REDUCING CYBER VICTIMIZATION THROUGH HOME AND SCHOOL PARTNERSHIPS:
THE EFFECTS OF A CYBER SAFETY WORKSHOP ON PARENT AND EDUCATOR PERCEPTIONS OF SELF-EFFICACY AND ATTITUDES TOWARD FAMILY-SCHOOL COLLABORATION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI’I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

EDUCATIONAL PSYCHOLOGY

MAY 2014

By

Lauren K. Mark

Dissertation Committee:

Katherine Ratcliffe, Chairperson
Seongah Im
Thanh Truc Nguyen
Michael Salzman
Lois Yamauchi
Ernestine Enomoto
DEDICATION

I dedicate this dissertation to my grandparents, who believed in hard work and perseverance. Because of their sacrifices, higher education was possible for all of their grandchildren.
ACKNOWLEDGEMENTS

I would like to thank the members of my dissertation committee for their guidance and wisdom. You have all helped to mold me into a better writer, researcher, educator, critical thinker, and lifelong learner. I am especially thankful to my dissertation chair, Katherine Ratcliffe for her helpful feedback and continuous encouragement through the many ups and downs of this long dissertation process. I am also very grateful to Truc Nguyen for being a wonderful mentor who helped me every step of the way, and opened new doors for me, some of which I never even knew existed! Without the help of all of my committee members, this dissertation would not have been possible.

I would also like to express my infinite gratitude to my family—Mom, Dad, Allison, Andy, Kristen, Cory, Matix, Keegan, and Chaysen, my talented colleagues at the Curriculum Research & Development Group, and my dearest friends who provided their unwavering love and support throughout this amazing journey.
ABSTRACT

Schools around the United States have increased their use of digital technology in classrooms, but it remains uncertain if students of the 21st century are knowledgeable of how to use these digital tools safely, ethically, and responsibly. Similarly, many adults are not up-to-speed with the changing technological developments of this century and may not be prepared to discuss cyber safety and ethics issues with young technology users. With cyber victimization and other cyber dangers increasing among teenagers, it becomes more evident that it is important for both parents and educators to understand cyber safety and accept joint responsibility for keeping students safe on and offline. Using a mixed-methods design, I investigated the effects of a parent and educator workshop focused on cyber safety awareness, digital citizenship knowledge, teacher and parent cyber safety self-efficacy, and attitudes toward home and school collaboration around proactive cyber safety solutions. The results of this study provide insight into how parents and educators can increase their awareness of the cyber dangers that exist in a 21st century cyber world and how they can work together to reduce these dangers. This study highlights the value of creating collaborative school cyber safety action teams that can allow school stakeholders the opportunities to work together to keep all technology users safe. Cyber safety rules and digital citizenship are skills that must be taught. Not only do young technology users need to learn these 21st century skills, but parents and educators should be equipped with these skills as well.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

CHAPTER 1: INTRODUCTION .. 1

 Background of the Problem .. 1

 Statement of the Problem: Cyber Victimization ... 3

 Adult Perceptions of Cyber Victimization ... 7

 Purpose of the Study .. 8

 Scholarly significance ... 9

 Why research adult perspectives, rather than student perspectives? 10

Theoretical Framework ... 10

Home, School, and Community Partnerships ... 11

Parent, Family, and Teacher Efficacy ... 13

 Cyber ethics and digital citizenship self-efficacy as original constructs 14

Andragogy and Lifelong Learning ... 14

 Andragogy ... 15

 Life experiences are valuable resources .. 16

 Professional development .. 16

 Lifelong learning in the 21st century .. 17

 Research Question ... 19

CHAPTER 2: REVIEW OF LITERATURE .. 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up Two – November 2013</td>
<td>52</td>
</tr>
<tr>
<td>Follow-up Three – December 2013</td>
<td>53</td>
</tr>
<tr>
<td>Instruments</td>
<td>53</td>
</tr>
<tr>
<td>The Intervention: The Cyber Safety Action Team Workshop</td>
<td>53</td>
</tr>
<tr>
<td>Workshop content</td>
<td>55</td>
</tr>
<tr>
<td>Procedure</td>
<td>57</td>
</tr>
<tr>
<td>Pre-test</td>
<td>57</td>
</tr>
<tr>
<td>Intervention – The Cyber Safety Action Workshop</td>
<td>57</td>
</tr>
<tr>
<td>Post-test</td>
<td>57</td>
</tr>
<tr>
<td>Follow-up communications for each school</td>
<td>57</td>
</tr>
<tr>
<td>Researcher Positionality</td>
<td>58</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>60</td>
</tr>
<tr>
<td>Quantitative data sources</td>
<td>60</td>
</tr>
<tr>
<td>Quantitative data analysis</td>
<td>60</td>
</tr>
<tr>
<td>Qualitative data sources</td>
<td>60</td>
</tr>
<tr>
<td>Qualitative data analysis</td>
<td>60</td>
</tr>
<tr>
<td>Open-ended survey responses</td>
<td>61</td>
</tr>
<tr>
<td>Follow-up communications</td>
<td>61</td>
</tr>
<tr>
<td>Existing documents</td>
<td>62</td>
</tr>
<tr>
<td>Minimizing Threats to Validity</td>
<td>62</td>
</tr>
<tr>
<td>CHAPTER 4: RESULTS</td>
<td>64</td>
</tr>
<tr>
<td>Construct One: Cyber Safety Awareness</td>
<td>67</td>
</tr>
<tr>
<td>Construct Two: Digital Citizenship Knowledge</td>
<td>69</td>
</tr>
</tbody>
</table>
Follow-up one – October 2013 ... 99
Challenges .. 101
Follow-up two – November 2013 ... 102
Follow-up three – December 2013 ... 103
Reflections .. 104
Case Three ... 105
School Description .. 105
Follow-up one – October 2013 ... 106
Follow-up two – November 2013 ... 106
Follow-up three – December 2013 ... 107
Reflections .. 108
CHAPTER 5: DISCUSSION .. 109
The Cyber Safety Workshop ... 109
Cyber safety awareness ... 109
Digital citizenship knowledge ... 109
Cyber safety self-efficacy ... 110
Perceptions of family-school collaboration .. 111
Teams vs. no teams .. 112
Parent and educator collaboration .. 112
Ethical expectations ... 113
Cyber Safety Action Teams on a Thought-Action Continuum 114
Levels of Commitment and Readiness for Change 118
Organizational Change .. 119
LIST OF TABLES

Table 2.1 The Nine Digital Citizenship Elements ...31
Table 3.1 Workshop Group I – Team Members ...48
Table 3.2 Workshop Group II – Team Members ...52
Table 4.1 Cyber Safety Awareness Total Mean Scores ...65
Table 4.2 Digital Citizenship Knowledge Total Mean Scores ...65
Table 4.3 Cyber Safety Self-Efficacy Total Mean Scores ...66
Table 4.4 Parent-Educator Collaboration Total Mean Scores ...67
Table 4.5 Ethical Expectations of Parents and Educators ..84
Table 4.6 Workshop Discussion Notes on Cyber Challenges and Goals86
Table 5.1 The Stages of Change Model in Relation to the Case Studies117
LIST OF FIGURES

Figure 1.1 Epstein’s overlapping spheres of influence model.................................12
Figure 4.1 Cyber safety awareness estimated marginal means A..............................68
Figure 4.2 Cyber safety awareness estimated marginal means B..............................69
Figure 4.3 Digital citizenship knowledge estimated marginal means A70
Figure 4.4 Digital citizenship knowledge estimated marginal means B......................71
Figure 4.5 Cyber self-efficacy estimated marginal means A.................................72
Figure 4.6 Cyber self-efficacy estimated marginal means B.................................73
Figure 4.7 Parent-educator collaboration estimated marginal means A74
Figure 4.8 Parent-educator collaboration estimated marginal means B75
CHAPTER 1
INTRODUCTION

We adults ought to be understanding and thinking about these coming-of-age behaviors on the web so we can help our kids navigate their new world.

(Prensky, 2004, p. 13)

Cyber safety starts with families – supported by teachers and law enforcement.

(Duque, 2011b)

Background of the Problem

Technology is continuously changing our world with the advent of quicker and more efficient means of communication, countless venues for self-expression, innovative methods for teaching and learning, and a constant stream of information available at our fingertips (Duque, 2011b; Prensky, 2001, 2004; Ribble & Bailey, 2007; U.S. Department of Health and Human Services, 2010). As a result of these positive advances on society, technological devices have become a mainstay in 21st century culture (David-Ferdon & Hertz, 2009). A 2011 Pew Internet & American Life Project survey revealed that technology ownership is at a high, especially among young technology users. Teenage cell phone ownership is up to 77%, where older teens ages 14 to 17 are more likely to own a cell phone (87%) compared to younger teens ages 12 and 13 (57%; Lenhart, 2012), and about one in four teens owns a smartphone, which has greater Internet capabilities than a standard cell phone.

With technology ownership on the rise, these seemingly safe technological tools have unintentionally created original avenues for people to harm others. Unethical and irresponsible uses of technology have increased, oftentimes leading to undesirable results.
One such negative consequence, and an increasingly well-known problem among middle and high school students is cyber victimization (or cyber bullying)—the continuous and deliberate act of harassment, embarrassment, or intimidation via digital communication devices (e.g., computer, tablet, cellular phone, etc.) (Belsey, 2008; Patchin & Hinduja, 2006; Tokunaga, 2010; Willard, 2006). Cooper, McLoughlin, and Campbell (2000) stated that it is the combination of accessibility, affordability, and anonymity of online usage that has altered motivations for using digital devices, and increased the possibilities for inappropriate digital behavior.

Many people tend to blame the accessibility and affordability of technology, as well as the ability for users to hide behind screen names and avatars (online personas) for the unfortunate outcomes resulting from cyber victimization (e.g., suicide; Armario, 2012; Collier, 2009; Hinduja & Patchin, 2010). Yet, the technology itself does not necessarily warrant these attacks (Duque, 2011a). Placing blame on the technological tools for cyber misconduct does not obscure the fact that people are controlling these devices.

While it is important to understand if young technology users are knowledgeable and aware of safe, ethical, and responsible ways of using technology, it is also of great importance to understand the perspectives of the adults who allow these devices to be available to youth. Especially at a time when schools around the U.S. are embarking on one-to-one device initiatives, where classrooms and sometimes entire student bodies are receiving school-issued technological devices, it is of utmost concern for parents and educators to be aware of their specific roles and responsibilities when it comes to putting such tools in the hands of young students (Keengwe, Schnellert, & Mills, 2012; Koehler
& Mishra, 2009; Mueller & Wood, 2012; Shapley, Sheehan, Maloney, & Caranikas-Walker, 2010; Weston & Bain, 2010). As both Internet access and technological devices become more available to the younger generation, the need for proper cyber safety and digital citizenship education becomes a greater necessity (McAfee, 2010). Thus, understanding how parents and educators perceive cyber safety and ethics is important when assessing if these adults are prepared to educate children about these issues and how willing they are to partner with one another to keep children safe.

Statement of the Problem: Cyber Victimization

Posting hurtful rumors about a classmate in an online chat room; forwarding a sexually provocative digital photo of a girl to others; sending cruel text messages; or using a friend’s email account to impersonate him as a joke are only a few examples of what cyber bullies have done to hurt their victims (U.S. Department of Health and Human Services, 2010). Cyber victimization is a social problem that continues to rise in middle and high schools across the U.S. (Armario, 2012; Brydolf, 2007; Mark & Ratliffe, 2011; Mason, 2008). With increased access to digital technology, cyber victimization has become a quick and easy way for teenagers to spread rumors, tease, harass, and embarrass others (U.S. Department of Health and Human Services, 2010; Willard, 2006, 2008). Cyber victimization primarily involves name-calling, threats, online impersonation, and social isolation and exclusion through various digital mediums, such as email, social networking websites (e.g., Facebook, Twitter, Instagram), online chat rooms, and cell phone text and picture messaging (David-Ferdon & Hertz, 2009; Willard, 2006; 2008).
Some researchers have categorized a specific form of sexting as a type of cyber victimization, known as sext bullying. This type of bullying occurs when a person or group of people solicit sexually explicit images from a “victim” through harassment or coercion, and digitally disseminate those materials with the purposeful intent to humiliate, harm, or threaten that person (Mitchell, Finkelhor, Jones, & Wolak, 2012; O’Keeffe, 2010). There are other various forms of sexting, yet the specific acts of pressuring someone to send private sexual material and/or subsequently forwarding that material to others are what have led researchers to consider these acts forms of cyber victimization.

Consistent with the conclusions of Cooper et al. (2000), Duque (2011a) described four main features of cyber victimization that make this problem difficult to detect and prevent: (a) the anonymity of the bully, (b) the breadth of global communication, (c) easy accessibility, and (d) digital permanence. Cyber bullies can usually go unidentified when tormenting their victims, as their tactics are often subtle and covert (Beran & Li, 2005; Limber, Kowalski, & Agatston, 2008; Willard, 2008). They also have the ability to inflict harm on their victims using fast digital mediums that can reach a wide global audience (Beran & Li, 2005), and once someone posts something online, it is very difficult for that information to be erased or retrieved by its creator (Duque, 2011b).

In the last decade, the media has covered various stories of teenage suicides presumably related to cyber victimization, a phenomenon that Hinduja and Patchin (2010) have termed cyberbullicide. Ryan Halligan, Megan Meier, Tyler Clementi, Phoebe Prince, and Rebecca Sedwick are only a few of the high-profile cases involving teens who took their lives with cyber victimization as a contributing factor (Dretzin &
Maggio, 2008; Friedman, 2010; Keen, 2008; Kennedy, 2010; Martinez, 2013; Tresniowski, 2008). Armario (2012) reported that the number of U.S. suicides of youth ages 5-18 increased from 1,231 to 1,344 in the 2008 calendar year. While a direct cause and effect relationship has not been confirmed between teenage suicides and cyber victimization, Hinduja and Patchin (2010) found that teens involved in traditional, face-to-face bullying and/or cyber victimization, as either the victim or offender, had significantly increased suicidal ideation than teens not involved in any form of bullying. They also found that victims of cyber victimization were twice as likely to have attempted suicide compared to those who had not experienced cyber victimization. As a result, researchers are urging adults to pay more attention to the serious implications of cyber victimization (Armario, 2012; Hinduja & Patchin, 2010).

