>
<td>3. Uncertainty adverb</td>
<td>Uncertainty adverb + wh-ɕ</td>
<td>* wh-ɕ without uncertainty adverb</td>
</tr>
<tr>
<td>4. Conditional</td>
<td>wh-ɕ in protasis</td>
<td>* wh-ɕ in apodosis</td>
</tr>
<tr>
<td>5. Yes/No question</td>
<td>Obj. wh-ɕ + yes/no question -ma</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Subj. wh-ɕ + yes/no question -ma</td>
<td>none</td>
</tr>
<tr>
<td>6. Inferential -le</td>
<td>Obj. wh-ɕ with inferential -le</td>
<td>* Obj. wh-ɕ without inferential -le</td>
</tr>
<tr>
<td></td>
<td>Subj. wh-ɕ with inferential -le</td>
<td>* Subj. wh-ɕ without inferential -le</td>
</tr>
<tr>
<td>7. A-not-A question</td>
<td>A-not-A + obj. wh-ɕ</td>
<td>* subj. wh-ɕ + A-not-A</td>
</tr>
</tbody>
</table>

(adapted from Yuan, 2010, p. 233: Table 4)

Participants were asked to judge the acceptability of each sentence by circling a number on a 7-point scale, with –3 representing completely unacceptable, +3 completely acceptable, and 0 ‘I don’t know’.

For the relevance of the present study, we focus on 3 categories: negation, conditional, and yes/no question. Consider the example sentences for negatives:
In (22), the *wh*-word *shenme* ‘THING’ functions as a determiner of the noun *ren* ‘person’. In (22a), when the determiner phrase (DP) *shenme ren* occurs in object position, which is in the scope of the negative *meiyou* ‘not’, the sentence is well-formed on the ∃ interpretation; in (22b), when *shenme ren* occurs in subject position, which is outside the scope of the negative, the sentence is ill-formed on the ∃ interpretation. It should be noted that (22b) ends with a period. If the exact same string ends with a question mark, the sentence becomes grammatical on the Q interpretation, i.e., ‘Who didn’t see us?’.

Table 3.11 presents the mean judgments of *wh*-existentials in negative sentences:

<table>
<thead>
<tr>
<th>Group</th>
<th>Negator + obj. wh-</th>
<th>* Subj. wh- + negator</th>
<th>Control negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>2.52</td>
<td>– 2.49</td>
<td>2.85</td>
</tr>
<tr>
<td>EB</td>
<td>– 0.40*</td>
<td>– 0.93*</td>
<td>1.69*</td>
</tr>
<tr>
<td>EPB</td>
<td>0.73*</td>
<td>0.34*</td>
<td>2.64</td>
</tr>
<tr>
<td>EI</td>
<td>0.73*</td>
<td>– 0.11*</td>
<td>2.70</td>
</tr>
<tr>
<td>EPI</td>
<td>1.59</td>
<td>– 0.99</td>
<td>2.79</td>
</tr>
<tr>
<td>EA</td>
<td>1.67</td>
<td>– 2.13</td>
<td>2.75</td>
</tr>
<tr>
<td>JB</td>
<td>0.39*</td>
<td>– 0.11*</td>
<td>1.68*</td>
</tr>
<tr>
<td>JPB</td>
<td>– 0.02*</td>
<td>– 0.37*</td>
<td>2.22</td>
</tr>
<tr>
<td>JI</td>
<td>0.87*</td>
<td>– 0.26*</td>
<td>2.12</td>
</tr>
<tr>
<td>JPI</td>
<td>1.39</td>
<td>– 1.18</td>
<td>2.72</td>
</tr>
<tr>
<td>JA</td>
<td>2.06</td>
<td>– 1.83</td>
<td>2.88</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner
 EPB = L1-English post-beginner
 EI = L1-English intermediate
 EPI = L1-English post-intermediate
 EA = L1-English advanced
 JB = L1-Japanese beginner
 JPB = L1-Japanese post-beginner
 JI = L1-Japanese intermediate
 JPI = L1-Japanese post-intermediate
 JA = L1-Japanese advanced

(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 234: Table 5)
Looking at the control type first (the last column of Table 3.11), we see that all L2 groups, except for the EB and JB groups, performed like the natives in accepting the control sentences, suggesting that these L2ers had target-like knowledge with respect to negation. However, when \textit{wh}-existentials were involved, only the EPI, EA, JPI and JA groups showed native-like intuitions in simultaneously accepting sentences where \textit{wh}-existentials occurred in the object position (i.e., lower than negation) and rejecting sentences where \textit{wh}-existentials occurred in the subject position (i.e., higher than negation). In other words, it was not until after the post-intermediate stage that the L2ers came to know the \textit{wh}-existential licensing conditions with respect to negation.

Turning now to the conditional pattern, (23) presents the example sentences:

\begin{enumerate}
\item \textit{Ruguo} \textit{women} nonghuai-le \textit{shenme} dongxi, laoshi hui hen shengqi. if we damage-ASP \textit{THING} thing teacher would very angry
\end{enumerate}

‘If we damage \textit{something}, the teacher would be very angry.’

\begin{enumerate}
\item \textit{Ruguo} \textit{shenme} ren nonghuai-le jisuanji, laoshi hui hen shengqi. if \textit{THING} person damage-ASP computer teacher would very angry
\end{enumerate}

‘If \textit{somebody} damages the computer, the teacher would be very angry.’

\begin{enumerate}
\item * \textit{Ruguo} \textit{women} nonghuai-le jisuanji, \textit{shenme} ren hui hen shengqi. if we damage-ASP computer \textit{THING} person would very angry
\end{enumerate}

‘If we damage the computer, \textit{someone} would be very angry.’

(Yuan, 2010, p. 223: (4), (5) and (6))

The \textit{wh}-word \textit{shenme} ‘THING’ functions as determiner in (23). When the DP containing \textit{shenme} occurs in the object position (23a) or the subject position (23b) of the protasis, the sentence is well-formed, where the DP is interpreted as \(\exists\); when the DP occurs in the subject position of the apodosis (23c), the sentence is ill-formed. If the period in (23c) were replaced with a question mark, the sentence would become grammatical on the Q interpretation, viz. ‘If we damage the computer, \textbf{who} would be very angry?’.

The results of conditional sentences are reported in Table 3.12:
Table 3.12. Yuan (2010): Results of Wh-existentials in Conditional Sentences (Mean)

<table>
<thead>
<tr>
<th>Group</th>
<th>(w h \exists) in protasis</th>
<th>(* w h \exists) in apodosis</th>
<th>Control conditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>2.10</td>
<td>-2.09</td>
<td>2.75</td>
</tr>
<tr>
<td>EB</td>
<td>-0.41*</td>
<td>-0.61*</td>
<td>1.40*</td>
</tr>
<tr>
<td>EPB</td>
<td>0.76*</td>
<td>0.26*</td>
<td>1.76</td>
</tr>
<tr>
<td>EI</td>
<td>0.63*</td>
<td>0.08*</td>
<td>2.07</td>
</tr>
<tr>
<td>EPI</td>
<td>0.85*</td>
<td>-0.34*</td>
<td>2.23</td>
</tr>
<tr>
<td>EA</td>
<td>1.55</td>
<td>-1.45</td>
<td>2.05</td>
</tr>
<tr>
<td>JB</td>
<td>0.35*</td>
<td>-0.07*</td>
<td>0.89*</td>
</tr>
<tr>
<td>JPB</td>
<td>0.44*</td>
<td>-0.19*</td>
<td>1.53*</td>
</tr>
<tr>
<td>JI</td>
<td>1.11</td>
<td>-0.90</td>
<td>1.65*</td>
</tr>
<tr>
<td>JPI</td>
<td>1.33</td>
<td>-1.02</td>
<td>2.23</td>
</tr>
<tr>
<td>JA</td>
<td>1.73</td>
<td>-1.38</td>
<td>2.56</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner
 EPB = L1-English post-beginner
 EI = L1-English intermediate
 EPI = L1-English post-intermediate
 EA = L1-English advanced
 JB = L1-Japanese beginner
 JPB = L1-Japanese post-beginner
 JI = L1-Japanese intermediate
 JPI = L1-Japanese post-intermediate
 JA = L1-Japanese advanced

(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 238: Table 8)

The last column of Table 3.12 shows that the EPB, EI, EPI, EA, JPI and JA groups fell within the native range in judging the control sentences. However, when comparing the mean judgments of the 2 experimental types by each group, it was found that only the EA, JI, JPI and JA groups, along with the natives, judged the grammatical sentences (where the \(w h\)-existential occurred in the protasis) significantly differently from the ungrammatical ones (where the \(w h\)-existential occurred in the apodosis), suggesting that only these groups acquired the c-commanding requirement between the \(w h\)-existential licensor and the licensee.

The example sentences for the yes/no-question pattern are given in (24):

(24) a. Ni xihuan shei ma?
 you like PERSON Q\(yes/no\)
 ‘Do you like somebody/anybody?’

b. Shei xihuan ni ma?
 PERSON like you Q\(yes/no\)
 ‘Does somebody/anybody like you?’

(Yuan, 2010, p. 224: (8) and (9))
In (24), the *wh*-word *shui* ‘PERSON’ functions as an NP. No matter whether *shui* occurs in the object position (24a) or in the subject position (24b) of a *yes/no* question, the sentence is grammatical, where *shui* is interpreted as \exists.

Table 3.13 summarizes the results:

Table 3.13. Yuan (2010): Results of *Wh*-existentials in *Yes/No* Questions (Mean)

<table>
<thead>
<tr>
<th>Group</th>
<th>Obj. wh-∃ + Qyes/no -ma</th>
<th>Subj. wh-∃ + Qyes/no -ma</th>
<th>Control Qyes/no -ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>1.98</td>
<td>1.68</td>
<td>2.86</td>
</tr>
<tr>
<td>EB</td>
<td>− 0.06*</td>
<td>− 0.26*</td>
<td>1.88*</td>
</tr>
<tr>
<td>EPB</td>
<td>− 0.79*</td>
<td>− 0.55*</td>
<td>2.43</td>
</tr>
<tr>
<td>E</td>
<td>− 0.78*</td>
<td>− 0.82*</td>
<td>2.48</td>
</tr>
<tr>
<td>EPI</td>
<td>− 0.70*</td>
<td>− 1.17*</td>
<td>2.60</td>
</tr>
<tr>
<td>EA</td>
<td>− 0.63*</td>
<td>− 1.25*</td>
<td>2.65</td>
</tr>
<tr>
<td>JB</td>
<td>− 0.04*</td>
<td>0.29*</td>
<td>2.04</td>
</tr>
<tr>
<td>JPB</td>
<td>− 0.66*</td>
<td>− 0.19*</td>
<td>2.12</td>
</tr>
<tr>
<td>JI</td>
<td>− 0.74*</td>
<td>0.26*</td>
<td>2.08</td>
</tr>
<tr>
<td>JPI</td>
<td>− 0.84*</td>
<td>− 0.59*</td>
<td>2.60</td>
</tr>
<tr>
<td>JA</td>
<td>1.17</td>
<td>0.46</td>
<td>2.83</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner
 EPB = L1-English post-beginner
 EI = L1-English intermediate
 EPI = L1-English post-intermediate
 EA = L1-English advanced
 JB = L1-Japanese beginner
 JPB = L1-Japanese post-beginner
 JI = L1-Japanese intermediate
 JPI = L1-Japanese post-intermediate
 JA = L1-Japanese advanced
(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 240: Table 9)

As we can see, except for the EB group, all L2 groups performed like the natives in accepting the control sentences (the last column of Table 3.13), indicating that *yes/no* questions were acquired early. As for the 2 experimental sentence types, although both types are grammatical in Chinese, the natives’ judgments were relatively mediocre (with means below 2), as compared to their judgments of the experimental sentences of negatives and conditionals. Most L2 groups rejected both types, as indicated by the ‘−’ mean scores. Statistical results show that only the JA group accepted both experimental sentence types like the natives did.
Yuan also examined participants’ mean judgments of the non-factive verb pattern (25), the uncertain adverb pattern (26), the inferential -le pattern (27), and the A-not-A question pattern (28):

I think he steal-ASP THING thing
‘I think he has stolen something.’

b. Ta hai yиwei shenme ren diu-le shoubiao.
he still thought THING person lose-ASP watch
‘He mistakenly thought someone had lost his/her watch.’

c. *Wо baoyuan ta tou-le shenme dongxi.
I complain he steal-ASP THING thing
‘I complain he has stolen something.’

(26) a. Li Ming keneng diu-le shenme.
Li Ming possibly lose-ASP THING
‘Li Ming has probably lost something.’

b. *Shenme ren keneng lai-le.
THING person possibly come-ASP
‘Somebody has probably arrived.’

(Yuan, 2010, pp. 226-227: (17), (18) and (21))
(27) a. Zhang Hong aishang shenme ren le.
Zhang Hong fall-in-love THING person inferential particle
‘Zhang Hong seems to have fallen in love with someone.’

b. Shenme ren aishang Zhang Hong le.
THING person fall-in-love Zhang Hong inferential particle
‘Someone seems to have fallen in love with Zhang Hong.’

(28) a. Ni ren-bu-renshi shei?
you know-not-know PERSON
‘Do you know somebody?’

b. * Shei ren-bu-renshi ni?
PERSON know-not-know you

c. Shi-bu-shi shei renshi ni?
Be-not-be PERSON know you
‘Does somebody know you?’

The main findings are summarized as follows: (i) Only the 2 advanced L2 groups patterned like natives in their judgments of \textit{wh}-existentials licensed by non-factive verbs and uncertain adverbs; (ii) only the JA group performed like the natives in their judgments of \textit{wh}-existentials licensed by inferential -\textit{le}; (iii) none of the L2 groups patterned like natives in their judgments of \textit{wh}-existential licensed by A-not-A questions (see Appendix A for the results of these 4 categories).

Based on these results, Yuan made the following observations: (i) The 2 advanced L2 groups were able to acquire the \textit{wh}-existential licensing conditions with respect to negation, non-factive verbs, uncertainty adverbs and conditionals; all of these licensors are free lexical items; (ii) even the 2 advanced groups showed great difficulty in
acquiring *wh*-existentials licensed by the *yes/no*-question marker *-ma*, the inferential *-le*, and A-not-A questions; all of these licensors are bound morphemes positioned in functional categories. Yuan thus argued that the L2 acquisition of the licensing conditions of Chinese *wh*-existentials is influenced by the status of the licensor, i.e., whether the licensor is a free lexical item or a bound functional morpheme.28

The overall results of Yuan’s (2010) study seem to suggest that L1 knowledge does not have an important role to play in the L2 acquisition of Chinese *wh*-existentials, i.e., the fact that (morphologically marked) *wh*-existentials are present in Japanese but absent in English did not put the Japanese L2ers, as compared to their English peers, in an advantageous position in the acquisition of the licensing conditions governing Chinese *wh*-existentials. There are, however, several reasons that one should take Yuan’s (2010) results with caution.

First, *wh*-existentials in Japanese are substantially different from those in Chinese in that they are morphologically marked. Whether (the root of) *wh*-interrogatives (e.g., *nani* ‘what’) and *wh*-existentials (e.g., *nani-ka* ‘something/anything’) are represented as a single lexical entry or as two separate ones is an open question. In this respect, the possibility that Japanese L2ers of Chinese mapped *shenme*, for instance, to the bare *wh*-word *nani*, which is solely Q in Japanese, cannot be ruled out. If this were the case, then the similar performance of L1-English L2ers and L1-Japanese L2ers in Yuan’s study does not, in and of itself, indicate the absence of L1 transfer.

The second reason for caution is a methodological one: Isolated acceptability judgments are likely not appropriate for investigating interpretations. For example, the string in (29) is well formed on the Q interpretation (29a) but ungrammatical on the ∃ interpretation (29b):

> 28 Though an interesting argument, it is not clear how Yuan made the distinction between a free lexical item and a bound functional morpheme. As is well-known, Chinese is a typical isolating language; orthographically, each character is a single morpheme, and a single character may be a mono-morphemic word on its own or bound in a multi-morphemic word. This is clearly not the use of “free” vs. “bound” of interest here. Indeed, all of the licensors that Yuan dubbed as “free lexical items” are actually multi-morphemic words consisting of bound morphemes, whereas the *yes/no*-question marker *-ma* and inferential *-le* – both of which Yuan referred to as “bound functional morphemes” – are in fact free mono-morphemic words. Moreover, as B. D. Schwartz rightly pointed out (personal communication, 30 May 2014), it is hard to tell what exactly the bound morpheme is for A-not-A questions (see fn. 7 for exposition and an example of this type of question). In terms of the lexical vs. functional distinction, Yuan classified the negative marker *meiyou* ‘not’ as lexical, though sentential negation is generally considered (an element filling) a functional category.
(29) Shui mei chi zaofan
PERSON NEG eat breakfast
a. ‘Who didn’t have breakfast?’
b. * ‘Someone didn’t have breakfast.’

It is true that all of Yuan’s test items ended with periods, which presumably preclude the Q interpretation in (29a). However, the interpretation of the results then rests on the assumption that the participants indeed attended to the sentence-final punctuation marks at all times.

The final problem is with the test materials. Yuan did not give the complete set of his test items, but from the example test items Yuan did provide (i.e., (22)-(28)), we see that he did not test the 2 wh-words shenme ‘THING’ and shui ‘PERSON’ separately, i.e., in some types, shenme was used; in other types, shui was used. Moreover, their grammatical functions were not properly controlled for: While shui was always used as an NP, shenme was sometimes used as a determiner and sometimes used as an NP. For instance, in the example items testing wh-existentials licensed by uncertain adverbs (i.e., (26)), shenme was used as an NP in the grammatical type (i.e., (26a)), but as a determiner in the ungrammatical type (i.e., (26b)). It is not clear whether these variations across or even within experimental types had interfered with participants’ judgments.

3.5 Summary and Outstanding Issues

In this chapter, we examined four previous studies on the L1 or L2 acquisition of different senses of wh-words. Despite the fact that various research methods were employed, and despite the fact that four distinct target languages were investigated, all studies yielded results showing that the indefinite senses (∃ or ∀) were acquired later than the interrogative sense. The explanations offered, however, vary from study to study. Some attributed the delay to the inherent complexity involved in wh-indefinites. Cole et al. (2001), for example, argued that the licensing conditions for reduplicated wh-existentials in Jakarta Indonesian had to be acquired gradually by L1 children. Yuan (2010) contended the licensing conditions for wh-existentials in Chinese were acquired differentially by L2ers, depending on the status of the licensors: wh-existentials licensed
by free lexical items were less problematic than those licensed by bound functional morphemes. Choi (2009), on the other hand, suggested that the delay in the L2 acquisition of Korean *wh*-existentials by English speakers had its roots in L1 influence.

To address the issue of L1 lexical transfer, special care needs to be taken in the L1-TL pairings. First, as alluded to in the discussion of Yuan (2010), bare *wh*-existentials and morphologically derived *wh*-existentials should be treated separately, given the absence of evidence suggesting that they share single lexical representations. Second, L1-TL pairings should not be based on a dichotomous classification of languages, i.e., the presence vs. absence of *wh*-indefinites, because the indefinite senses are often subject to specific linguistic environments; even if *wh*-indefinites are attested in both the L1 and the TL, the environments in which they occur may vary.

Moreover, comparative Interlanguage studies are advisable. Only by testing groups of L2ers whose L1s exhibit contrasting properties with respect to the target phenomenon can one start to unambiguously determine the role of the L1 knowledge.

The above considerations directly motivate the present comparative Interlanguage study, which is built upon more nuanced crosslinguistic comparisons. To this end, we investigate how L1-Korean and L1-English L2ers of Chinese perform in constructions which highlight distinct L1-TL contrasts with respect to the *∃* sense of *wh*-words. More specifically, we include two broad types of constructions in the study: (i) nonveridical constructions, where Korean *wh*-words parallel Chinese *wh*-words in the grammaticality of the *∃* sense, whereas English *wh*-words differ; and (ii) veridical constructions, where English *wh*-words pattern with Chinese *wh*-words in the ungrammaticality of the *∃* sense, whereas Korean *wh*-words differ. If L1 lexical knowledge transfers into the L2 initial state, then the L1-Korean and L1-English L2ers of Chinese should show distinct performance patterns in the two types of constructions, at least at earlier stages of L2 development. An important point worth highlighting is that all 4 of the studies reviewed in this chapter show that (relative to *wh*-interrogatives) there is a substantial delay in the acquisition of *wh*-indefinites. This latter area of knowledge is thus less likely to be subject to early Interlanguage restructuring, making it an ideal testing ground for exploring L1 lexical transfer at the L2 initial state.
CHAPTER 4
EXPERIMENTAL DESIGN, PROCEDURES AND PARTICIPANTS

The primary goal of this study is to empirically test Sprouse’s (2006) Lexical Transfer Hypothesis by looking into the development of \(wh\)-existentials in the L2 Chinese of L1-English and L1-Korean speakers. Building on the Full Transfer/Full Access (FT/FA) model (Schwartz & Sprouse, 1996), Sprouse (2006) hypothesized that the L2 initial state is characterized by full transfer of the L1 grammar at the level of the lexicon. He operationalized his proposal by incorporating the process of relexification, a hypothesis originally put forward in the field of creole research (Lefebvre, 1998; Muysken, 1981). The idea of relexification basically says that speakers in possession of an established lexicon, in observing the partial semantic overlap between L1 lexical entries and TL lexical entries, create a nonnative idiolect by copying the L1 lexical entries and replacing (i.e., relabelling) their phonological representations with representations derived from the phonetic strings of the TL. Sprouse’s (2006) Lexical Transfer Hypothesis thus introduces into the FT/FA model three explicit and falsifiable claims. First, the L1 lexicon (minus phonetic matrices) is transferred in its entirety into the L2 initial state. Second, the basis for L1 transfer is specified on semantic grounds, i.e., the (perceived) partial semantic overlap between the lexical entries in the L1 and the target lexical entries. Third, the output of relexification is a lexical entity, whose phonetics is derived from the TL and whose syntactic and semantic properties at the L2 initial state are virtually isomorphic to those of the corresponding L1 lexical entry.

In light of this hypothesis, the present study looks into the L2 knowledge of the two \(wh\)-arguments shenme ‘THING’ and shui ‘PERSON’ in English-Chinese and Korean-Chinese Interlanguages to determine whether syntactic and semantic properties associated with the relevant L1 \(wh\)-words have consequences on the acquisition of the existential sense.
As discussed in Chapter 2, despite the common interrogative sense, *wh*-words in Chinese, Korean and English differ with respect to the existential sense. In Chinese, it is restricted to nonveridical environments; in Korean, it is allowed in veridical as well as nonveridical environments; and in English, it is prohibited in both contexts. Based on these crosslinguistic differences, 3 tasks were employed to test how L1-Korean and L1-English L2ers fare in interpretation, production and acceptability judgments with respect to *wh*-existentials in Chinese.

This chapter reports on the research methodology of the present study. Section 4.1 establishes the premise that the overlapped interrogative sense of *wh*-words forms the semantic basis on which L1-TL lexical associations are made. Section 4.2 describes the overall experimental design and the data-collection procedures. Details regarding the L2 Chinese proficiency measures (including results) are given in Section 4.3. Section 4.4 presents information on the participants.

4.1 Premise

Recall that Sprouse (2006) hypothesized that the perceived partial semantic overlap between L1 lexical entries and target lexical entries motivates lexical transfer. For our task at hand, the initial question that concerns us is: Based on which sense(s) are *shenme* ‘THING’ and *shui* ‘PERSON’ mapped to the (transferred) L1 lexical entries?

In an early L2 lexical study, Kellerman (1978) investigated the transferability of different senses of a polysemous word. Adult L1-Dutch learners of English were asked to judge whether or not a list of Dutch sentences containing the verb *breken* could be translated by using the English verb *break*. Results show that when the prominent29 sense of *breken* was used (e.g., *Hij brak zijn been* ‘He broke his leg’), 81% of the L2 participants judged the sentence as *break*-translatable; when less prominent senses of *breken* were used (e.g., *Sommige arbeiders hebben de staking gebroken* ‘Some workers have broken the strike’), only 9% of the participants considered the sentence as *break*-translatable, although both senses are possible in English. Kellerman’s findings

29 We opt for this generic term over technical terminologies that require further elaborations, for example, ‘unmarked’, ‘prototypical’, ‘core’, etc.
indicate that when multiple senses are involved in a single word, the one that is perceived as more prominent than the others is likely to prompt the link between L1 and TL words.

With respect to wh-words, a common finding emerging from the four studies reviewed in Chapter 3 is that the acquisition of wh-indefinites (i.e., wh-exsistentials or wh-universals) is delayed relative to wh-interrogatives. This perhaps suggests the prominence of the interrogative sense over the indefinite senses of wh-words.

We tested this assumption by asking 15 L1-English L2ers of Chinese and 15 L1-Korean L2ers of Chinese, who did not participate in the main study, to make up one sentence for each of the 10 polysemous nouns given to them, including shenme ‘THING’ and shui ‘PERSON’. It was found that with the exception of one L1-English L2er (who used a shenme dou construction which denotes the universal sense ‘everything’), the remaining 29 L2ers used the two wh-words exclusively as interrogatives. This suggests that shenme and shui are predominantly perceived as interrogatives by L2ers of Chinese.

It thus seems very likely that L2ers of Chinese will associate shenme and shui with the corresponding wh-entries in their L1, due to the prominence of the interrogative sense. We take this as the working premise for the study and proceed to investigate whether the syntactic and semantic properties associated with the L1 wh-words will influence the development of wh-existentials in L2 Chinese.

4.2 Overall Experimental Design and Procedures

The experiment comprised 3 main tasks testing L2 knowledge of Chinese wh-existentials, a background questionnaire, and a cloze test. Table 4.1 is an overview of the experimental design. The tasks are listed in the order in which participants were tested (all in one test session):

30 The 10 polysemous nouns include: bantian ‘half a day’/’a long time’; beijing ‘background’/’experience’/’connections’; changmian ‘occasion’/’scene’; gongfu ‘Kung Fu’/’time’; gongzuo ‘job’/’work’; guanxi ‘relation’/’connection’/’to concern’; shenme ‘what’/’something’/’anything’; shui ‘who’/’someone’/’anyone’; wenti ‘question’/’problem’; yisi ‘meaning’/’opinion’/’a token of appreciation’.

31 This assumption will be further tested in the contextualized multiple-choice interpretation task (see Chapter 5 for details).
All tasks in the experiment were conducted in written format. To ensure comprehension, the background questionnaire was given in the participants’ L1, as were the directions for the other 4 tasks. Considering that L2ers of Chinese may differ in their skills in using Chinese characters, all test items were presented with Pinyin\(^{32}\) on top of characters. As an illustration, (1) is a test item from the acceptability judgment task (and it means ‘Yesterday Lao Wang bought 5 books’).

(1) 昨天老王买了五本书。

For tasks involving production (i.e., the cloze test and the elicited production task), participants were given the option of supplying their answers in either Pinyin or characters, whichever they felt comfortable with.

Within each of the 3 main tasks, two orders of presentation were used, with one being the reverse of the other. Approximately half of the participants were tested on Order 1 and half on Order 2. This was a precaution against order effects in the experiment.