The most recent cyber victimization statistics from the 2011 Youth Risk Behavior Survey revealed that 16.2% of teenage students in grades 9-12 have been cyber victimized during the previous year (Centers for Disease Control and Prevention, 2012). Of the 15,425 high school students surveyed, 22.1% of females and 10.8% of males reported having been cyber victimized. These recent statistics were lower than previous cyber victimization findings. From a meta-analysis of 27 peer-reviewed cyber victimization articles, Patchin and Hinduja (2012) provided a range of 18-40% (average of 27%) of youth, ages 13-17 who reported being cyber victims. One study suggested that up to 72% of U.S. students have been cyber victimized (Juvonen & Gross, 2008). The differences in data collection tools and methodologies of these various studies could possibly explain the vast differences in cyber victimization statistics (Patchin & Hinduja, 2012; Tokunaga, 2010).
Despite the discrepancies in the number of cyber victimization cases, David-Ferdon and Hertz (2009) reported that the number of cyber victimization incidents continues to be fewer than the number of face-to-face bullying incidents. However, research has shown that there is a correlation between face-to-face and cyber bullying (Kowalski, Morgan, & Limber, 2012). Actual cases covered in the media demonstrate that face-to-face bullying and cyber victimization have the potential to switch from one to the other in either direction (Jablon, Chang, & Dalton, 2012). Cyber victimization has the potential to extend beyond the cyber world into the physical world, where feuds originating with threats on a screen can become physically violent when the parties involved interact face-to-face. For example, in February 2012 Joanna Ramos, a 10-year-old fifth-grader from Long Beach, California died as a result of a physical altercation with an 11-year-old classmate. Reports later stated that the physical fight between the two girls stemmed from a text war (known as flaming; Willard, 2005) a few days prior, where heated words between the girls were exchanged via cell phone (Jablon, Chang, & Dalton, 2012).

The current events highlighting cyber victimization incidents have students, teachers, and parents searching for solutions to this problem. Oxley (2010) stated that it has put our societies in a predicament where we are “forever playing catch-up with 20th century solutions often applied to 21st century problems” (p. 1). The intergenerational digital divide and insufficient understanding from all stakeholders may be contributing to a lack of cohesion between all parties.

In a study by Mark and Ratliffe (2011), only 8% of student participants (n = 8) reported telling an adult if they were involved in a cyber victimization situation. They
found that many students were not confident that adults were knowledgeable or capable of preventing cyber victimization, nor did students believe that their parents and school faculty were aware of the extent of cyber victimization occurring among the students at their school. Some parents still do not believe cyber victimization is a serious problem requiring much adult attention, and often fail to report incidents (Beran & Li, 2005; Keith & Martin, 2005; Li, 2005; Pepler & Craig, 2000; Willard, 2005). Because of this, some parents and educators unintentionally contribute to cyber victimization by ignoring it or encouraging students to resolve the issues themselves (Pepler & Craig, 2000).

Adult Perceptions of Cyber Victimization

Perceptions of cyber safety issues directly influence how adults choose to intercede and discipline children for misusing technology (Juvonen & Gross, 2008). For example, if parents of a cyber victim see cyber victimization as an immediate online danger, they may be quicker to intervene. The same is true for educators—if administrators and teachers view cyber victimization as a threat to students, they are more likely to take action and seek out effective cyber safety strategies to help their students. Conversely, overprotective parents and teachers could take away a child’s technology privileges to avoid further online conflict. Yet, many cyber victimization experts say that taking away technology privileges is not only unhelpful in resolving the situation, but could create distrust between parents and children (U.S. Department of Health and Human Services, 2010; Willard, 2008).

Despite some adults who perceive bullying or any form of victimization as a “rite of passage” or a normal occurrence among today’s youth, a growing number of adults have recognized that cyber victimization is a problem among adolescents (Brydolf, 2007;
Wright, Burnham, Inman, & Ogorchock, 2009). In some U.S. states cyber victimization is now a crime (Hinduja & Patchin, 2013). Of the 49 American states that have bullying laws, 47 include the term “electronic harassment,” and 18 use the term “cyber bullying” and focus on issues unique to cyber victimization instead of relying on pre-existing harassment laws. In the state of Hawai‘i, a cyber victimization/cyber bullying bill was introduced to the Hawai‘i State Senate in January 2013, and the status is still pending (S. 525, 2013). However, on July 3, 2012, Hawai‘i legislature enacted a sexting law (S. 2222, 2012) that criminalizes the acts of producing, withholding, sending, and/or forwarding sexting materials of a minor.

While positive legal steps are being made as a result of increased adult awareness of cyber victimization and other cyber issues, these laws do not address the issue of who is ultimately responsible for educating students about cyber safety and proper cyber ethics. Researchers have noted that many adults desire to protect children from cyber dangers, but most of those adults are not fully knowledgeable about cyber safety (Mason, 2008; Nguyen, 2011). Parents have reported not knowing how to discuss digital literacy, cyber safety, and/or cyber ethics with their children, and have consequently left the educating up to teachers who may or may not be equipped to teach cyber safety themselves (Duque, 2011b; Villano, 2008). Conversely, school faculty often believe that this type of education should be left up to parents, since cyber victimization is often generated outside of school (Nguyen, Mark, & Liebengood, 2011; Willard, 2006).

Purpose of the Study

This study examined the effects of a parent and educator cyber safety workshop focused on cyber awareness, cyber ethics, a curriculum known as *Digital Citizenship*, and
parent-school partnerships around cyber safety issues. The significant roles parents and educators play in cyber victimization prevention were highlighted through discussion activities in the workshop. In addition, participants were guided toward creating specific, cyber safety-related goals and objectives to create school-wide cyber safety action plans.

Adults have the responsibility to be consistent models of appropriate behavior, both on and offline (Baum, 2005). However, many parents and educators vary in their own knowledge and understanding of technology, and of how to use it safely and responsibly. Research on the perspectives and perceived self-efficacy of parents and educators around the topic of cyber victimization is crucial to understanding how these stakeholders can successfully work together to prevent and handle cyber victimization.

Scholarly significance. It is not uncommon for parents and educators to collaborate to improve student academic achievement and social behavior (Deslandes & Bertrand, 2005; Epstein, 1995; Moll, Amanti, Neff, & Gonzalez, 1992; Simon, Salinas, Epstein, & Sanders, 1998; Sheldon & Epstein, 2002). Yet, few empirical studies have examined how families and schools can collaborate around cyber safety and digital citizenship education, or parent and educator perceived self-efficacy in teaching children about these topics. Partnerships between parents and school faculty are a necessary step in cyber safety education. The cyber safety workshop could provide a much needed opportunity for school stakeholders to gather together to learn about and discuss cyber issues, like cyber victimization, and collaborate on ideas of how schools could partner with parents and the community to create and maintain safe school environments. The findings of this study could also inform families and schools about how to work together when confronted with challenging cyber situations.
Why research adult perspectives, rather than student perspectives? Cyber ethics is not an inherent understanding that children are naturally born with. That is why it falls to adults to model appropriate technology use and to help children make smarter daily choices when using digital devices. Like a parent allowing their teenage child to drive independently for the very first time, or a teacher scaffolding classroom lessons so students can succeed after graduation, adults in today’s “wired” society must prepare youths to be independent and unsupervised technology users. However, because many adults may or may not have experiences dealing with cyber issues, parents and educators must take a proactive approach in learning current technological trends, becoming versed in the fundamental tenets of cyber devices, and modeling basic cyber safety strategies.

Many parents and educators do not agree as to how to handle certain cyber situations such as misuse of technology by minors (Shariff, 2008). Adults may also have limited prior knowledge and experience when dealing with cyber victimization (Collier, 2012; Nguyen, 2011), further adding to the problem. It is necessary then, to investigate parent and educator perspectives around current cyber issues to understand how adults perceive this problem and their attitudes regarding finding viable solutions.

Theoretical Framework

The theories that form the foundation for this study include Epstein’s theory on family, school, and community partnerships, Bandura’s concept of self-efficacy from his social cognitive theory, and various theories of adult, lifelong learning in light of professional development. Cyber safety and digital citizenship education require a shared responsibility between parents and educators, and a cyber safety workshop could be a possible solution to bridge certain gaps between the home and school. Bandura’s theory
of self-efficacy in the context of cyber safety education can support the need for adults to have confidence in teaching and modeling cyber safety and digital citizenship to others. Furthermore, the concepts of lifelong learning in the 21st century could provide the necessary foundation for developing an effective cyber safety professional development workshop that integrates both Epstein’s and Bandura’s theories.

Home, School, and Community Partnerships

Research has revealed that the home, school, and community should be extensions of one another (Epstein, 1987; Sheldon & Epstein, 2002). In the model of overlapping spheres of influence, Epstein (1987) illustrated the notion of the home, school, and community as support systems for students’ growth and overall success (Figure 1.1). This model, based on Bronfenbrenner’s (1979) ecological theory, demonstrates the importance of all three groups working collectively with one other, rather than acting as independent entities. Research has found that these seemingly separate cultures of parents, educators, and the community should not be seen as distinct groups, as they have demonstrated greater influence on student behavior when working in collaboration (Moll, Amanti, Neff, & Gonzalez, 1992; Simon, Salinas, Epstein, & Sanders, 1998; Sheldon & Epstein, 2002).

Epstein (1995) posited that school, family, and community partnerships are possible when people from different groups recognize that they share common interests, goals, and responsibilities for children. When this realization occurs, members of each group are better equipped to work together to create positive changes and better opportunities for students. Parent and school partnerships have the potential to increase not only academic success, but student behavior and overall school climate as well.
Cyber safety research has emphasized the importance of parents and educators working together to educate youth about ethical and respectful ways to use technology (Ash, 2008; Mason, 2008; Ribble & Bailey, 2007). Adults should be consistent in setting appropriate boundaries for students both in and out of schools (Sheldon & Epstein, 2002). Because cyber victimization often originates off campus (Englander, 2012; Willard & Wietecha, 2007), consistent cyber safety rules should be enforced by parents, educators, and other adults wherever technology is accessible (Baum, 2005; Mason, 2008; Ribble &
Consistent cyber safety rules at home and school, in addition to open communication between parents and educators can lead to proactive cyber safety solutions. Training opportunities for adults may help those who are not knowledgeable about cyber safety rules gain knowledge and form partnerships between parents and educators.

Parent, Family, and Teacher Efficacy

Self-efficacy, a concept derived from Bandura’s (1977) social learning theory, is defined as the belief in one’s abilities in a specific situation. Self-efficacy has been linked to a person’s deep, core values, where those values have the potential to drive decision-making and behavior (Heimlich & Ardoin, 2008). Kidder (1995) and Enomoto and Kramer (2007) believed that all decisions are value-laden and that people tend to behave in ways that are consistent with their beliefs.

Parental-efficacy has been defined as a parent’s belief that he or she is capable of positively influencing his or her child’s growth (Hoover-Dempsey, Bassler, and Brissie, 1992). Beyond the concept of parental-efficacy, Bandura, Caprara, Barbaranelli, Regalia, and Scabini (2011) discussed the concept of family efficacy. Built upon Bandura’s original self-efficacy concept, Bandura et al. found that the strength of relationships between family members and the quality of family life were ultimately influenced by *collective family efficacy*, or the belief in one’s ability to create successful bonds within a family. Bandura et al. posited that family members do not live their lives autonomously, and that many of the successes of a family are dependent on each member contributing (in varying degrees) to the family’s overall effort.
For an educator to have positive teacher-efficacy, a teacher needs to believe that he or she is capable of teaching every student, regardless of the cognitive, behavioral, social, or emotional level of the student (Woolfolk, 2011; Woolfolk-Hoy & Davis, 2006). In regard to cyber victimization, self-efficacy of parents and teachers could be measured in their perceptions of their abilities to handle cyber victimization situations, to monitor the uses of technology, and to empower and teach cyber safety to young technology users.

Cyber ethics and digital citizenship self-efficacy as original constructs. Little is known about self-efficacy around cyber ethics and digital citizenship education, as this type of self-efficacy in empirical research is relatively unknown. Currently, cyber safety and digital citizenship education are topics that are just starting to draw interest in schools. Numerous cyber victimization prevention programs and curriculum packages have been marketed to the public, but very little evidence of the effectiveness of those materials or programs exists (Donlin, 2012). Parent and educator self-efficacy around the topic of cyber ethics could be original constructs that have yet to be measured. They may be related to overall parental, family, or teacher efficacy, however no research has been done to confirm this.

Andragogy and Lifelong Learning

As people age, they do not stop learning (Trotter, 2006). Learning is a continuous lifelong process. Yet, lifelong learning is still not a widely understood concept (Lamb, 2011). Adult learners vary greatly in their backgrounds, life experiences, attitudes, motivations, and learning styles (Conlan, Grabowski, & Smith, 2003), which makes finding a comprehensive theory that unifies the concepts of adult learning quite difficult.
Before the 1970s, education was not considered a lifelong process, and it was not until then that adults were finally recognized as having the potential to acquire knowledge and continue learning, exploring, and inquiring throughout their lives (Fullan, 1995, 1996; Knowles, 1970, 1980). However, adult learners differ from child learners in significant ways (Knowles, 1970, 1980; McGrath, 2009; Taylor & Kroth, 2009; Trotter, 2006). For example, adults provide their own resources in the form of life experiences and have a wealth of prior knowledge that can help them independently guide their own learning (Marquardt & Waddill, 2004).

Andragogy. The three most important ideas of Knowles’ (1970) adragogical (adult learning) model of assumptions are that (a) adult education needs to be learner centered, (b) adult learners need to be able to take control of their own learning (self-directed), and (c) life experiences are valuable resources for adult learners. In traditional pedagogy, young children look to the teacher to provide guidance in certain learning situations. The teacher usually leads the class and makes key decisions, the information comes from the teacher or textbooks, students are less independent, and motivation is more extrinsic than intrinsic (Knowles, 1996). As children get older, they gain more autonomy and become more independent as self-directed learners. This reflects the process of *maturation* (Merriam, 2001), and relates to Vygotsky’s (1978) concept of the *zone of proximal development*—after time, and with the scaffolded support of a more knowledgeable person, students are able to move away from a dependency on an instructor to an increased state of independence and self-reliance. In the theory of andragogy, there is a great sense of autonomy and an expectation for adult learners to be responsible for their own learning. Adult students are assumed to be self-directed
learners. Therefore, the teacher is simply a facilitator who guides students through a learning process rather than choosing what will be discussed and telling students what to do and how to do it (Henschke, 2011).

Life experiences are valuable resources. The greatest influences on how adults learn are prior knowledge and experiences (Conlan et al., 2003; Knowles, 1970, 1980, 1990, 1996). In a learning environment, adults have a resource that does not require searching for information in a book or on the Internet. Adults have the ability to access their own experiences and knowledge in order to make sense of what they are learning. Henschke (2011) observed that cooperative learning is a highlight of andragogy, and adult peers (at times even more so than the facilitator) are critical in assisting one another through the learning process. Adults as lifelong learners have the ability to make lasting connections between old and new experiences and knowledge.