\(^{32}\) Pinyin, also known as Hanyu Pinyin, is the official romanization system for transcribing Chinese characters. While native Chinese speakers primarily use it for phonetic notation, some L2ers of Chinese rely heavily, or even solely, on it in their reading and writing.
The L2 experimentation was conducted individually, either in person or on Skype/Google Talk. The procedures are as follows. Participants were first informed that they were to complete 4 different tasks using Chinese as well as a language learning background questionnaire in their native language, and the entire experiment would take approximately 1 hour.

When the participants confirmed that they were ready, the first task (the cloze test) was given to them. They were asked to read the directions carefully so as to fully understand what they were expected to do, and they were encouraged to pose questions in case anything was unclear. After indicating that they understood the task requirements, participants were given as much time as needed to complete the task. For the convenience of the participants, spaces for answers were provided next to test items. Upon receiving the completed task, the experimenter passed the next task to the participant. The experiment proceeded in this fashion till the end. A five-minute break was given after the participant finished the first 3 tasks. The entire experiment took 60 to 80 minutes for L2 participants. The experimenter remained accessible during the whole process to answer clarification questions. Each L2 participant was compensated with a $10 Amazon gift card after the whole experiment was completed.

For testing the native control participants, all test materials, except for the language learning background questionnaire, were compiled into a booklet. The order of tasks was the same as that in the L2 experimentation. There were general instructions on the very first page of the booklet, emphasizing that the participants complete the tasks based on intuition. The native control participants completed the booklet at their own convenience. They reported that the whole experiment took 40-50 minutes.

4.3 Measure of L2 Chinese Proficiency

L2 Chinese proficiency was assessed by a combination of a cloze test and an acceptability judgment task.

33 Skype and Google Talk are two widely-used web teleconference services which allow users to instantly transfer files as well as to communicate with each other by voice, video and instant messaging.

34 The cloze test was generously provided by Boping Yuan.
The cloze test is in the form of a folk tale consisting of 153 characters, 20 of which were removed and replaced with blanks. Of these 20 characters, 7 were morphemes contained in bi-/tri-morphemic words, 6 were mono-morphemic lexical words, and 7 were mono-morphemic function words.35

Participants were instructed to read the passage quickly to get the general meaning and then fill in each blank with one suitable character.36 Results were coded such that a target answer gets one point and a nontarget answer (including no response) gets a zero. The total of points that a participant gets is his/her “cloze score.” The English, Korean and Chinese versions of the cloze test (along with the answer key) can be found in Appendix B.

As 13 out of the 20 questions in the cloze test targeted lexical knowledge, it was decided that an acceptability judgment task (AJT) also be included to measure morphosyntactic knowledge. Six types of sentences testing various characteristic aspects of Chinese grammar were constructed, including classifiers, plural-marking, negative marking, perfective aspect, placement of prepositional adverbials, and the verb-copying construction. There were 5 tokens of each type. These 30 sentences (5 grammatical, 25 ungrammatical) were randomly mixed with the 30 experimental items (25 grammatical, 5 ungrammatical) in the AJT as filler items. Scores from these 30 filler items were summed up as his/her “AJT proficiency score.”37

In computing overall proficiency, the cloze score and the AJT proficiency score were weighted equally. As they consisted of, respectively, 20 items and 30 items, a participant’s proficiency score was calculated by using this formula: Proficiency = (cloze score × 1.5) × 50% + AJT proficiency score × 50%.

35 The basic building blocks of the Chinese lexicon are lexical morphemes, which are realized as individual characters. A single character may be a mono-morphemic word on its own (e.g., 树 ‘tree’) or bound in multi-morphemic words (e.g., 太阳 ‘sun’). A greater part of the Chinese lexicon is claimed to be multi-morphemic (Arcodia, 2011).

36 To avoid the technical term ‘morpheme’, ‘character’ is used here as a unit of orthography rather than a type of orthography (i.e., character vs. Pinyin). Participants were explicitly told in the directions that they could write their answers either in characters or in Pinyin.

37 Details of the materials, procedures and data coding of the AJT can be found in Chapter 7.
4.4 Participants

Forty-two English-speaking adult L2ers of Chinese, 42 Korean-speaking adult L2ers of Chinese38 and 30 adult Chinese native speakers participated in the study. All L1-English L2ers and 16 L1-Korean L2ers were college students recruited from the University of Hawai‘i at Manoa, Ohlone Community College, California State University, East Bay, and the University of California, Berkeley. The remaining 26 L1-Korean L2 participants were recruited from Pohang University of Science and Technology and Seoul National University in South Korea. The Chinese native participants were professionals working in Wuxi, Jiangsu Province in mainland China.

Based on the proficiency scores, L1-English and L1-Korean participants were divided into intermediate (Int.) and advanced (Adv.) proficiency groups,39 the cut-off point being 22. This cut-off point was set based on the researcher’s general impression of the data and the consideration that a similar number of participants was included in each group for statistical purposes. Table 4.2 summarizes the results:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (SD) Natives (n = 30)</th>
<th>Mean (SD) Eng_Int. (n = 20)</th>
<th>Mean (SD) Eng_Adv. (n = 22)</th>
<th>Mean (SD) Kr_Int. (n = 21)</th>
<th>Mean (SD) Kr_Adv. (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloze Test</td>
<td>19.23 (0.94)</td>
<td>9.60 (4.98)</td>
<td>11.05 (3.68)</td>
<td>17.50 (1.50)</td>
<td></td>
</tr>
<tr>
<td>AJT</td>
<td>28.63 (1.65)</td>
<td>17.05 (4.61)</td>
<td>24.64 (2.54)</td>
<td>24.65 (3.66)</td>
<td></td>
</tr>
<tr>
<td>Proficiency</td>
<td>28.74 (1.20)</td>
<td>15.73 (5.06)</td>
<td>25.00 (1.86)</td>
<td>25.45 (2.24)</td>
<td></td>
</tr>
</tbody>
</table>

NB: Proficiency = (cloze score × 1.5) × 50% + AJT proficiency score × 50%

A one-way ANOVA was conducted to test for proficiency differences across the 5 groups. Results show a significant effect of Group ($F(4, 108) = 91.138, p = .000$).

Tukey post-hoc comparisons of the 5 groups confirm (i) that within each L1 group, the intermediate group differed significantly from the advanced group ($p = .000$); (ii) that all

38 One Korean L2 participant was subsequently excluded from data analysis because he selected the ‘Not Sure’ choice throughout the AJT.

39 Efforts were made to involve the least proficient L2 participants possible in the study. However, the experiments require having a vocabulary size of at least several hundred words and knowing the structures of declaratives, negatives, conditionals and yes/no questions. Once at this stage, even the least proficient L2ers were hardly true beginners; the label ‘intermediate’ was thus adopted. L2ers whose proficiency was assessed as higher than the so-called ‘intermediate’ L2 participants were given the label ‘advanced’.
4 L2 groups differed significantly from the native control group ($p \leq .002$); and (iii) that there were no significant differences between the two intermediate groups ($p = .996$) or the two advanced groups ($p = .998$).

The background information of the L2 participants is reported in Table 4.3. See Appendix C for the English and Korean versions of the background questionnaire.

Table 4.3. Background Information of the L2 Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>Age Mean (SD)</th>
<th>Gender F/M</th>
<th>AOE Mean (SD)</th>
<th>LOL Mean (SD)</th>
<th>Immersion Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng_Int. (n = 20)</td>
<td>22.60 (7.46)</td>
<td>12/8</td>
<td>15.85 (10.41)</td>
<td>4.80 (4.05)</td>
<td>0.38 (0.79)</td>
</tr>
<tr>
<td>Eng_Adv. (n = 22)</td>
<td>22.95 (6.07)</td>
<td>12/10</td>
<td>15.05 (6.52)</td>
<td>4.42 (3.74)</td>
<td>1.06 (1.19)</td>
</tr>
<tr>
<td>Kr_Int. (n = 21)</td>
<td>29.62 (6.71)</td>
<td>11/10</td>
<td>21.57 (6.80)</td>
<td>2.46 (1.93)</td>
<td>1.09 (2.16)</td>
</tr>
<tr>
<td>Kr_Adv. (n = 20)</td>
<td>27.20 (6.94)</td>
<td>14/6</td>
<td>19.00 (6.24)</td>
<td>2.48 (1.56)</td>
<td>1.47 (2.89)</td>
</tr>
</tbody>
</table>

NB: a AOE = Age of (Initial) Exposure to Chinese: years
 b LOL = Length of Chinese Learning: years
 c Immersion = Immersion in a Chinese-speaking community: years

As shown in Table 4.3, the mean age of the L2 participants was between 22.60 to 29.62 years, and their first exposure to Chinese averaged later than at age 15. In terms of mean length of learning Chinese, it was reported as between 2.46 and 4.80 years; the L1-English L2ers had a slightly longer average learning time. However, the L1-Korean L2ers, on average, had stayed in Chinese-speaking communities longer than the L1-English L2ers had, as can be seen from the mean length of immersion.

In the background questionnaire, L2 participants were also asked to indicate all languages that they spoke, studied or had had contact with, and to rate the overall proficiency of each language on a scale of 1 (beginning) to 5 (native or near native). All but 3 L2 participants reported knowledge of at least one additional language other than Chinese. Of the L1-English L2 participants, the most commonly listed languages were Spanish, French and Japanese (in descending order) and only one indicated beginning-level knowledge of Korean. All Korean L2 participants reported knowledge of English, the mean proficiency rating being 3.46.

The biographical information of the native participants is presented in Table 4.4:
Table 4.4. Biographical Information of the Native Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>Age Mean (SD)</th>
<th>Range</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives $, n = 30$</td>
<td>34.93 (8.11)</td>
<td>24--55</td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

All the L2 participants and the native control participants completed the contextualized multiple-choice interpretation task (Chapter 5), the elicited production task (Chapter 6), and the acceptability judgment task (Chapter 7), and they all rendered useable data, except for one Korean L2 participant (see fn. 38). We now turn to the first experiment, the contextualized multiple-choice interpretation task.
CHAPTER 5
CONTEXTUALIZED MULTIPLE-CHOICE INTERPRETATION TASK

The contextualized multiple-choice interpretation task aims to test Sprouse’s (2006) Lexical Transfer Hypothesis by examining how L1-English and L1-Korean L2ers of Chinese interpret *shenme* in constructions such as (1) and (2):

(1) Zhangsan zai kan *shenme*
 Zhangsan ASP look-at THING
 a. ‘What is Zhangsan looking at?’
 b. * ‘Zhangsan is looking at something.’

(2) Lisi *mei* kan *shenme*
 Lisi NEG look-at THING
 a. ‘What isn’t Lisi looking at?’
 b. ‘Lisi isn’t looking at anything.’

Recall that *wh*-existentials in Chinese have to be licensed by c-commanding nonveridical licensors (e.g., negatives, conditionals, *yes/no* questions, etc.). When *shenme* occurs in a sentence with present progressive (a typical veridical context) as in (1), the ∃ interpretation is ruled out (i.e., *(1b)*); when it occurs in a nonveridical context like (2) (c-commanded by the negative *mei* ‘not’), the ∃ interpretation becomes available (i.e., *(2b)*). Note that the semantico-syntactic difference between (1) and (2) affects only the availability of the ∃ sense (i.e., *(1b) vs. (2b)*); the Q sense (i.e., (1a) and (2a)) remains intact because it is syntactically free.

In contrast to Chinese, *wh*-words in English can never be interpreted as ∃, regardless of construction types, and *wh*-words in Korean can be interpreted as ∃ in veridical as well as nonveridical constructions.
If, on the basis of the common Q sense, L1-English L2ers of Chinese associate *shenme* with *what* in English and L1-Korean L2ers of Chinese associate *shenme* with *mwues* in Korean, the Lexical Transfer Hypothesis predicts that at the L2 initial state, the semantic and syntactic properties of *shenme* should bear resemblance to those of the lexical equivalents in their L1.

Therefore, if we situate each of the 2 target constructions as exemplified in (1) and (2) in 2 pragmatically contrasting contexts, with one context biased either towards the Q reading of *shenme* (i.e., (1a) and (2a)) and the other biased towards the \exists reading (i.e., *(1b) and (2b)), we should expect similar performances between the L2ers and the native controls with respect to the Q interpretation but divergent performances (at least initially) with respect to the \exists interpretation.

More specifically, we expect the following performance patterns:

(3) When pragmatic contexts are geared towards the Q reading of *shenme*:

No matter whether the construction is veridical (e.g., (1)) or nonveridical (e.g., (2)), all L2ers should behave like natives in getting at the Q interpretation (e.g., (1a) and (2a)).
(4) When pragmatic contexts are geared towards the ∃ reading of *shenme:

a. If the construction is veridical (e.g., (1)), natives should disallow the *∃ interpretation (e.g., *(1b)) because there is no nonveridical licensor to license this interpretation. Lower-proficiency L1-English L2ers should pattern like the natives in prohibiting the *∃ interpretation, but their reason is due to transfer of L1 lexical knowledge, i.e., the lexical equivalent in their L1, what, is never interpreted as ∃. Lower proficiency L1-Korean L2ers, on the other hand, should diverge from the natives and allow the *∃ interpretation, because their L1 lexical equivalent, mwues, can be legitimately interpreted as ∃ in veridical constructions.

b. If the construction is nonveridical (e.g., (2)), natives should allow the ∃ interpretation (e.g., (2b)) because the licensing condition is satisfied. Due to transfer of the relevant lexical knowledge from their respective L1, lower-proficiency L1-Korean L2ers should follow the native controls’ pattern in allowing the ∃ interpretation, whereas lower-proficiency L1-English L2ers should perform otherwise.

We test the predictions in (3) and (4) using a contextualized multiple-choice interpretation task. Although the focal point of our investigation is on the ∃ interpretation of *shenme, or the predictions stated in (4), testing the predictions regarding the Q interpretation (i.e., (3)) is indispensable. First, it will provide evidence which helps us evaluate the assumption that *shenme is primarily perceived as Q by all L2ers (and the natives). This assumption was initially confirmed by the sentence-making task reported in Chapter 4, which showed that *shenme and *shui were overwhelmingly used as Q by L1-English and L1-Korean L2ers. These participants did not participate in this main study. In this task, we seek further evidence from interpretation, examining whether participants of the main study will uniformly favor the Q interpretation of *shenme in both target constructions (exemplified in (1) and (2)) when pragmatic contexts are biased towards the Q reading. If the prediction in (3) is borne out, we can argue with confidence that Q is the prominent sense, hence motivating the L1-TL lexical association. Second,
given that our hypothesis predicts the ∃ sense is initially absent in the Interlanguage of L1-English L2ers but present in that of L1-Korean L2ers, the pragmatic contexts we provide to elicit the ∃ interpretation of shenme have to accommodate the Q interpretation, albeit to a lesser degree, so that L2ers who do not have knowledge of the ∃ sense of shenme may still feel that the contexts and the target constructions (to be interpreted) are not irrelevant. Looking at the participants’ interpretations of shenme in Q-biased contexts gives us a reference point against which we can interpret their performances in ∃-biased contexts.

In this chapter, we present the experimental specifics, data analysis, and results of the experiment. Section 5.1 describes the task design, procedures, and materials. Section 5.2 presents detailed information regarding the data analysis and results. Section 5.3 discusses the main findings.

5.1 Task Design, Procedures, and Materials

Inspired by the methodology of Marsden’s (2004, 2008) studies on quantifier scope in L2 Japanese, we put each of the two target constructions (as in (1) and (2)) in 2 different picture contexts as prompt sentences, with one picture context biased towards the Q reading of shenme (e.g., (1a) and (2a)), and one biased towards the ∃ reading of shenme (e.g., *(1b) and (2b)). This yields 4 types of experimental items. Table 5.1 presents the types and examples of experimental prompt sentences:

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Q interpretation (grammatical):</td>
<td>Tamen zai kan shenme they ASP look-at THING ‘What are they looking at?’</td>
</tr>
<tr>
<td>veridical construction + Q-biased contexts</td>
<td></td>
</tr>
<tr>
<td>2. ∃ interpretation (ungrammatical):</td>
<td>Tamen zai kan shenme they ASP look-at THING *‘They are looking at something.’</td>
</tr>
<tr>
<td>veridical construction + ∃-biased contexts</td>
<td></td>
</tr>
<tr>
<td>3. Q interpretation (grammatical):</td>
<td>Ta mei na shenme he NEG hold THING ‘What isn’t he holding?’</td>
</tr>
<tr>
<td>nonveridical construction + Q-biased contexts</td>
<td></td>
</tr>
<tr>
<td>4. ∃ interpretation (grammatical):</td>
<td>Ta mei na shenme he NEG hold THING ‘He isn’t holding anything.’</td>
</tr>
<tr>
<td>nonveridical construction + ∃-biased contexts</td>
<td></td>
</tr>
</tbody>
</table>
To see the format of experimental items, consider the sample item in Figure 5.1:

Figure 5.1. Multiple-Choice Interpretation Task: Format of Experimental Items

Participants were asked to look at each picture (pragmatic context) carefully, read the prompt sentence (i.e., what the man under the picture said) and decide on the appropriate response(s) for the woman by selecting one from the 4 choices (always the same):

(A) concurrence with a statement; (B) a response to a *what*-question; (C) ‘Both A and B are OK’; (D) ‘Not sure which one to choose’ (see Appendix D for the English, Korean and Chinese versions of the task directions). In this sample item, for example, we see a man standing in the middle without wearing anything. In the background, the closet door is open, with shoes, tops, pants, a hat, etc. in the closet. The man underneath ‘uttered’ the prompt sentence *Ta mei chuan shenme*. If Choice A (i.e., *Shide ‘yes’*) is picked, it indicates that the prompt sentence is understood as a statement ‘He isn’t wearing anything’, where *shenme* has the *∃* reading. If Choice B (i.e., *Xie ‘shoes’*) is selected, it shows that the prompt is interpreted as a what-question ‘*What* isn’t he wearing?’, where *shenme* has the Q reading. Considering that some participants may allow both interpretations, Choice C (i.e., ‘Both A and B are OK’) is provided. A ‘Not sure which
one to choose’ option is also given as Choice D. Note that the punctuation mark of the prompt sentence was deliberately missing. The purpose was to prevent participants from using this information (viz. question mark vs. final stop) as an unambiguous cue for interpreting shenme. We justified the absence of punctuation by telling the participants that the pictures were fragments from an old picture book, whose right-hand side was ripped off, so certain information such as punctuation was missing. The yellowish background color and the tear-off effects on the right edges of the pictures were meant to give the fragment feel.

Now let us look at the 2 types of items testing the interpretations of shenme in the veridical construction (a present progressive) in (1). Figure 5.2 is a sample item in which the target construction is situated in a Q-biased context (Type 1):

Figure 5.2. Multiple-Choice Interpretation Task: Type 1 Sample Item

In the picture above, we see that a boy and a girl are looking at ants. If the participant takes shenme as Q, the prompt sentence should mean ‘What are they looking at?’, so Choice B, ‘Ants’, will be the appropriate response. On the other hand, if the participant considers shenme as , the prompt sentence should mean ‘They are looking at
something', so Choice A, ‘Yes’, is tempting. Clearly, the Q interpretation is more pragmatically appropriate because the picture shows what exactly the boy and the girl are looking at.

Compare this item with the sample item shown in Figure 5.3, in which the target construction is embedded in an 里程碑-biased context (Type 2):

![Figure 5.3. Multiple-Choice Interpretation Task: Type 2 Sample Item](image)

Gloss (not in the experiment):
Ta zai kan shenme
he ASP look-at THING
Choices:
shide
A: 是 的。
buzhidao
B: 不 知 道。
heidoukeyi
C: A 和 B 都 可 以。
buquedingxuanneige
D: 不 确 定 选 哪个。

Translation (not in the experiment):
A: Yes.
B: No idea.
C: Both A and B are OK.
D: Not sure which one to choose.

Figure 5.3. Multiple-Choice Interpretation Task: Type 2 Sample Item

The first thing to note here is that while the prompt sentence is the same as that in Type 1 (except for minor modification of the subject pronoun), the picture in which the prompt appears is different: In Figure 5.3, what the man is looking at is not shown. The indefiniteness of the referent of shenme makes it favorable for participants to interpret the prompt sentence as ‘He is looking at something’, if their grammar allows it. Choice A, ‘Yes’, was provided as a response to this 里程碑 interpretation. The second thing to note is that the 里程碑 interpretation is, in fact, impossible in this (veridical) construction in the TL. Thus, a response to the Q interpretation (i.e., ‘What is he looking at?’) was offered, namely, Choice B, ‘No idea’.
We turn now to the 2 types of items examining the interpretations of *shenme* in the nonveridical construction (*shenme* is c-commanded by the negative *mei* ‘not’) (e.g., (2)). Figure 5.4 presents a sample item in which the pragmatic context is geared towards the Q interpretation (Type 3):

![Figure 5.4. Multiple-Choice Interpretation Task: Type 3 Sample Item](image)

Gloss (not in the experiment):

```
Ta mei na shenme
he NEG hold THING
```

Choices:

- shì de
 - A: 是 的。
- kèběn
 - B: 课 本。
- hé dǒukěyī
 - C: A 和 B 都 可以。
- bùquèdìngxuǎnnǎngè
 - D: 不 确 定 选 哪个。

Translation (not in the experiment):

- A: Yes.
- B: Textbooks.
- C: Both A and B are OK.
- D: Not sure which one to choose.

Figure 5.4. Multiple-Choice Interpretation Task: Type 3 Sample Item

In this picture, a boy is holding many things, but there are two textbooks that he is not holding. If the participant interprets *shenme* as Q, the prompt sentence is a negative *what*-question ‘**What** isn’t he holding?’, and the appropriate response will be Choice B, ‘Textbooks’. If the participant interprets *shenme* as ∃, the prompt sentence should mean either ‘There is **something** that he isn’t holding’ (under the wide scope reading of *shenme*) or ‘He isn’t holding **anything**’ (under the narrow scope reading of *shenme*). In these cases, he/she should go for either Choice A ‘Yes’ (the response to the wide scope interpretation) or Choice D ‘Not sure which one to choose’ (as the picture goes against the narrow scope interpretation). As the picture clearly depicts the referent of *shenme* (i.e., textbooks), the Q interpretation is more contextually appropriate.
Compare this item above with the sample item given in Figure 5.5, in which the nonveridical construction occurs in an \exists-biased picture context (Type 4):

Figure 5.5. Multiple-Choice Interpretation Task: Type 4 Sample Item

We see here that the prompt sentence in Figure 5.5 is identical to that in Type 3, but this time the boy is not holding anything in his hands. This context makes the (narrow scope) \exists reading of the prompt ‘He isn’t holding anything’ more appealing than the previous picture (in Figure 5.4) did. In addition, a response to the Q reading of the prompt sentence ‘What isn’t he holding?’ is provided, i.e., Choice B, ‘Pens’. Although ‘He isn’t holding pens’ is not exactly an accurate depiction of the picture (because there are many other things the boy isn’t holding as well), there is certainly nothing wrong with saying that he isn’t holding pens given the picture context. In other words, if participants do not know the \exists sense of *shenme*, at least the picture does not prohibit them from interpreting *shenme* as Q.

These 4 types of experimental items each consisted of 5 tokens, yielding a total of 20 experimental items. The prompt sentences were all monoclausal, and were controlled...
for length (5-7 characters), verb selection (from the top 100 frequency list and all transitive) and syntactic position of *shenme* (always in object position).

In addition, 20 filler items were included. These items took the same format as the experimental items, namely, prompt sentences appeared in picture contexts and participants were asked to choose appropriate responses to prompts by selecting one of the 4 choices. Also like in the experimental items, the choices provided in the filler items were always as follows: (A) concurrence with a statement; (B) a response to a *what time/what day*-question; (C) ‘Both A and B OK’; (D) ‘Not sure which one to choose’. A sample filler item is shown in Figure 5.6:

![Figure 5.6. Multiple-Choice Interpretation Task: Filler Sample Item](image)

These filler items were designed to approximate the experimental items as much as possible. Recall that the 4 types of experimental prompt sentences were intended to elicit the following interpretations: (i) Type 1, the Q interpretation of *shenme* in the veridical construction; (ii) Type 2, the (nontarget) ∃ interpretation of *shenme* in the veridical construction; (iii) Type 3, the Q interpretation of *shenme* in the nonveridical construction; and (iv) Type 4, the ∃ interpretation of *shenme* in the nonveridical construction.
construction. These intended interpretations make the experimental prompts fall into 4 kinds: (i) affirmative *wh*-question (Type 1); (ii) affirmative declarative (Type 2); (iii) negative *wh*-question (Type 3); and (iv) negative declarative (Type 4). The prompt sentences of the filler items were also of these 4 kinds, except that they were all unambiguous and that the *wh*-questions here involve *wh*-adjuncts *jidian* ‘what time’ and *jihao* ‘what day’, both of which are solely interrogative in Chinese.

The 4 types of filler prompt sentences, along with an example of each, are presented in Table 5.2:

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. affirmative wh-question</td>
<td>Ta jidian zai kan diansh he what-time ASP watch TV ‘What time is he watching TV?’</td>
</tr>
<tr>
<td>B. affirmative declarative</td>
<td>Ta zai tan gangqin she ASP play piano ‘She is playing piano.’</td>
</tr>
<tr>
<td>C. negative wh-question</td>
<td>Ta jihao mei zuo fan she what-day NEG make meal ‘What day didn’t she cook?’</td>
</tr>
<tr>
<td>D. negative declarative</td>
<td>Ta mei zai huahua he NEG ASP paint ‘He isn’t painting.’</td>
</tr>
</tbody>
</table>

All punctuation marks of the filler prompt sentences were removed and their length was controlled to 4-8 characters so that they are comparable to the experimental prompts in these aspects. See Appendix E for all items, experimental and filler, used in this task.

5.2 Data Analysis and Results
5.2.1 Fillers
We start with the filler items, since they can help us determine whether participants understood what they were expected to do in this task and whether they paid attention during the experiment.
Data were coded as target and nontarget. To determine whether all items were reliable, we counted native participants’ target responses to each individual item. Table 5.3 reports the results:

<table>
<thead>
<tr>
<th>ID</th>
<th>A 1</th>
<th>A 2</th>
<th>A 3</th>
<th>A 4</th>
<th>A 5</th>
<th>B 1</th>
<th>B 2</th>
<th>B 3</th>
<th>B 4</th>
<th>B 5</th>
<th>C 1</th>
<th>C 2</th>
<th>C 3</th>
<th>C 4</th>
<th>C 5</th>
<th>D 1</th>
<th>D 2</th>
<th>D 3</th>
<th>D 4</th>
<th>D 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>28</td>
<td>29</td>
<td>24</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

NB: Score = the number of target responses by the 30 natives

For a given item, if 90% or more of the 30 natives provided a target response (i.e., a score ≥ 27), the item was deemed reliable. Against this criterion, filler C5 was excluded.

All participants’ target responses to the remaining 29 filler items were counted. Table 5.3 reports the group results of each type:

<table>
<thead>
<tr>
<th>Group</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Type D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>(k = 5)</td>
<td>(k = 5)</td>
<td>(k = 4)</td>
<td>(k = 5)</td>
</tr>
<tr>
<td>(n = 30)</td>
<td>95.3% (143/150)</td>
<td>95.3% (143/150)</td>
<td>97.5% (117/120)</td>
<td>99.3% (149/150)</td>
</tr>
<tr>
<td>Eng_Int.</td>
<td>92.0% (92/100)</td>
<td>91.0% (91/100)</td>
<td>88.8% (71/80)</td>
<td>90.0% (90/100)</td>
</tr>
<tr>
<td>(n = 22)</td>
<td>95.5% (105/110)</td>
<td>99.1% (109/110)</td>
<td>85.2% (75/88)</td>
<td>98.2% (108/110)</td>
</tr>
<tr>
<td>Eng_Adv.</td>
<td>91.4% (96/105)</td>
<td>100% (105/105)</td>
<td>75.0% (64/84)</td>
<td>98.1% (103/105)</td>
</tr>
<tr>
<td>(n = 21)</td>
<td>98.0% (98/100)</td>
<td>99.0% (99/100)</td>
<td>86.3% (69/80)</td>
<td>99.0% (99/100)</td>
</tr>
</tbody>
</table>

As we can see, L2 participants’ responses for Types A, B and D were highly accurate (i.e., target response rates ≥ 90%), suggesting that they understood the task fairly well and were attentive while doing it. Their target response rates for Type C were not as high as the other 3 types, but this was probably due to the relative complexity of the prompt sentences in this type (i.e., negative wh-questions), rather than to lack of attention. It was therefore decided that all participants be included in the subsequent analyses of the experimental data.
5.2.2 Experimental items

5.2.2.1 Data Coding

The choices of experimental items fall into 4 types: Q, ∃, Q&∃, and ‘Not Sure’. Participants’ responses were tallied accordingly.

5.2.2.2 The Interpretations of Shenme in Q-biased Contexts

In this section, we focus on the Q-biased contexts, examining how the participants interpreted shenme in the veridical construction (Type 1) and the nonveridical construction (Type 3). Our prediction was that all L2 groups should behave like the natives in both constructions.

Veridical Construction in the Q-biased Context (Type 1)

Let us first look at the veridical construction in the Q-biased context (Type 1), the type with the picture in the sample item showing a boy and a girl looking at ants (Figure 5.2). Figure 5.7 shows the distribution of participants’ responses:

![Figure 5.7. Multiple-Choice Interpretation Task: Type 1 Response Distribution](image)
Descriptively, we notice a difference in the response patterns between the natives and the L2ers. The natives’ responses uniformly fall into the Q category, which suggests that the task is working, whereas the L2ers’ responses are found in two categories, namely, Q and Q&*∃, with the majority of responses in Q.

We examined individual data to determine whether or not the responses observed in the group results were consistently chosen. This question is important because response consistency enables us to tease apart knowledge from performance variability. Following Marsden (2004) and Kweon and Bley-Vroman (2011), we define response consistency as the same response to at least 4 of the 5 tokens. The results are shown in Figure 5.8:

![Figure 5.8. Multiple-Choice Interpretation Task: Type 1 Response Consistency](image)

NB: response consistency = same response to at least 4 of the 5 tokens

Figure 5.8. Multiple-Choice Interpretation Task: Type 1 Response Consistency

As we can see, all native participants and a great majority of L2 participants almost always picked the Q response. However, there were 14 L2ers who consistently favored the Q&*∃ response. Of these participants, 10 were Korean L2ers (4 intermediate and 6 advanced) and 4 were English L2ers (1 intermediate and 3 advanced).

It is very interesting that 14 L2ers got the ambiguity of *shenme* in the Q-biased context, but this is not entirely surprising. Recall the sample item in Figure 5.2. The Q response ‘(they are looking at) ants’ is more pragmatically favorable than the ∃ response ‘yes, (they are looking at something)’ – i.e., when the picture clearly shows that the two
children are looking at ants – and it makes better sense to describe the picture as ‘they are looking at ants’ instead of ‘they are looking at something’. However, in terms of the logical relation, if the Q response ‘(they are looking at) ants’ is true, the ∃ response ‘yes, (they are looking at something)’ is also true. In other words, although the ∃ interpretation is less contextually appropriate, it is nevertheless logically entailed by the Q interpretation. The fact that the solely ∃ responses were almost never chosen seems to indicate that the L2 participants did not much like the ∃ interpretation in and of itself. In short, the ∃ responses that came side by side with the Q responses are very likely to have occurred by logical reasoning (i.e., entailed by the Q response) rather than by a picture-based interpretation.

The finding that a lot more Korean L2 participants consistently favored the Q&∃ responses than their English peers seems to give us a glimpse of L1 transfer effects. Recall that the lexical equivalent of shenme in English, *what*, is never interpreted as ∃. We see that only 1 English intermediate participant showed knowledge of the ambiguity of shenme by consistently choosing the Q&∃ response. The number of English advanced L2ers who consistently chose the Q&∃ response increased (to 3), suggesting they gradually picked up the ‘new’ ∃ sense, although they did not seem to have acquired that this sense is structurally restricted in Chinese. As for the Korean L2ers, their L1 lexical equivalent, *mwues*, is ambiguous between the Q reading and the ∃ reading, even in veridical constructions. It turns out that 10 out of the 14 L2 participants who consistently picked the Q&∃ responses were Korean L2ers.

Given that the pictures were biased towards the Q sense of shenme in this type, the ∃ interpretation which surfaced as the Q&∃ responses here is perhaps very suggestive. We will investigate the ∃ sense in the next section. The question that concerns us now is whether or not the L2ers were like the native controls in terms of the Q interpretation of shenme.

Among the 4 choices, the Q interpretation is present in both the (solely) Q and the Q&∃ responses, so we need to collapse these 2 types of responses together. Since the ‘Not Sure’ responses do not inform us how exactly the participant interpreted shenme, it was decided that they be excluded from each participant’s total responses. (From Figure 5.7 we can see that the ‘Not Sure’ responses were very rare.) Then we calculated
the proportion of Q interpretation out of the total responses (with ‘Not Sure’ responses excluded) for each participant. The results were entered into SPSS for statistical analysis.

As our data were categorical and were clearly not normally distributed, a non-parametric Kruskal-Wallis Test was conducted, with the proportion of Q interpretation being the dependent variable and with Group being the independent variable. Results show that the effects of Group were not statistically significant ($p = .124$), indicating that in the veridical construction, the L2 groups were not different from the native control group with respect to the Q interpretation of *shenme*.

Nonveridical Construction in the Q-biased Context (Type 3)

Let us move on to the nonveridical construction in the Q-biased context (Type 3), the type with the picture in the sample item showing a boy holding many things, but not the two textbooks in front of him (Figure 5.4). Figure 5.9 presents the distribution of participants’ responses:

![Figure 5.9. Multiple-Choice Interpretation Task: Type 3 Response Distribution](image-url)
Among the 4 responses, the Q response, again, is the most preferred with all groups. The Ǝ and Q&Ǝ responses are rare, but the magnitude of the ‘Not Sure’ responses, especially from the natives, seems to exceed usual noise level.

Again, we examined individual data to see how consistent their responses were. Figure 5.10 reports the results:

![Figure 5.10](image)

NB: response consistency = same response to at least 4 of the 5 tokens

Figure 5.10. Multiple-Choice Interpretation Task: Type 3 Response Consistency

As we can see, most participants picked the same response to at least 4 of the 5 tokens. While a great majority of participants consistently chose the Q responses, there were also 8 participants who were consistent in their ‘Not Sure’ responses, all of whom came from the native control group and the 2 Korean L2 groups. It is clear that the ‘Not Sure’ responses in this type did not occur incidentally and require an explanation.

If we look at the sample item in Figure 5.4, we see a picture in which a boy is holding many things, but there are two textbooks that he is not holding. We expected the participants to interpret the prompt sentence as a *what*-question, i.e., ‘*What isn’t he holding?’*. Participants, indeed, performed largely as expected, as evidenced by the overwhelming Q responses. However, given that in this (nonveridical) construction, the Ǝ interpretation is allowed in Chinese and Korean, it makes it possible for the natives as
well as Korean L2ers to interpret the prompt sentence as ‘He isn’t holding anything’. But this exists reading clearly contradicts what was depicted in the picture, as the boy is actually holding many things. We thus speculate that the tension between linguistic grammaticality and pragmatic implausibility led to the ‘Not Sure’ responses from the 4 Natives and the 4 Korean L2ers. As for English L2ers, the 3 sense, if present, must have been newly added to their L1-derived lexical knowledge; that this ‘new’ sense did not consistently surface in a pragmatically incompatible context is not surprising. If our speculation is on the right track, the divergent performance between English L2ers and Korean L2ers with respect to the ‘Not Sure’ response in this experimental type (Type 3) goes the way that lexical transfer would expect.

Similar to the analysis in the previous type (Type 1), a Kruskal-Wallis Test was conducted on the proportion of the Q interpretation (Q + [Q & 3]) out of the total responses (with ‘Not Sure’ responses excluded). Results show that the effects of Group on the proportion of the Q interpretation in Type 3 were not significant \(p = .152 \), indicating that in the nonveridical construction, the L2ers were not different from the natives in terms of the Q sense of shenme.

Proportions of Q Interpretation: Type 1 vs. Type 3

Now let us compare the proportions of Q interpretation in Type 1 (i.e., veridical construction in the Q-biased context) and in Type 3 (i.e., nonveridical construction in the Q-biased context) by the 5 groups, as presented in Figure 5.11:

40 One native participant and 3 Korean advanced L2ers had 5 ‘Not Sure’ responses across all 5 tokens.
It is clear that the mean percentages of the Q interpretation are at least 80% for all groups. Wilcoxon Signed-Rank Tests show that the effect of Construction is not significant for all groups except the Kr_Adv. group ($p = .046$). That the Kr_Adv. group had a lower rate of Q interpretation in the nonveridical construction is mainly due to the fact that 3 Korean advanced participants consistently picked the ‘Not Sure’ responses across the 5 tokens.

5.2.2.3 The Interpretations of Shenme in Ǝ-biased Contexts

In this section, we test the Lexical Transfer Hypothesis by looking into how participants interpreted *shenme* in veridical and nonveridical constructions when picture contexts were biased towards the Ǝ sense. Our predictions were stated in (4), repeated in (5) below for convenience:

41 It is very difficult to do nonparametric two-way analyses of variance with repeated measures, which would allow us to examine the effects of Group, Construction and their interaction simultaneously. The Wilcoxon Signed Tests used here instead are only for an approximation of the effects of Construction, and the results should be taken with caution.
When pragmatic contexts are geared towards the Ǝ reading of shenme:

a. If the construction is veridical (e.g., (1)), natives should disallow the *Ǝ interpretation (e.g., *(1b)) because there is no nonveridical licensor to license this interpretation. Lower-proficiency L1-English L2ers should pattern like the natives in prohibiting the *Ǝ interpretation, but their reason is due to transfer of L1 lexical knowledge, i.e., the lexical equivalent in their L1, what, is never interpreted as Ǝ. Lower proficiency L1-Korean L2ers, on the other hand, should diverge from the natives and allow the *Ǝ interpretation, because their L1 lexical equivalent, mwues, can be legitimately interpreted as Ǝ in veridical constructions.

b. If the construction is nonveridical (e.g., (2)), natives should allow the Ǝ interpretation (e.g., (2b)) because the licensing condition is satisfied. Due to transfer of the relevant lexical knowledge from their respective L1, lower-proficiency L1-Korean L2ers should follow the native controls’ pattern in allowing the Ǝ interpretation, whereas lower-proficiency L1-English L2ers should perform otherwise.

Let us now look at how participants interpreted shenme in Ǝ-biased contexts.

Veridical Construction in the Ǝ-biased Context (Type 2)

In Type 2, the veridical construction was situated in an Ǝ-biased context, the type with the picture in the sample item showing a man looking at something with a pair of binoculars (Figure 5.3). The distribution of participants’ responses in this type is presented in Figure 5.12:
Perhaps the first reaction towards the high percentages of the Q responses is one of surprise, but recall that in the veridical construction, the \(\exists \) interpretation of *shenme* is prohibited in the TL grammar. In other words, what we are trying to do here is to examine whether the *\(\exists \)* interpretation was (incorrectly) permitted in the learner grammars. The pictures were considered \(\exists \)-biased because with an absence of the referents of *shenme* in the pictures, the *\(\exists \)* interpretation, if allowed in the grammar, should arise more easily than in Q-biased pictures, where the referents of *shenme* were shown. In fact, compared with the response distribution for Type 1 (Figure 5.7), we indeed find that the percentages of the *\(\exists \)* and Q&*\(\exists \)* responses increased, suggesting that our context manipulation took effect.

Now let us look at Figure 5.13 to see how consistent the participants’ responses were.
Evidently, most participants consistently picked the same response for at least 4 of the 5 tokens. While the general tendency was that the participants who fell into the (exclusively) Q category substantially outnumbered those in the other categories, the (exclusively) Q response clearly appealed to a lot more L1-English L2ers than L1-Korean L2ers. The participants who consistently preferred the Q&*Ǝ response were mainly from the 2 Korean L2 groups \((n = 9)\) and the English advanced group \((n = 4)\), replicating what was previously found in Type 1 (Figure 5.8). The solely *Ǝ response was consistently (incorrectly) chosen only by 1 English intermediate L2er and 1 Korean intermediate L2er, indicating that the Ǝ sense was seldom perceived in separation of the Q sense, even if it was present in the grammar.

If L1 lexical transfer did occur, a valid question to ask is why the responses by the Korean L2ers did not fall **primarily** into the *Ǝ or the Q&*Ǝ categories, given that the pictures were geared towards the Ǝ interpretation. The answer, we speculate, lies in the matter of prominence.

When ambiguity is involved, it is often the case that the more prominent meaning is favored over the less prominent one. For example, in their seminal work on quantifier scope ambiguity, Kurtzman and MacDonald (1993) found that when asked to judge sentences like *Every kid climbed a tree*, adult English native speakers accepted surface
scope (i.e., every > a) – the more prominent interpretation – at rates above 70%, whereas their acceptance rates for the less prominent inverse-scope interpretation (i.e., a > every) were only between 20% and 35%, although both interpretations are possible in English. By the same token, even though wh-words can be interpreted as both Q and Ǝ in Korean, Q is probably much more readily accessible than Ǝ.

As our interest was in the L2 knowledge of the Ǝ sense of shenme, we combined the 2 types of responses involving this sense, namely, the *Ǝ and the Q&*Ǝ responses, and then calculated the proportion of the *Ǝ interpretation out of the total responses (with ‘Not Sure’ responses excluded) for each participant, the same logic as we used for the analysis of the Q interpretation. A Kruskal-Wallis Test was conducted and results show that the effects of Group on the proportions of the *Ǝ interpretation were statistically significant (p = .001).

The Kruskal-Wallis Test does not come with direct post-hoc pairwise comparisons. To locate the differences, a common practice is to run a series of nonparametric Mann-Whitney Tests and adjust the α level with the Bonferroni method. Following this convention, throughout this study, we will conduct paired Mann-Whitney Tests for post-hoc comparisons if Kruskal-Wallis Tests yield significant results.

For the Bonferroni correction, since we have 5 groups in the study, there are 10 possible paired comparisons (i.e., (k × (k-1)) / 2 = (5 × (5-1)) / 2 = 10). The α level is therefore adjusted to .005 (i.e., α = .05/10 = .005).

Against this adjusted α value, the paired Mann-Whitney tests show that both Korean L2 groups were significantly different from the native control group: Kr_Int. vs. Natives (U = 170, Z = -3.627, p = .000, r = -.51); Kr_Adv. vs. Natives (U = 137.5, Z = -4.07, p = .000, r = -.58). The 2 English L2 groups, on the other hand, were not statistically different from the native control group: Eng_Int. vs. Natives (U = 216, Z = -2.484, p = .013; Eng_Adv. vs. Natives (U = 259.5; Z = -2.081, p = .037).

We return now to our prediction in (4/5a): With respect to the nontarget Ǝ interpretation of shenme in the veridical construction, lower-proficiency L1-English L2ers should perform within the natives’ range in disallowing it, whereas lower-proficiency L1-Korean L2ers should be significantly different from the natives. Our results are consistent with this prediction.
The Lexical Transfer Hypothesis does not give immediate predictions on the performances of the 2 advanced groups, but if L1-Korean L2ers initially allow *shenme* to be interpreted as *Ǝ* in veridical constructions, learnability dictates that the nontarget *Ǝ* interpretation should be difficult to retract from, as negative evidence (i.e., information that the *Ǝ* interpretation is impossible in veridical constructions in Chinese) is not available in the input (Schwartz & Gubala-Ryzak, 1992). We thus expect that the Kr_Adv. group should perform differently from the natives in the same way as the Kr_Int. group does. This is also supported by the results.

As for the Eng_Adv. group, despite the numerical increase of the Q&*Ǝ* responses, the proportion of the *Ǝ* interpretations by this group is not statistically different from that of the natives, indicating that the initial L1-based knowledge persists to the advanced level.

Nonveridical Construction in the *Ǝ*-biased Context (Type 4)

Now let us move on to the nonveridical construction in the *Ǝ*-biased Context (Type 4), the type with the picture in the sample item showing a boy holding nothing in his hands (Figure 5.5). The distribution of participants’ responses is given in Figure 5.14:

![Figure 5.14. Multiple-Choice Interpretation Task: Type 4 Distribution of Responses](image)
Admittedly, the results are not as clear-cut as we would want to see. The responses that got picked most by the natives are \(\exists\) (47.33\%) and Q&\(\exists\) (34\%); the percentages of the Q and ‘Not Sure’ responses are relatively small. The 2 Korean L2 groups, like the natives, preferred \(\exists\) the most (Kr_Int.= 43.81\%; Kr_Adv. = 43\%). The Kr_Int. group, however, picked the (exclusively) Q response at a much higher rate (i.e., 30.48\%) than the natives did (i.e., 10\%). The 2 English L2 groups displayed different preference patterns. The Eng_Int. group chose the (exclusively) Q response most often (39\%), followed by the Q&\(\exists\) response (28\%). The Eng_Adv. group’s choices were more or less spread across Q&\(\exists\) (33.64\%), \(\exists\) (30.91\%) and Q (24.55\%).

Again, we also looked into individual data to examine response consistency. The results are reported in Figure 5.15:

42 We speculate that the perplexing L2 results might have something to do with scope interactions between *wh*-existentials and negation. Consider, for example, the prompt sentence of the Type 4 sample item:

\[(xiii)\] Ta \(mei\) na \(shenme.\)

- he NEG hold THING
- a. ‘He isn’t holding anything.’
- b. * ‘There is something that he isn’t holding.’

Here, only the narrow scope \(\exists\) interpretation (NEG > *wh*-existential) is possible (i.e., (xiii)); wide scope (*wh*-existential > NEG) is banned (i.e., *(xiii)*). Thus, the picture context (a boy not holding anything) caters to the target narrow scope \(\exists\) interpretation. Still, as K. Deen pointed out (personal communication, 1 May 2014), even if the L2ers allow the \(\exists\) sense of \(shenme\), scope may or may not be target-like. As the picture context is not (fully) compatible with the wide scope interpretation, L2ers who assigned this interpretation to the prompt sentence (*((xiii)*)) may have suffered from not knowing which choice to pick.

This problem could be particularly acute for L1-Korean L2ers of Chinese; in Korean, the wide scope interpretation is strongly preferred, according to K.-H. Gil (personal communication, 27 April 2013) and to W. O’Grady (personal communication, 1 May 2014) (who also suggested that it may be revealing to test Korean natives on a Korean version of this experiment). This is shown in (xiv):

\[(xiv)\] Minho-ka \(mwe\)-l an kacyewa-ss-\(ta.\)

- Minho-NOM THING-ACC NEG bring-PAST-DECL
- a. ‘Minho didn’t bring something.’
- b. * ‘Minho didn’t bring anything.’

Note also that in the prompt in (xiii), \(mei\) ‘not’ precedes the *wh*-existential \(shenme\). All things being equal, surface (narrow) scope should be easier to get than inverse (wide) scope (see O’Grady, 2006).
Unlike the general response consistency found in the other 3 experimental types, here in Type 4, the percentages of consistent participants (i.e., participants who chose the same response to at least 4 of the 5 tokens) vary across the 5 groups (Natives = 43.33%; Eng_Int. = 35%; Eng_Adv. = 72.73%; Kr_Int. = 76.19%; Kr_Adv. = 60%). If this were due to lack of validity of certain items in this type, we would expect response consistency to drop with all groups. This is clearly not what we see. We do not have a good explanation for why the Kr_Int. group, the Eng_Adv. group, and the Kr_Adv group (in descending order) had substantially more consistent participants than the natives and the Eng_Int. group.

In terms of the types of consistent responses, the natives preferred the two responses involving the \exists interpretation, namely, the \exists response and the Q&\exists response. As for the L2ers, we see that these two responses attracted more participants from the 2 Korean L2 groups and the Eng_Adv. group than from the Eng_Int. group.

Following the same logic of data analysis used before, we calculated the proportion of the \exists interpretation (\exists responses + Q&\exists responses) out of the total responses (with ‘Not Sure’ responses excluded) for each participant. Data were entered into SPSS for statistical analysis. Results from the Kruskal-Wallis Test suggest that there is a significant effect of Group on the proportions of the \exists interpretation ($p = .002$).
Against the adjusted α level of .005, the series of Mann-Whitney post-hoc tests yield a significant difference in Eng_Int. vs. Natives ($U = 120, Z = -3.851, p = .000, r = -.54$), but no difference in: Eng_Adv. vs. Natives ($U = 266.5, Z = -1.412, p = .158$); Kr_Int. vs. Natives ($U = 218, Z = -2.175, p = .030$); Kr_Adv. vs. Natives ($U = 278.5, Z = -.526, p = .599$).

It was predicted in (4/5b) that in nonveridical constructions, lower-proficiency L1-English L2ers should diverge from the natives with respect to the \exists interpretation of shenme, whereas lower-proficiency L1-Korean L2ers should perform like the natives. This is exactly what was found here.

The finding that the Eng_Adv. group did not significantly differ from the natives suggests that as Chinese proficiency increased, the L1-English L2ers learned that shenme can be interpreted as \exists in nonveridical constructions in Chinese. This is what we would expect from the perspective of learnability, because there is presumably (abundant) positive evidence in the input instantiating the \exists sense of shenme.

Proportions of \exists Interpretation: Type 2 vs. Type 4

Figure 5.16 compares the proportions of the \exists interpretation of shenme in Type 2 (i.e., veridical construction in the \exists-biased context) and in Type 4 (i.e., nonveridical construction in the \exists-biased context) by the 5 groups. We should keep in mind that in the TL, the \exists interpretation is prohibited in the veridical construction but becomes fine in the nonveridical construction.
As we can see, all 5 groups had much higher proportions of the Ǝ interpretation in the nonveridical construction than in the veridical construction. Results of the Wilcoxon Signed-Rank Tests indicate that the difference is statistically significant for all groups ($p \leq .003$), suggesting that they differentiated the 2 constructions with respect to the Ǝ interpretation of *shenme*.

5.3 Discussion

Returning to the aim of this task, we tested the interpretations of *shenme* against two broad predictions based on Sprouse’s (2006) Lexical Transfer Hypothesis: (i) In Q-biased contexts, all L2 groups should behave like the native controls in terms of the Q interpretation of *shenme*, no matter whether the construction is veridical or nonveridical; (ii) in Ǝ-biased contexts, differences in L1 lexical properties should be manifested in opposite patterns in the two target constructions (at least at lower levels of proficiency): When the construction is veridical, we expect a parallel between the L1-English intermediate group and the natives in prohibiting the Ǝ interpretation; when the construction is nonveridical, we expect a parallel between the L1-Korean intermediate group and the natives in allowing the Ǝ interpretation.

Results show that when veridical and nonveridical prompts appeared in Q-biased picture contexts (i.e., Type 1 and Type 3), all L2 groups performed within the native
control group range in getting at the Q interpretation of *shenme*. The proportion of the Q interpretation by each group is generally not influenced by the construction difference, confirming the first prediction. This provides us with evidence to argue that *shenme* is primarily perceived as a *wh*-interrogative by the L2ers of Chinese, which motivates the L1-TL lexical association.

The second prediction is also borne out: When picture contexts were biased towards the \exists interpretation of *shenme*, it was found (i) that in the veridical construction (i.e., Type 2), both L1-English groups behaved like the natives in shunning the $\ast \exists$ interpretation, whereas both L1-Korean groups had significantly more $\ast \exists$ responses, and (ii) that in the nonveridical construction (i.e., Type 4), both L1-Korean groups patterned like the natives in allowing the \exists interpretation, whereas the Eng_Int. group did not.

What is perplexing, though, is that despite the above L1-based differences, all L2 groups displayed a tendency which resembles the native-like intuition in that *shenme* was interpreted as \exists significantly more in the nonveridical construction than in the veridical one. This is unexpected under the strict sense of the Lexical Transfer Hypothesis, because lower proficiency L1-English L2ers should disallow the \exists interpretation more or less to the same extent in both constructions, due to the absence of the \exists sense in their L1 lexical equivalent, and lower proficiency L1-Korean L2ers should allow it in both constructions, due to the fact that the \exists sense is available in both veridical and nonveridical constructions in their L1.

One explanation is that the intermediate groups were too far removed from the L2 initial state, so that they had (more or less) learned the constraint that *wh*-existentials are only possible in nonveridical environments in Chinese (or at least that *wh*-existentials are possible in negatives but impossible in present progressives) by the time of the experiment. This seems likely for English intermediate L2ers because the evidence they need is readily available in the input. However, a proficiency factor alone cannot account for why the Korean L2 groups differentially interpreted *shenme* as \exists in the two constructions (i.e., veridical vs. nonveridical), because the learnability problem faced by Korean L2ers should make it very difficult for these L2ers to unlearn the \exists interpretation in the veridical construction, due to lack of negative evidence in the input.
The second possibility is that the degree of bias varied in the 2 types of 3-biased conditions. In the veridical condition (Type 2), for example, the one with a man looking at something with a pair of binoculars, the conversation based on the Q interpretation of shenme (i.e., [Prompt] ‘What is he looking at?’ [Response] ‘No idea’) is fully compatible with the picture. In the nonveridical condition (Type 4), for example, the one with a boy holding nothing in his hands, the conversation based on the Q interpretation of shenme (i.e., [Prompt] ‘What isn’t he holding?’ [Response] ‘Pens’) is less desirable because there are many other things that the boy isn’t holding. This may have made the participants lean more towards the Q interpretation in the veridical type, the consequence of which is that the 3 response, if allowed in the grammar, was suppressed by the Q response to some extent.

This brings up the methodological issue of whether it might have been more appropriate to ask participants to make judgments on the acceptability of the Q and 3 responses in the contexts of the pictures. In fact, this was how the task was initially designed. However, when the task was piloted with 6 Chinese native speakers, it was found, for instance, that in the picture context where a man was looking at something unknown with a pair of binoculars, the *3 response (i.e., Shi de ‘Yes’) was judged as an acceptable response to the veridical prompt (Ta zai kan shenme ‘He is looking at something’). In the interview afterwards, these native speakers reported that although the conversations sounded a little odd, they more or less described the pictures. When asked to select an appropriate response from 4 different choices, these same Chinese native speakers almost never chose the *3 responses for the veridical prompts.