Professional development. Adult learning opportunities often take the form of professional development (PD) seminars, workshops, or college/university courses (Kose & Lim, 2011). It is the willingness of a PD participant that can make or break a person’s learning experience. One of Knowles’ (1970) assumptions was the readiness to learn, and if adult participants willingly volunteer their time and effort to learn about an issue that is meaningful to them, it can influence the learning they gain from a PD experience. Danter (2005) and Cobern, Porter, Leeming, and Dwyer (1995) found that PD workshops for educators were deemed most successful if learners strongly believed in the workshop mission, and were ready and committed to act upon what they had learned from the workshop.
Conlan et al. (2003) stated that PDs should be adult-learner focused and should provide learners with knowledge that can transform their understanding rather than just telling them what they need to know. The facilitation of a PD workshop, course, or program should promote communication between participants, critical reflection, and the learning of quality information.

In a professional development setting, similar to experiential learning, Knowles suggested that adult learning requires the use of concrete experiences, continuous advising from a mentor or facilitator who can encourage learners to accomplish self-made goals, and the use of ongoing support and feedback during, as well as after the learning period (Trotter, 2006). Reflection and inquiry are also important aspects of a PD process. Trotter (2006) identified self-reflection as a crucial aspect in a PD program. She also believed that creating PD activities that encourage adults to tap into their current knowledge contributes greatly to a learning experience.

Lifelong learning in the 21st century. In a changing world that has become more reliant on technology, Isenberg (2007) saw a need to combine the theories of andragogy and Internet learning. To unify the theories of adult learning with the development of 21st century skills, Isenberg specifically focused on the following ideas of lifelong learning: learning to know, learning to do, learning to live, learning to change, and learning for sustainability (Henschke, 2011). These pillars of lifelong learning were taken from the concept of andragogy and adapted to conform to the constantly evolving nature of the Internet (Isenberg, 2007). Isenberg posited that because of the rapid pace of technology development, the success of a lifelong learner is dependent on his or her adaptability to different devices and medias.
To recognize oneself as a lifelong learner is important in adult education (Lamb, 2011; Merriam, 2001). According to Lamb, the concept of lifelong learning is not as familiar to the general public as one would think. Many adults still hold the perspective that learning mainly occurs in traditional classroom settings with a group of young students (McGrath, 2009). Lifelong learning requires adults to be open and flexible to change, and they should also have a commitment to the learning process (Lamb, 2011). Lamb believed that, especially in a time when technology is constantly evolving, it would be a disservice to oneself to stop learning upon reaching a certain age. Like Knowles’ (1970) andragogical assumption of adults using prior experiences as a valuable resource, Lamb expanded on Knowles’ ideas to add the importance of critical reflection. He felt that in terms of lifelong learning, adult learners are required to look inward to critically assess their prior assumptions, life experiences, and conceptions that can sometimes interfere with learning new things.

According to the theory of andragogy, a facilitator of learning does not simply present information; he or she guides the learning process by asking questions to start a dialogue, and can actively participate with the learners in the activities (Knowles, 1990; McGrath, 2009; Taylor & Kroth, 2009). Because the facilitator is thought to possess only some of the knowledge, adult learners become accountable to bring their own wealth of knowledge and personal experiences to the learning situation (McGrath, 2009). It was with consideration of these adult learning theories that the workshop in the current study was developed. Participants and the facilitator were treated as equals who brought with them a breadth of prior knowledge and life experiences that could drive the workshop
discussions and ultimately support, encourage, and inspire other participants in the collective effort to promote cyber safety.

Research Question

This study focused on understanding the effects of a parent and educator cyber safety workshop. The research question was as follows:

How will a cyber safety workshop for parents and educators enhance participants’ (a) awareness and knowledge of current cyber safety issues; (b) digital citizenship knowledge; (c) self-efficacy in addressing cyber victimization and digital citizenship education; (d) attitudes about parent and educator collaboration to address cyber behavior; and (e) collaborative efforts in goal setting and creating a cyber safety action team?
CHAPTER 2
REVIEW OF LITERATURE

The Internet has created the greatest generation gap since the advent of rock-and-roll.

(Dretzin & Maggio, 2008)

The Digital Divide: A Gap in Digital Generations

Digital natives, immigrants, and settlers. Prensky (2001) identified two types of technology users, digital natives and digital immigrants. He described digital natives as people who were born after 1980 and spend a significant amount of time engaging and experimenting with various digital devices (Prensky, 2001). Prensky posed that technology skills are inherent among digital natives, where using technology to complete tasks and exploring digital devices are automatic processes. Digital natives may instinctively know what keys to press on a laptop to troubleshoot a problem or can easily figure out the functions of a digital device through simple trial and error. These savvy technology users have created new ways of expressing themselves, communicating with others, and sharing information online. Many young technology users have also been found to associate their “real identities” with their “virtual identities,” indicating that digital natives have a more difficult time differentiating their lives apart from technology (Mason, 2008). While adults may see their online and offline personas separately, for teens, “social media is an extension of life” (Wiseman, 2013, p. 1).

On the other end of the spectrum, a digital immigrant is someone born before the 1980’s. In general, digital immigrants are less technologically inclined than digital natives, and may possess technological capabilities that vary on a wide continuum of
digital competencies (Prensky, 2001). Most digital immigrants use technology out of necessity (e.g., to adapt to changing technological requirements in a work environment or to communicate briefly with others), and oftentimes older, less tech savvy adults are unaware of the multitude of cyber activities in which young digital natives participate (Prensky, 2004). Palfrey and Gasser (2008) later created a sub-set of technology users called the *digital settlers*. Digital settlers are members of the digital immigrant generation, yet have successfully adapted to using new technologies and do not need much effort to learn the new skills.

Many disparities exist between the generations of tech-savvy children, and less technologically inclined adults (Brydolf, 2007; Mason, 2008; Ribble & Bailey, 2007). Prensky (2004) posited that both digital natives and immigrants may use the same technological tools, but their motivations for doing so and the ways that they use the technologies differ. Also, parents and teachers often lack the understanding of how to use certain types of technology, are less aware of the severity and frequency of cyber victimization, and are not entirely equipped with cyber victimization prevention strategies since these digital experiences may not have existed in their own childhoods (Beale & Hall, 2007).

However, it is important to note that a common misconception that many digital immigrants have is that youth of the digital native generation know more about technology and how to use the Internet (DeFranco, 2011). While the younger generation may be able to navigate the Internet with greater apparent ease, more than 56% of teens were found to have posted personally identifiable and sensitive information on the Internet in 2010 (McAfee, 2010). In the same study, 27% of teens using the Internet
reported unintentionally infecting their home computer with a virus and 14% admitted to sharing their private computer and online passwords with friends. These findings demonstrate that teens may know how to operate technology, but may lack the necessary common sense to utilize it wisely and cautiously. Therefore, while technology may seem foreign to some adults, their previous “real-life” experiences offline could give them a slight advantage over the younger generation when it comes to making smarter online choices.

Cyber Victimization Among Digital Natives

Researchers have found that digital natives, more so than older generations of technology users, rely heavily on digital communication tools as *social lifelines* or means to stay connected within their social circles (Belsey, 2008; Leander, 2007; Stover, 2006; Strom & Strom, 2005; Subrahmanyam, Smahel, & Greenfield, 2006). This reliance on digital devices, in addition to the blurred lines between real and virtual life (Mason, 2008), are concepts that many digital immigrants have a difficult time understanding (Prensky, 2001). Adults may wonder why kids cannot just turn their phones off if they are being cyber bullied; why they do not delete their Facebook account if rumors are being posted about them; or why it is so difficult for them to ignore what is being said online. For digital natives, the idea of turning off their cell phones, deleting an online account, or simply ignoring comments made about them in a public forum would be unthinkable options because it would require them to disconnect from their ever-present, online social circles.

In general, adolescent girls tend to be more interested in social status and relationships than boys of the same age (Casey-Cannon, Hayward, & Gowen, 2001).
Girls, who in general, tend to be the more social of the two genders, have been found to be more open and trusting online, thus making them more vulnerable to bullies and other predators (McAfee, 2010). In a McAfee (2010) study, researchers found that 43% of girls ages 16 and 17 admitted to chatting online with people they did not know, and reported that they were willing to share photos of themselves or describe their physical appearance to those strangers. Studies on face-to-face bullying have shown that girls are more involved in relational types of bullying of other females, which include gossiping, spreading rumors, and social exclusion (Casey-Cannon, Hayward, & Gowen, 2001; Goddard, 2008; Pellegrini, 2002). When it comes to electronic bullying, girls are victims or bullies at higher rates than their male counterparts (Centers for Disease Control and Prevention, 2012; Mark & Ratcliffe, 2011; Willard, 2008). Willard (2008) stated, that similar to face-to-face bullying, many times girls are more involved in cyber victimization because of either personal, social reasons or sexual relationships. Other reasons for cyber victimization include issues related to race, religion, physical appearance, and oftentimes, sexual orientation (Willard, 2008). Bullying has become more cunning, devious, and secretive with the use of digital devices for digital natives who understand how to manipulate technologies (Beran & Li, 2005).

Cyber victimization is more complex than face-to-face bullying because the harassment and victimization are no longer contained within a physical place like a schoolyard or cafeteria (Diamanduros, Downs, & Jenkins, 2008); bullies now have the ability to target their victims any hour of the day and anywhere digital communication can be accessed. With cyber victimization, the power of the bully lies in anonymity rather than physical strength (Shariff & Hoff, 2007; Stover, 2006; Strom & Strom, 2005;
When parents do not serve as appropriate role models for their child or provide proper supervision of online activities outside of school, school administrators and teachers are left with the task of disciplining and educating students about cyber safety issues (Donlin, 2012; Duque, 2011b; Englander, 2012; Villano, 2008). Especially with the current rigorous demands for the implementation of standards-based curriculum, school faculty and administrators have continued to find it difficult to make room for cyber safety education in their current teaching practices (Donlin, 2012), and have also faced challenges disciplining students for cyber victimization infractions when the cyber altercations originated off school grounds (Willard, 2006). Yet, schools have discovered that they do have legal rights to intervene and discipline students in cyber victimization incidents, even if altercations occurred outside of the school’s jurisdiction (Tinker v. Des Moines Independent Community School District, 1969). The Tinker Standard allows students the right to free speech, however schools can legally intervene if the speech interferes or disrupts class work or school proceedings. Educators may need to play an even larger role in cyber safety education as more schools around the nation start initiating one-to-one device programs.

Face-to-face bullying tends to peak in middle school (Milsom & Gallo, 2006), and generally decreases before students go to high school (Pellegrini, 2002). Yet cyber victimization has been shown to increase steadily throughout middle school into the early years of high school (Mark & Ratliffe, 2011). Similar to face-to-face bullying, cyber victimization has the potential to cause mental or emotional harm to victims. While no causal relationships were found, Willard (2008) reported that victims of cyber victimization were eight times more likely to report bringing a weapon to school. It was
also suggested that cyber victims are more likely to use alcohol and other drugs, receive punishments in school (e.g., detention or suspension), and be victims of face-to-face bullying than students who were not victimized (David-Ferdon & Hertz, 2009). David-Ferdon and Hertz (2009) stated that cyber victims are also more likely to report fewer parental controls at home, as well as poor parent-child relationships. Other negative consequences associated with cyber victimization include lower self-esteem and higher levels of depression in victims, as well as poor academic performance, school dropout, physical violence, and suicide (Tokunaga, 2010; Willard, 2006).

In a longitudinal bullying study that followed over 1,200 people from childhood (ages 11-13) to young adulthood (ages 19-26), Wolke, Copeland, Angold, and Costello (2013) found that bullying (cyber bullying included) could have long-term negative effects for those who are bullies, victims, or both. Four major findings of this study included the following: (a) bullying was most toxic for people who were both bullies and victims—bully-victims, (b) bullies were more likely to engage in illegal or risky behavior in adulthood, (c) as adults, victims tended to be more successful, but less physically and psychologically healthy than bullies, and (d) those who were involved in bullying as the bully, victim, or bully-victim, in general, were found to have less education and money, and less successful social relationships than those who had never experienced bullying. Wolke et al. concluded that while some adults may view childhood bullying as a “harmless rite of passage,” empirical data reveals that bullying has many adverse affects on people that can follow them throughout their lives (p. 11).

Nancy Willard, the director of the Embrace Civility in the Digital Age (formerly known as the Center for Safe and Responsible Internet Use), emphasized that only a
small percentage of students are actually involved in cyber victimization (Willard, 2011). The media often report the most extreme cases of cyber victimization, such as those resulting in death, and some research studies highlight exceptionally large statistical samples of cyber victims (up to 72% of teens, as cited in Juvonen & Gross, 2008). These sensationalized results have led some people to believe that cyber victimization occurs at much higher rates than it really does. Aftab, the founder of WiredSafety.org stated that cyber victimization was increasing around the nation at epidemic proportions (Whelan, 2011). Yet, the data in most empirical research challenge Aftab’s statement; it has been estimated that anywhere from 6%-40% of teens have experienced cyber victimization (David-Ferdon & Hertz, 2009; Hinduja & Patchin, 2009; Lenhart, Madden, Macgill, & Smith, 2007; Limber, Kowalski, & Agatston, 2008; Patchin & Hinduja, 2012; U.S. Center for Disease Control and Prevention, 2010; Ybarra & Mitchell, 2004). Willard (2011) stated that one helpful strategy to include in cyber safety education is to inform students that the majority of children and teens are not involved in cyber victimization and that many kids actually disapprove of this type of negative behavior. She said that knowing these facts could help students understand that cyber victimization behavior is unacceptable even among their peers.

Parental Controls and Parent-Child Relationships

Mason (2008) indicated that two important factors that contribute to cyber victimization are the lack of parental controls in monitoring their children’s technology use, and poor parent and child relationships. Few parents use monitoring or filtering software on their children’s computers (Mason, 2008; Ybarra & Mitchell, 2004). Fewer parents check up on their child regularly or sit with them while using digital
communication devices (Nguyen, Mark, & Liebengood, 2011; Odendaal, Malcolm, Savahl, & September, 2006; Ybarra & Mitchell, 2004). Willard (2005) found that many parents did not get involved in their child’s cyber activities, and if they did use filtering software on their children’s computers, parents were less involved due to a false sense of security.

In a McAfee (2010) study, 1,357 youth (ages 10-17-years of age) were surveyed on the types of online activities in which they participated, the frequency of these activities, and their levels of engagement in “risky” online behaviors. Key findings included that 56% of youth surveyed reported that their parents knew only some of the activities that they participated in online, 26% reported that their parents did not have any time to monitor their online activities, 32% said they would not tell their parents what they do online, 31% would change their online behavior if their parents were watching, and 56% said that they have purposely hidden their online activities from their parents (McAfee, 2010).