There is no denying that the multiple-choice interpretation task employed here had its own limitation, namely, the interference of the different choices. Research on lexical ambiguity has shown that successful selection of one context-compatible sense may impede search for alternative senses of that word (Rayner & Frazier, 1989). When contexts accommodate both interpretations of shenme, to the extent that the participant’s grammar allows them, the retrieval of one sense is likely to terminate the occurrence of the other sense. Given that the Q interpretation is more prominent, the 3 interpretation, even if present in learners’ grammars, is much harder to get at, as compared to the Q interpretation.
Taken together, the findings obtained in this task suggest a general picture that is consistent with the Lexical Transfer Hypothesis. However, strictly testing the L2 knowledge of the \exists sense separate from the Q sense seems extremely difficult in an interpretation task. It is for this reason that an elicited production task is included in the study, which we turn to in the next chapter.
CHAPTER 6
ELICITED PRODUCTION TASK

In this experiment, we test Sprouse’s (2006) Lexical Transfer Hypothesis from the perspective of production, with the scope of investigation extended to two \(wh \)-arguments: \textit{shenme} ‘THING’ and \textit{shui} ‘PERSON’. The target constructions are essentially the same as those in the interpretation task. We examine whether or not L1-English and L1-Korean L2ers of Chinese, when given pragmatically appropriate contexts, will produce nonveridical negatives sentences (e.g., (1a) and (2a)) and veridical present progressive sentences (e.g., *(1b) and *(2b)) in which \textit{shenme} and \textit{shui} function as \(\exists \).

(1) \textit{shenme} ‘THING’

a. Ta \textit{mei} chi \textit{shenme}. \quad \text{(nonveridical)}

 He NEG eat THING

 ‘He isn’t eating anything.’

b. * Ta \textit{zai} chi \textit{shenme}. \quad \text{(veridical)}

 He ASP eat THING

 ‘He is eating something.’

(2) \textit{shui} ‘PERSON’

a. Ta \textit{mei} tui \textit{shui}. \quad \text{(nonveridical)}

 He NEG push PERSON

 ‘He isn’t pushing anyone.’

b. * Ta \textit{zai} tui \textit{shui}. \quad \text{(veridical)}

 He ASP push PERSON

 ‘He is pushing someone.’
As the exists use of wh-words is restricted to nonveridical sentences in Chinese, but is allowed in veridical as well as nonveridical constructions in Korean and is entirely ruled out in English, we predict the following performance patterns under the Lexical Transfer Hypothesis:

(3) a. In nonveridical sentences:
The L1-Korean intermediate L2ers will be inclined to use existential shenme and shui (e.g., (1a) and (2a)) like the Chinese natives, whereas the L1-English intermediate L2ers will not.

b. In veridical sentences:
The L1-English intermediate L2ers will shun the nontarget existential shenme and shui (e.g., *(1b) and *(2b)) like the Chinese natives, whereas the L1-Korean intermediate L2ers will show a propensity to use them.

We test these predictions using an elicited production task. This chapter presents detailed information about this experiment. Section 6.1 describes the materials and procedures. Section 6.2 presents the results. Section 6.3 is a discussion of the main findings.

6.1 Materials and Procedures

For each wh-word, two types of picture contexts were constructed, one for eliciting wh-existentials in nonveridical sentences, one for eliciting (nontarget) wh-existentials in veridical sentences. Participants were asked to look at each picture carefully and write a statement to describe what a designated character was doing by using words chosen from a word list, which includes either shenme or shui. Participants were explicitly told that not all words in the word lists were useful and no words of their own should be added.

Looking at the nonveridical construction first, Figure 6.1 gives a sample item for eliciting "shenme" in nonveridical sentences:
Figure 6.1. Elicited Production Task: Sample Item for Eliciting Existential *Shenme* in a Nonveridical Sentence

In this example, three characters are present in the picture: One is eating a cookie, one is eating a banana, and the one with his name given in the speech bubble, the target for description, is eating nothing. The contrast between the three characters in the picture was intended to highlight the fact that Xiao Zhang is not eating anything, which makes the context plausible for using 𒐃*shenme*, if it is allowed in participants’ grammars.

Word lists for this experimental condition contained: *shenme*, a transitive verb, 2 nouns, the negative marker *meiyou*, and the durative aspect marker *zai*. The order in which they appear in each item was random.

In the space provided for participants’ answers, the subject of the sentence (i.e., the name of the designated character) was supplied (as illustrated in Figure 6.1). By doing so, we controlled the syntactic position of *shenme* to the object position, if the participant chooses to use it. A period was also given to remind the participants that their sentences should be statements rather than questions.

The expected sentence for this item is *Xiao Zhang meiyou (zai) chi shenme* ‘Xiao Zhang isn’t eating anything’. If the 𒐃 sense of *shenme* is absent in the grammar, the participant would be forced to use either of the nouns in the word list instead of *shenme*, producing something like *Xiao Zhang meiyou (zai) chi binggan/xiangjiao* ‘Xiao Zhang isn’t eating a cookie/a banana’, which is a less desirable description because Xiao Zhang is eating neither a cookie nor a banana.
Figure 6.2 shows a sample item for eliciting \exists shui in nonveridical sentences:

PICTURE:

WORD LIST (gloss not in the experiment):

<table>
<thead>
<tr>
<th>yōngbào</th>
<th>zài</th>
<th>māmā</th>
</tr>
</thead>
<tbody>
<tr>
<td>hug</td>
<td>ASP</td>
<td>Mom</td>
</tr>
<tr>
<td>shuí</td>
<td>méiyǒu</td>
<td>bàba</td>
</tr>
<tr>
<td>PERSON</td>
<td>NEG</td>
<td>Dad</td>
</tr>
</tbody>
</table>

YOUR SENTENCE: 小强

Figure 6.2. Elicited Production Task: Sample Item for Eliciting Existential Shui in a Nonveridical Sentence

In this picture, we see that a boy is hugging a woman and a girl is hugging a man, but the boy named Xiao Qiang is not hugging anyone. For this context, the accurate description of Xiao Qiang requires the use of shui as \exists ‘anyone’.

Word lists for this experimental condition consisted of: shui, a transitive verb, 2 nouns, the negative marker meiyou, and the durative aspect marker zai. These words are presented in random order in each item.

Turning now to the veridical construction, Figure 6.3 presents a sample item for eliciting (nontarget) \exists shenme in veridical sentences:
Figure 6.3. Elicited Production Task: Sample Item for Eliciting (Nontarget) Existential Shenme in a Veridical Sentence

In this sample item, the boy named Xiao Chen is writing something and the girl next to him is not. We deliberately made it hard to tell from the picture what exactly Xiao Chen was writing so as to make the context plausible for using ∃ shenme ‘something’, if it is (incorrectly) permitted by the participant’s grammar.

Words provided for this experimental condition were: shenme, a transitive verb, 2 nouns, the durative aspect marker zai, and the perfective aspect marker le. They appear in each item in random order. (Note that the word xie ‘write’ is strictly transitive in Chinese, so participants must decide on what object to use, either shenme or one of the nouns.)

Figure 6.4 shows a sample item for eliciting (nontarget) ∃ shui in veridical sentences:
In this example, the guy named Xiao Zhang is pushing a man whose identity is unknown. If participants (incorrectly) allow \exists shui to occur in veridical sentences, they are expected to produce *Xiao Zhang zai tu shui to mean ‘Xiao Zhang is pushing someone’.

Words supplied for this experimental condition were: shui, a transitive verb, 2 pronouns, the durative aspect marker zai, and the perfective aspect maker le. The order in which they appear in each item was random.

There were 3 tokens of each type, yielding a total of 12 items. Because the task is quite demanding, no filler items were included in this task. The test items were randomized and presented to participants in 2 different presentation orders.

Detailed instructions were provided in the participants’ L1, followed by an example (without shenme or shui) illustrating what the participants were expected to do in the task. They were explicitly told that their sentences could be written in characters or Pinyin. In addition, it was especially emphasized that the sentences they made up must be statements (i.e., declaratives) (see Appendix F for the English, Korean and Chinese versions of the instructions and Appendix G for the complete set of test items).

The participants are the same as those in Experiment 1.
6.2 Results

Participants’ answers were first examined to see if there were any unusable data. Three screening criteria were employed: (i) missing or incomplete answers; (ii) sentences where the (transitive) verbs were used intransitively (or with null objects), in which case there would be no syntactic position for the relevant wh-word; (iii) sentences where wh-words were used as interrogatives, as signaled by use of question marks. It was found that all participants had closely followed the instructions and provided sentences meeting the task requirements. Thus all of these sentences were included in the data analysis.

Because all sentences produced by participants were declaratives, any wh-words used had to be existentials. We therefore coded each sentence involving shenme or shui as 1, and other sentences as 0. Grammatical errors such as missing or misuse of aspect makers were ignored because they were not relevant to the focus of our investigation.

6.2.1 Nonveridical Sentences

It was predicted in (3a) that in nonveridical sentences, the L1-Korean intermediate L2ers will be inclined to use ∃ shenme and ∃ shui just like the Chinese natives, whereas the L1-English intermediate L2ers will refrain from using them. Now let us see whether these predictions are borne out.

Figure 6.5 presents the mean instances of ∃ shenme and ∃ shui produced by the 5 groups:
As we can see, the two clusters of bar charts closely parallel each other, showing that *shenme* and *shui* were used in similar ways by each group. Out of the 3 tokens, the instances of *shenme* and *shui* produced by the native control group average to 2.20 and 2.07, respectively. This suggests that the natives indeed had a strong tendency to use *wh*-existentials in nonveridical sentences. The two Korean L2 groups and the Eng_Adv. group also produced a notable number of *shenme* and *shui*. The Eng_Int. group, however, used *shenme* and *shui* at very low rates, 0.60 and 0.25, respectively.

We examined individual data to see the distribution of participants in terms of the number of *shenme/shui* produced in nonveridical sentences. The results are reported in Table 6.1:
Table 6.1. Elicited Production Task: Distribution of Participants in Terms of Instances of Shenme/Shui Produced in Nonveridical Sentences

<table>
<thead>
<tr>
<th>Wh-word</th>
<th>Group</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shenme</td>
<td>Natives</td>
<td>18 (60%)</td>
<td>5 (17%)</td>
<td>2 (7%)</td>
<td>5 (17%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Int.</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>12 (60%)</td>
<td>8 (40%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Adv.</td>
<td>13 (59%)</td>
<td>2 (9%)</td>
<td>2 (9%)</td>
<td>5 (23%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Int.</td>
<td>8 (38%)</td>
<td>4 (19%)</td>
<td>1 (5%)</td>
<td>8 (38%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Adv.</td>
<td>14 (70%)</td>
<td>2 (10%)</td>
<td>1 (5%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Shui</td>
<td>Natives</td>
<td>12 (40%)</td>
<td>9 (30%)</td>
<td>8 (27%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Int.</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>5 (25%)</td>
<td>15 (75%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Adv.</td>
<td>7 (32%)</td>
<td>3 (14%)</td>
<td>5 (23%)</td>
<td>7 (32%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Int.</td>
<td>5 (24%)</td>
<td>4 (19%)</td>
<td>4 (19%)</td>
<td>8 (38%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Adv.</td>
<td>15 (75%)</td>
<td>2 (10%)</td>
<td>1 (5%)</td>
<td>2 (10%)</td>
</tr>
</tbody>
</table>

The Eng_Int. group clearly stood out from the rest of the groups in that not a single participant in this group produced more than one instance of shenme or shui. Their resistance towards shui was particularly strong, as 75% of the 20 participants refrained from using it at all.

The Kruskal-Wallis Test conducted on the number of shenme produced by the 5 groups showed that the difference is statistically significant ($p = .000$). Against the adjusted α level of .005, the paired Mann-Whitney Tests found significant differences in two meaningful comparisons: Eng_Int. vs. Natives ($U = 92$, $Z = -4.31$, $p = .000$, $r = -.61$); Eng_Int. vs. Eng_Adv. ($U = 92$, $Z = -3.39$, $p = .001$, $r = -.52$).

The Kruskal-Wallis Test on shui also found a significant difference across the 5 groups ($p = .000$). The Mann-Whitney post-hoc tests found statistical differences only in: Eng_Int. vs. Natives ($U = 32.5$, $Z = -5.492$, $p = .000$, $r = -.78$); Eng_Int. vs. Eng_Adv. ($U = 100$, $Z = -3.301$, $p = .001$, $r = -.51$); Kr_Int. vs. Kr_Adv. ($U = 96.5$, $Z = -3.183$, $p = .001$, $r = -.50$).

Thus, L1-English intermediate L2ers produced significantly fewer shenme and shui in nonveridical sentences than natives did, but L1-Korean intermediate L2ers performed within the natives’ range, which is fully in line with the predictions in (3a).

In addition, it was found that the English advanced L2ers performed like the natives in using shenme and shui in nonveridical sentences, whereas the English intermediate L2ers significantly differed from the natives, suggesting that the English L2ers learned the ə use of shenme and shui as proficiency rose. This neatly parallels the
The previous result found in Experiment 1, the interpretation task, which showed that the English advanced L2ers patterned like the natives with respect to the \exists interpretation of *shenme*, whereas the English intermediate L2ers diverged from the natives.

The finding that the 2 Korean L2 groups performed like the natives in terms of the number of *shenme* produced in nonveridical sentences is expected, because under the proposal of lexical transfer, L1-Korean L2ers should have knowledge of *wh*-existentials from the earliest point of L2 acquisition of Chinese. However, we see that Korean intermediate L2ers produced significantly fewer instances of *shui* than Korean advanced L2ers did, and we do not have an explanation for it.

6.2.2 Veridical Sentences

In this section, we look at the production of \exists *shenme* and \exists *shui* in veridical sentences. It was predicted in (3b) that the L1-English intermediate L2ers will shun the nontarget \exists *shenme* and \exists *shui* like the natives, whereas the L1-Korean intermediate L2ers will (incorrectly) tend to use them. Figure 6.6 presents the mean instances of \exists *shenme* and \exists *shui* produced by the 5 groups:

![Figure 6.6. Elicited Production Task: Existential Shenme/Shui in Veridical Sentences – Group Results](image)

<table>
<thead>
<tr>
<th>Group</th>
<th>\exists Shenme</th>
<th>\exists Shui</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives (n = 30)</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>Eng_Int. (n = 20)</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Eng_Adv. (n = 22)</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Kr_Int. (n = 21)</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Kr_Adv. (n = 20)</td>
<td>0.01</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Out of the 3 tokens, the mean number of *shenme* and *shui* was at most 0.40 with all 5 groups. We looked into the individual data to see whether the few *wh*-existentials detected came from the same participants. Table 6.2 presents the results:

Table 6.2. Elicited Production Task: Distribution of Participants in Terms of Instances of Shenme/Shui Produced in Veridical Sentences

<table>
<thead>
<tr>
<th>Wh-word</th>
<th>Group</th>
<th>Instances Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 (3%)</td>
</tr>
<tr>
<td></td>
<td>Natives (n = 30)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Int. (n = 20)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Adv. (n = 22)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>shenme</td>
<td>Kr_Int. (n = 21)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Adv. (n = 20)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Natives (n = 30)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Int. (n = 20)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td></td>
<td>Eng_Adv. (n = 22)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>shui</td>
<td>Kr_Int. (n = 21)</td>
<td>3 (19%)</td>
</tr>
<tr>
<td></td>
<td>Kr_Adv. (n = 20)</td>
<td>3 (15%)</td>
</tr>
</tbody>
</table>

The shaded data in Table 6.2 show that in each group, the great majority of participants either did not use *shenme/shui* at all or used it only once.

Kruskal-Wallis Tests were conducted on the number of *shenme/shui* produced by the 5 groups. The results show that the effect of Group is nonsignificant with both *shenme* and *shui* ($p \geq .10$). This suggests that all groups showed uniform inhibition against the \exists use of *shenme* or *shui* in veridical sentences, contra the prediction in (3b) for the L1-Korean intermediate L2ers. Reasons for why this pattern of results occurred (especially within the L2 groups) are discussed below.

6.3 Discussion

In this elicited production task, we tested Sprouse’s (2006) Lexical Transfer Hypothesis by comparing the behaviors of L1-English and L1-Korean L2ers of Chinese vis-à-vis native speakers of Chinese with respect to the production of \exists *shenme* and \exists *shui* in nonveridical sentences (where the \exists use is legitimate in the TL) and veridical sentences (where the \exists use is prohibited in the TL). In the nonveridical sentence pattern, L1-Korean intermediate L2ers were expected to perform on a par with the natives in readily using *shenme* and *shui*, whereas L1-English L2ers were expected to be
significantly different from the natives. In the veridical sentence pattern, L1-Korean intermediate L2ers were expected to produce significantly more instances of (nontarget) *shenme* and *shui* than the natives, whereas L1-English intermediate L2ers were expected to pattern like the natives.

Results from the nonveridical conditions are as predicted. The Korean intermediate L2ers indeed favored using *shenme* and *shui* in their sentences and the proportions produced by them were statistically comparable to the proportions produced by the natives. The English intermediate L2ers, by contrast, seldom produced *shenme* or *shui* in these 2 conditions.

In veridical sentences, however, the predicted nontarget ∃ use of *shenme* and *shui* was not observed with the Korean intermediate L2ers. In fact, all 5 groups avoided using *wh*-existentials in a uniform fashion. Taking these results at face value, the nonoccurrence of *shenme* and *shui* in veridical sentences in the Korean L2 groups is counter-evidence to the lexical transfer view. There are, however, at least two reasons that we should not jump to this conclusion in haste.

First, recall the results obtained in Experiment 1, the interpretation task, that the 2 Korean L2 groups were significantly more likely than the natives to interpret *shenme* as existential in veridical contexts, indicating that they had indeed overgeneralized the ∃ sense of *shenme* to veridical sentences. On the assumption that interpretation and production operate under the same grammatical knowledge, it is hard to see why in this production task, the same L2 groups suddenly came to know that Chinese *wh*-existentials are prohibited in veridical sentences.

Second, the linguistic knowledge of L2ers differs from that of natives in that it is often unstable (e.g., Bley-Vroman, 2009), and, therefore, certain degrees of variability are commonly found in L2ers (e.g., Tsimpli, 2006). In particular, in Yuan’s (2010) L2 study on Chinese *wh*-existentials, when judging sentences involving *wh*-existentials licensed by negation, L2ers did not show clear-cut intuitions on the licensing condition until after a post-intermediate stage (see Table 3.11 in Chapter 3 for a summary of Yuan’s results for negative sentences). The invariant avoidance of *wh*-existentials in veridical sentences by all groups in the present task thus appears rather unusual. It seems likely that some extraneous factors might be at play. One possible factor is the influence of pragmatics.
The purpose of this production task was to examine whether participants would use existential *shenme* or *shui* to refer to entities whose identities were not revealed in the pictures. In daily communication, when the identity of a referent is unknown or is intended to be unspecified, existential expressions are commonly used. For example, one may say *Someone is eating a cake* when one does not know who the eater is or wants to conceal the information from the addressees.

Nevertheless, in a picture description task, a speaker’s goal is to provide sufficient information so that the addressee is able to get specific details of the picture. By Grice’s (1975) maxim of quantity, i.e., “Make your contribution as informative as is required (for the current purposes of the exchange)” (p. 45), the speaker should choose the most informative (referring) expressions that will enable the addressee(s) to pick out a referent (if there is one) from a set of alternatives (Brennan & Clark, 1996). Suppose we are asked to describe a picture where a person is eating a cake and we do not know who this person is, we would probably be inclined to use an indefinite noun phrase such as ‘a man’ or ‘a woman’ to refer to the eater (e.g., *A man is eating a cake*) instead of using an existential (e.g., *Someone is eating a cake*), which is indefinite by nature.

In test items that were intended to elicit (nontarget) *wh*-existentials in veridical contexts, nouns or pronouns were included in the word lists along with *wh*-existentials. Consider the sample item in Figure 6.3, where the picture shows that Xiao Chen is writing, but it does not show what exactly he is writing. If such a situation arises in everyday language use, one may very well say ‘*Xiao Chen is writing something*’, hence a pragmatically plausible context for using existential *shenme*, if the grammar allows this use. However, when asked to give descriptions, under the influence of the pragmatic principle, the maxim of quantity, participants may strive to be informative and choose to use either of the nouns (i.e., *zi* ‘character’, *zuoye* ‘homework’), despite there being a certain amount of guessing involved. In other words, even if *wh*-existentials are incorrectly allowed in veridical sentences in the learner grammars, given that they are inherently indefinite, the Gricean maxim of quantity might well override the use of this knowledge and eliminate them from the ultimate utterances. This perhaps explains why *shenme* and *shui* were rarely used in veridical sentences by any L2ers.
B. D. Schwartz (personal communication, 14 November 2013) cautioned that the maxim of quality, i.e., “Try to make your contribution one that is true” (Grice, 1975, p. 46) should not be forgotten. This is certainly a pertinent point. Using an existential expression (e.g., ‘someone’, ‘something’) to refer to an indefinite referent in a veridical context is clearly closer to the whole truth than using a referential noun phrase, for which there lacks adequate evidence. In fact, this is precisely the rationale behind the design of the present task: When the identity of a referent is not shown in the picture, the participants were expected to use *wh*-existentials, to the extent that their grammars allow them.

However, as Grice (1975) himself pointed out, a speaker may sometimes be faced with clashes of the maxims: A speaker “may be unable, for example, to fulfill the first maxim of quantity (Be as informative as is required) without violating the second maxim of quality (Have adequate evidence for what you say)” (p. 49). This appears to be the case with the present task: By the maxim of quality, the participants should favor *wh*-existentials in veridical sentences, if their grammars allow them; by the maxim of quantity, the participants should use referential noun phrases. The L2 participants’ uniform avoidance of *wh*-existentials in veridical sentences seems to suggest that observance of the maxim of quality had given way to observance of the maxim of quantity, as being informative is of pivotal importance for the picture description task.

Matters are different with the nonveridical sentences. Take the sample item in Figure 6.1 for example, where the designated character, Xiao Zhang, is not eating anything in the picture, so the object of the eating action is an empty set. To indicate this empty set, negating the existential *shenme* (i.e., ‘Xiao Zhang is not eating anything’) is evidently more informative and more accurate than negating one of the individual elements in the reference set (i.e., ‘Xiao Zhang is not eating a banana/a cookie’). In other words, in nonveridical sentences, the negated *wh*-existentials happen to observe the Gricean maxims better than the negated referential noun phrases do, and this leads to the successful elicitation of existential *shenme* and *shui*, to the extent that the grammars make them available.

Taken together, we see that while the presence or absence of existential *shenme* and *shui* in nonveridical sentences goes the way as predicted by the Lexical Transfer
Hypothesis, the across-the-board nonoccurrence of *wh*-existentials in veridical sentences seems to run counter to it. We argue that the maxim of quantity dictates that participants choose the most informative (referring) expressions in the picture description task, and this pragmatic principle acts upon the output of the grammars such that negated *wh*-existentials are maintained whereas affirmative ones are filtered out, resulting in the mixed results as we see in this task.

In the next chapter, we will continue with our research agenda to test the Lexical Transfer Hypothesis in the domain of L2 knowledge of Chinese *wh*-existentials by looking at two other common constructions which license Chinese *wh*-existentials, namely, *yes/no* questions and conditionals. We will employ a research method that is claimed to have the potential to “produce the cleanest results” (Kweon & Bley-Vroman, 2011, p. 211), the acceptability judgment task.
CHAPTER 7
ACCEPTABILITY JUDGMENT TASK

In the previous two experiments, we have focused on wh-existentials licensed by negation. The aim of the present task is to examine L2 knowledge of wh-existentials licensed in yes/no questions (e.g., (1)) and conditionals (e.g., (2)):

(1) Zhangsan pengdao shui le ma?
Zhangsan encounter PERSON ASP Q_{yes/no}
a. ‘Did Zhangsan encounter someone/anyone?’
b. * ‘Who did Zhangsan encounter?’

(2) Ruguo Lisi aishang shui de hua, ta hui gaosu wo.
If Lisi fall-in-love-with PERSON he would tell me
a. ‘If Lisi fell in love with someone/anyone, he would tell me.’
b. * ‘If Lisi fell in love with who, he would tell me?’

Unlike wh-words under negation, which are ambiguous between Q and ∃, wh-words in yes/no questions and conditionals are solely interpreted as ∃. As we can see, (1) and (2) are well-formed when shui is interpreted as ∃ (i.e., (1a) and (2a)) but ill-formed when it is interpreted as Q (i.e., *(1b) and *(2b)).

Similar to Chinese, wh-words in Korean can also be used as ∃ in (yes/no) questions (e.g., (3)) and conditionals (e.g., (4)):
(3) **Nwu-ka cha-lul masiko iss-nayo?**

PERSON-NOM tea-ACC drink PROG-Q

a. ‘Is **anyone** drinking tea?’
b. ‘**Who** is drinking tea?’

(Gil & Marsden, 2010, p. 41: (3b))

(4) **Nwu-ka sen-ul nemu-myen, kispal-ul tul-era.**

PERSON-NOM line-ACC cross-if flag-ACC raise-IMPER

‘If **anyone** crosses the line, raise the flag.’

(Gil & Marsden, 2010, p. 41: (3c))

What is different, though, is that the Korean question in (3) can be either a *yes/no* question (i.e., (3a)), where the *wh*-word *nwu* gets the \exists reading, or a *wh*-question (i.e., (3b)), where *nwu* gets the Q reading, whereas the Chinese question in (1) is unambiguously a *yes/no* question.

In English, due to the absence of the \exists sense of *wh*-words, they are prohibited in *yes/no* questions. For conditionals, even though there might be situations where one wants to ask, for instance, the equivalent of ‘Who is the person such that if he goes then you will go?’, a sentence like (5) is still strongly disfavored, if not entirely impossible:

(5) ?? If who goes, then you will go?

Taking advantage of the lack of ambiguity of *wh*-existentials licensed by *yes/no* questions and conditionals in Chinese, we designed an acceptability judgment task (AJT) to test the following predictions based on Sprouse’s (2006) Lexical Transfer Hypothesis:

(6) a. Intermediate and advanced L1-Korean L2ers of Chinese should perform like Chinese natives in accepting *wh*-existentials contained in *yes/no* questions and conditionals (e.g., (1) and (2)).

b. Intermediate L1-English L2ers should reject these constructions.
This chapter presents the details of the AJT experiment. Section 7.1 describes the materials and procedures, and Section 7.2 reports the results. Section 7.3 is a discussion of the main findings.

7.1 Materials and Procedures

7.1.1 Materials

We focus on the wh-word *shui* ‘PERSON’ in this task. The materials consisted of three parts: (i) test items targeting existential *shui* licensed in yes/no questions; (ii) test items targeting existential *shui* licensed in conditionals; and (iii) filler items, which are also used as part of the proficiency measures (see Section 4.3 in Chapter 4).