A majority of parents believe that they have positive relationships with their children. In general, parents tend to trust their children and believe that if their children were ever involved in cyber victimization, they would tell their parents or a trusted adult (Nguyen, Mark, & Liebengood, 2011). However, as reported by students, most children would not tell a parent or another adult if they had been cyber bullied (Mark & Ratliffe, 2011). Researchers found that up to 90% of cyber victims reported never having told their parents or another adult that they were cyber victimized (Juvonen & Gross, 2008; Patchin & Hinduja, 2006; Willard, 2002; Ybarra & Mitchell, 2004). In a study by Mark and Ratliffe (2011) many cyber victims reported that they avoided telling an adult about
their involvement in cyber victimization because parents and teachers in general, did not know enough about technology or the steps to resolve cyber victimization incidents effectively. Some students reported not telling an adult about their victimization because they were embarrassed or felt uncomfortable (Patchin & Hinduja, 2006; Ybarra & Mitchell, 2004); others stated that they did not want their computers or cell phones to be taken away (Mark & Ratliffe, 2011). Additional reasons included the fear that the adult would overreact, blame the child for doing something wrong, or make matters worse by interfering (Willard, 2008). These misperceptions and the lack of communication between students and adults, compounded with adults’ lack of understanding of the problem and resolution strategies, has highlighted a need for cyber safety and cyber ethics training not only for students, but for parents and educators as well.

Feller (2006) stated how customs in the home are often very different from school routines, which could explain why parents and educators see different sides of a child. Parents may not be as aware of cyber victimization conflicts as teachers, and usually see just the isolated behaviors of their own children. On school grounds, educators are exposed to larger populations of students and see a greater number of student interactions. Because of this, educators are usually more aware of student misconduct than parents (Feller, 2006). Students have also reported that they would rather talk to a teacher about a cyber victimization situation than their own parents (Mark & Ratliffe, 2011), further implying that they believe that parents are less informed about cyber problems. Marzano (2011b) stated that the strength of the relationship between teachers and students has a strong influence on how well a student does in the teacher’s class, as well as how the student perceives the teacher. Overall, in regard to student behavior
management, Marzano suggested that teachers should intentionally focus on building positive relationships with students. While not insinuating that teachers should know every detail of every student’s life, he believed that teachers need to cultivate a safe environment where students know that teachers are available to talk, and are there to support and advocate for them (Marzano, 2011b).

In addition to fewer student interactions viewed by parents, some parents hold the belief that their children are incapable of being involved in any type of negative behavior (Feller, 2006). Most parents want to believe that their child could never be involved in cyber victimization. In a survey conducted by the National Center for Health Statistics, 96% of parents thought that their children were well behaved both in school and at home (U.S. Department of Health and Human Services, 2010). Yet, researchers have noted that almost all students are involved in cyber victimization as bullies, victims, or bystanders. Bystanders are witnesses to cyber victimization who either help to protect the victim, join in the bullying, or passively ignore it (Cross, 2009; Entenman, Murnen, & Hendricks, 2005; Mason, 2008). A common misconception held by parents is that because only a small portion of students take part in cyber victimization or because their child is not involved directly, they do not need to share the responsibility of advocating for and supporting other students who may be cyber victims or bullies (Feller, 2006).

Digital Citizenship

According to Ribble and Bailey’s (2007) definition of a digital citizen, a *citizen* is a person who is a member of a society and shares the privileges and responsibilities to preserve and be a part of that society. By this definition, a citizen is allowed to both contribute to and benefit from that group. In the context of a present-day digital society,
technology users would thusly be labeled *digital citizens*. Digital citizenship is therefore described as, “the norms of appropriate, responsible behavior with regard to technology use” within the context of a digital community (Ribble & Bailey, 2007, p.10), and encompasses more than just teaching technology users to recognize cyber dangers and how to avoid them. Digital citizenship education focuses on: (a) the behavior and mindset of the technology users, (b) creating a safe environment for students to grow and thrive, (c) sharing ideas freely, and (d) how to be respectful of others and their property in cyber space (Ribble & Bailey, 2007; Villano, 2008).

Ribble and Bailey (2007) developed a curriculum to teach students about the digital world that focuses on the elements that make up digital citizenship (Table 2.1). These nine elements were created not as an exact template for educators, but as a guide to assist educators in organizing the broad topics that digital citizenship encompasses and to support them in addressing these topics with their students. However, the authors did not directly address adults’ understanding of digital citizenship and digital literacy, and whether they are aware of the cyber issues that currently exist. These issues directly affect the success of any curriculum addressing digital citizenship or cyber safety.
Table 2.1

The Nine Digital Citizenship Elements

<table>
<thead>
<tr>
<th>Digital Citizenship Elements</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Access</td>
<td>Full electronic participation in society</td>
</tr>
<tr>
<td>Digital Commerce</td>
<td>The buying and selling of goods online</td>
</tr>
<tr>
<td>Digital Communication</td>
<td>The electronic exchange of information</td>
</tr>
<tr>
<td>Digital Literacy</td>
<td>The capability to use digital technology and knowing when and how to use it</td>
</tr>
<tr>
<td>Digital Etiquette</td>
<td>The standards of conduct expected by other digital technology users</td>
</tr>
<tr>
<td>Digital Law</td>
<td>The legal rights and restrictions governing technology use</td>
</tr>
<tr>
<td>Digital Rights and Responsibilities</td>
<td>The privileges and freedoms extended to all digital technology users, and the behavioral expectations that come with them</td>
</tr>
<tr>
<td>Digital Health and Wellness</td>
<td>The elements of physical and psychological wellbeing related to digital technology use</td>
</tr>
<tr>
<td>Digital Security</td>
<td>The precautions that all technology users must take to guarantee their personal safety and the security of their network</td>
</tr>
</tbody>
</table>

Classroom teachers, counselors, and administrators play a large role in setting appropriate limits for students’ technology use within schools (Sheldon & Epstein, 2002). However, that is not to say that classroom teachers and administrators all agree when it comes to managing student behavior. In a study on behavior management at school, many teachers reported that they did not feel supported by their school’s administration when it came to managing student behavior (Marzano, 2011a). Conversely,
administrators at the same schools believed that teachers were shifting the blame for the deficiencies in their own classrooms. Marzano (2011a) stated that finger-pointing was not uncommon. Stauffer, Heath, Coyne, and Ferrin (2012) also found that some teachers do not believe that it is their responsibility to intervene in cyber victimization situations other than reporting the incidents to an administrator; completely handing over the problems to the administration. From this research, it was evident that differences in perspectives on cyber safety and behavior management exist at the school level. Yet, both studies concluded that especially because of these differences, both teachers and administrators needed to become more aware of these issues and share in the responsibility of managing student behavior. In accord, Baum (2005) suggested that educators take responsibility in setting the tone for students in school by modeling appropriate online behavior and by setting boundaries, ethical rules, and policies for computer use.

Although many cyber victimization cases originate off-campus and eventually make their way into the school environment (Willard, 2006), cyber safety and digital citizenship education is not only relegated to schools. Researchers agree that parents and guardians should be equally responsible for creating technology rules, modeling appropriate on and offline behavior, and educating students about proper cyber etiquette (Duque, 2011a, 2011b; Mark & Ratliffe, 2011; Nguyen, 2011; Nguyen, Mark, & Liebengood, 2011; Ribble & Bailey, 2007). Ribble and Bailey (2007) stated that in addition to educators, parents are responsible for educating their children about appropriate uses of technology. Villano (2008) and Duque (2011a, 2011b) have also argued that teaching students about ethical and responsible technology use should begin
in the home. Yet, many students are not receiving this type of guidance from their parents or caretakers (Donlin, 2012; Duque, 2011b; Englander, 2012; Villano, 2008).

Researchers have continuously asserted that cyber ethics education needs to extend beyond the student population to the adult population of parents and educators (Baum, 2005; Cross, 2009; Mark & Ratliffê, 2011; Nguyen, 2009, 2011; Ribble & Bailey, 2007, Villano, 2008). Diamanduros, Downs, and Jenkins (2008) stated that education and awareness are the first steps in cyber victimization prevention. Cyber safety awareness and digital citizenship education should not be challenges that educators or parents have to face alone. Partnerships between these two groups could offer effective solutions to reducing cyber problems (Mark & Ratliffê, 2011; Ribble & Bailey, 2007; U.S. Department of Health and Human Services, 2010; Villano, 2008).

Responsibility for Teaching Cyber Safety and Digital Citizenship

Willard (2008) stated that bystanders are a key component in reducing cyber victimization. Education must focus on bystander strategies that teach students how to be effective leaders among their peers. In general, educators and parents are not usually present when cyber victimization incidents occur, and it is often a friend who steps in to help resolve these situations (Willard, 2008). Davis and Nixon (2012) observed that peer bystanders have the potential to help cyber victims overcome their negative experiences by helping them mentally and emotionally shift toward a more positive perspective. A few successful peer actions that were found to help cyber victims included spending time with the victim, talking to them, encouraging them, and simply listening to them. Overall, the concerted effort to build and maintain positive social relationships among students
could be an effective way to reduce cyber victimization by creating a culture of caring, empathy, and respect.

According to Ribble and Bailey (2007), digital citizenship is a privilege that all parents, educators, students, and members of the community are entitled to. Yet, digital citizens should be held accountable to ensure that all technology users are using cyber devices appropriately and respectfully. If the majority of cyber victimization does not originate at school, those outside of school need to take responsibility. If cyber victimization cases end up on school grounds, those at school need to be held accountable as well. In the same vein, Marzano (2011a) stated that not only do students need to be accountable for their own behavior, as stakeholders within the school, they must also be equal participants in creating and enforcing classroom and school rules, procedures, and policies that target student achievement and behavior. Marzano added that many times students are not included in these policy-making processes, and that this is an issue that educators need to reassess (Marzano, 2011a).

Family and School Partnerships in Cyber Victimization Prevention

The role that adults play in a child’s life is very important. Adult behaviors are often mirrored by children (Bandura, 1977). Research supports the need for adults to model appropriate uses of digital devices for young technology users (Ribble & Bailey, 2007; Villano, 2008). Adults need to lead by example by creating and upholding proper technology rules and policies that the entire school community can follow (Cross, 2009; Ribble & Bailey, 2007; Villano, 2008).

From a behavioral perspective, in addition to academic success, parent and school partnerships have been found to improve student behavior, and reduce student aggression
and school violence (Sheldon & Epstein, 2002). Many researchers support parent and school partnerships, and have widely promoted the empowerment of students, educators, parents, and community members with knowledge of cyber victimization prevention strategies and appropriate response models for coping with cyber victimization both at home and in schools (Mark & Ratliffe, 2011; Willard, 2006). In addition, Willard (2006) highlighted the importance of educating cyber bullies and their parents about the negative consequences of bullying, as well as the effectiveness of parental monitoring and supervision of online activities.

Mark and Ratliffe (2011) agreed that awareness, education, empowerment, and partnerships between parents and schools all have the potential to keep students safe online and off. They also found that it is important to distinguish between adults’ awareness of cyber victimization from their knowledge of how to effectively handle those types of situations. Many times the problem with cyber victimization is not so much the lack of awareness as it is the ineffective strategies parents and educators have to deal with in different cyber bullying cases. Consistent communication between students, parents, and teachers, as well as ongoing cyber safety education is also needed, and all members of the school and community need to accept a larger responsibility to minimize and report cyber victimization incidents anonymously (Mark & Ratliffe, 2011).

Teacher and parent education. Ribble and Bailey (2007) stated that not only should students learn how to be digital citizens; parents and teachers need to learn and model ethical digital citizenship as well. In teacher and parent cyber safety training, emphasis should be placed on essential topics that can help adults understand the importance of creating ethical digital citizens. Those topics include the following: ethical
decision-making, modeling of appropriate technology use, general cyber safety
awareness, digital citizenship, school-wide policymaking, and school safety action teams.
If these partnerships are to happen, we must investigate parents’ and educators’
awareness of these concepts and how comfortable and prepared they feel in teaching
these concepts to young technology users.

The cyber safety action team—A professional learning community. A
professional learning community (PLC) is a collaborative group of school stakeholders
who have common, vested interests in education (DuFour, 2004). Members of the PLC
are important individuals who can contribute greatly to the overall improvement of a
school. Research has shown that when educators collectively participated in PLCs,
student learning and the quality of teaching increased as well (Carroll, Fulton, & Doerr,
2010; Louis, Leithwood, Wahlstrom, & Anderson, 2010). Researchers have also found
that teachers from schools that incorporate PLCs into their regular school culture are
more likely to share their ideas and practices with others (Bryk, Sebring, Allensworth,
Luppescu, & Easton, 2010), and take the responsibility of supporting student
achievement seriously (Louis & Wahlstrom, 2011).

In terms of cyber safety, a PLC could assist in the development and
implementation of safe school practices. Researchers have noted that one step toward
creating safer schools is to focus on school stakeholders and their abilities to work
together to manage student behavior (DuFour & Mattos, 2013; Marzano, 2011a; Willard,
2011). While literature on school cyber safety action teams is sparse, there are references
to school safety teams or action teams (Jordan, Averett, Elder, Orozco, & Rudo, 2000;
National Crime Prevention Council, 2009). However, these references only provide steps
on how to create a collaborative action team, with little to no research-based evidence to substantiate the effectiveness of creating such a team.

Similar to PLCs, a safety action team could consist of teachers, administrators, parents, community members, and other stakeholders, whose purpose is to define appropriate and inappropriate student behavior and create rules at a school-wide level (Marzano, 2011a). School safety teams of the past have primarily focused on the physical safety of students and school faculty and staff, where safety has been traditionally defined by school shootings, lockdowns, bomb threats, and natural disaster preparedness. The New Jersey public education system is an exemplar state that has mandated the creation of school safety teams in every school. In 2010, New Jersey lawmakers passed an anti-bullying law that required all public school districts in the state to develop school safety teams to oversee and handle bullying cases (United Press International, 2010). The law also included a specification that New Jersey public colleges and universities update all bullying policies and codes of conduct as well. Cyber safety action teams could be incorporated into currently existing school safety teams, and those teams could essentially be responsible for the coordination of cyber safety awareness education, oversee cases of cyber misuse, and determine appropriate disciplinary actions for those who do not abide by proper technology policies and codes of conduct.

Willard (2011) supported the idea of schools coordinating school safety action teams and recommended that those teams address all issues of digital safety and citizenship. She proposed that in addition to risk prevention professionals (e.g., principals and counselors), action teams could include school resource officers, educational technology teachers, and library media specialists. DuFour and Marzano (2009) also
supported the idea of organizing people into teams to work toward a common goal, where mutual accountability is held among all members. When dealing with cyber safety issues, student safety may lie in proactive measures to prevent cyber dangers before they happen, rather than in reactive measures that come after the fact, when intervention may already be too late (Shariff, 2008).

DuFour (2004) explained that focusing on the overall culture of collaboration within a PLC has great potential for schools to see lasting changes in their communities:

The powerful collaboration that characterizes professional learning communities is a systematic process in which teachers work together to analyze and improve their classroom practice. Teachers work in teams, engaging in an ongoing cycle of questions that promote deep team learning (p. 8).