7.1.1.1 Existential Shui Licensed in Yes/No Questions

Yes/No questions in Chinese involving wh-existentials (e.g., (1)) can be a tricky construction for L1-English and L1-Korean L2ers, as questions containing wh-words are always wh-questions in English and are ambiguous between a wh-question and a yes/no question in Korean.

Note that yes/no questions in Chinese are obligatorily marked with the yes/no-question marker *-ma*, and wh-questions usually go without question markers. When *-ma* co-occurs with a wh-word in questions like (1), it is not clear how the L2 participants might perceive *-ma*. This is an important issue in this experiment, because if the L2 participants incorrectly treat *-ma* as a general question marker, similar to the Korean *-nayo* in (3), there is no way for us to tell based on what interpretations the judgments are made: The relevant wh-word may be interpreted as Q and/or ∃. Only when the L2 participants show target-like knowledge of *-ma* (i.e., it is an obligatory question marker exclusive to yes/no questions) can their judgments be informative with respect to the interpretation of the relevant wh-word. More specifically, if they interpret the wh-word as Q, they will reject the sentence because the yes/no-question marker *-ma*

43 Cheng (1997) argues that the particle *-ne* is an optional wh-question marker in Chinese. However, unlike *-ma*, which occurs obligatorily and exclusively in yes/no questions, the distribution of *-ne* is found in a wide range of environments, including declaratives, wh-questions, and A-not-A questions (C. N. Li & Thompson, 1981, pp. 300-307). In terms of its frequency, an examination of the first 100 instances of all types of wh-questions in the Lancaster Corpus of Mandarin Chinese (McEnery & Xiao, 2004) indicates that the average suppliance rate of *-ne* with wh-questions is 18.1% (54/298).
cannot occur in a *wh*-question; if they interpret the *wh*-word as \exists, they will accept the sentence. Therefore, we need independent evidence to separate the L2 participants who show target-like knowledge with respect to *ma* from those who do not.

To test the status of *ma* in the Interlanguage grammars of the L2 participants, we rely on *weishenme* ‘why’ questions in Chinese. As (7) illustrates, the *wh*-adjunct *weishenme* ‘why’ is solely interrogative in Chinese:

(7) Wangwu *weishenme* chidao

Wangwu why late

a. ‘Why is/was Wangwu late?’

b. * ‘Wangwu is/was late for some reason.’

As we can see, *weishenme* in (7) can only be interpreted as Q (i.e., (7a)); the \exists reading (i.e., *(7b)) is impossible.

Since *ma* is exclusively used for *yes/no* questions, it is incompatible with *weishenme* questions, leading to the unacceptability of (8):

(8) * Wangwu *weishenme* chidao *ma*?

Wangwu why late *Q*$_{yes/no}$

‘Why is/was Wangwu late?’

If L2ers know that *ma* is (exclusively) a *yes/no*-question marker in Chinese, they are expected to reject *(8). On the other hand, if they incorrectly take *ma* as a general question marker, they are expected to accept *(8). We therefore created 2 types of *weichenme*-questions, one with the *yes/no*-question marker *ma* (e.g., *(9)), and one without *ma* (e.g., (10)), to diagnose the status of *ma* in the grammars of the L2 participants:

(9) * Xiao Zhang *weishenme* da ta didi *ma*?

Xiao Zhang why beat his brother *Q*$_{yes/no}$

‘Why did Xiao Zhang beat his brother?’
To avoid monotony, the proper nouns used in the sentence types in *(9) and (10) were varied, but other aspects of the two sentence patterns (e.g., the predicates) were kept identical except for the presence vs. absence of -ma.

If participants reject type *(9) but accept type (10), it indicates that they know that -ma is only for yes/no questions. If, on the other hand, they judge both types *(9) and (10) as acceptable, it suggests that they treat -ma as a question marker, which occurs \textit{optionally} with \textit{wh}-questions. A third logical possibility is that they accept type *(9) but reject type (10); this means that they consider -ma as an obligatory \textit{wh}-question marker.

Once we identify L2 participants who have target-like knowledge of -ma, we are in a good position to test their knowledge of existential \textit{shui} licensed in yes/no questions, using sentences like (11):

(11) Jintian zaoshang Xiao Zhang jiandao \textbf{\textit{shui}} le ma?
 Today morning Xiao Zhang see \textbf{\textit{PERSON}} ASP \textbf{Q} \textit{yes/no}
 ‘Did Xiaozhang see \textbf{\textit{someone/anyone}} this morning?’

Although AJTs are widely used in L2 research, it is perhaps worth emphasizing that when a participant rejects a sentence, there may be all sorts of reasons for doing so. For instance, people may reject (11) because they dislike the verb, the aspect marker, etc., or simply because they do not know a particular word in the sentence; such judgments obviously have nothing to do with their knowledge of \textit{shui}, the target area of our investigation. To control for this factor, a type of control sentence such as (12) was included, following Yuan’s (2010) study:

(12) Zuotian Lao Wang jiandao \textbf{\textit{Lao Li}} le ma?
 yesterday Lao Wang see \textbf{\textit{Lao Li}} ASP \textbf{Q} \textit{yes/no}
 ‘Did Lao Wang see Lao Li yesterday?’
In the experimental pattern in (11), *shui* occurs in the object position, whereas in the control pattern in (12), *shui* is replaced with the proper noun *Lao Li*. Except for this difference, other aspects of the sentences such as the verb and its aspect were kept constant. By comparing judgments on the experimental and corresponding control sentences, we can, with good confidence, differentiate data resulting from knowledge of *shui* and data resulting from nontarget-like knowledge in areas irrelevant to our research question. In other words, only when participants provide target-like answers to the control sentences are their judgments on the experimental sentences considered usable.

7.1.1.2 Existential *Shui* Licensed in Conditionals

Similarly, 2 types of sentences were developed for testing L2 knowledge of *shui* licensed in conditionals, one experimental (e.g., (13)) and one control (e.g., (14)):

(13) *Ruguo* Ming Ming xihuan *shui* de hua, ta yiding hui gaosu ta jiejie.
 If Ming Ming like *PERSON* he definitely will tell his sister
 ‘If Ming Ming likes *someone/anyone*, he will definitely tell his sister.’

(14) *Ruguo* Xiao Zhao xihuan *Xiao Li* de hua, ta yiding hui gaosu ta jiejie.
 If Xiao Zhao like Xiao Li he definitely will tell his sister
 ‘If Xiao Zhao likes Xiao Li, he will definitely tell his sister.’

We can see that (13) and (14) differ in regard to the object position of the protases: either *shui* or a proper name. The verbs and their aspects in both the conditional and the main clauses remained the same.

The 6 types of sentences described above – comprising two types of diagnostic sentences testing L2 knowledge of -*ma* ((9)-(10)), one experimental type and one control type testing L2 knowledge of *shui* licensed in *yes/no* questions ((11)-(12)), and one experimental type and one control type testing L2 knowledge of *shui* licensed in conditionals ((13)-(14)) – had 5 tokens each, yielding 30 test items, of which 25 were acceptable and 5 unacceptable.
7.1.1.3 Filler Items

Six types of filler items were created, testing L2 knowledge of classifiers, plural-marking, negative marking, perfective aspect, placement of prepositional adverbials, and the verb copying construction. The sentence given in (15) below is an example sentence for testing the position of prepositional adverbials. This sentence is unacceptable because prepositional adverbials are strictly preverbal in Chinese.

(15) * Xiao Ming xuexi zai tushuguan.
 Xiao Ming study in library
 ‘Xiao Ming studied in the library.’

There were 5 tokens of each type, resulting in 30 filler items. To balance the number of grammatical and ungrammatical test items in this task, 5 of the filler items were acceptable and 25 were unacceptable.

Table 7.1 presents the experimental design of the AJT.

<table>
<thead>
<tr>
<th>Sentence Type</th>
<th>Acceptability</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>weishenme ‘why’-Q with [ma]</td>
<td>*</td>
<td>testing L2 knowledge of the</td>
</tr>
<tr>
<td>weishenme ‘why’-Q without [ma]</td>
<td>√</td>
<td>yes/no marker [ma]</td>
</tr>
<tr>
<td>yes/no Q with [shui]</td>
<td>√</td>
<td>testing L2 knowledge of shui</td>
</tr>
<tr>
<td>yes/no Q with proper noun</td>
<td>√</td>
<td>licensed in yes/no questions</td>
</tr>
<tr>
<td>conditional with [shui]</td>
<td>√</td>
<td>testing L2 knowledge of shui</td>
</tr>
<tr>
<td>conditional with proper noun</td>
<td>√</td>
<td>licensed in conditionals</td>
</tr>
<tr>
<td>classifier</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>quantifier with [men]</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>negative marker [bu]</td>
<td>*</td>
<td>proficiency test & fillers</td>
</tr>
<tr>
<td>aspect maker [zai]</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>adverbial placement</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>verb copying</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

7.1.2 Procedures

The AJT is often criticized for being unnatural because common use of language seldom involves making acceptability judgments on sentences (Gass & Mackey, 2007;
Kweon & Bley-Vroman, 2011), so it is very important to include thorough instructions informing participants how to make judgments based on intuitions rather than on rules they may have learned.

Modeled after the well-acknowledged AJT instructions in the Bley-Vroman, Felix, and Ioup (1988) study, the instructions first show the participants what ‘natural’ and ‘awkward’ sentences are, using examples from Chinese and, for L2ers, their L1, and then participants were asked to read each of the 60 test sentences carefully and indicate how they feel about each one, i.e., whether it sounds natural or awkward. A ‘Not Sure’ option was also provided in case they do not have clear-cut intuitions.

The instructions were presented in the participants’ L1. After participants confirmed that they had fully understood the instructions, they were allowed to start the task. See Appendix H for the English, Korean and Chinese versions of the instructions given to participants and Appendix I for a complete list of items in the AJT.

Participants are the same as those in Experiments 1 and 2.

7.2 Results

A target-like response was coded as ‘1’ and a nontarget-like response, ‘0’.
Although participants were given the ‘Not Sure’ option, such responses accounted for a very small proportion of the total responses (i.e., 4.2% for natives, and 4.9% for L2ers). Following Bley-Vroman, Felix, and Ioup (1988), these answers were also coded as ‘0’.

The results of the yes/no-question pattern and the conditional pattern are presented in Section 7.2.1 and Section 7.2.2, respectively.

7.2.1 Existential Shui Licensed in Yes/No Questions

7.2.1.1 Data Trimming

Individual data of the 2 types of sentences testing L2 knowledge of the yes/no-question marker -ma were first examined. Table 7.2 presents the results:
Table 7.2. Acceptability Judgment Task: Individual Results of Accuracy of -Ma

<table>
<thead>
<tr>
<th>Partic.</th>
<th>* + ma</th>
<th>* - ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>4.87</td>
<td>4.90</td>
<td>2.55</td>
<td>3.70</td>
<td>4.82</td>
<td>4.50</td>
<td>3.43</td>
<td>3.67</td>
</tr>
<tr>
<td>SD</td>
<td>0.43</td>
<td>0.31</td>
<td>2.01</td>
<td>1.30</td>
<td>0.50</td>
<td>0.80</td>
<td>1.75</td>
<td>1.56</td>
</tr>
</tbody>
</table>

NB: Individual scores reflect the number of target-like responses (maximum = 5).

Native participants had at least 3 targetlike responses in both *+[ma] and [−ma] patterns; this was therefore used as the criterion for inclusion. The L2 participants who passed this criterion comprised: 9 (of the 20) L1-English intermediate L2ers, all 22 L1-English advanced L2ers, 12 (of the 21) L1-Korean intermediate L2ers, and 18 (of the 20) L1-Korean advanced L2ers. Participants who failed to satisfy the criterion, as indicated by the highlighted data in Table 7.2, were excluded from further analysis in this section.
The remaining participants’ judgments on the experimental and control sentences of the *yes/no*-question pattern were checked side by side. If a participant judged a control sentence as acceptable, his/her judgment on the corresponding experimental sentence was left for further analysis. If a participant judged a control sentence as unacceptable, his/her judgment on the corresponding experimental sentence was no longer informative to our research question; it was decided that this judgment, whatever it was, be treated as no knowledge (i.e., coded as ‘0’). This trimming procedure affected very small proportions of the experimental data: Natives = 1.33% (2/150); Eng_Int. = 4.44% (2/45); Eng_Adv. = 3.63% (4/110); Kr_Int. = 1.67% (1/60); Kr_Adv. = 7.78% (7/90).

7.2.1.2 Results

Table 7.3 presents the mean judgment scores and standard deviations of the control type vs. experimental type of *yes/no* questions by the 5 groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Control Type (with a proper noun)</th>
<th>Experimental Type (with shui)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Natives (n = 30)</td>
<td>4.83</td>
<td>0.46</td>
</tr>
<tr>
<td>Eng_Int. (n = 9)</td>
<td>4.33</td>
<td>0.71</td>
</tr>
<tr>
<td>Eng_Adv. (n = 22)</td>
<td>4.50</td>
<td>0.74</td>
</tr>
<tr>
<td>Kr_Int. (n = 12)</td>
<td>4.42</td>
<td>0.79</td>
</tr>
<tr>
<td>Kr_Adv. (n = 18)</td>
<td>4.61</td>
<td>0.61</td>
</tr>
</tbody>
</table>

NB: maximum score = 5

Looking at the control type (i.e., *yes/no* questions with a proper noun) first, we find that the mean scores of judgment were high with all groups. Out of the maximum score of 5 (there were 5 tokens in each type), the group means all fall in the range of 4.33 – 4.83. In terms of the experimental type (i.e., *yes/no* questions involving *shui*), the natives, in general, judged the sentences as acceptable, but the group mean is not as high as expected (out of 5, mean = 3.00, SD = 1.89), especially in comparison to their high mean on the control sentences (out of 5, mean = 4.83, SD = 0.46). Together, these data show that the natives’ judgments were less homogeneous when *shui* is present. As for the L2 groups,
the group means of the experimental sentences were all low, but the 2 L1-English groups showed a much stronger tendency to reject the experimental sentences than the 2 L1-Korean groups (group means: Eng_Int. = 0.56; Eng_Adv. = 0.68; Kr_Int. = 1.17; Kr_Adv. = 1.33).

We examined the individual data to determine whether or not the judgments observed in the group results were consistently made. We define consistency as acceptance or rejection of at least 4 of the 5 tokens. The results are reported in Table 7.4:

Table 7.4. Acceptability Judgment Task: Consistency of Participants on Yes/No Questions

<table>
<thead>
<tr>
<th>Group</th>
<th>Control Type (with a proper noun)</th>
<th>Experimental Type (with shui)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (%) of participants who had…</td>
<td>Number (%) of participants who had…</td>
</tr>
<tr>
<td></td>
<td>Consistent Acceptance</td>
<td>Consistent Rejection</td>
</tr>
<tr>
<td>Natives</td>
<td>(n = 30)</td>
<td>29 (96.7%)</td>
</tr>
<tr>
<td>Eng_Int.</td>
<td>(n = 9)</td>
<td>8 (88.9%)</td>
</tr>
<tr>
<td>Eng_Adv.</td>
<td>(n = 22)</td>
<td>21 (95.5%)</td>
</tr>
<tr>
<td>Kr_Int.</td>
<td>(n = 12)</td>
<td>10 (83.3%)</td>
</tr>
<tr>
<td>Kr_Adv.</td>
<td>(n = 18)</td>
<td>17 (94.4%)</td>
</tr>
</tbody>
</table>

NB: (i) consistent acceptance = acceptance of at least 4 of the 5 tokens
(ii) consistent rejection = rejection of at least 4 of the 5 tokens
(iii) inconsistent responses = neither consistent acceptance nor consistent rejection

Looking first at the control type (i.e., yes/no questions with a proper noun), we see that a great majority of participants accepted at least 4 of the 5 tokens and that no participant showed consistent rejection. This suggests that the L2ers had acquired target-like knowledge of yes/no questions when existential shui was not involved. For the experimental type (i.e., yes/no questions involving shui), by contrast, only 14 of the 30 natives had consistent acceptance and the remaining 6 had consistent rejection; this indicates that Chinese natives’ intuitions regarding wh-existentials licensed in yes/no questions were not as clear-cut as claimed in the literature. As for the L2 participants, over 86% of the L1-English L2ers and around 67% of the L1-Korean L2ers consistently rejected the experimental sentences. The number of L2 participants who consistently accepted the experimental sentences was fairly low: none from the Eng_Int. group, 2
from the Eng_Adv. group, 2 from the Kr_Int. group, and 4 from the Kr_Adv. group. These results show that L2ers had great difficulty in acquiring *wh*-existentials licensed in *yes/no* questions, and this is particularly so for L1-English L2ers.

A Kruskal Wallis Test was conducted on the judgment scores of the control sentences by the 5 groups. The results show that there is no significant difference across groups ($p = .087$). This suggests that L2ers of Chinese, after acquiring target-like knowledge of *-ma*, do not have problems with *yes/no* questions which do not involve *wh*-existentials.

The Kruskal Wallis Test on the judgment scores of the experimental sentences by the 5 groups shows that the difference is statistically significant ($p = .000$), indicating that here judgments differ across groups. Against the adjusted α level of .005, the Mann-Whitney post-hoc tests found a significant difference for Eng_Int. vs. Natives ($U = 41.5, Z = -3.189, p = .001, r = -.51$) and for Eng_Adv. vs. Natives ($U = 118.5, Z = -4.064, p = .000, r = -.56$) as well as a marginal difference for Kr_Int. vs. Natives ($U = 84, Z = -2.727, p = .007, r = -.42$) and for Kr_Adv. vs. Natives ($U = 143.5, Z = -2.773, p = .006, r = -.40$).

These results, together, show that *yes/no* questions which do not contain *wh*-existentials were not problematic for L2ers, once they had acquired target-like knowledge of the *yes/no* marker *-ma*; but when *shui* occurs in *yes/no* questions, the sentences become challenging for all L2 groups. Nonetheless, when judging the experimental *yes/no* questions, the 2 Korean L2 groups did show a certain level of advantage over the 2 English L2 groups, although not as strong as would be predicted under the Lexical Transfer Hypothesis.

7.2.2 Existential *Shui* Licensed in Conditionals

7.2.2.1 Data Trimming

Attention is now turned to the conditional conditions of the AJT. Individual scores of the control and experimental sentences were scrutinized to screen the data. Like what was done with the *yes/no*-question pattern, if a control sentence was accepted, the judgment on the corresponding experimental sentence was considered valid; if a control sentence was rejected, the corresponding experimental sentence was treated as no
knowledge (i.e., ‘0’). The percentages of the experimental data affected by this data trimming procedure slightly increased, as compared to the yes/no-question pattern: Natives = 10% (15/150); Eng_Int. = 5% (5/100); Eng_Adv. = 9.09% (10/110); Kr_Int. = 2.86% (3/105); Kr_Adv. = 5% (5/100). This is perhaps not surprising given that the conditional pattern is bi-clausal, which involves two main verbs, one modal and one adverbial, so the chances for disliking a particular element increases, as compared to the monoclausal yes/no-question pattern.

7.2.2.2 Results

Table 7.5 presents the mean judgment scores and standard deviations of the control vs. experimental conditional sentences by the 5 groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Control Type (with a proper noun)</th>
<th>Experimental Type (with shui)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Natives</td>
<td>(n = 30)</td>
<td>4.07</td>
</tr>
<tr>
<td>Eng_Int.</td>
<td>(n = 20)</td>
<td>3.65</td>
</tr>
<tr>
<td>Eng_Adv.</td>
<td>(n = 22)</td>
<td>3.82</td>
</tr>
<tr>
<td>Kr_Int.</td>
<td>(n = 21)</td>
<td>4.14</td>
</tr>
<tr>
<td>Kr_Adv.</td>
<td>(n = 20)</td>
<td>4.25</td>
</tr>
</tbody>
</table>

NB: maximum score = 5

Let us first look at the control type, i.e., conditional sentences which do not involve wh-words. Out of 5 tokens, the group means range from 3.65 to 4.25, suggesting all 5 groups generally accepted the control sentences. For the experimental type, i.e., conditional sentences with shui in the protasis, the mean judgment scores by all groups decreased, as compared to the control type, suggesting that the presence of shui in the experimental type made these sentences more susceptible to rejection.

Again, we examined the individual data to see how consistent participants’ judgments were. Table 7.6 presents the results:
Table 7.6. Acceptability Judgment Task: Consistency of Participants on Conditionals

<table>
<thead>
<tr>
<th>Group</th>
<th>Control Type (with a proper noun)</th>
<th>Experimental Type (with shui)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (%) of participants who had…</td>
<td>Number (%) of participants who had…</td>
</tr>
<tr>
<td></td>
<td>Consistent Acceptance</td>
<td>Consistent Rejection</td>
</tr>
<tr>
<td>Natives</td>
<td>(n = 30) 22 (73.3%)</td>
<td>1 (3.3%)</td>
</tr>
<tr>
<td>Eng_Int.</td>
<td>(n = 20) 13 (65.0%)</td>
<td>3 (15.0%)</td>
</tr>
<tr>
<td>Eng_Adv.</td>
<td>(n = 22) 15 (68.2%)</td>
<td>2 (9.1%)</td>
</tr>
<tr>
<td>Kr_Int.</td>
<td>(n = 21) 15 (71.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Kr_Adv.</td>
<td>(n = 20) 15 (75.0%)</td>
<td>1 (5.0%)</td>
</tr>
</tbody>
</table>

NB: (i) consistent acceptance = acceptance of at least 4 of the 5 tokens
(ii) consistent rejection = rejection of at least 4 of the 5 tokens
(iii) inconsistent responses = neither consistent acceptance nor consistent rejection

From the results of the control type (conditionals with a proper noun), we find that at least 65% of the participants in each group accepted at least 4 of the 5 tokens and, moreover, that very few participants consistently rejected this pattern. As for the experimental sentences (conditionals involving shui in the protasis), 60% of the 30 natives demonstrated consistent acceptance, a rate much higher than that for the experimental sentences of the yes/no-question pattern (i.e., 46.7%); both the number of natives who consistently rejected the conditional experimental sentences and the number of natives who were inconsistent in their judgments were relatively smaller, as compared to their judgments on the yes/no-question experimental sentences. These data indicate that when existential shui is involved, Chinese natives prefer the conditional pattern over the yes/no-question pattern. The L2ers, in general, also exhibited a similar preference: Compared with the results of the yes/no-question experimental sentences (see Table 7.4), there were far more L2ers who consistently accepted the conditional experimental sentences and substantially fewer L2ers who consistently rejected this pattern. Of the 4 L2 groups, the Eng_Int. group disliked the experimental conditionals the most: Only 4 of the 20 participants showed consistent acceptance; 7 had consistent rejection; and 9 were inconsistent in their judgments.

The results of the Kruskal-Wallis Test conducted on the judgment scores of the control sentences show no significant difference across groups (p = .838), suggesting that
L1-English and L1-Korean L2ers of Chinese performed like the Chinese natives in accepting the control sentences.

The Kruskal-Wallis Test conducted on the judgment scores of the experimental sentences reveals a significant difference across groups ($p = .037$). Against the adjusted α level of .005, the Mann-Whitney post-hoc tests show a marginal difference between the Eng_Int. group and the natives ($U = 167, Z = -2.708, p = .007, r = -.38$), but no statistical differences in other pairwise comparisons ($p \geq .109$). This indicates that when $shui$ occurs in the protasis of conditional sentences, the English intermediate L2ers were more likely than the Chinese natives to reject the sentences, whereas the English advanced L2ers and the 2 groups of Korean L2ers performed like the natives. This is what we would expect under the Lexical Transfer Hypothesis.

7.3 Discussion

In this experiment, we focused on two constructions which license wh-existentials in Chinese: yes/no questions and conditionals. The purpose was to test Sprouse’s (2006) Lexical Transfer Hypothesis against two predictions. First, because wh-words in English are prohibited in yes/no questions and conditionals, L1-English intermediate L2ers of Chinese were expected to reject both target constructions. Second, because wh-existentials in Korean are allowed in yes/no questions and conditionals, intermediate and advanced L1-Korean L2ers of Chinese were expected to behave like Chinese native speakers in accepting both constructions.

It was found that when yes/no questions and conditionals do not involve the wh-word $shui$ (i.e., the 2 control types), all L2 groups accepted the sentences like the natives, suggesting that the two sentence patterns alone were not problematic for L2ers of Chinese. However, when the wh-word $shui$ appears in yes/no questions and conditionals (i.e., the two experimental types), interesting performance patterns started to surface.

For the experimental yes/no questions, the mean judgment scores of the 4 L2 groups were all low, indicating that wh-existentials licensed in yes/no questions were difficult for all L2 participants. However, the group means were much higher with the 2 Korean L2 groups than with the 2 English L2 groups. Statistical tests conducted on the judgment scores by the 5 groups revealed significant differences between the 2 English
L2 groups and the natives, but only marginal differences between the 2 Korean L2 groups and the natives.

For the experimental conditional sentences, the mean judgment scores got higher with all groups, as compared to the experimental yes/no questions. Statistically speaking, the L1-English intermediate L2ers were less likely than natives to accept conditionals involving shui, whereas the 2 L1-Korean groups as well as the L1-English advanced L2ers performed within the native range.

These results parallel the findings of Yuan’s (2010) study in several aspects. First, Yuan found that yes/no questions containing wh-existentials were very difficult for all L1-English and L1-Japanese L2ers of Chinese, except those from the Japanese advanced group (see Table 3.13 in Chapter 3 for Yuan’s yes/no-question results). Similarly, our L1-English and L1-Korean participants had trouble with the experimental yes/no questions, reflected as the low group means by all 4 L2 groups. Second, Yuan found that L1-English advanced L2ers, L1-Japanese post-intermediate and advanced L2ers had acquired target-like knowledge with respect to wh-existentials licensed by conditionals (see Table 3.12 in Chapter 3 for Yuan’s conditional results). In the present experiment, our L1-English advanced L2ers, along with the 2 groups of Korean L2ers, also accepted the experimental conditional sentences like the natives did. Third, Yuan’s participants generally had higher group means for experimental conditional sentences as compared to experimental yes/no questions. This is also what we have found.

On the assumption that L1 transfer effects are more likely to be observed at early stages of L2 acquisition, Yuan’s results did not seem to show clear effects of L1 transfer, because at lower proficiency levels (i.e., beginner and post-beginner), his L1-English and L1-Japanese L2 groups both differed significantly from the natives in their judgment scores of all types of experimental sentences. However, as discussed in Chapter 3, the absence of L1 transfer effects (for lower-level L1-Japanese L2ers) in Yuan’s results may be due to inappropriate L1-TL pairings (see Section 3.4 in Chapter 3 for details).

In the present experiment, we found that the English intermediate L2ers performed differently from the natives in judging both experimental types (i.e., shui contained in both yes/no questions and conditionals), which contrasts with the Korean intermediate L2ers, who behaved similarly to the natives in both types. Perhaps it is fair
to say that these results go the way the Lexical Transfer Hypothesis predicted, but the effects are not the most robust. Still, two issues in particular need to be addressed.