The Importance of Strong School Leaders

Like many educators, principals and other school leaders have a lot on their plates (Marzano, 2011), and having schools create professional learning communities that focus on cyber safety and ethics education adds to their long list of tasks. Yet, when looking at the fundamentals of education, “teaching and learning can’t take place if students aren’t healthy, aren't physically and mentally fit, or aren’t safe” (Modzeleski, n.d.). Therefore, the approach of acknowledging the overall health and well-being of students in a positive school culture is important. When it comes to successful school leadership, Habegger (2008) found that regardless of the socioeconomic status of a school, it is imperative for a principal to create a positive school culture that promotes learning and empowers teachers to feel confident in working collaboratively with other school stakeholders. She also found that it is important for principals to elicit the suggestions of teachers to
improve aspects of the school or classroom, because it demonstrates that the principal values the opinions of his or her teachers. DuFour and Marzano (2009) suggested that principals spend less time supervising and evaluating teachers, and more time listening to and working collaboratively with them to improve classroom practices that can ultimately help student learning and development. The authors also added that when principals emerge as learning leaders, or those who focus on creating cultures of educators who learn and grow alongside students, they are more adept at seeing where teachers are struggling and better at providing appropriate support or training that may be required.

In a longitudinal study of US K-12 schools, Van Voorhis and Sheldon (2004) found that principals are the single most important part in initiating change within a school. They have the power to stimulate community support, locate funding opportunities for school priorities, and provide appropriate time for stakeholders to meet, plan, execute, and evaluate their endeavors. If parents and educators are interested in creating cyber safety action teams and action plans, they must first engage the principal in these collaborative efforts (Van Voorhis & Sheldon, 2004).

Organizational Change

The successful implementation of cyber safety and digital citizenship education in a school requires more than minute changes within a classroom. School leaders must, therefore be willing and prepared to make larger changes that could impact the entire school, such as increasing collaboration among teams of educators or engaging in partnerships with families (Marzano, 2011a). In the business world, organizational changes involve the restructuring of the entire organization—training or retraining of employees, improving lines of communication among staff, realigning or renewing
policies, and creating new guidelines and procedures (Bolman & Deal, 1999). It is possible that schools looking to implement changes within their culture could follow similar business-related, organizational change strategies.

In regard to behavior change, Prochaska (1979) developed a model called the transtheoretical model that demonstrated that simply thinking about making a change in one’s life is very different from deciding to change and then acting upon that decision. Prochaska determined that critical planning must occur prior to effectively changing a behavior. Behavior change within a large organization is not easy, and reflects the values, goals, priorities, and decisions of the individual agents of change within the organization (Vaanholt, 2008). Vaanholt (2008) stated that in organizational change, every person involved needs to know what their specific role is in the overall plan in relation to what everyone else is doing. Essentially, everyone should be on the same page. Therefore, education, awareness, and communication between leaders and stakeholders are necessary.

Many researchers have agreed that strong leadership is essential in successful organizational change (Bolman & Deal, 1999; George, White, & Schlaffer, 2007). In school reform, principals and other school leaders are the key players to making successful changes happen in schools (Habegger, 2008; Van Voorhis & Sheldon, 2004). When implementing school-wide changes, leaders need to first be committed to the success of a school-wide intervention, be able to clearly share their vision and mission for change within the school, be organized, and ready to solve problems if they arise (George, White, & Schlaffer, 2007). In their research of schools that succeeded in implementing school-wide changes, George, White, and Schlaffer (2007) observed that
groups of key leaders among school faculty and staff would often emerge as a result of
the efforts of administrators who first initiated the changes. These emerging leaders were
those who were respected by their colleagues and served as strong supporters of the
change. Overall, strong leadership skills from the school principal can provide inspiration
and encouragement to other potential school leaders, who in turn, can collaborate with
others and sustain ongoing efforts to implement effective school-wide changes.

Summary

Ultimately, when dealing with cyber safety issues, it is important for awareness
and education to be the top priorities of all members of a learning community. But,
schools cannot walk this path alone. It is important for schools to involve the help of
parents and the community in creating cyber safety policies and action plans. It is also
possible that in an attempt to create safer schools, collaborative school cyber safety action
teams could provide the necessary support to both avoid and manage cyber safety
situations.

The vast differences between older and younger digital users’ cyber knowledge,
technical abilities, and motivations for using technology have added to the difficulties of
finding unified solutions to current cyber problems like cyber victimization (Brydolf,
2007; Mason, 2008; Ribble & Bailey, 2007). Cyber victimization has the potential to
have long-term, negative consequences (Wolke, Copeland, Angold, & Costello, 2013),
and has sometimes resulted in teenage suicide (Hinduja & Patchin, 2010). Adding to the
problem is that most children prefer not telling an adult if they were cyber bullied (Mark
& Ratliffe, 2011), thus making it difficult for adults to know when cyber problems are

41
occurring and how to quickly rectify those problems when they finally learn about such situations.

Many parents hold a misconception that because their child may not be directly involved in cyber misconduct, they are not responsible for the overall safety of other students in the school (Feller, 2006). Furthermore, parents, teachers, and school administrators are often in disagreement as to who should be responsible for handling cyber problems, as well as the proper steps that should be taken (Mark & Ratliffe, 2011; Nguyen, 2011). Because parents and educators are often unaware of cyber misconduct among their children and students, they are usually left to handle cyber situations after they have occurred, rather than being prepared with proactive plans to prevent or reduce such occurrences. Regardless of whether a cyber victimization case originated off-campus, researchers say that these cases eventually make their way into the school environment (Willard, 2006), and that is why educating adults in both arenas of a child’s life is important.

Sheldon and Epstein (2002) believed that classroom teachers, counselors, and administrators play a large role in setting appropriate limits for students’ technology use within schools. However, DuFour and Mattos (2013) and Marzano (2011a) noted that allowing schools to work with families to collaboratively manage student behavior is one of the first steps toward creating safer schools. Partnerships between these groups could be found to be effective solutions to reducing cyber problems (Mark & Ratliffe, 2011; Ribble & Bailey, 2007; U.S. Department of Health and Human Services, 2010; Villano, 2008). If partnerships between families and schools are to be created, it is important to
investigate parents’ and educators’ perceptions of cyber safety and ethics, as well as their perceived self-efficacy in teaching these concepts to young technology users.

Researchers have continuously emphasized the importance of cyber ethics education being taught to both the student and adult populations (Nguyen, 2009, 2011; Ribble & Bailey, 2007), and they believed that schools and families should work together in this particular endeavor. However, existing studies have rarely focused on empirical research to assess the benefits of this type of education and the formation of partnerships around cyber safety (Baum, 2005; Cross, 2009; Villano, 2008). Literature on school cyber safety action teams is extremely sparse, and references to general school safety teams or action teams only provide little to no research-based evidence to validate the usefulness of such teams. This investigation on a parent and educator cyber safety workshop attempts to address these gaps in literature, and could possibly provide valuable insight into the importance of families and schools working together to make school-wide changes to create safer online environments for young technology users.
A mixed-methods design was used in this study. Creswell (1994) defined this type of multimethod design as an intentional integration of both quantitative and qualitative techniques, measures, and assessments. Triangulation is a primary reason why mixed-methods designs can result in stronger data interpretations over the use of separate quantitative and qualitative designs. Triangulation is where a research issue can be looked at from multiple points of view, thus allowing researchers to make more holistic and educated interpretations of the data (Creswell, 2003; Johnson & Onwuegbuzie, 2004). Overall, mixed-methods designs utilize the strengths and minimize the weaknesses of both quantitative and qualitative research designs. In this study quantitative pre and post surveys were administered, email and face-to-face follow-up interviews were conducted, and existing documents and materials relating to schools’ cyber safety protocols were collected after the cyber safety workshop. Case studies of three schools were conducted to assess how teams at the schools implemented information and skills learned at the workshop. The mixed-methods design was appropriate for this study because the multiple sources of quantitative and qualitative data strengthened the quality of the data analysis and supported interpretations of the findings.

A cyber safety workshop curriculum was developed as a research intervention to look at the effects on parents’ and teachers’ knowledge about cyber victimization and their abilities to work together on school teams to address these cyber problems. Specifically, the purposes of the workshop included providing parents and school faculty the opportunity to learn (a) more about cyber victimization awareness and prevention, (b)
what it means for children and adults to be digital citizens, (c) how to create family-school partnerships around cyber safety issues, and (d) how to collaborate on a school-wide cyber safety action plans and action teams. Hawai‘i parents and educators who attended the workshop were informed of the current cyber problems young technology users face today, primarily cyber victimization, online impersonation, and sexting. Pre- and post-workshop surveys were administered to assess change in knowledge, self-efficacy, and perspectives on cyber safety issues. Schools were encouraged to send teams that included parents, school administrators, and teachers, and those teams were then advised to work with their teammates to begin developing realistic cyber safety action plans to execute in their schools. Follow-up communications were conducted with school teams to assess the actions resulting from the workshop at the school level.

The cyber safety workshop was held twice: once in May 2012 as a pilot workshop and the second time in September 2013. The pilot workshop was conducted as part of a separate study, with the original intent to assess the reliability and validity of the survey instruments and the workshop format and content. However, the pilot data were combined with data from the September workshop, as the same format and procedures were used, as well as the same pre and post survey instruments. Both studies had University of Hawai‘i IRB approval, and additional approval was obtained to include pilot data in the current study. Those pilot data and participants will be referred to as Workshop Group I, and subsequent participants and data as Workshop Group II.
Workshop Group I

Participant Recruitment Process

In April 2012, an email announcement for the Cyber Safety Action Team Workshop for parents and school faculty was sent to 31 Hawaiʻi charter schools via the Hawaiʻi Charter School Administrative Office (HCSAO), 120 private schools via the Hawaiʻi Association of Independent Schools (HAIS) e-newsletter, all public school librarians and technology cadre via the Hawaii Department of Education (HIDOE), and all 255 public elementary, middle, and high school principals via email (Appendix C). An advertisement was also posted on the University of Hawaiʻi’s Curriculum Research & Development Group website listed as a professional development opportunity. Attached to the workshop invitation was an online link to a Survey Monkey application form (Appendix D). The workshop was targeted toward parents and educators of students in grades 6-10. This group was designated because research trends indicate that cyber victimization and other cyber misconduct primarily affect students of this age group (Williams & Guerra, 2007).

In the workshop invitation, schools were asked to complete the Survey Monkey application to identify school faculty and parent representatives to attend the workshop as a team (including at least one parent, one administrator, and one classroom teacher), akin to a professional learning community. The two purposes of requesting teams to apply to the workshop were to ensure that each participating school had the necessary support from important school stakeholders and to have school teams work together. Registered school teams were sent more information about the workshop and participants were asked to complete the parent and educator questionnaires prior to the workshop.
Workshop Group I Participants

Thirty-six individuals registered for the workshop online, and 32 participants attended the event in May 2012. They represented nine organizations that included four private schools (ranging from middle to high socioeconomic (SES) status), three public schools (all of which were eligible for Title I Targeted Assistance), one charter school (not eligible for Title I funding), and one non-profit, community youth organization (National Association of Independent Schools, 2014; Public School Stats, 2013–2014). The participants included seven school technology coordinators (21.9%), five school counselors (15.6%), two classroom teachers (6.3%), two library media specialists (6.3%), one middle school principal (3.1%), one high school vice principal (3.1%), one health aide (3.1%), three who held various resource positions in their respective schools (9.4%), one community member affiliated with a school (3.1%), five adult mentors from a community youth organization unaffiliated with a specific school (15.6%), and four parent representatives (12.5%). It was recommended that all teams attend the workshop with a parent representative, however only four teams included a parent member (one parent who had registered for the workshop was absent on that day). Also present at the workshop (not included as participants) were three technology safety experts: two law enforcement experts (a retired Honolulu Police Department detective and an FBI Special Agent) and one university affiliated, Internet safety educational expert. Table 3.1 contains a breakdown of the Workshop Group I participants by teams.
Table 3.1

Workshop Group I – Team Members

<table>
<thead>
<tr>
<th>Team</th>
<th>n</th>
<th>Gender</th>
<th>Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop Group I - Team A</td>
<td>4</td>
<td>Female = 4</td>
<td>Three classroom teachers and a technology coordinator</td>
</tr>
<tr>
<td>Workshop Group I - Team B</td>
<td>3</td>
<td>Female = 3</td>
<td>Library media specialist, technology/media teacher, and a parent representative</td>
</tr>
<tr>
<td>Workshop Group I - Team C</td>
<td>3</td>
<td>Female = 3</td>
<td>Health aide, technology coordinator, and PTA president</td>
</tr>
<tr>
<td>Workshop Group I - Team D</td>
<td>4</td>
<td>Female = 2, Male = 2</td>
<td>Counselor, classroom teacher, parent representative, and a community member associated with the school</td>
</tr>
<tr>
<td>Workshop Group I - Team E</td>
<td>2</td>
<td>Female = 1, Male = 1</td>
<td>One technology coordinator, a parent representative</td>
</tr>
<tr>
<td>Workshop Group I - Team F</td>
<td>7</td>
<td>Female = 5, Male = 2</td>
<td>Four counselors, school librarian, special program coordinator, and vice principal</td>
</tr>
<tr>
<td>Workshop Group I - Team G</td>
<td>5</td>
<td>Female = 1, Male = 4</td>
<td>Three mentors, youth program coordinator, and a site educator</td>
</tr>
<tr>
<td>Workshop Group I - Team H</td>
<td>2</td>
<td>Female = 2</td>
<td>Technology resource teacher and middle school principal</td>
</tr>
<tr>
<td>Workshop Group I - Team I</td>
<td>2</td>
<td>Male = 2</td>
<td>Two information and technology specialists</td>
</tr>
</tbody>
</table>

Follow-up communications. Follow-up communications were intended to assess the progress of each participating school after the cyber safety workshop. All Workshop Group I participants were contacted 18 months after the workshop to assess any changes in their schools’ cyber safety procedures. Since the pilot workshop was part of a study under a separate IRB approval, the Principal Investigator of that study was required to make the initial contact with those participants. Ultimately, no participants from Workshop Group I responded to the follow-up communication email.
Instruments

Parents and educators were asked to complete pre and post cyber safety questionnaires. Two versions of a 5-point Likert-type survey were created for this study: the *Cyber Safety Parent Questionnaire* and the *Cyber Safety Educator Questionnaire* (Appendices A and B). The survey content included: demographic questions and questions associated with four constructs: (a) cyber victimization awareness, (b) digital citizenship awareness, (c) parental/teacher self-efficacy around cyber safety, and (d) attitudes toward family-school collaboration. The self-efficacy questions for parents and educators were based on questions from Bandura’s (2006) Guide for Constructing Self-Efficacy Scales and other questions were based on previous cyber victimization studies and cyber safety literature (Hinduja & Patchin, 2009; Shariff, 2008; Willard, 2002, 2005, 2006).

The pre and post surveys for both parents and educators were administered in the month before the workshop (pre survey) and immediately after the workshop (post survey). The reliability coefficients of the pre and post questionnaires were calculated using Cronbach’s alpha, with an acceptable Cronbach’s alpha set at .70. The Parent pre survey ($\alpha = .80$) and post survey ($\alpha = .88$) consisted of 45 items. The Educator pre survey ($\alpha = .87$) and post survey ($\alpha = .90$) consisted of 47 items.

Follow-up communications with Workshop Group I participants were to follow a set of follow-up questions (Appendices F and G). Questions focused on the types of school-wide cyber safety programs or projects that school teams were implementing since the workshop and overall what teams’ motivations were for making these cyber changes (if any).
Workshop Group II

Participant Recruitment Process

To initiate contact with the schools in Workshop Group II, a workshop email announcement was sent to all private and charter schools via the Hawai‘i Association of Independent Schools (HAIS) and the Hawai‘i Charter School Association (HCSA) channels (Appendix C). Public schools were not included in Workshop Group II due to lack of approval by the DOE Superintendent who cited a lack of congruence with the DOE strategic plan as the reason for denying the proposed project. Several public school employees did find out about the workshop and took part in this study, but they participated as private citizens and were fully informed of the situation before completing the pre surveys and attending the workshop. Upon initial contact from the school principals and headmasters, I distributed invitations and announcements to their entire school faculties. Following the same workshop registration process in Workshop Group I, schools were highly encouraged to register for the event as a team consisting of at least one school administrator, one parent representative, and one other school faculty or staff member from the same school.

Registration was completed online using the Survey Monkey website. Upon registration of the school team, registered participants were sent more information about the workshop and all participants from the school team were asked to complete the online pre-workshop survey.

Workshop Group II Participants

Twenty-four parents and educators from five private schools (ranging from middle to high SES), one charter school (with a Title I Schoolwide program), and one
public school affiliated team (with a Title I Schoolwide program) registered online for the Cyber Safety Action Team Workshop (National Association of Independent Schools, 2014; Public School Stats, 2013–2014). On the day of the workshop in September 2013, 19 participants attended the event. The participants included: five classroom teachers (26.3%), four parent representatives (21.1%), three school technology coordinators (15.8%), three school principals/deans/headmasters (15.8%), two directors of school campus (10.5%), one school counselor (5.3%), and one elementary school vice principal (5.3%). Remaining consistent with the workshop in Workshop Group I, all schools were required to attend the workshop with a parent representative. However, only three of the seven schools included a parent member, four schools attended with only one representative, and only three schools attended as complete school teams fulfilling the requirements of having at least one parent, one administrator, and one classroom teacher. No online applications for the workshop were rejected, regardless of the number of people registered per team. Also present at the workshop (not included as participants) were two technology safety experts: one law enforcement expert (retired Honolulu Police Department detective) and one university affiliated, Internet safety educational expert. Table 3.2 contains a breakdown of the Workshop Group II participants by school team.

Follow-up communications. Three out of seven school teams from Workshop Group II (42.9%)—Teams B, D, and F participated in the follow-up communications after the cyber safety workshop. The follow-up process included one communication during each of the three months following the workshop. Participants’ preferred method of communication was through email and only one school agreed to an in-person meeting at the school in the third follow-up month.
Table 3.2

Workshop Group II – Team Members

<table>
<thead>
<tr>
<th>Team</th>
<th>n</th>
<th>Gender</th>
<th>Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop Group II - Team A</td>
<td>1</td>
<td>Male = 1</td>
<td>Technology coordinator</td>
</tr>
<tr>
<td>Workshop Group II - Team B</td>
<td>5</td>
<td>Female = 5</td>
<td>Communications director, administrator, dean, counselor, and a classroom teacher</td>
</tr>
<tr>
<td>Workshop Group II - Team C</td>
<td>1</td>
<td>Female = 1</td>
<td>Classroom teacher</td>
</tr>
<tr>
<td>Workshop Group II - Team D</td>
<td>5</td>
<td>Female = 4, Male = 1</td>
<td>Mother, director of upper school, director of lower school, middle school dean, and school nurse</td>
</tr>
<tr>
<td>Workshop Group II - Team E</td>
<td>1</td>
<td>Male = 1</td>
<td>Principal</td>
</tr>
<tr>
<td>Workshop Group II - Team F</td>
<td>5</td>
<td>Female = 5</td>
<td>Technology coordinator, vice principal, parent representative, and two classroom teachers</td>
</tr>
<tr>
<td>Workshop Group II - Team G</td>
<td>1</td>
<td>Male = 1</td>
<td>Social media administrator</td>
</tr>
</tbody>
</table>

Follow-up One – October 2013. The first follow-up communication consisted of an email to all 19 workshop participants with the follow-up questions (Appendix F). Two out of seven school teams responded to the first follow-up communication with responses to the follow-up questions (Workshop Group II – School Teams B and F). Two additional emails were sent to all school teams as reminders for participants to respond to the follow-up questions. One school (Workshop Group II – School Team D) responded to indicate that their team would send their school’s responses to the follow-up questions the following month. However, this school ultimately did not send their responses as promised. No other school teams responded to the three email attempts during the first follow-up month.

Follow-up Two – November 2013. The second follow-up communication email was sent to all 19 workshop participants with four additional follow-up questions to
assess the progress of the school teams in the second month after the workshop (Appendix G). Workshop Group II–School Teams B and F responded to Follow-up Two. Two additional reminder emails were sent in the following weeks. However, no other schools replied during the second follow-up month.

Follow-up Three – December 2013. The third and final follow-up communication was an email sent to all 19 workshop participants requesting on-site school visits to meet with cyber safety action teams. Only Workshop Group II-School Team B responded to Follow-up Three.

Instruments

The same parent and educator versions of the 5-point Likert-type survey used in Workshop Group I were used in Workshop Group II (Appendices A and B). Based on the acceptable reliabilities of both the parent and educator pre and post surveys, the survey questions were not altered. The follow-up communication questions with key informants from each school team are detailed in Appendices F and G.

The Intervention: The Cyber Safety Action Team Workshop

The ideas of andragogy and lifelong learning (Isenberg, 2007; Knowles, 1970; Lamb, 2011) were utilized to create learner-centered group activities interspersed throughout the professional development session. For example, a cyber safety quiz intended to assess adults’ prior knowledge of cyber issues and awareness of basic cyber rules was given at the start of the workshop. Subsequent activities incorporated the evaluation of participants’ own ethical cyber expectations of children and cyber safety-related goal setting using a S.M.A.R.T. Goal template (Harvard Business School Publishing, 2004; See Appendix I). Specific topics covered in the workshop included
overviews of cyber victimization, sexting, and online impersonation; the importance of peer bystanders to reduce cyber victimization; the legal ramifications of sexting and online impersonation; digital citizenship, ethics, and etiquette; and the significance of parent and school partnerships in the form of cyber safety action teams. Because the workshop was not a mandated PD or advancement workshop, all participants were there voluntarily, and engaging them was very important. To this end, instruction was based on authentic principles of learning, where activities were based on participants’ specific needs.

Many adults of the digital immigrant generation did not grow up using digital technology on a regular basis. This lack of life experience with technology created a unique professional development dynamic. Because experience is generally a main source of knowledge for adults in adult education (Conlan et al., 2003; Knowles, 1970, 1980, 1990, 1996), it was important for the workshop to bridge the connections between what adults knew and what they were less familiar with. This was done using the strategies below.

The incorporation of familiar information with current cyber topics was intended to help adult learners make more meaningful connections to the current issues in cyber victimization. McGrath (2009) stated that not all students come to a learning situation with prior knowledge in that field of study. She also mentioned that in adult learning situations, a pedagogical approach is sometimes necessary when teaching material with which adult students are not entirely familiar or experienced. Therefore, to ensure that the workshop participants had a basic foundational understanding of cyber safety issues, the workshop included a PowerPoint presentation on cyber victimization and other cyber
dangers, and initially followed a more traditional lecture-type approach. It was important to provide context and foundational information to the participants before moving on to the collaborative team building activities.

Workshop content. Cyber victimization was the focus of the workshop, however, ideas of digital citizenship were also included to provide context and to emphasize the interrelated needs of different stakeholders. While cyber victimization and cyber ethics curriculum/programs are abundant, few evidence-based evaluations of these programs have been conducted (Donlin, 2012). Due to the scarcity of empirically evaluated cyber ethics programs, the parent and school Cyber Safety Action Team Workshop did not model a specific cyber safety program. Instead, it included general bullying prevention ideas generated from the research-based Olweus Bullying Prevention Program (OBPP). The OBPP incorporates ideas of setting firm limits on inappropriate student behavior with an emphasis on creating a non-violent school culture. This program has been the most evaluated bullying prevention program worldwide and has delivered effective results in various school environments (Patchin & Hinduja, 2012; Limber, Kowalski, & Agatston, 2008; Olweus, Limber, Flerx, Mullin, Riese, & Snyder, 2007). Olweus et al. (2007) reported that the OBPP reduced bullying in some schools by more than 50%. Students also reported that in general, less antisocial and aggressive behavior was observed after the prevention program, and educators and students noted positive improvements in the overall social climate of the school, specifically the increase in positive social relationships and attitudes toward the school (Olweus et al., 2007).

However, it was with caution that I followed some of the principles of the OBPP because of criticisms that the program focuses primarily on modifying the behavior of
bullying, rather than the idea of adjusting the overall mindset of promoting ethical and responsible behavior to create a safe school environment (T. Nguyen, personal communication, March 27, 2012). To balance this criticism, the Digital Citizenship curriculum from Ribble and Bailey (2007) was also used as a resource when creating the workshop curriculum (see the workshop agenda in Appendix E). The goal was to teach parents and educators not only to reduce cyber bullying, but also to mold digital citizens who respect each other, make wise online decisions, and use technology responsibly.

Digital Citizenship education takes a more holistic approach to cyber issues and educates technology users about making wise decisions online. Therefore, the parent and school workshop was based on the overall premise of the OBPP, with relevant 21st century concepts derived from Ribble and Bailey’s (2007) Digital Citizenship curriculum. The importance of home and school partnerships around cyber issues was also highlighted in the workshop as supported by Epstein’s (1987) overlapping spheres of influence model. In addition, the concept of school cyber safety action teams, derived from the practical school safety strategies provided by the National Crime Prevention Council (2009) was introduced.

The workshop included participant discussions with a university affiliated Internet safety educational expert who was present as a guest speaker at both Workshop Groups I and II sessions. The Internet safety educational expert was invited as a special guest speaker to specifically address the legal ramifications of sexting and online impersonation, and the current state of Hawai‘i’s cyber victimization legislation. She also discussed the importance of updating all schools’ Acceptable Use Policies (AUPs) and school conduct codes to include current and relevant 21st century digital issues, and
emphasized the importance of holding students, parents, and school faculty accountable regarding the misuse of technology.

During Workshop Group I, two law enforcement experts provided opening and closing remarks that emphasized the importance of parents and educators working together to prevent cyber misconduct. It was also stressed that additional administrators and school board members should be in attendance at this type of cyber safety workshop because systemic school changes are generally initiated by those in leadership positions. During Workshop Group II, one law enforcement expert was in attendance to share his expertise from a law enforcement perspective.

Procedure

Procedures for both Workshop Group I and Workshop Group II participants were similar and conformed to the following protocol.

Pre-test. Participants completed the pre surveys for parents and educators using the Survey Monkey site prior to the workshop. The link to the online survey was sent to each participant via email upon their registration to the workshop.

Intervention – The Cyber Safety Action Team Workshop. A 3-1/2 hour parent and educator cyber safety workshop was presented to school teams (See the workshop agenda in Appendix E). The workshops were audiotaped for reasons of fidelity.

Post-test. Participants were surveyed immediately after the workshop with the same survey instrument to assess their improved understanding of cyber victimization prevention, attitudes, and self-efficacy.

Follow-up communications for each school. For Workshop Group I, one follow-up communication with key school representatives from each participating school
was initiated 18 months after the workshop. However, no participants responded to the email requesting a follow-up meeting. Therefore, no follow-up data were collected from these participants.

For Workshop Group II, monthly follow-up communications with key school representatives were conducted for three months following the workshop (October, November, and December 2013). The follow-up communications with parents, teachers, and administrators followed a set of questions sent via email, which participants requested be the mode of communication. During the follow-up intervals, qualitative data were collected, including drafts of acceptable use policies and school-wide action plans.

The purposes of the monthly follow-up communications were to (a) maintain regular contact with parents and educators to learn what steps (if any) were being taken in regard to cyber safety, (b) assess if schools had formed school cyber safety action teams, and (c) assist schools in facilitating the goals and action plans they had crafted in the workshop.

Researcher Positionality

To guard against any biases or unintended influences on my interpretations of the data, the following research positionality outlines my personal experiences and beliefs relevant to this study. I am a female educator and researcher with an academic background in psychology and educational psychology. The theories of Vygotsky and Bandura have shaped my perspectives on how people learn and behave. I have spent the last six years studying the topics of cyber victimization and cyber safety as a masters and doctoral student. In the latter half of those six years, I was influenced by Epstein’s (1987) theory on family, school, and community partnerships. I believe that collaboration among
these three groups has the potential to positively impact student learning, behavior, and the overall climate of a school. In light of cyber safety, I think that it is important for such partnerships to be created between families, schools, and community members to share the responsibility in keeping all children safe online.

Currently, I work as a graduate assistant for the School Internet Safety Initiative at the Curriculum Research & Development Group in the College of Education at the University of Hawai‘i at Mānoa. For the past three years, I have been immersed in a collaborative academic culture that believes in the importance of lifelong learning and the development of 21st century skills. As a graduate researcher, I have studied various cyber dangers, including sexting, online impersonation, copyright infringement, and piracy. This experience has provided me with the opportunities to work alongside and conduct scholarly presentations with cyber safety educational and law enforcement experts on various cyber safety issues. Having previous opportunities to speak to adult audiences about cyber safety prepared me for the cyber safety workshop and subsequent follow up interviews with the participants in this study.

In addition to researching cyber safety and family, school, and community partnerships, I have also been interested in cyber ethics and digital citizenship education as a way to reduce cyber misconduct. Although I do not have children of my own, I believe that it is important for adults to be appropriate role models for all children and to take part in educating others about cyber ethics, digital citizenship, and providing technology users with the abilities to make independent, wise, and ethical decisions. Despite my beliefs and biases, I was able to interpret the findings of the data collected in
this study using a grounded theory approach. This approach allowed me to describe the experiences of the participants and case study schools as accurately as possible.

Data Analysis

Quantitative data sources. The quantitative data sources included the parent and educator pre and post survey data.