First, the acceptance level of the experimental conditional sentences on the part of the intermediate L1-English L2ers (out of 5, mean = 2.10) is higher than what would be expected under a strict view of lexical transfer. One possible explanation is that by the time of the experiment, these participants were far removed from the L2 initial state. In other words, these intermediate L2 participants may have had substantial input informing them that *wh*-existentials can occur in conditional sentences in Chinese. This seems very likely in light of the fact that they performed just like the natives in accepting both types of control sentences (i.e., conditionals and *yes/no questions without wh*-existentials).

The second issue seems just the opposite. In the experimental *yes/no questions, the mean acceptance by the intermediate L1-Korean L2ers (out of 5, mean = 1.17) is not as high as expected. In other words, if the Korean intermediate participants transfer lexical properties from their L1, they should perform much more like the natives in this pattern. Yet, we see that their judgment scores were marginally different from the judgment scores of the natives. One possible explanation for Korean L2ers’ lukewarm performance in this pattern may have to do with the *yes/no-question marker -ma.*

Consider the following 3 pairs of sentences:

(16) a. Ta chi wanfan le ma?
 He eat dinner ASP Q_{yes/no}
 ‘Did he have dinner?’

 b. * Ta chi wanfan le?
 He eat dinner ASP
 ‘Did he have dinner?’
(17) a. Ta weishenme ku le?
he why cry ASP
‘Why did he cry?’

 b. * Ta weishenme ku le ma?
he why cry ASP Q\textsubscript{yes/no}
‘Why did he cry?’

(18) a. Ta da shui le?
He beat PERSON ASP
‘Who did he beat?’

 b. Ta da shui le ma?
He beat PERSON ASP Q\textsubscript{yes/no}
‘Did he beat anyone?’

The presence of -\texttt{ma} in \textit{yes/no} questions (e.g., (16a)) and the absence of -\texttt{ma} in \textit{wh}-questions (e.g., (17a)) should inform L2ers that -\texttt{ma} is an obligatory question marker specific for \textit{yes/no} questions, so \textit{yes/no} questions without -\texttt{ma} (e.g., *(16b)) and \textit{wh}-questions with -\texttt{ma} (e.g., *(17b)) are unacceptable. However, there are questions like (18a) and (18b) in the input, where \textit{wh}-words sometimes co-occur with -\texttt{ma} (e.g., (18b)) and sometimes do not (e.g., (18a)). This kind of input may potentially mislead L2ers of Chinese to infer that -\texttt{ma} is a question marker, which is obligatory for \textit{yes/no} questions and \texttt{optional} for \textit{wh}-questions. This problem may be particularly acute for Korean L2ers of Chinese, because in their L1 Korean, the same question markers (e.g., -\texttt{nayo}) are used for both \textit{yes/no} questions and \textit{wh}-questions. After Korean L2ers have learned that -\texttt{ma} is exclusively for \textit{yes/no} questions, they may \textit{overlearn} it by disallowing -\texttt{ma} to co-occur with \textit{wh}-words altogether, leading to the low acceptance of sentences like (18b).

In this regard, the input with respect to \textit{wh}-existentials licensed in conditionals is relatively straightforward, i.e., \textit{wh}-existentials can occur in conditional clauses in Chinese.
This may be why the L2 participants generally performed better in the experimental conditional sentences than in the experimental *yes/no* questions.

Alternatively, the different performances in experimental *yes/no* questions vs. experimental conditionals can also be explained from the processing perspective put forward by O’Grady and colleagues (O’Grady, 2005; O’Grady, Lee, & Kwak, 2009), which has two key claims with respect to interpretation: (i) An efficiency-driven processor, working from left to right, assigns each NP an interpretation at the first opportunity, based on available clues; and (ii) “revision of previously assigned interpretation is costly” as it exerts extra burden on working memory (O’Grady et al., 2009, p. 74). Applying these proposals to the two target constructions in this task, the ∃ licenser *ruguo* ‘if’ occurs before the licensee *shui* in the conditional pattern, so the processor is able to assign the ∃ interpretation to *shui* immediately when it gets to this *wh*-word. In the *yes/no*-question pattern, however, *shui* appears before the licensor *(ma). In this case, the processor initially assigns a Q interpretation to *shui*, due to the prominence of this sense. When the processor reaches the ∃ licenser *(ma) at the very end of the sentence, it has to revise the Q interpretation formerly assigned to *shui*, resulting in more processing cost in the *yes/no* pattern than in the conditional pattern.

On this processing view, the relative linear positions of the ∃ licenser and the licensee in a sentence may have direct implications regarding the acquisition of different constructions which license *wh*-existentials. Specifically, constructions where the ∃ licenser precedes the *wh*-word (e.g., *wh*-existentials licensed in negatives, conditionals, etc.) are predicted to be easier to acquire than constructions where the ∃ licenser follows the *wh*-word, so *wh*-existentials licensed by the *yes/no*-question marker *(ma* (which we have seen in this task), inference *(le* (e.g., (19)), imperative *(ba* (e.g., (20)) are predicted to be very challenging:

(19) Ta kandao *shenme le*.
He see THING PART.
‘(It seems that) he saw something.’
(Lin, 1998, p. 223: (15))
This line of thinking is worth pursuing in future research in this area.

To sum up, in this experiment, we examined participants’ judgments on existential shui licensed in yes/no questions and in conditionals. Results from both experimental sentence patterns are generally consistent with the predictions based on the Lexical Transfer Hypothesis. It was also observed that the L2 participants generally performed better in experimental conditional sentences than in experimental yes/no questions. Two possible factors were discussed that may help explain this asymmetry, namely, misleading input and processing load.
CHAPTER 8
SUMMARY, DISCUSSION AND CONCLUSION

Framed within Sprouse’s (2006) Lexical Transfer Hypothesis, this dissertation investigated an aspect of lexical transfer that has not yet received much attention: transfer of the syntactic and semantic properties underlying L1 wh-words. We set out to compare the L2 knowledge of wh-existentials on the part of L1-English and L1-Korean L2ers of Chinese vis-à-vis knowledge of Chinese native speakers. The purpose was to determine whether or not distinct lexical properties as instantiated in the L1 wh-words would result in distinct performances of the (lower-level) L2 participants with respect to the ∃ sense.

In this concluding chapter, we first summarize the main findings of the study and show how they support the predictions derived from the Lexical Transfer Hypothesis (Section 8.1). Then we discuss the implications of the results (Section 8.2). We conclude the dissertation by recapitulating outstanding issues that have been brought to light in the study and suggest directions for future research (Section 8.3).

8.1 Summary of Main Findings

The central aim of the study was to examine whether the development of wh-existentials in the L2 Chinese of L1-Korean and L1-English speakers was influenced by syntactic and semantic properties of the lexical equivalents in their respective L1. The investigation was motivated by the following crosslinguistic differences. In Chinese, wh-existentials can occur in nonveridical environments (i.e., in the scope of negatives *mei*(you)/*bu* ‘not’, the yes/no-question marker *-ma*, the protasis of conditionals, etc.), but not in veridical environments (e.g., affirmative present progressives). In Korean, wh-existentials can occur in nonveridical and veridical environments. In English, wh-words can never be used as ∃.
If initial L2 lexical knowledge is L1-based, two predictions immediately follow. First, in nonveridical constructions, lower proficiency L1-Korean L2ers of Chinese should pattern like Chinese natives in allowing *wh*-existentials, whereas lower proficiency L1-English L2ers should show inhibitions against them. Second, in veridical constructions, lower proficiency L1-English L2ers should perform like the Chinese natives in prohibiting nontarget *wh*-existentials, whereas lower proficiency L1-Korean L2ers should show a tendency to allow them. These predictions were tested using 3 different experimental tasks.

In the contextualized multiple-choice interpretation task, participants were tested on the interpretations of *shenme* ‘THING’ contained in nonveridical (negative) and veridical (affirmative present progressive) sentences, with picture contexts biased either towards Q or towards ∃. Results show that in Q-biased contexts, all L2 groups behaved like the Chinese natives in getting at the Q interpretation of *shenme*, regardless of construction type. This confirms our assumption that the Q sense is the semantic overlap across the three languages, which serves as the basis for lexical transfer. In ∃-biased contexts, it was found (i) that in the veridical construction, the 2 Korean L2 groups were significantly more likely than the natives to interpret *shenme* as ∃, whereas the Eng_Int. group did not; (ii) that in the nonveridical construction, both L1-Korean groups behaved within the natives’ range in terms of the proportions of ∃ interpretation assigned, whereas the Eng_Int. group had significantly less ∃ interpretation than the natives did. These results are consistent with the predictions we had. However, when comparing participants’ performances across constructions, we found that all L2 groups showed a native-like tendency in having significantly lower proportions of ∃ interpretation in the veridical sentence than in the nonveridical sentence, which seems problematic under a strong version of the lexical transfer view. We speculated that this result could be caused by two factors: (i) The L2 Chinese proficiency of the intermediate participants was too far beyond the L2 initial state; and (ii) the Q interpretation was better accommodated by the pictures accompanying the veridical construction than by those accompanying the nonveridical construction, which may have suppressed the proportions of ∃ interpretation in the former.
In the elicited production task, participants were tested on whether they would use existential *shenme* ‘THING’ or *shui* ‘PERSON’ in nonveridical (negative) and veridical (affirmative present progressive) sentences, when picture contexts were intended to make such uses plausible. Two main results were obtained. First, in nonveridical sentences, the rate of *shenme* and *shui* produced by L1-Korean intermediate L2ers is comparable to that produced by the natives. English intermediate L2ers, on the other hand, seldom used *shenme* or *shui*, a finding consistent with our prediction. Second, in veridical sentences, all participants refrained from using either of the two *wh*-words. The absence of L1 effects on the part of Korean L2ers in the latter finding was argued to be a task-induced artifact due to the operation of pragmatic principles. More specifically, by the maxim of quantity, the picture description task dictates that participants be as informative as possible, and indefinite noun phrases happened to be more informative than *wh*-existentials in veridical contexts.

In the acceptability judgment task, participants were asked to make judgments on the naturalness of 2 types of sentences containing existential *shui*: *yes/no* questions and conditionals. It was found that the judgment scores of the *yes/no*-question pattern were low in all L2 groups; still, when the L2 results were compared with those of the native group, the differences were significant for the 2 L1-English L2 groups, but only marginal for the 2 L1-Korean L2 groups. In the conditional pattern, the Eng_Int. group differed from the natives, whereas both of the Korean L2 groups performed like the natives. These results generally go the way as predicted.

Overall, the results obtained from the three tasks are in line with the Lexical Transfer Hypothesis.

8.2 Implications

Since the proposal of the Contrastive Analysis Hypothesis (Lado, 1957), much attention has been directed to L1 transfer in second language acquisition (see Gass, 1996 for an overview). Despite the extensive research documenting transfer effects in both generative and non-generative L2 literature (e.g., Jarvis, 1997; Kellerman, 1977; Marsden, 2004; Odlin, 1989; Schwartz & Sprouse, 1996; White, 1991; inter alia), and despite the numerous hypotheses put forward to conceptualize transfer (see Schwartz, 2013, p. 2 for
a list of these hypotheses), the precise nature and mechanisms of transfer are still not clearly understood (Schwartz, 2013).

According to Schwartz (2013), the main reason behind our limited understanding of transfer is this. The goal of transfer-oriented L2 research is to understand the extent to which Interlanguage development is influenced by the L1 grammar, which is necessarily an abstract conception. Nevertheless, for practical reasons, the investigations have to be framed in terms of constructions (e.g., verb phrase, relative clause, passive, etc.), the “artifacts” of grammar (Chomsky, 1993, p. 4; cited in Schwartz, 2013, p. 3). When results show transfer effects, which are often mixed with problematic data, it is usually difficult to discern what exactly is (or is not) transferred and at what level transfer operates.44

In this section, we discuss the implications of the present study against the two issues Schwartz (2013) has raised.

8.2.1 What Exactly is Transferred, Surface Patterns or Underlying Grammar?

Our goal in this study was to look at transfer of L1 lexical knowledge. We compared the development of *wh*-existentials in the L2 Chinese of L1-English and L1-Korean speakers to determine the role of their respective L1 lexical properties. Employing 3 different research methods, the study investigated 4 different constructions in search of evidence for/against transfer of the L1 grammar: affirmative present progressives, negatives, *yes/no* questions, and conditionals. Despite some unexpected L2 data, the main findings from all 3 experiments, as summarized in Section 8.1, showed a cluster of L1-related effects. We interpreted these effects as transfer of the grammatical knowledge underlying the L1 *wh*-words.

Can the observed transfer effects be the consequence of transferring surface patterns from the L1? They cannot. Surface patterns are the linear sequences of formal elements; the lexical semantics of each individual element – much less other interpretative effects of the sentence as a whole – is not involved in a surface sentence

44 Schwartz (2013) critically reviewed 4 studies probing the role of L1 transfer in the L2 acquisition of different domains of grammatical knowledge (i.e., Chu & Schwartz, 2013; Lam, 2003; S. Lee, 2009; Orfitelli & Grüter, In prep). (Chu & Schwartz, in fact, is an early look at Experiment 1, the contextualized multiple-choice interpretation task, the analysis of which, though couched in the same framework, has been refined in Chapter 5).
pattern. For example, in White’s (1991) classic study on adverb placement, it was found that in the pre-test, L1-French L2ers of English overwhelmingly allowed the *SVAO order (e.g., *Cats catch often mice) due to transfer of the L1 grammar. After explicit classroom instruction focusing solely on transitive sentences, the L2ers rejected not only this *SVAO order but also grammatical English sentences with intransitive verbs followed by a prepositional phrase (e.g., Mary walks quickly to school) in post-tests. Schwartz and Gubala-Ryzak (1992) convincingly argued that this was a consequence of generalizations based on the surface patterns – albeit coming from explicit classroom instruction rather than from the L1 – such that the L2ers would not allow an adverb to be placed between the verb and any other following constituent. For our target phenomenon, the semantics of wh-words is tied to the underlying syntax; surface patterns, blind to meaning, just will not work. For instance, in Experiment 1, the contextualized interpretation task, identical prompt sentences were situated in Q-biased contexts and Ǝ-biased contexts. In Q-biased contexts, all L2 groups performed like the Chinese natives in terms of the proportions of the Q interpretation of shenme (‘what’); in Ǝ-biased contexts, by contrast, the two L1-based groups each showed distinct performance patterns vis-à-vis the natives in terms of the proportions of the Ǝ interpretation of shenme (‘something’/‘anything’). What surface patterns in the L1 could be transferred to give such results?

Even if we stretch it a bit, asking whether the observed transfer effects could come from transferred L1 constructions, in the sense of Construction Grammar (e.g., Goldberg, 1995), the answer is still “no.” As discussed in Chapter 2, constructions in Construction Grammar are conceptualized as form-meaning mapping units on their own; the semantics of the lexical items which (meet the constraints to) participate in them is constant. No semantic analysis is available to show that this approach can be applied to the polysemy of wh-words (much less to the (non)equivalence of constructions crosslinguistically). The results of Experiment 3, the acceptability judgment task, show that all L2ers behaved like the natives in their judgments of the control sentences, i.e., yes/no questions and conditionals involving proper nouns, whereas the L1-related performance patterns showed up in the experimental sentences involving existential shui
(‘someone’/‘anyone’), albeit more so with conditionals than with yes/no questions. Again, no analysis grounded in transferred L1 constructions could lead to such results.

In short, the nature of transfer revealed in our study is quite clear: transfer of L1 lexical knowledge.

8.2.2 At What Level does Transfer Operate, Lexical Items or Features?

Generative L2 research addressing the issue of transfer is often tied to technicalities of specific linguistic theories within which the research is conducted. Accounts of transfer effects may not be the same when different theoretical frameworks are employed (see Schwartz & Sprouse, 2000). Currently, two versions of the full transfer view are most compatible with a Minimalist approach (e.g., Chomsky 1995): the Lexical Transfer Hypothesis (Sprouse, 2006) and the Feature Reassembly Hypothesis (Lardiere, 2009).

The Lexical Transfer Hypothesis advocates transfer at the lexical level, postulating that on the basis of the (perceived) semantic overlap between lexical entries in the L1 and the TL, L2ers fully transfer the syntactic and semantic properties of L1 lexical entries into the L2 initial state. The unit of crosslinguistic comparison is the lexical entry, which entails the semantic and syntactic properties of (perceived) lexical equivalents in the L1 and the TL. One arguable merit of this framework is that it does not assume nuanced feature-based accounts for crosslinguistic variation associated with lexical items, so L2 researchers need not “be restricted to those phenomena that have been thoroughly explored in [M]inimalist syntax research” (Gil & Marsden, 2013, p. 118).

The Feature Reassembly Hypothesis (Lardiere, 2009, p. 173) proposes contrastive analysis between the L1 and TL at the level of features, “the primitive, elemental units that make up the lexical items of every language.” According to Lardiere, the L2 acquisition of TL grammar is essentially the task of reassembling features represented in the L1 lexical items into, when necessary, new feature configurations in Interlanguage.

Let us now consider the phenomenon investigated in the present study. Recall our discussions in Chapter 2: Wh-words in Chinese, Korean and English are variables, and their quantificational force is determined by quantificational operators associated with them. More specifically, wh-existentials in Chinese result from the variables being bound
by a nonveridical operator, which is realized as a variety of syntactic constructions (e.g.,
negatives, yes/no questions, conditionals, etc.), whereas wh-existentials in Korean are the
result of the variables being bound by an existential operator, which is realized as (e.g.)
certain morphological particles. In English, the variables are bound word-internally by
an interrogative operator or a relative operator, resulting in the absence of the existential
sense of English wh-words. Adopting the Lexical Transfer Hypothesis, this study focuses
attention on the lexical level, comparing the L2 knowledge of Chinese wh-existentials of
L1-English and L1-Korean speakers. The overall results of the 3 experiments show that
the properties of the L1 wh-words indeed influence Interlanguage development.

Turning to the Feature Reassembly Hypothesis, if we look at our target
phenomenon at the level of features, we need a Minimalist feature-based analysis of
wh-words in Chinese, Korean and English. To my knowledge, no (morpho-syntactic)
theory of this kind is yet available. However, we do find a few sporadic proposals in the
L2 literature. For example, for Korean wh-words, Lardiere (2009) suggests that the
existential interpretation results from the configuration of the wh-operator feature and the
[–Q] feature. For Chinese wh-words, Gil and Marsden (2013) propose that for each
(ambiguous) wh-expression, there are two phonologically identical lexical entries: one
that bears an uninterpretable nonveridical feature, and one that does not;45 when, for
instance, the wh-entry with the uninterpretable nonveridical feature is checked (and
deleted) by a nonveridical operator, which is realized as a wh-existential licensor (e.g.,
negatives, yes/no-question marker -ma, conditionals, etc.), the wh-word gets the
existential interpretation. Despite the lack of fully-developed analyses, the bottom line is:
The feature(s) responsible for Chinese wh-existentials cannot be the same as the feature(s)
underlying Korean wh-existentials, as wh-existentials in these two languages show
distinct syntactic and semantic properties.

In terms of empirical coverage, at this point it is unclear how the Lexical Transfer
Hypothesis and the Feature Reassembly Hypothesis can be distinguished from each other
(and indeed whether they are in fact fundamentally different – after all, lexical items

45 Note that this proposal goes against the syntactic analyses of wh-words discussed in Chapter 2, where the
wh-entries in Chinese, Korean and English are suggested to be underlingly the same, i.e., variables void of
quantificational force. Also, the claim that there are multiple lexical entries for each wh-expression in
Chinese, Korean, etc. is equivalent to saying that wh-interrogatives and wh-existentials in Chinese, Korean,
etc. are homonyms. See Chapter 2 for arguments against this view.
include syntactic and semantic properties that could be deconstructed into features). For the present study, these two L2 hypotheses predict that there will be L1 transfer and that the Chinese *wh*-existentials will be difficult to acquire for both L1-English and L1-Korean L2ers. We have seen in this study that the difficulties that English and Korean L2ers encountered were of different kinds. Framed within the Lexical Transfer Hypothesis, the challenge on the part of English L2ers was to ‘figure out’ from the input that *wh*-words can be used as existentials in Chinese and learn this ‘new’ sense along with its licensing conditions, whereas the crux of the challenge on the part of Korean L2ers was to unlearn the nontarget *wh*-existentials overgeneralized to veridical environments. A Feature Reassembly approach would frame the respective L1-based transfer and challenges (i.e., learnability issues) somewhat differently (i.e., in terms of the configuration of features), but the empirical predictions seem to be the same as those under a Lexical Transfer approach.

To sum up, at least at our current level of understanding of analyses of the crosslinguistic differences of *wh*-words in Chinese, Korean and English, our results are, minimally, compatible with the view that transfer occurs at the level of lexical items.

8.3 Outstanding Issues and Directions for Future Research

One often takes up a research topic with the hope that his/her investigation will put an end to it, but it often turns out that more questions are brought up in the process of the research. The present study is no exception.

Although the results of the study generally supported the Lexical Transfer Hypothesis, we did not see a simple transfer picture, where the L1 lexical knowledge was superimposed on the TL input. In the multiple-choice interpretation task, when picture contexts were geared towards the *∅* sense, all L2 groups had significantly more *∅* interpretation of *shenme* in the nonveridical construction (where the *∅* sense is licensed in the TL grammar) than in the veridical construction (where the *∅* sense is prohibited in the TL grammar), although the differentiation was less dramatic than what was observed with the natives. It is unclear whether this unexpected, seemingly native-like intuition of the licensing constraint, especially by the Korean L2ers, was induced by the task itself or was an indication that the L2ers sort of knew what was going on but not quite, a
phenomenon referred to as “imperfect knowledge in the domain that is controlled by
principled constraints in native speakers” (Kweon & Bley-Vroman, 2011, p. 222). If the
latter is the case, it still remains to be investigated what mechanism triggers the recovery
from the L1-based overgeneralization on the part of Korean L2ers.

In the acceptability judgment task, although Korean intermediate L2ers
outperformed English intermediate L2ers in judging both target constructions, which
hints at transfer of the L1 lexical properties, it was also found that all L2 groups
performed substantially better in the conditional pattern than in the yes/no-question
pattern. This suggests that additional factors are likely to be at play. We have discussed
two possibilities. One was that co-occurrence of wh-words with the yes/no-question
marker -ma in the yes/no-question pattern potentially makes the input problematic for the
L2ers, whereas the conditional pattern does not suffer from this complication.

The second possibility was that the relative linear positions of the licensee and its
licensor are different in the two constructions. Under the processing view put forward in
O’Grady (2005) and O’Grady, Lee, and Kwak (2009), this entails different processing
loads. In the conditional pattern, the licensor precedes the wh-word, which makes it
possible for the parser to immediately assign the £ interpretation as it hits the wh-word.
In the yes/no-question pattern, the licensor follows the licensee, so the parser initially
assigns the Q interpretation to the wh-word until it reaches the licensor at the very end of
the sentence and has to revise the previously assigned interpretation. This makes the
yes/no-question pattern more costly to process than the conditional pattern.

To tease apart these two accounts, it would be interesting to see how L2ers fare in
judgments on other sentence patterns where the existential licensor follows the wh-word,
but the input does not involve lexical items whose status is difficult to determine (e.g., the
particle -ma in the yes/no-question pattern). In this regard, testing the imperative pattern
or the inference -le pattern, which we discussed in the previous chapter, is likely to bring
insights.

On the methodological side, testing lexical ambiguity is a challenging task, and it
is especially so when our focus is on the less prominent £ sense of wh-words. More
efforts are needed in developing new research methods which will let us test the £ sense
in separation from the Q sense. In addition, special care needs to be taken in avoiding
unnecessary interference from pragmatics when trying to elicit \textit{wh}-existentials in production. Indeed, the fact that participants are put in an experimental setting to produce certain utterances is likely to exert pressure on the participants to be as informative as possible, which may lead to avoidance of \textit{wh}-existentials in some linguistic patterns.

The above are the issues revealed by the study. In what follows, we will outline some directions for future research.

First, the issue of lexical transfer can be further pursued from the opposite direction, i.e., how L1-Chinese and L1-English L2ers acquire \textit{wh}-existentials in Korean. Recall that the distribution of Chinese \textit{wh}-existentials is restricted to nonveridical environments, whereas their Korean counterparts can occur in both veridical and nonveridical environments. Comparison of \textit{wh}-existentials in Chinese-Korean and English-Korean Interlanguages can shed light on at least two questions: (i) Do (lower-proficiency) L1-Chinese L2ers of Korean transfer the licensing conditions on Chinese \textit{wh}-existentials into L2 Korean? In other words, do they initially allow \textit{wh}-existentials only in nonveridical environments in their L2 Korean? (ii) Assuming transfer occurs, does it also persist to more advanced proficiency levels? The answer to this question will contribute to a better understanding of how Interlanguage restructuring works when the L1 grammar has the same phenomenon as in the TL grammar but in a more constrained way (i.e., the L1 represents a subset to the superset TL).

Second, the general issue of how L2ers acquire different licensing conditions on Chinese \textit{wh}-existentials can be approached by addressing the following more specific questions: (i) In some constructions (e.g., negatives, non-factive verbs, A-not-A questions), Chinese \textit{wh}-existentials are allowed in the object position but prohibited in the subject position. When do L2ers of Chinese start to show sensitivity to the syntactic position (i.e., the c-command relation) of the relevant \textit{wh}-word with respect to the existential sense? (ii) In some constructions (e.g., \textit{yes/no} questions, conditionals, imperatives), Chinese \textit{wh}-existentials are licensed in both the subject position and the object position. Does the syntactic position of the relevant \textit{wh}-word have effects on the L2 knowledge of the licensed existential sense? (iii) Constructions which prohibit Chinese \textit{wh}-existentials fall into two kinds: constructions in which the relevant \textit{wh}-word
is outside the scope of the licensor (e.g., the subject position of negatives, the subject position of non-factive verbs, etc.) and constructions which do not contain licensors (e.g., declarative sentences in present progressive). Does the mere presence vs. absence of a licensor in these constructions influence L2 knowledge about the impossibility of the unlicensed existential sense? All these questions are meant to uncover factors that influence the L2 acquisition of the structural constraints on Chinese wh-existentials.

The (types of) linguistic knowledge wrapped up in seemingly innocent wh-existentials – lexical semantics derived from underlying syntax via a variable-binding mechanism (following the analysis of wh-words adopted in this dissertation) – deserves more attention from generative L2 researchers. It can be an ideal testing ground for investigating many theoretically important issues in L2 acquisition research: the L2 initial state, the nature of transfer, learnability, Interlanguage restructuring, etc. We eagerly anticipate future research in this area.
APPENDIX A
PARTIAL RESULTS OF THE YUAN (2010) STUDY

Note: The Yuan (2010) study investigated 7 categories of \(wh\)-existential licensing conditions: negation, non-factive verb, uncertainty adverb, conditional, \(yes/no\) question, inferential -le, and A-not-A question. In order to be relevant to the present study, we reviewed the results of 3 categories (i.e., negation, \(yes/no\) question, and conditional) in Section 3.4 of Chapter 3. The results of the remaining 4 categories can be found below.

Table 1. Yuan (2010): Results of \(Wh\)-existentials in Complement Sentences of Non-factive and Factive Verbs (Mean)

<table>
<thead>
<tr>
<th>Group</th>
<th>Non-factive V +(w)-(h)-(l)</th>
<th>Control non-factive V</th>
<th>* Factive V +(w)-(h)-(l)</th>
<th>Control factive V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>2.29</td>
<td>2.36</td>
<td>−1.13</td>
<td>2.16</td>
</tr>
<tr>
<td>EB</td>
<td>−0.30*</td>
<td>1.24</td>
<td>−0.34</td>
<td>1.49</td>
</tr>
<tr>
<td>EPB</td>
<td>0.54*</td>
<td>1.89</td>
<td>0.44*</td>
<td>1.61</td>
</tr>
<tr>
<td>EI</td>
<td>0.48*</td>
<td>2.35</td>
<td>0.00</td>
<td>2.20</td>
</tr>
<tr>
<td>EPI</td>
<td>0.52*</td>
<td>2.49</td>
<td>−0.38</td>
<td>2.15</td>
</tr>
<tr>
<td>EA</td>
<td>1.86</td>
<td>2.34</td>
<td>−1.13</td>
<td>1.77</td>
</tr>
<tr>
<td>JB</td>
<td>0.24*</td>
<td>0.74*</td>
<td>0.25*</td>
<td>0.78*</td>
</tr>
<tr>
<td>JPB</td>
<td>0.10*</td>
<td>1.52</td>
<td>−0.40</td>
<td>0.90</td>
</tr>
<tr>
<td>JI</td>
<td>0.17*</td>
<td>1.60</td>
<td>−0.30</td>
<td>1.16</td>
</tr>
<tr>
<td>JPI</td>
<td>0.79*</td>
<td>2.30</td>
<td>−0.02</td>
<td>2.11</td>
</tr>
<tr>
<td>JA</td>
<td>2.07</td>
<td>2.23</td>
<td>−1.07</td>
<td>1.69</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner
 EPB = L1-English post-beginner
 EI = L1-English intermediate
 EPI = L1-English post-intermediate
 EA = L1-English advanced
 JB = L1-Japanese beginner
 JPB = L1-Japanese post-beginner
 JI = L1-Japanese intermediate
 JPI = L1-Japanese post-intermediate
 JA = L1-Japanese advanced

(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 236: Table 6)
Table 2. Yuan (2010): Results of Wh-existentials in Sentences with Uncertainty Adverbs (Mean)

<table>
<thead>
<tr>
<th>Group</th>
<th>Uncertainty adv. + wh-Ǝ</th>
<th>*wh-Ǝ w/o uncertainty adv.</th>
<th>Control uncertainty adv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>2.35</td>
<td>-1.33</td>
<td>2.93</td>
</tr>
<tr>
<td>EB</td>
<td>-0.07*</td>
<td>-0.54</td>
<td>2.08</td>
</tr>
<tr>
<td>EPB</td>
<td>0.37*</td>
<td>-0.09</td>
<td>2.39</td>
</tr>
<tr>
<td>EI</td>
<td>0.16*</td>
<td>-0.47</td>
<td>2.55</td>
</tr>
<tr>
<td>EPI</td>
<td>0.21*</td>
<td>-0.65</td>
<td>2.62</td>
</tr>
<tr>
<td>EA</td>
<td>1.83</td>
<td>-1.05</td>
<td>2.77</td>
</tr>
<tr>
<td>JB</td>
<td>0.32*</td>
<td>0.00</td>
<td>1.40*</td>
</tr>
<tr>
<td>JPB</td>
<td>-0.45*</td>
<td>-0.59*</td>
<td>2.12</td>
</tr>
<tr>
<td>JI</td>
<td>-0.04*</td>
<td>-0.40</td>
<td>2.35</td>
</tr>
<tr>
<td>JPI</td>
<td>0.23*</td>
<td>-0.34</td>
<td>2.55</td>
</tr>
<tr>
<td>JA</td>
<td>1.79</td>
<td>-1.03</td>
<td>2.52</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner, EPB = L1-English post-beginner, EI = L1-English intermediate, EPI = L1-English post-intermediate, EA = L1-English advanced, JA = L1-Japanese advanced
(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 237: Table 7)

Table 3. Yuan (2010): Mean Judgments of Wh-existentials in Sentences with Inferential -le

<table>
<thead>
<tr>
<th>Group</th>
<th>Obj. wh-Ǝ with inferential -le</th>
<th>Subj. wh-Ǝ with inferential -le</th>
<th>*Obj. wh-Ǝ w/o inferential -le</th>
<th>*Subj. wh-Ǝ w/o inferential -le</th>
<th>Control inferential -le</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>1.84</td>
<td>1.25</td>
<td>-2.54</td>
<td>-2.41</td>
<td>2.74</td>
</tr>
<tr>
<td>EB</td>
<td>-0.53*</td>
<td>-0.40*</td>
<td>-0.58*</td>
<td>-0.53*</td>
<td>1.39*</td>
</tr>
<tr>
<td>EPB</td>
<td>-0.19*</td>
<td>0.10*</td>
<td>-0.13*</td>
<td>0.11*</td>
<td>1.59</td>
</tr>
<tr>
<td>EI</td>
<td>-0.46*</td>
<td>-0.25*</td>
<td>-0.40*</td>
<td>-0.14*</td>
<td>1.48</td>
</tr>
<tr>
<td>EPI</td>
<td>-0.64*</td>
<td>-1.04*</td>
<td>-0.74*</td>
<td>-0.74*</td>
<td>1.50</td>
</tr>
<tr>
<td>EA</td>
<td>0.66*</td>
<td>-0.17*</td>
<td>-0.68*</td>
<td>-0.73*</td>
<td>1.84</td>
</tr>
<tr>
<td>JB</td>
<td>0.32*</td>
<td>-0.02*</td>
<td>0.32*</td>
<td>-0.10*</td>
<td>1.24*</td>
</tr>
<tr>
<td>JPB</td>
<td>-0.41*</td>
<td>0.14*</td>
<td>-0.41*</td>
<td>-0.12*</td>
<td>1.44</td>
</tr>
<tr>
<td>JI</td>
<td>-0.15*</td>
<td>-0.08*</td>
<td>0.00*</td>
<td>-0.44*</td>
<td>1.49</td>
</tr>
<tr>
<td>JPI</td>
<td>-0.19*</td>
<td>-0.80*</td>
<td>-0.37*</td>
<td>-0.75*</td>
<td>1.59</td>
</tr>
<tr>
<td>JA</td>
<td>0.61*</td>
<td>-1.00*</td>
<td>-0.51*</td>
<td>-1.05</td>
<td>2.41</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner, EPB = L1-English post-beginner, EI = L1-English intermediate, EPI = L1-English post-intermediate, EA = L1-English advanced, JA = L1-Japanese advanced
(ii) * = significantly different from the native control group

(adapted from Yuan, 2010, p. 241: Table 10)
Table 4. Yuan (2010): Results of Wh-existentials in A-not-A Questions (Mean)

<table>
<thead>
<tr>
<th>Group</th>
<th>A-not-A + obj. wh-Ǝ</th>
<th>* subj. wh-Ǝ + A-not-A</th>
<th>Control A-not-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>1.20</td>
<td>−2.45</td>
<td>2.80</td>
</tr>
<tr>
<td>EB</td>
<td>−0.23*</td>
<td>−0.39*</td>
<td>1.43</td>
</tr>
<tr>
<td>EPB</td>
<td>−1.10*</td>
<td>−1.13*</td>
<td>2.18</td>
</tr>
<tr>
<td>EI</td>
<td>−0.39*</td>
<td>−1.01*</td>
<td>2.25</td>
</tr>
<tr>
<td>EPI</td>
<td>−0.70*</td>
<td>−2.48</td>
<td>2.90</td>
</tr>
<tr>
<td>EA</td>
<td>−0.50*</td>
<td>−2.77</td>
<td>2.50</td>
</tr>
<tr>
<td>JB</td>
<td>−0.81*</td>
<td>−0.65*</td>
<td>0.28*</td>
</tr>
<tr>
<td>JPB</td>
<td>−0.74*</td>
<td>−0.94*</td>
<td>0.53*</td>
</tr>
<tr>
<td>JI</td>
<td>−0.74*</td>
<td>−1.12*</td>
<td>0.78*</td>
</tr>
<tr>
<td>JPI</td>
<td>−0.81*</td>
<td>−2.08</td>
<td>1.67</td>
</tr>
<tr>
<td>JA</td>
<td>−0.91*</td>
<td>−2.02</td>
<td>2.68</td>
</tr>
</tbody>
</table>

NB: (i) EB = L1-English beginner
EPB = L1-English post-beginner
EI = L1-English intermediate
EPI = L1-English post-intermediate
EA = L1-English advanced
JB = L1-Japanese beginner
JPB = L1-Japanese post-beginner
JI = L1-Japanese intermediate
JPI = L1-Japanese post-intermediate
JA = L1-Japanese advanced

(ii) * = significantly different from the native control group
(adapted from Yuan, 2010, p. 243: Table 11)
APPENDIX B
CLOZE TEST

[English Version]

Directions:
1. Read the passage quickly to get the general meaning.
2. Write only **one** character in each blank in the column to the right
3. You may do it in characters or Pinyin, but not both.
4. Double check your answers.

Example:

```
we  班 一 (1) 有 七 个 人。
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

ANSWERS

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```

```
yǒu  yī (1) 人  在  路 上  遇到  (meet)  一 个  神 仙 (fairy),
zhè  shénxiān  yìqǐ  tā  pénghǒu  tā  gào   shénxiān
zhè  kōng  shénxiān  tīng  wán  zhègè  jīnzi
yi  xiǎo  shí  tóu,  nà  一  金 子
```