Quantitative data analysis. Repeated measures analysis of variance (RM-ANOVA) was used to analyze pre and post survey results to compare within and between groups variances. Each analysis addressed a specific research question. Analyses explored if significant differences existed in parents’ and educators’ pre and post workshop (a) cyber victimization awareness (Parent survey items 10-20; Educator survey items 13-22); (b) knowledge of digital citizenship education (Parent survey items 21-25; Educator survey items 23-27); (c) perceived cyber safety self-efficacy (Parent survey items 26-38; Educator survey items 28-40); and (d) attitudes toward parent and school collaboration (Parent survey items 39-43; Educator survey items 41-45). Alpha was set at .05.

Qualitative data sources. The qualitative data sources included (a) open-ended survey responses (from the parent and educator survey instruments); (b) follow-up communication responses (via email); and (c) other pertinent school documents, including drafts of proposed school cyber safety policies, faculty meeting minutes regarding cyber safety issues, school plans for future cyber safety activities or programs, and other documents provided by participants.

Qualitative data analysis. To analyze the qualitative data, the following thematic analysis process noted by Nicholls (2009) and Smith and Firth (2011) was used. An
initial reading of the transcribed data was performed and a coding system to create initial
codes and categories was developed. I then examined the initial coding scheme and after
a closer examination, revised categories when necessary. Codes and categories were then
connected to larger themes. No data analysis software was used as the sample of
participants was manageable. Lastly, emerging patterns were identified to describe
participants’ overall experiences and perspectives. While it is not always clear how
categories and themes are developed in some qualitative research studies, I was cognizant
to clearly document the procedures used in the study.

Open-ended survey responses. The last two questions in the parent and educator
cyber safety surveys were open-ended and the responses were qualitative in nature. These
responses were transferred to an Excel spreadsheet. Codes and categories were developed
to find meaningful relationships and patterns among the themes that emerged from the
responses (Nicholls, 2009; Smith & Firth, 2011).

Follow-up communications. After the workshops, I conducted three follow-up
communications with school representatives from Workshop Group II who agreed to
participate in the follow-up portion of this study. The purpose of the follow-up
communications was to assess longer lasting effects of the cyber safety workshop,
including applications of the material learned. Specifically, the purpose of the follow-up
communications was to observe whether or not parents and educators had started working
together or discussing ways to bring cyber safety programs, activities, or changes to their
schools. The follow-up questions were based on a set of broad questions and the analysis
of the data was similar to the analysis for the open-ended survey questions, where data
were organized into common emerging themes among participants’ responses.
Existing documents. At each participating school, participants were asked if they could share any pertinent school documents related to cyber safety actions they had taken since the workshop (e.g., school or classroom cyber safety policies, faculty meeting minutes regarding cyber safety issues, school plans for future cyber safety activities or programs, etc.). The initial step in analyzing existing materials was to review what was collected immediately after collection (Ratcliff, 2008). These materials and their relationships to the study were documented.

Minimizing Threats to Validity

When conducting the cyber safety workshop and disseminating the pre and post surveys, it was inevitable that questions would arise as to whether or not a change in knowledge, behavior, or perceptions were a result of the workshop, or simply results of time, exposure to information from other sources, or other extraneous factors. It was with extreme caution that any causal inferences were made from the data. I also ensured that the research design was as strong as it could be to control for these extraneous factors.

Random selection and random assignment of participants in treatment and control groups are important procedures to reduce threats to a study’s external validity (Bolton & Parker, 1992; Fraenkel & Wallen, 2006). In the current study, however, random selection and assignment were not feasible. The access to parent and educator participants was limited, especially with the lack of access to public schools. Access to participants was also contingent on the permission of the school principals and headmasters.

Because random selection or assignment of participants to different groups were not possible as in an experimental design, I was careful to address other strategies to minimize threats to validity suggested by Bolton and Parker (1992), Christensen (1980),
and Fraenkel and Wallen (2006). The workshop conditions were standardized by making sure that the Group II workshop was similar to the Group I workshop, and pre and post-testing was utilized so participants could serve as their own controls. Demographic information about participants was also reported and details of the study procedures and setting were recorded in order to reduce participant selection, mortality, and history threats (Fraenkel & Wallen, 2006).

While analysis of covariance (ANCOVA) would have been useful to parcel out any covariates in the study, the sample size was not large enough to show an effect of the covariate and the results would not have differed greatly from the results from a repeated measures analysis of variance. The ANCOVA analysis also would not have been appropriate for this study because I did not use control groups. However, a question in the follow-up communications regarding sources that motivated participants to take cyber safety action in their schools helped to minimize the threat to internal validity and assisted me in making a more accurate conclusion about the effectiveness of the cyber safety workshop. The overall goal was not to eliminate every validity threat; but to take precautions to control as many extraneous factors as possible. Specific threats to validity are discussed further in the limitations section.
CHAPTER 4
RESULTS

The main purpose of conducting repeated measures analysis of variance (RM-ANOVA) tests was to determine whether differences existed among the pre and post measures in each of the following survey constructs: (a) Cyber Safety Awareness, (b) Digital Citizenship Knowledge, (c) Cyber Safety Self-Efficacy, and (d) Parent-Educator Collaboration Perceptions. Analyses to determine differences between parent and educator groups were excluded because parent sample sizes in Workshop Groups I and II were small (completed Workshop Group I parent surveys: n = 2; completed Workshop Group II parent surveys: n = 4). Instead, parents and educators who attended Workshops I and II were grouped as either a participant who attended the workshop in a team or as an individual (Team: n = 32; No Team: n = 12). RM-ANOVA was used to compare between group variances for the team/no team factor as well.

A preliminary RM-ANOVA revealed no significant differences in pre and post survey means between Workshop Groups I and II under each of the four survey constructs (Cyber Awareness: $F(1, 30) = .91, p > .05, \eta^2_p = .03$; Digital Citizenship Knowledge: $F(1, 32) = 1.23, p > .05, \eta^2_p = .04$; Cyber Safety Self-Efficacy: $F(1, 24) = 2.43, p > .05, \eta^2_p = .09$; and Parent-Educator Collaboration: $F(1, 26) = .07, p > .05, \eta^2_p = .00$). Therefore, Workshop Group I and Workshop Group II data ($N = 44$) were combined for the remainder of the analyses. Partial eta squared (η^2_p) values were reported to indicate effect sizes (.01 = small effect size, .06 = medium effect size, .14 = large effect size; Cohen, 1973). The mean scores and standard deviations for the combined Workshop Groups I and II participants are summarized by survey construct in Tables 4.1 – 4.4.
Table 4.1

Cyber Safety Awareness Total Mean Scores (Standard Deviation)

<table>
<thead>
<tr>
<th>Construct Question</th>
<th>N</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (Cyber Awareness)</td>
<td>34</td>
<td>4.29 (.76)</td>
<td>4.65 (.49)</td>
</tr>
<tr>
<td>Q2</td>
<td>34</td>
<td>3.09 (1.06)</td>
<td>3.41 (1.08)</td>
</tr>
<tr>
<td>Q3</td>
<td>34</td>
<td>4.5 (.79)</td>
<td>4.65 (.54)</td>
</tr>
<tr>
<td>Q4</td>
<td>34</td>
<td>2.74 (.90)</td>
<td>3.32 (.91)</td>
</tr>
<tr>
<td>Q5</td>
<td>34</td>
<td>2.74 (.83)</td>
<td>3.18 (.97)</td>
</tr>
<tr>
<td>Q6</td>
<td>34</td>
<td>3.03 (.90)</td>
<td>4.12 (.73)</td>
</tr>
<tr>
<td>Q7</td>
<td>34</td>
<td>2.30 (.63)</td>
<td>2.65 (.81)</td>
</tr>
<tr>
<td>Q8</td>
<td>34</td>
<td>3.71 (.91)</td>
<td>3.71 (.87)</td>
</tr>
<tr>
<td>Q9</td>
<td>34</td>
<td>4.62 (.78)</td>
<td>4.68 (.48)</td>
</tr>
<tr>
<td>Q10</td>
<td>34</td>
<td>4.18 (.80)</td>
<td>4.71 (.58)</td>
</tr>
<tr>
<td>Q11</td>
<td>34</td>
<td>4.77 (.74)</td>
<td>4.97 (.17)</td>
</tr>
</tbody>
</table>

Note: See Appendices A and B for survey items

Table 4.2

Digital Citizenship Knowledge Total Mean Scores (Standard Deviation)

<table>
<thead>
<tr>
<th>Construct Question</th>
<th>N</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (Digital Citizenship)</td>
<td>36</td>
<td>3.19 (1.33)</td>
<td>4.47 (.65)</td>
</tr>
<tr>
<td>Q2</td>
<td>36</td>
<td>2.89 (1.28)</td>
<td>4.19 (.75)</td>
</tr>
<tr>
<td>Q3</td>
<td>36</td>
<td>2.75 (1.23)</td>
<td>3.44 (1.11)</td>
</tr>
<tr>
<td>Q4</td>
<td>36</td>
<td>3.75 (1.25)</td>
<td>4.72 (.62)</td>
</tr>
</tbody>
</table>

Note: See Appendices A and B for survey items
Table 4.3

Cyber Safety Self-Efficacy Total Mean Scores (Standard Deviation)

<table>
<thead>
<tr>
<th>Construct Question</th>
<th>N</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (Self-Efficacy)</td>
<td>28</td>
<td>4.32 (.95)</td>
<td>4.61 (.50)</td>
</tr>
<tr>
<td>Q2</td>
<td>28</td>
<td>4.36 (.91)</td>
<td>4.57 (.50)</td>
</tr>
<tr>
<td>Q3</td>
<td>28</td>
<td>4.11 (.99)</td>
<td>4.54 (.51)</td>
</tr>
<tr>
<td>Q4</td>
<td>28</td>
<td>3.61 (.99)</td>
<td>3.64 (.83)</td>
</tr>
<tr>
<td>Q5</td>
<td>28</td>
<td>2.96 (1.04)</td>
<td>3.18 (1.09)</td>
</tr>
<tr>
<td>Q6</td>
<td>28</td>
<td>3.29 (1.15)</td>
<td>3.11 (1.17)</td>
</tr>
<tr>
<td>Q7</td>
<td>28</td>
<td>2.04 (.92)</td>
<td>2.18 (.95)</td>
</tr>
<tr>
<td>Q8</td>
<td>28</td>
<td>3.82 (.61)</td>
<td>3.82 (.72)</td>
</tr>
<tr>
<td>Q9</td>
<td>28</td>
<td>2.75 (1.00)</td>
<td>3.36 (1.10)</td>
</tr>
<tr>
<td>Q10</td>
<td>28</td>
<td>4.11 (1.03)</td>
<td>4.32 (.55)</td>
</tr>
<tr>
<td>Q11</td>
<td>28</td>
<td>4.25 (.89)</td>
<td>4.25 (.65)</td>
</tr>
<tr>
<td>Q12</td>
<td>28</td>
<td>4.21 (.88)</td>
<td>4.36 (.78)</td>
</tr>
<tr>
<td>Q13</td>
<td>28</td>
<td>4.00 (.98)</td>
<td>4.07 (.81)</td>
</tr>
</tbody>
</table>

Note: See Appendices A and B for survey items
Table 4.4

Parent-Educator Collaboration Total Mean Scores (Standard Deviation)

<table>
<thead>
<tr>
<th>Construct Question</th>
<th>N</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (Collaboration)</td>
<td>30</td>
<td>4.37 (1.16)</td>
<td>4.7 (.47)</td>
</tr>
<tr>
<td>Q2</td>
<td>30</td>
<td>2.9 (1.09)</td>
<td>3.73 (1.05)</td>
</tr>
<tr>
<td>Q3</td>
<td>30</td>
<td>2.7 (1.21)</td>
<td>3.23 (.94)</td>
</tr>
<tr>
<td>Q4</td>
<td>30</td>
<td>3.47 (1.22)</td>
<td>4.1 (.99)</td>
</tr>
<tr>
<td>Q5</td>
<td>30</td>
<td>4.03 (1.16)</td>
<td>4.4 (.62)</td>
</tr>
</tbody>
</table>

Note: See Appendices A and B for survey items

Mauchly’s test of sphericity for each survey construct yielded significant p-values ($p < .05$), indicating that sphericity could not be assumed for all four separate tests. Therefore, the Greenhouse-Geisser values were referenced for all of the tests of within-subjects effects for the four survey constructs.

Construct One: Cyber Safety Awareness

A RM-ANOVA test for differences in means between the cyber awareness pre and post survey results was significant, $F(1, 30) = 10.13, p = .00, \eta^2_p = .25$. A significant interaction was also found between the individual cyber awareness items and the pre and post scores, $F(10, 21) = 2.94, p = .02, \eta^2_p = .09$. A closer look at the estimated marginal means showed that there was an increase in cyber awareness from the pre to post survey intervals in both workshop groups (Figure 4.1). Figure 4.1 also shows a trend that participants in Workshop Group I had higher, overall perceived levels of cyber safety awareness than Workshop Group II participants.
No significant interaction effect was found between pre and post survey scores and collaboration teams (team/no team), $F(1, 30) = .23, p > .05, \eta^2_p = .01$, suggesting that participants who attended the workshop in a team or as individuals did not significantly differ in their cyber safety awareness. Yet, Figure 4.2 illustrates that participants who attended the workshop in teams, on average, reported higher cyber safety awareness than those who attended the workshop alone. In a test of between-subjects effects, there were no significant main effects for the Workshop Group I and II participants or the team/no team participants, $F(1, 30) = .64, p > .05, \eta^2_p = .02$ and $F(1, 30) = 2.77, p > .05, \eta^2_p = .09$, respectively. Nor was there a significant interaction effect found between those factors, $F(1, 30) = 1.68, p > .05, \eta^2_p = .05$.

Figure 4.1. Cyber safety awareness estimated marginal means A. This figure illustrates Workshop Group I and II participants’ pre and post survey scores under the cyber awareness construct (Workshop Group I: $n = 23$; Workshop Group II: $n = 11$).
Construct Two: Digital Citizenship Knowledge

A RM-ANOVA test revealed a significant difference in means between the digital citizenship knowledge pre and post survey results, $F(1, 32) = 21.77$, $p = .00$, $\eta^2_p = .41$. No significant interaction was found between the individual digital citizenship items and the pre and post scores, $F(3, 30) = 2.66$, $p = .07$, $\eta^2_p = .08$. Yet, a closer look at the estimated marginal means indicated that there was an increase in digital citizenship knowledge from the pre survey interval to the post (Figure 4.3). Figure 4.3 also showed a trend that participants in Workshop Group II had higher perceived levels of digital citizenship knowledge than Workshop Group I participants.