```
1.  共 /  gòng
```
해석, 설명:
1. 일반적인 의미를 얻기 위해 신속하게 문장을 참조하십시오.
2. 오른쪽 열의 각 빈자리에 하나의 문자를 채워우십시오.
3. 당신은 문자나 병음을 사용할 수 있지만 동시에 둘 다 사용할 수는 없습니다.
4. 답을 재확인하십시오.

예:
wǒmen bān yī yǒu shí gè rén
我们 班一 (1) 有 十 个 人。

답변
1. 共 / gòng

yǒuyī rén zài lùshàng yùdào yī gèshén xiān
有一 (1) 人 在 路 上 遇到 (meet) 一个 神仙 (fairy),
zhège shénxiān yǐqián shì tā péngyǒu (2) gāo shénxiān
这个 神仙 以前 是 他 朋友。他 告 (3) 神仙,
xiànzài tā de qíng kuàng yuè yuè bù rú cóng shēnghuó hěn
现在 他的 情况 越 (4) 越 不如 从 (5), 生活 很
kùn shénxiān tīng wán yòng shǒu yī lǔpáng de
困难 神仙 听完 (7) 的话, 用手 (8) 路旁的
yī kuài xiǎo shí tóu nà kuài shí tóu liè biàn le jīnzi
一块 小 石头, 那 块 石头 立刻 变 (9) 了 金子,
shénxiān bǎ zhè kuài jīnzi le tā zhéde dédào jīnzi hǎi
神仙 把 这 块 金子 (10) 了 他。这个 (11) 得到 金子, 还
bù mǎnyì shén yǒu yī zhī bǎ yī kuài dà shí tóu
不满意。神仙 (12) 又 用手 (8) 指, 把 一块 大 石头 (13)
biàncéng le jīnzi yǒu gěi le zhè gè rén shì bù mǎnyì
变成了 金子, 又 给了 (14)。这个人 (15) 是 不满意。
shénxiān tā zēnyóyyàng ne míng nǐ ne zhè gè rén hui
神仙 (16) 他: “怎么样 你 (17) 满意 呢?” 这个人 回
shuō wǒ yào nǐ de (18)
说: “我 (19) 要 你 的 (20)。”
说明：
a. 快速阅读整段文章，了解文章大意。
b. 在每个空格右栏的相应位置填上一个字。
c. 填空时，你可以在使用汉字或者拼音，但没有必要两个都用。
d. 检查你的答案。

例如：

我 班 (1) 有 十 个 人。

答案

(1) 个 / gè
(2) 的 / de
(3) 诉 / sù
(4) 来 / lái
(5) 前 / qián
(6) 难 / nán
(7) 他 / tā
(8) 指 / zhǐ
(9) 成 / chéng
(10) 给 / gěi
(11) 人 / rén
(12) 仙 / xiān
(13) 又 / yòu
(14) 他 / tā
(15) 还 / hái
(16) 问 / wèn
(17) 想 / xiǎng
(18) 答 / dá
(19) 还 / hái
(20) 手 / shǒu

[Answer Key]
APPENDIX C
QUESTIONNAIRE ON LANGUAGE BACKGROUND

[English Version]

The questions below are intended to help us learn about your language learning experience. Your personal information will be kept confidential, and all other information will be used for research purposes only. Please read and answer all the following questions carefully. Use the blank space beside each question to clarify answers.

I. BIOGRAPHICAL INFORMATION
Year of Birth: __________ Gender: __________ Native Country ____________

II. LANGUAGE BACKGROUND
Please indicate all languages that you speak, studied or had much contact with, and rate your proficiency on the scale from 1 (beginner) to 5 (native or near-native)

<table>
<thead>
<tr>
<th>LANGUAGE</th>
<th>1. Beginner</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5. Native or near-native</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. CHINESE LEARNING EXPERIENCE
1. At what age did you begin to study Chinese?
 __________ years old

2. How many years of school instruction of Chinese did you receive?
 (Please specify the total length) __________ year(s)

3. How many years of Chinese grammar have you learned?
 (Please specify the total length) __________ year(s)

4. How long have you lived in a place or places where Chinese was/is the primary language of communication?
 (Please specify the total length) __________ year(s)

5. Approximately how many hours a day do you use Chinese?
 (Please specify) __________ hour(s)
아래 질문들은 귀하의 언어 학습 경험에 대한 것입니다. 귀하의 개인 정보는 비공개될 것이고 모든 정보는 연구 목적으로만 사용될 것입니다. 모든 질문에 대답해 주십시오.. 각 질문의 아래 번간에는 자세한 답을 써 주세요.

I. 개인정보
출생년도: __________
출생국가: ______________
성별: __________

II. 언어배경:
귀하가 구사하시거나 배우신 언어를 모두 기재하여 주십시오. 그리고 각 언어능력을 1(초급)에서 5(원어민 수준) 중 하나를 표시하여 주세요.

<table>
<thead>
<tr>
<th>언어</th>
<th>숙련정도</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. 초보자</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. 중국어 학습 경험:
1. 몇 살때 중국어를 배우기 시작하셨습니까?
 __________세

2. 중국어를 몇 년동안 학교에서 배우셨습니까?
 (배운 기간 전체를 써 주세요.) __________년

3. 중국어 문법을 몇 년 동안 배우셨습니까?
 (배운 기간 전체를 써 주세요.) __________년

4. 중국어를 사용하는 지역에서 몇 년 사셨습니까?
 (배운 기간 전체를 써 주세요.) __________년

5. 중국어를 하루에 대략 몇 시간 사용하십니까?
 (자세히 써 주세요.) __________ 시간(들)
APPENDIX D
MULTIPLE-CHOICE INTERPRETATION TASK DIRECTIONS

[English Version]

Directions:
In the following, you will see some pictures. Under each picture is a man and a woman talking about the picture. As the right hand side of the pictures are torn off, the conversations by the man are missing punctuations. Your task is to look at the pictures and choose an appropriate response for the woman. Mark your answers on the choices given on the right of the pictures. Please mark only one answer for each question.

Example 1:

In Example 1, we see that 小王 is taller than 小李, but what the man said is just the opposite. Therefore, you may feel that the woman’s response should be 你说错了. Then make an X mark next to Choice B.
Example 2:

In Example 2, the man asked where the child was reading. According to the picture, you may feel that 在床上 is an appropriate response. Make an X mark next to Choice A.

In cases where you are not sure about your choices, mark Choice D.

Please turn to the next page and start the task. There are 40 items in this section. Make sure that you have completed all questions.
해석, 설명:
아래 각 그림에서는 한 남자와 한 여자가 그림에 대해 이야기합니다. 하지만 사진의 오른쪽이 찢어졌기 때문에 남자의 대화에서 문장 부호가 누락되었습니다. 당신의 작업은 사진을 보고 여자에 대한 적절한 응답을 선택하는 것입니다. 사진 오른쪽에 주어진 선택에 대한 답을 표시합니다. 각 질문에 대한 하나의 답에 표시를 하십시오.

예 1:

이 그림에서 우리는 小王 小李 둘다 큰 것을 볼 수 있지만, 한 남자는 그 말이 nǐshuōcuòle (你说错了。

[X] B: 你说错了。

[] A: 是的。

[] C: A和B都可以。

[] D: 不确定选哪个。

xiaowáng xiaolì
이 그림에서 우리는 小王 小李 둘다 큰 것을 볼 수 있지만, 한 남자는 그 말이 nǐshuōcuòle (你说错了。

상반된다고 말했습니다. 따라서 여성의 응답이 '你说错了'해야 한다고 느낄 수 있습니다. 다음 선택 B 앞에 X 표시를 하십시오.
예문에서 남자는 아이가 어디에서 책을 보고 있느냐고 물었습니다. 그림에서 당신은
床 shàng, 在 zài
에서 책을 보고 있다는 것을 느낄 수 있습니다. 선택 A 옆에 X 표시를 합니다.

당신이 당신의 선택에 대해 확실하지 않은 경우, 선택 D 에 표시하십시오.

다음 페이지로 넘어가 이 항목의 테스트를 시작하십시오. 이 섹션에 40 개 품목이 있습니다. 당신이 모든 질문을 완료했는지 확인하십시오.
[Chinese Version]

说明：
以下每幅图片下边是一男一女关于这幅图片的对话。由于图片右侧有部分残缺，男人的对话部分缺少标点符号。请你根据图片的内容，为女人选择恰当的对话，并在相应的选项旁打叉“X”。每道题请选择一个答案。

例 1：

从图片中，我们看到小王比小李高，而男人所说的却与图片恰好相反。因而，你可能会觉得女人的反应会是“你说错了”，那么就请你在选项 B 旁打叉“X”。
在这个例子里，男人在询问图片里的小孩在哪里看书，根据图片的内容，你可能会觉得选项 A “在床上” 是恰当的反应，那么就请你在这个选项的旁边打叉 “X”。

如果遇到你对自己的选择不确定时，请你选择 D “不确定选哪个”。

请翻到下一页开始这部分。此部分共有 40 道题，请对所有题目做出选择。
APPENDIX E
MULTIPLE-CHOICE INTERPRETATION TASK TEST ITEMS

Notes:
1. The type of a sentence is identified as alphabetical letters in the item index, where:
 - A = Experimental Type 1: *shenme* in a veridical sentence: Q-biased context
 - B = Experimental Type 2: *shenme* in a veridical sentence: *Ǝ*-biased context
 - C = Experimental Type 3: *shenme* in a nonveridical sentence: Q-biased context
 - D = Experimental Type 4: *shenme* in a nonveridical sentence: *Ǝ*-biased context
 - E = Filler Type 1: affirmative *wh*-question
 - F = Filler Type 2: affirmative declarative
 - G = Filler Type 3: negative *wh*-question
 - H = Filler Type 4: negative declarative
2. The numeral in the item index indicates the token number.
3. The Item No. indicates the order number of an item in the two presentation lists.
4. In the experiment, the choices were presented with Pinyin on top of characters. English translations of the choices are given here for space considerations. Please contact the author if the original choices are needed.

<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prompt Gloss
(not in the experiment)

Ta zai xie *shenme*
she ASP write THING

<table>
<thead>
<tr>
<th>Choices (English Translation)</th>
<th>Not in the experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Yes.</td>
<td></td>
</tr>
<tr>
<td>B: Letter.</td>
<td></td>
</tr>
<tr>
<td>C: Both A and B are OK.</td>
<td></td>
</tr>
<tr>
<td>D: Not sure which one to choose.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choices</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 是的。</td>
<td>shì de.</td>
</tr>
<tr>
<td>B: 信。</td>
<td>xìn.</td>
</tr>
<tr>
<td>C: 和 B 都 可 以。</td>
<td>hé dōukēyī.</td>
</tr>
<tr>
<td>D: 不 确 定 选 哪 个。</td>
<td>bùquēděng xuěnāngè.</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>A2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td>A4</td>
<td>39</td>
</tr>
</tbody>
</table>

Test Item A2: They ASP look-at THING

Prompt Gloss (not in the experiment)

Tamen zai kan shenme

Choices

- A: 是的。
- B: 蚂蚁。
- C: A和B都可以。
- D: 不确定选哪个。

Choices (English Translation)

- A: Yes.
- B: Ants.
- C: Both A and B are OK.
- D: Not sure which one to choose.

Test Item A3: They ASP drink THING

Prompt Gloss (not in the experiment)

Ta zai he shenme

Choices

- A: 是的。
- B: 茶。
- C: A和B都可以。
- D: 不确定选哪个。

Choices (English Translation)

- A: Yes.
- B: Tea.
- C: Both A and B are OK.
- D: Not sure which one to choose.

Test Item A4: They ASP carry THING

Prompt Gloss (not in the experiment)

Ta zai ban shenme

Choices

- A: 是的。
- B: 书。
- C: A和B都可以。
- D: 不确定选哪个。

Choices (English Translation)

- A: Yes.
- B: Books.
- C: Both A and B are OK.
- D: Not sure which one to choose.
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss (not in the experiment) Ta zai du shenme he ASP read THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>shí de</td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: báozhǐ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hé dōukēyì</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment) A: Yes. B: Newspaper. C: Both A and B are OK. D: Not sure which one to choose.</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss (not in the experiment) Ta zai xie shenme he ASP write THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>shí de</td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: bùzhī dào</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hé dōukēyì</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment) A: Yes. B: No idea. C: Both A and B are OK. D: Not sure which one to choose.</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss (not in the experiment) Ta zai kan shenme she ASP look-at THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>shí de</td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: bùzhī dào</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hé dōukēyì</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment) A: Yes. B: No idea. C: Both A and B are OK. D: Not sure which one to choose.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| B3 | Ta zai he shenme he ASP drink THING | Choices | shì de
A: 是的。
búzhīdào
B: 不知道。
hé dōukēyí
C: A和B都可以。
būquèdìngxuǎnnāngè
D: 不确定选哪个。 |
| | Prompt Gloss | Choices (English Translation) | (not in the experiment) | A: Yes.
B: No idea.
C: Both A and B are OK.
D: Not sure which one to choose. |
| B4 | Ta zai ban shenme he ASP carry THING | Choices | shì de
A: 是的。
búzhīdào
B: 不知道。
hé dōukēyí
C: A和B都可以。
būquèdìngxuǎnnāngè
D: 不确定选哪个。 |
| | Prompt Gloss | Choices (English Translation) | (not in the experiment) | A: Yes.
B: No idea.
C: Both A and B are OK.
D: Not sure which one to choose. |
| B5 | Ta zai dú shenme he ASP read THING | Choices | shì de
A: 是的。
búzhīdào
B: 不知道。
hé dōukēyí
C: A和B都可以。
būquèdìngxuǎnnāngè
D: 不确定选哪个。 |
| | Prompt Gloss | Choices (English Translation) | (not in the experiment) | A: Yes.
B: No idea.
C: Both A and B are OK.
D: Not sure which one to choose. |
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shì de.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>niú nǎi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 牛奶。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hé dòu kē yī</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bú quē dì ngxuōn nōgè</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确 定选 哪个。</td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation)</td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: Yes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: Milk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: Both A and B are OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Not sure which one to choose.</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shì de.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dōng cáo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 蛋糕。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hé dòu kē yī</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bú quē dì ngxuōn nōgè</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确 定选 哪个。</td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation)</td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: Yes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: Cake.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: Both A and B are OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Not sure which one to choose.</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>Choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shì de.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kè běn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 课本。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hé dòu kē yī</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bú quē dì ngxuōn nōgè</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确 定选 哪个。</td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation):</td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: Yes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: Textbooks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: Both A and B are OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Not sure which one to choose.</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>C4</td>
<td> Ta mei hua shenme he NEG draw THING</td>
<td>Choices</td>
</tr>
<tr>
<td></td>
<td> Ta mei chuan shenme he NEG buy THING</td>
<td>Choices (English Translation)</td>
</tr>
<tr>
<td>C5</td>
<td> Ta mei chuan shenme he NEG buy THING</td>
<td>Choices</td>
</tr>
<tr>
<td>D1</td>
<td> Ta mei mai shenme she NEG buy THING</td>
<td>Choices (English Translation)</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss (not in the experiment)</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Ta mei chi shenme she NEG eat THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>Item No.</td>
</tr>
<tr>
<td></td>
<td>shide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td>List 1</td>
</tr>
<tr>
<td></td>
<td>B: 鱼。</td>
<td>List 2</td>
</tr>
<tr>
<td></td>
<td>hé dōukēyí</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>búquèdìngxuānnōgè</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Yes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: Fish.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: Both A and B are OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: Not sure which one to choose</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Ta mei na shenme he NEG carry THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>Item No.</td>
</tr>
<tr>
<td></td>
<td>shide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td>List 1</td>
</tr>
<tr>
<td></td>
<td>B: 笔。</td>
<td>List 2</td>
</tr>
<tr>
<td></td>
<td>hé dōukēyí</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>búquèdìngxuānnōgè</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Yes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: Pen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: Both A and B are OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: Not sure which one to choose</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Ta mei hua shenme heNEG draw THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices</td>
<td>Item No.</td>
</tr>
<tr>
<td></td>
<td>shide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: 是的。</td>
<td>List 1</td>
</tr>
<tr>
<td></td>
<td>B: 树。</td>
<td>List 2</td>
</tr>
<tr>
<td></td>
<td>hé dōukēyí</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: A和B都可以。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>búquèdìngxuānnōgè</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: 不确定选哪个</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choices (English Translation) (not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Yes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: Tree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: Both A and B are OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D: Not sure which one to choose</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| D5 | *Prompt Gloss*
(Not in the experiment)
Ta mei chuan shenme
she NEG buy THING
Choice (English Translation)
(Not in the experiment)
A: Yes.
B: Shoes.
C: Both A and B are OK.
D: Not sure which one to choose. |
| | 16 25 | |
| E1 | *Prompt Gloss*
(Not in the experiment)
Tamen jidian zai chi fan
they what-time ASP eat meal
‘At what time are they eating?’
Choice (English Translation)
(Not in the experiment)
A: Yes.
B: 8 o’clock.
C: Both A and B are OK.
D: Not sure which one to choose. |
| | 5 36 | |
| E2 | *Prompt Gloss*
(Not in the experiment)
Ta jidian zai shuijiao
He what-time ASP sleep
‘At what time is he sleeping?’
Choice (English Translation)
(Not in the experiment)
A: Yes.
B: 11 o’clock.
C: Both A and B are OK.
D: Not sure which one to choose. |
<p>| | 2 39 | |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
<th>List 1</th>
<th>List 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td>Ta jidian zai kan dianshi He what-time ASP watch TV ‘At what time is he watching TV?’</td>
<td>23</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>Ta jidian zai shang ke He what-time ASP teach class ‘At what time is he teaching?’</td>
<td>33</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Ta jidian zai kan shu she what-time ASP read book ‘At what time is she reading?’</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Choices

- **A**: 是的。
 - **shì de**
- **B**: 八点。
 - **bā diǎn**
- **C**: A和B都可以。
 - **bù què dì ngxuān̄gè**
- **D**: 不确定选哪个。
 - **bù què dì ngxuān̄gè**

Choices (English Translation)

- **A**: Yes.
- **B**: 8 o'clock.
- **C**: Both A and B are OK.
- **D**: Not sure which one to choose.
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss (not in the experiment)</td>
<td>Ta zai tan gangqin she ASP play piano ‘She is playing piano.’</td>
</tr>
</tbody>
</table>
| | Choices (English Translation) | A: Yes.
B: You are wrong.
C: Both A and B are OK.
D: Not sure which one to choose. | |
| F2 | ![Image](image2.png) | 4 | 37 |
| | Prompt Gloss (not in the experiment) | Tamen zai deng qiche they ASP wait-for bus ‘They are waiting for a bus.’ | |
| | Choices (English Translation) | A: Yes.
B: You are wrong.
C: Both A and B are OK.
D: Not sure which one to choose. | |
| F3 | ![Image](image3.png) | 10 | 31 |
| | Prompt Gloss (not in the experiment) | Ta zai zuo fan she ASP make meal ‘She is cooking.’ | |
| | Choices (English Translation) | A: Yes.
B: You are wrong.
C: Both A and B are OK.
D: Not sure which one to choose. | |
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>F4</td>
<td>Prompt Gloss
(not in the experiment)
Tämän zài tiaowu
they ASP dance
‘They are dancing,’
Choices
shi de
A: 是的。
nǐ shuōcuò le
B: 你说错了。
hé dōukěyí
C: A和B都可以。
bùquè dìngxuānnèngè
D: 不确定选哪个。
Choices (English Translation)
(not in the experiment)
A: Yes.
B: You are wrong.
C: Both A and B are OK.
D: Not sure which one to choose.</td>
<td>13</td>
</tr>
<tr>
<td>F5</td>
<td>Prompt Gloss
(not in the experiment)
Tā zài dà diànhuà
he ASP make phone-call
‘He is making a phone call.’
Choices
shi de
A: 是的。
nǐ shuō cuò le
B: 你说错了。
hé dōukěyí
C: A和B都可以。
bùquè dìngxuānnèngè
D: 不确定选哪个。
Choices (English Translation)
(not in the experiment)
A: Yes.
B: You are wrong.
C: Both A and B are OK.
D: Not sure which one to choose.</td>
<td>29</td>
</tr>
<tr>
<td>G1</td>
<td>Prompt Gloss
(not in the experiment)
Tā jīhāo méi shāngxué
he which-day NEG go-to-school
‘On which day didn’t he go to school?’
Choices
shi de
A: 是的。
sān hào
B: 三号。
hé dōukěyí
C: A和B都可以。
bùquè dìnxuānnèngè
D: 不确定选哪个。
Choices (English Translation)
(not in the experiment)
A: Yes.
B: The 3rd.
C: Both A and B are OK.
D: Not sure which one to choose.</td>
<td>15</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss
(not in the experiment)
Ta jihaomei zuo fan
she which-day NEG make meal
‘On which day didn’t she cook?’</td>
<td>Choices
<code>shi de</code>
A: 是的。
1 jiuhao
B: 六号。
he douluoyi
C: A和B都可以。
biquedil ngxuannange
D: 不确定选哪个。</td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss
(not in the experiment)
Ta jihaomei dasao fangjian
she which-day NEG make room
‘On which day didn’t she clean room?’</td>
<td>Choices
<code>shi de</code>
A: 是的。
shihao
B: 十号。
he douluoyi
C: A和B都可以。
biquedil ngxuannange
D: 不确定选哪个。</td>
</tr>
<tr>
<td>G4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prompt Gloss
(not in the experiment)
Ta jihaomei shang shuxueke
she which-day NEG have match class
‘On which day didn’t she have math class?’</td>
<td>Choices
<code>shi de</code>
A: 是的。
wuhe
B: 五号。
he douluoyi
C: A和B都可以。
biquedil ngxuannange
D: 不确定选哪个。</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>G5</td>
<td></td>
<td>Ta jihao mei shuijiao 他几号没睡觉</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘On which day didn’t he sleep?’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 七号。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确定选哪个。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td>Ta mei zai chouyan 他没在抽烟</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘He isn’t smoking.’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 你说错了。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确定选哪个。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>Ta mei dai yanjing 他没戴眼镜</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘He isn’t wearing glasses.’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 是的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: 你说错了。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: A和B都可以。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: 不确定选哪个。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not in the experiment)</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>H3</td>
<td>Prompt Gloss
(not in the experiment)
Tamen mei zai kan dianshi
‘They are not watching TV.’</td>
<td>Choices
shì de
A: 是的。
B: 你说错了。
C: A和B都可以。
D: 不确定选哪个。
</td>
</tr>
<tr>
<td>H4</td>
<td>Prompt Gloss
(not in the experiment)
Ta mei zai hua hua
‘He isn’t drawing a picture.’</td>
<td>Choices
shì de
A: 是的。
B: 你说错了。
C: A和B都可以。
D: 不确定选哪个。
</td>
</tr>
<tr>
<td>H5</td>
<td>Prompt Gloss
(not in the experiment)
Ta mei zai zuo fan
‘He isn’t cooking.’</td>
<td>Choices
shì de
A: 是的。
B: 你说错了。
C: A和B都可以。
D: 不确定选哪个。
</td>
</tr>
</tbody>
</table>
APPENDIX F
PRODUCTION TASK DIRECTIONS

[English Version]

Directions:
1. Look at the following pictures carefully and go over the vocabulary lists underneath.
2. Choose words from the vocabulary list and make up a statement to briefly describe what the designated character is doing in each picture.
3. Write your sentence in the space given below each picture.
4. You may do it in characters or Pinyin, but not necessarily both.

NOTE:
i) Not all words in the vocabulary lists are useful;
ii) DO NOT add words of your own.

Example:

Vocabulary List: 在、电、视、看、书、他

In this picture, we see that the specified character, 小红, is reading. Therefore, your sentence may be:

小红在看书。

There are 12 items in this section. Make sure that you have completed all questions.
설명:
1. 신중하게 다음의 그림을 보고 아래의 어휘 목록을 통해 이동합니다.
2. 단어 목록에서 단어를 선택하고 지정된 캐릭터가 각각의 그림에서 무엇을 하고 있는지 설명하는 문장을 구성합니다.
3. 각 사진 아래의 공간에 문장을 작성합니다.
4. 당신은 문자나 병음으로 답할 수 있지만 동시에 둘 다 사용할 수는 없습니다.

참고:
i) 어휘 목록에 있는 모든 단어는 유용하지 않음;
ii) 자신의 단어를 추가하지 마십시오.

예:

이 그림에서 우리는 지정된 문장인 小红 要 FRIEND掟书여 발을 알 수 있습니다. 따라서 당신이 아래 답해야 할 문장을 알 수 있습니다:

小红在看书。

이 섹션에는 12 개 항목이 있습니다. 당신이 모든 질문을 완료했는지 확인하십시오.
说明：以下每幅图片中有一个指定人物，图片下方是一个选择词汇表，请从词汇表中选择合适的词，造一句陈述句来简要描述这个人物的行为。注意，不是所有的词都有用，请不要添加其他词汇。

例如：

词汇表：在、电视、看、书、他

在图片中，我们看到指定的人物，小红，正在看书，所以你造的句子可以是：

小红在看书。

你可以选择使用拼音或汉字，但不必两者都用。

请翻到下一页开始这部分。此部分共有 12 道题，请对所有题目做出解答。
APPENDIX G
PRODUCTION TASK TEST ITEMS

Notes: 1. The type of the sentence is identified as alphabetical letters in the item index, where:
 A = existential *shenme* in a nonveridical sentence
 B = *existential shenme* in a veridical sentence
 C = existential *shui* in a nonveridical sentence
 D = *existential shui* in a veridical sentence
2. The numeral in the item index indicates the token number.
3. The Item No. indicates the order number of an item in the two presentation lists.
4. In the experiment, the vocabulary lists were presented with Pinyin on top of characters. The English glosses were not included.

<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>méiyǒu shénme kēlè</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEG THING Coke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hē zài jiǔ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drink ASP wine</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zài shū méiyǒu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASP book NEG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shénme ná qiānbi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THING hold pencil</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>A3</td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>xiōngjiǎo chī shénme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>香蕉，吃，什么，</td>
<td></td>
</tr>
<tr>
<td></td>
<td>banana eat THING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zài méiyǒu bǐngān</td>
<td></td>
</tr>
<tr>
<td></td>
<td>在，没有，饼干</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASP NEG cookie</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>zài shénme xiě</td>
<td></td>
</tr>
<tr>
<td></td>
<td>在，什么，写，</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASP THING write</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zì le zuòyè</td>
<td></td>
</tr>
<tr>
<td></td>
<td>字，了，作业</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Character ASP homework</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>le pánzi zài</td>
<td></td>
</tr>
<tr>
<td></td>
<td>了，盘子，在，</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASP dish ASP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shénme xī dōngxī</td>
<td></td>
</tr>
<tr>
<td></td>
<td>什么，洗，东西</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THING wash thing</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>shípǐn le mǎi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>食品，了，买，</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food ASP buy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shénme zài dōngxī</td>
<td></td>
</tr>
<tr>
<td></td>
<td>什么，在，东西</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TING ASP thing</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>C1</td>
<td>[Image]</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nánghái zúi méiyǒu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>男孩，在，没有，</td>
<td></td>
</tr>
<tr>
<td></td>
<td>boy ASP NEG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dǎ shuí nǚhái</td>
<td></td>
</tr>
<tr>
<td></td>
<td>打，谁，女孩</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beat PERSON girl</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>[Image]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>méiyǒu shuí zhǐ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>没有，谁，指</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEG PERSON point-at</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nánrén zúi nǚrén</td>
<td></td>
</tr>
<tr>
<td></td>
<td>男人，在，女人</td>
<td></td>
</tr>
<tr>
<td></td>
<td>man ASP woman</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>[Image]</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>yōngbào zúi mámá</td>
<td></td>
</tr>
<tr>
<td></td>
<td>拥抱，在，妈妈</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hug ASP Mom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shuí méiyǒu bàba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>谁，没有，爸爸</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERSON NEG Dad</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>[Image]</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Vocabulary List (gloss not in the experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zài shuí mò</td>
<td></td>
</tr>
<tr>
<td></td>
<td>在，谁，骂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASP PERSON, scold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tā le tāmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>她，了，他们</td>
<td></td>
</tr>
<tr>
<td></td>
<td>she/her ASP they/them</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>D2</td>
<td>Vocabulary List
(gloss not in the experiment)
tuǐ le shuí
push ASP PERSON
tā zài tāmen
he/him ASP they/them</td>
<td>10</td>
</tr>
<tr>
<td>D3</td>
<td>Vocabulary List
(gloss not in the experiment)
zài tāmen kàn
ASP they/them look-at
shuí le tā
WHO, 了, 她
PERS ASP she/her</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX H
ACCEPTABILITY JUDGMENT TASK DIRECTIONS

[English Version]

Directions:
Speakers of a language seem to develop an instinctive ‘feel’ for what is a possible sentence, even in the many cases where they have never been taught any particular rule.

For example, in English, you may feel that the first sentence below sounds natural, while the second one sounds awkward:

(1) John is likely to win the race.
(2) John is probable to win the race.

Likewise, in Chinese, you may feel that the first three sentences below sound natural, while the last one doesn’t.

(1) wǒ sòng le yī běn shū gěi tā
(2) wǒ sòng le tā yī běn shū
(3) wǒ jì le yī běn shū gěi tā
(4) wǒ jì le tā yī běn shū

On the following pages is a list of Chinese sentences. We want you to tell us whether you feel they sound natural for you, or whether they sound awkward for you. Perhaps you have no clear feeling for whether they are natural or not. In this case mark not sure.

Read each sentence carefully and concentrate on how you feel about it. Mark only one answer for each sentence. Make sure you have answered all 60 questions.
해석,설명:
우리가 한 언어를 할 줄 안한다고 하면 문법을 배우지 않고도 어떤 문장이 맞는지에 대한 감을 갖게 되는 것 같습니다.

예를 들면, 한국어에서 아래의 1, 2, 3 의 문장은 괜찮게 들리고 4 번의 문장은 좀 어색하게 들립니다.

(1) 영희는 큰 사과를 가지고 있어요.
(2) 영희는 작은 사과를 가지고 있어요.
(3) 영희는 많은 사과를 가지고 있어요.
(4) 영희는 적은 사과를 가지고 있어요.

마찬가지로, 아래의 1-3 문장은 중국어로 가능한 문장으로 들리고 4 번의 문장은 자연스럽게 들리지 않습니다.

(1) 我 送 了 一 本 书 给 他。
(2) 我 送 了 他 一 本 书。
(3) 我 寄 了 一 本 书 给 他。
(4) 我 寄 了 他 一 本 书。

다음 페이지에서 여러 중국어 문장들을 보실 것입니다. 각 문장이 중국어로 가능한 자연스러운 문장이라고 느끼시는지, 가능하지 않은 어색한 문장이라고 느끼시는지 표시해 주세요. 어느 쪽인지 분명히 느끼시지 못한다면 불확실한 에 표시하시면 됩니다.

각 문장을 잘 읽고 느낌을 알려주세요. 답안지에 답을 표시하여 주시면 됩니다. 각 문장마다 답을 하나만 표시하여 주세요. 60 문제 모두 답하셨는지 확인해 주시기 바랍니다.
[Chinese Version]

说明：
人们在使用语言的过程中似乎培养出一种“语感”。在很多情况下，虽然没有学习过什么特别的规则，人们却能“感觉”出某个句子是否是可以被接受。

例如，在读以下四个中文句子时，你可能会“感到” 前三个句子很自然，而第四个句子却很别扭，不太象是真正的中文句子。

(1) 我 送 了 一 本 书 给 他。
wǒ sòng le yī běn shū gěi tā

(2) 我 送 了 他 一 本 书。
wǒ sòng le tā yī běn shū

(3) 我 寄 了 一 本 书 给 他。
wǒ jì le yī běn shū gěi tā

(4) 我 寄 了 他 一 本 书。
wǒ jì le tā yī běn shū

以下是一些中文句子。我们希望你告诉我们你对每个句子的“感觉”。你可能会感到有些句子读起来很自然，而有些句子很别扭。另外，你可能对有些句子的感觉不很明显。

请认真阅读每句话，注意你的感觉，然后判断这个句子是自然、别扭，或者不确定。请在每个句子下面所给选项的相应位置打“X”。每个句子请选择一个答案。

请对所有 60 个句子都做出判断。
APPENDIX I
ACCEPTABILITY JUDGMENT TASK TEST ITEMS

Notes: 1. The type of a sentence is identified as alphabetical letters in the item index, where:
 A = yes/no question with existential shui (Yes/no Question Experimental)
 B = yes/no question with a proper noun (Yes/no Question Control)
 C = conditional with existential shui (Conditional Experimental)
 D = conditional with a proper noun (Conditional Control)
 E = *why*-question marked with the yes/no question particle -ma (Knowledge of -ma)
 F = *why*-questions without -ma (Knowledge of -ma)
 G = fillers

2. The numeral in the item index indicates the token number.
3. The Item No. indicates the order number of an item in the two presentation lists.

<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
<th>List 1</th>
<th>List 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>今天早上 小张碰到了谁了吗？今天早上 小张 run-into PERSON ASP Q_{yes/no}</td>
<td>42</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Xiao Zhang run into someone/anyone this morning?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>刚才 小姑娘亲谁了吗？‘Did the little kiss someone/anyone just now?’</td>
<td>47</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>just now little girl kiss PERSON ASP Q_{yes/no}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>昨天 老师批评谁了吗？‘Did the teacher criticize someone/anyone this morning?’</td>
<td>26</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>yesterday teacher criticize PERSON ASP Q_{yes/no}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>刚才 小明拥抱谁了吗？‘Did Xiao Ming hug someone/anyone just now?’</td>
<td>11</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>just now Xiao Ming hug PERSON ASP Q_{yes/no}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
<td>List 2</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>zuōtiān lāowāng jiàndào shuí le mà</td>
<td>23</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>昨天 老王 见到 谁 了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Lao Wang see someone/anyone yesterday evening?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>zuōtiān lāowāng pēngdào lǎoli le mà</td>
<td>46</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>昨天 老王 碰到 老李了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Lao Wang run into Lao Li yesterday?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>gāngcái xīǎomíng qín tō māmā le mà</td>
<td>52</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>刚才 小明 亲他妈妈了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Xiao Ming kiss her mom just now?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>shàngzhōu lǎoshī pīpīng xīǎoqiáng le mà</td>
<td>6</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>上周 老师 批评 小强了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did the teacher criticize Xiao Qiang last week?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>jīntiān xīǎomíng dō hónghóng le mà</td>
<td>19</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>今天 早上 小明 打红红了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Xiao Ming beat Hong Hong this morning?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>zuōtiān xiǎowù xiǎozhāo jiàndào tā gēgē le mà</td>
<td>3</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>昨天 下午 小赵 见到 他哥哥了吗?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Did Xiao Zhao see his brother yesterday afternoon?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>rúguǒ xīǎohóng àibǐng shuí dehū tō yīdīng</td>
<td>24</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>如果 小红 爱上 谁的话，她一定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Xiao Hong falls in love with someone/anyone, she will definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>huì gào su tō māmā</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会告诉她妈妈。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Xiao Hong falls in love with someone/anyone, she will definitely tell her mom.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
<td>List 2</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>如果 老李 想 念 谁 的话，他 一定</td>
<td>10</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Lao Li miss PERSON he definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉 他 弟弟。</td>
<td>will tell his brother</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Lao Li misses someone/anyone, he will definitely tell his brother.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>如果 小赵 反对 谁 的话，他 一定</td>
<td>31</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Xiao Zhao dislike PERSON he definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉 他 女朋友。</td>
<td>will tell his girlfriend</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Xiao Zhao dislikes someone/anyone, he will definitely tell his girlfriend.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>如果 明明 喜欢 谁 的话，他 一定</td>
<td>32</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Ming Ming like PERSON he definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉 他 姐姐。</td>
<td>will tell his sister</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Ming Ming likes someone/anyone, he will definitely tell his sister.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>如果 兰兰 害怕 谁 的话，她 一定</td>
<td>27</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Lan Lan fear PERSON she definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉 她 爸爸。</td>
<td>will tell her dad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Lan Lan is afraid of someone/anyone, she will definitely tell her dad.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List 1</td>
<td>List 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>rúguǒ xiaozhōu àishǎng xiaowáng dehùa tā yídǐng</td>
<td>41 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>如果 小周 爱上 小王 的话，她 一定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Xiao Zhou fall-in-love Xiao Wang she definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>huì gào sù tā méimèi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉她妹妹。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will tell her sister</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Xiao Zhou falls in love with Xiao Wang, she will definitely tell her sister.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>rúguǒ lǎo lǐ xiǎngniàn tā tài tì dài dehūa tā yídǐng</td>
<td>1 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>如果 老李 想念 他太太 的话，他 一定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Lao Li miss his wife he definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>huì gào sù tā nǚér</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉他女儿。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will tell his daughter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Lao Li misses his wife, he will definitely tell his daughter.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>rúguǒ hónghóng tāoyán xiǎoming dehūa tā yídǐng</td>
<td>48 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>如果 红红 讨厌 小明 的话，她 一定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Hong Hong dislike Xiao Ming she definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>huì gào sù tā bàba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉她爸爸。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will tell her dad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Hong Hong dislikes Xiao Ming, she will definitely tell her dad.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>rúguǒ xiaozhāo xǐhuānxǐdōu dehūa tā yídǐng</td>
<td>56 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>如果 小赵 喜欢 小李 的话，他 一定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Xiao Zhao like Xiao Li he definitely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>huì gào sù tā jiějiě</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>会 告诉他 姐姐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will tell his sister</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Xiao Zhao likes Xiao Li, he will definitely tell his sister.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
<td>List 2</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>如果红红害怕老师的话，她一定会告诉她的妈妈。</td>
<td>16</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘If Hong Hong is afraid of teachers, she will definitely tell her mom.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>老王为什么责怪小李吗？</td>
<td>34</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Lao Wang blame Xiao Li?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>小张为什么打他弟弟吗?</td>
<td>22</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Xiao Zhang beat his brother?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>红红为什么跟着她哥哥吗？</td>
<td>13</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Hong Hong follow her brother?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>小周为什么邀请老马吗？</td>
<td>17</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Xiao Zhou invite Lao Ma?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>小明为什么骗她妈妈吗？</td>
<td>50</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Xiao Ming deceive her mom?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>老张为什么责怪他女儿？</td>
<td>20</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Why did Lao Zhang blame his daughter?’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
<td>List 2</td>
<td></td>
</tr>
</tbody>
</table>
| F2 | 老赵为什么打他儿子？
Lao Zhao why beat his son
‘Why did Lao Zhao beat his son?’ | 2 | 59 |
| F3 | 红红为什么跟着她姐姐？
Hong Hong why follow her sister
‘Why did Hong Hong follow her sister?’ | 28 | 33 |
| F4 | 小吴为什么邀请老郑？
Xiao Wu why invite Lao Zheng
‘Why did Xiao Wu invite Lao Zheng?’ | 45 | 16 |
| F5 | 兰兰为什么骗她老师？
Lan Lan why deceive her teacher
‘Why did Lan Lan lie to her teacher?’ | 7 | 54 |
| G1 | 昨天老王买了五本书。
yesterday Lao Wang buyASP give CL book
‘Lao Wang bought five books yesterday.’ | 37 | 24 |
| G2 | 上个星期天他们看了一场电影。
last CL Sunday they see ASP one CL movies
‘They saw a movie last Sunday.’ | 35 | 26 |
| G3 | 今天上午小李吃了一个冰淇淋。
today morning Xiao Li eat ASP one CL ice cream
‘Xiao Li ate an ice cream this morning’ | 38 | 23 |
| G4 | 昨天晚上老张写了一篇文章。
yesterday evening LaoZhang write ASP one CL paper
‘Lao Zhang wrote a paper yesterday evening.’ | 12 | 49 |
<table>
<thead>
<tr>
<th>Index</th>
<th>Test Item</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5</td>
<td>刚才 小明 看到了 一只 猫。</td>
<td>57 4</td>
</tr>
<tr>
<td>G6</td>
<td>很多 学生 们 问了 这个 问题。</td>
<td>55 6</td>
</tr>
<tr>
<td>G7</td>
<td>小红 有 三个 姐姐 们。</td>
<td>51 10</td>
</tr>
<tr>
<td>G8</td>
<td>小周 交了很多 好朋友 们。</td>
<td>59 2</td>
</tr>
<tr>
<td>G9</td>
<td>两个 男孩 们 在 打 电话。</td>
<td>29 32</td>
</tr>
<tr>
<td>G10</td>
<td>很多 女孩 们都 爱 逛街。</td>
<td>25 36</td>
</tr>
<tr>
<td>G11</td>
<td>前 兰 兰 不 见 过 大熊猫。</td>
<td>9 52</td>
</tr>
<tr>
<td>G12</td>
<td>上周 老刘 不 看过 这 本书。</td>
<td>14 47</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>G13</td>
<td>昨天老王不碰见过老李。</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>yesterday Lao Wang NEG run into Lao Li</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Lao Wang didn’t run into Lao Li yesterday.’</td>
<td></td>
</tr>
<tr>
<td>G14</td>
<td>去年他们没有去过北京。</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>last year they NEG go ASP Beijing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘They didn’t go to Bei Jing last year.’</td>
<td></td>
</tr>
<tr>
<td>G15</td>
<td>今天老师没有去过办公室。</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>today teacher NEG go ASP office</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘The teacher didn’t go to his office today.’</td>
<td></td>
</tr>
<tr>
<td>G16</td>
<td>小李收到一封信。</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Xiao Li ASP receive one CL letter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Xiao Li is receiving a letter.’</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td>小周看见一个小孩。</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Xiao Zhou ASP look at one CL child</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Xiao Zhou is looking at a child.’</td>
<td></td>
</tr>
<tr>
<td>G18</td>
<td>小明写完一本书。</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Xiao Ming ASP write-finish one CL book</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Xiao Ming is finishing writing a book.’</td>
<td></td>
</tr>
<tr>
<td>G19</td>
<td>老张打破一只茶杯。</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Lao Zhang ASP hit-broken one CL tea cup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Lao Zhang is breaking a tea cup.’</td>
<td></td>
</tr>
<tr>
<td>G20</td>
<td>小赵买到那本字典。</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Xiao Zhao ASP buy-get that CL dictionary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Xiao Zhao is buying that dictionary.’</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List 1</td>
</tr>
<tr>
<td>G21</td>
<td>* 小明学习在图书馆。Xiao Ming study at library.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>‘Xiao Ming is studying/studied at the library.’</td>
<td>43</td>
</tr>
<tr>
<td>G22</td>
<td>* 学生们画画在教室。student PL draw picture in classroom</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>‘Students are drawing/drew pictures in the classroom.’</td>
<td>57</td>
</tr>
<tr>
<td>G23</td>
<td>* 我们吃饭在饭馆。we eat dinner in restaurant.</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>‘We are having/had dinner in a restaurant.’</td>
<td>22</td>
</tr>
<tr>
<td>G24</td>
<td>* 我学习中文在北京。I learn Chinese in Beijing.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>‘I learn Chinese in Bei Jing.’</td>
<td>12</td>
</tr>
<tr>
<td>G25</td>
<td>* 孩子们踢足球在公园里。child PL kick football in park</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>‘The children are playing football in a park.’</td>
<td>28</td>
</tr>
<tr>
<td>G26</td>
<td>* 我睡觉了五个小时。I sleep ASP five CL hour.</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>‘I slept for five hours.’</td>
<td>8</td>
</tr>
<tr>
<td>G27</td>
<td>* 他们考试了两个小时。they have-exam ASP two CL hour.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>‘They had an exam for two hours.’</td>
<td>56</td>
</tr>
<tr>
<td>G28</td>
<td>* 老周吃饭了二十分钟。Lao Zhou eat meal ASP twenty minute</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>‘Lao Zhou ate for twenty minutes.’</td>
<td>21</td>
</tr>
<tr>
<td>Index</td>
<td>Test Item</td>
<td>Item No.</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>List 1</td>
<td>List 2</td>
</tr>
</tbody>
</table>
| G29 | xīnghǎi tán gōngqín le zhōng gè zǒoshang
little girl play piano ASP whole CL morning
‘The little played the piano for the whole morning.’| 30 | 31 |
| G30 | lǎowáng kàn shū le zhōng gè wǎnshang
Lao Wang read book ASP whole CL evening
‘Lao Wang read a book for the whole evening.’| 60 | 1 |
REFERENCES

Orfitelli, R., & Grüter, T. (In prep). Re-examining the role of transfer in adult second language comprehension of null subjects. [Ms., University of California at Los Angeles & University of Hawai‘i].