Figure 4.2. Cyber safety awareness estimated marginal means B. This figure illustrates team vs. no team participants’ pre and post survey scores under the cyber awareness construct (Team: $n = 26$; No Team: $n = 8$).
Figure 4.4 shows participants who attended the workshop alone had slightly higher perceived levels of digital citizenship knowledge after the workshop than those who attended the workshop in teams. Yet, both groups (team/no team) displayed increases from the pre to the post survey intervals. No significant interaction effect was found between pre and post survey scores and team/no team groups, $F(1, 32) = .08, p > .05, \eta^2_p = .00$, suggesting that pre and post means did not differ among the participants who attended the workshop as a team or as individuals. In a test of between-subjects effects, no significant main effects for the workshop groups (Workshop Groups I and II) or the Collaboration Teams (team/no team) were found, $F(1, 32) = 3.19, p > .05, \eta^2_p = .09$ and $F(1, 32) = .03, p > .05, \eta^2_p = .00$, respectively. Nor was there a significant interaction effect found between those factors, $F(1, 32) = .37, p > .05, \eta^2_p = .01$.

Figure 4.3. Digital citizenship knowledge estimated marginal means A. This figure illustrates Workshop Group I and II participants’ pre and post survey scores under the digital citizenship construct (Workshop Group I: $n = 23$; Workshop Group II: $n = 13$).
Construct Three: Cyber Safety Self-Efficacy

No significant difference was found in means between the pre and post results for the cyber safety self-efficacy construct, \(F(1, 24) = .24, p > .05, \eta^2_p = .01 \). In addition, no significant interaction was found between the individual self-efficacy items and the pre and post scores, \(F(12, 13) = 1.92, p > .05, \eta^2_p = .07 \), nor between the pre-post scores and the team/no team groups, \(F(1, 24) = .01, p > .05, \eta^2_p = .00 \). A closer investigation of the estimated marginal means in Figure 4.5 revealed an increase in cyber safety self-efficacy in only Workshop Group I.

Figure 4.4. Digital citizenship knowledge estimated marginal means B. This figure illustrates team vs. no team participants’ pre and post survey scores under the digital citizenship construct (Team: \(n = 29 \); No Team: \(n = 7 \)).
Workshop Group II, on the other hand, had estimated marginal means that decreased from pre to post intervals, perhaps indicating a possible waver in self-efficacy or confidence in educating others on cyber safety topics (See Figure 4.5). According to Figure 4.6, while both groups, teams and no teams, displayed increases from the pre to the post survey intervals, the estimated marginal means of the participants who attended the workshop alone had much lower perceived levels of cyber safety self-efficacy than those who attended the workshop in teams. In a test of between-subjects effects, no significant main effects for the workshop groups (Workshop Groups I and II) or the collaboration teams (team/no team) were found, $F(1, 24) = .41, p > .05, \eta^2_p = .02$, and $F(1, 24) = 1.46, p > .05, \eta^2_p = .06$, respectively. Nor was there a significant interaction.
effect found between the workshop groups and collaboration teams, $F(1, 24) = 1.04, p > .05, \eta_p^2 = .04$.

![Estimated Marginal Means: Cyber Self-Efficacy](image)

Figure 4.6. Cyber self-efficacy estimated marginal means B. This figure illustrates team vs. no team participants’ pre and post survey scores under the self-efficacy construct (Team: n = 23; No Team: n = 5).

Construct Four: Parent-Educator Collaboration

A significant difference was found in means between the pre and post results for the parent-educator collaboration construct, $F(1, 26) = 5.34, p = .03, \eta_p^2 = .17$. However, no significant interactions were found between the individual collaboration items and the pre-post scores, $F(4, 26) = 1.91, p > .05, \eta_p^2 = .07$, nor between the pre-post scores and the team/no team groups, $F(1, 26) = .31, p > .05, \eta_p^2 = .01$. The estimated marginal means in Figure 4.7 reveal that there was an increase in collaboration perceptions from participants in both workshop groups. Workshop Group II participants, on average had slightly higher estimated marginal means than Workshop Group I participants.
Figure 4.8 illustrates an increase in scores from the pre to post survey intervals. Interestingly, participants who attended the workshop alone had a steeper increase in collaboration perceptions than participants who attended the workshop in collaborative teams. Perhaps, this steeper increase in those who attended the workshop as individuals was an indication of a desire for greater collaboration in continuous cyber safety education. Alternatively, this result could indicate that those who attended the workshop in teams already felt they were collaborating, so they may not have learned or improved as much in terms of collaboration.

In a test of between-subjects effects, no significant main effects for the workshop groups (Workshop Groups I and II) or the Collaboration teams (team vs. no team) were
found, $F(1, 26) = .21, p > .05, \eta^2_p = .01$ and $F(1, 26) = .05, p > .05, \eta^2_p = .00$, respectively. Nor was there a significant interaction effect found between the workshop groups and collaboration teams, $F(1, 26) = .92, p > .05, \eta^2_p = .03$.

Figure 4.8. Parent-educator collaboration estimated marginal means B. This figure illustrates team vs. no team participants’ pre and post survey scores under the collaboration construct (Team: $n = 23$; No Team: $n = 7$).

Emergent Themes from the Cyber Safety Questionnaire

In two open-ended questions on the cyber safety surveys (Parent Survey items 44 and 45; Educator Survey items 46 and 47), participants were asked to share their perceptions of how parents and educators could work together to prevent or decrease cyber victimization, and how they could teach students about cyber safety and digital citizenship. Forty-three participants (84.3%) responded to these questions and four major themes around cyber victimization prevention and cyber safety education emerged from these data: (a) creating cyber safety awareness for all ages through education, (b)
maintaining open and consistent communication, (c) setting rules for technology use, and (d) developing inclusive collaboration. A secondary theme that also emerged, but was not as dominant as the previous four themes, was the concept of modifying adult behavior to model appropriate technology use for children.

Creating cyber safety awareness for all ages through education. Twenty-three (52.3%) responses to the open-ended question regarding how parents and educators could work together to combat cyber misconduct highlighted education and awareness for parents, educators, and students as a top priority. Ten of those respondents (43.5%) reported that workshops, training sessions, newsletters, meetings, seminars, and other outreach events hosted by the school could help to educate adults and spread more awareness about cyber safety topics to a larger group of school stakeholders. A counselor from Workshop Group I – Team F reported:

Parents and educators need to be educated first with updated information regarding cyber bullying – awareness is very important. Consistent messages regarding Digital Citizenship coming from both parents/educators to the students are needed. Also students need to understand strategies used to prevent cyber bullying.

Three participants (6.8%) believed that education was a community-wide responsibility, where cyber safety awareness and education should reach well beyond the classroom and school. A mother from Workshop Group I – Team E responded to the first open-ended question by stating: “Increase awareness in the "community" of the student. Make sure that awareness is addressed at home and school.” A classroom teacher from Workshop Group I – Team A echoed this idea when she said:
In school and at home students need to be reminded of the dangers that can lurk on the internet, as well as the potential for bullying. Students need to be taught that reporting the bullying does not make them a ‘rat,’ but rather it keeps them and other future students safe.

Another classroom teacher from Workshop Group I – Team A stated: “Educate the community about cyber bullying to bring awareness of the severity of the issue; having a curriculum to support parents/teachers/etc. to teach children about cyber bullying would be helpful.”

The participants who believed that education was a priority unanimously agreed that adults should be educated in cyber safety and ethics just as much as students. However, the critical onus of educating students and the community on these topics ultimately fell upon the schools—educators in particular. Both school faculty and parent participants indicated the belief that educators were responsible to do the heavy lifting when it comes to cyber safety education, as well as handling the disciplining procedures for cyber misconduct. A mother from Workshop Group I – Team B responded that schools need to “provide information to parents and students on cyber bullying via info sheets and workshops,” and a resource teacher from Workshop Group I – Team H stated: “Educators need to inform/educate parents on how to watch for and deal with cyber bullying. Parents need to report incidents of cyber bullying to the school so that consequences can be enforced.”

In the second open-ended question, when participants were specifically asked to explain one or two ways parents and educators could work together to teach cyber safety and digital citizenship to students, again, the onus to initiate cyber safety education
remained on the school, especially teachers. A mother from Workshop Group I – Team E stated: “Educators can work with parents to make them aware of digital citizenship and what it means, and they in turn can help reaffirm the learning at home.”

Fourteen (31.8%) responses to the second open-ended question focused on teaching students about Internet safety and digital citizenship through incorporating lessons into small group activities in class, role playing cyber scenarios, and class assignments and projects. These concepts could also be learned through informative handouts/bulletins and relevant websites on cyber laws, rules, and appropriate online behavior. A school nurse from Workshop Group I – Team C said: “Teach it as a part of every class in school [and provide] handouts for parents.” A technology coordinator from Workshop Group I – Team E agreed when she stated that teachers could: “Integrate lessons into existing classes. Provide tools to parents to talk about digital citizenship with their children.” An advisory instructor from Workshop Group I – Team F suggested teaching “a unit on Digital Citizenship in an advisory class and make the unit available on the school website for parents to review with their child.”

The idea of creating educational materials in the schools and having parents and children review that material together at home was a smaller trend that started to emerge in the data. Three participants (6.8%) responded that reinforcement of cyber topics taught in school should occur in the home. A resource teacher from Workshop Group I – Team H said: “Educators need to educate parents as to how to work with their children. Curriculum taught in school and reinforced at home would be ideal.” A principal from Workshop Group II – Team E also suggested that teachers develop “lessons on digital citizenship and have homework that must be done with parents.”
While many responses to the open-ended questions were general in nature, one technology coordinator from Workshop Group II – Team F reported specific activities to bring parents, educators, and students together to promote cyber safety. The technology coordinator suggested that schools could:

Host a parent/child Digital Citizenship and Internet Safety Night, where everyone can work as a team to learn how to be better digital citizens and create Internet safety measures. [They could also] develop and promote guidelines/restrictions for Internet activities for students to do at home.

One classroom teacher from Workshop Group II – Team C concluded: “Make it a priority to teach digital citizenship before, during, and after issuance of tech tools, enforce policies that protect students, and get them as much educative value out of tech resources as possible.” Other responses to the second open-ended question regarding what parents and educators could do to teach students about cyber safety and digital citizenship included (a) creating a common language or set of definitions of cyber safety terms to ensure “consistent digital safety norms and behaviors” that are used in school and at home (Workshop Group I – Team F library media specialist), (b) making sure that efforts are made to keep parents, educators, and students on the same page when it comes to the technology that is being used by students, (c) maintaining open and consistent communication between all parties, (d) enforcing school-wide acceptable use policies to encourage appropriate technology use, (e) developing programs to help students think critically in all areas of their lives (online and off), (f) involving students in the creation of appropriate technology conduct codes, and (g) offering more opportunities for parents to engage in school and classroom activities, workshops, lessons, trainings, programs,
assemblies, and other events to build a collaborative school atmosphere. Overall, participants believed that it was crucial to increase awareness of cyber issues through education and to maintain a unified understanding of critical cyber safety topics among the student, parent, and educator groups in each school community.

Open and effective communication. Twelve (27.3%) participants believed that in order for parents and educators to work together to decrease cyber misconduct, consistent and ongoing communication between parents and the school, as well as between adults and children is necessary. A classroom teacher from Workshop Group II - Team B said: "Frequent conversations about [students’] behavior online and their responsibility with owning a device are needed." A school dean from the same school responded that in order to keep children safe online, it is essential to "communicate expectations clearly to students from both parents and educators."

A technology coordinator from Workshop Group I – Team B stated that cyber safety education and communication go hand-in-hand: "Parents, students, and staff education needs to occur through printed and online communication to increase awareness and discussion through age-appropriate lessons in class and resource classes."

A classroom teacher at Workshop Group I - Team E added to that notion by suggesting that parents and schools "create opportunities to discuss [cyber safety issues], raise awareness, and have open dialogue."

Overall, participants of the cyber safety workshop believed that it was important for both parents and educators to provide consistent messages to students about proper cyber behavior and to also be available for continuous adult support. Nine (20.5%) participants agreed that informing parents and students of cyber issues, communicating
clear and consistent technology-use expectations from parents and educators, and encouraging ongoing dialogue between students, parents, and educators was critical. "Have clear communication about what cyber bullying is, present statistics about how many students have been victims AND perpetrators of cyber bullying (to avoid the "that's not my child" excuse) and have clear consequences set in place" (Workshop Group II – Team B classroom teacher). In addition, a classroom teacher from Workshop Group II – Team F said: "Parents and educators can work together to "prevent or decrease" cyber bullying by using the cyber safety theme as a platform via the Parent Teacher Student Organization (PTSO), School Community Council (SCC), and Parent/Teacher conferences." Schools with School Community Councils, regular school open houses, and Parent-Teacher-Student Organizations can use these existing groups and regularly scheduled events to highlight the importance of open and effective communication when forming family-school partnerships around cyber safety and digital citizenship education.

Rule setting and consistent monitoring. Ten (22.7%) open-ended responses targeted developing technology rules and consistent monitoring of children’s technology activities as important steps to ensure safe technology use. A classroom teacher from Workshop Group II – Team F suggested that adults “monitor students while online and educate children about the seriousness and dangers of cyber bullying.” A technology coordinator from Workshop Group I – Team C added that adults should “monitor social media sites and maintain healthy rapport and relations with child/student to know what they are involved with and to help guide them through problems.” Two other participants reported that parents and educators could work together to provide safe and trusting
relationships to allow children to feel safe when reporting cyber bullying incidents to adults.

In regard to setting consistent rules and policies for young technology users, a school nurse from Workshop Group I – Team C stated that adults should be more vigilant in keeping track of students’ online activities and set “stronger consequences for cell phone use during school.” A counselor from Workshop Group I – Team F suggested that adults “report [any type of] bullying immediately. Become informed about cyber bullying and monitor what children are doing with technology.” In general, participants responded that the most valuable aspects of rule setting and monitoring of student online behavior are the clarity of the rules, and the consistency in following through and upholding those policies and disciplinary actions.

Inclusive collaboration. Nine (20.5%) responses to the first open-ended survey question indicated that parent and educator collaboration is a key component of combating cyber misconduct. A counselor from Workshop Group I – Team F thought it was important for parents and educators to “come together as a team to collaborate and share ideas and concerns.” A case manager from a youth community organization (Workshop Group I – Team G) believed that parents and educators should “have a community meeting where everyone can learn about cyber safety and how to prevent cyber bullying” together. In addition, a classroom teacher from Workshop Group I – Team A thought that it was critical to “collaborate on ideas to help support students and practice the ethical use of technology at home and at school.”
Other Workshop Findings

Another developing trend that emerged from the cyber safety workshop included the idea of changing adult behavior to model appropriate actions, values, and ethical decision-making. A mother from Workshop Group II – Team D stated that parents and educators should “model the behavior they want to see in their students.” A library media specialist from Workshop Group I – Team B added: “I think that parents and educators can work together by reinforcing and developing the same values and teachings both at home and at school to have continuity in explaining and preventing cyber bullying.”

Ethical expectations. In one of the workshop activities, participants were asked to identify their top ethical expectations for technology users at school and at home. The purpose of this activity was to have participants think critically about what their personal beliefs were as parents, educators or both. Having participants think about their own ethical expectations was a strategy intended to help participants identify core values in order to develop specific goals for their schools, classrooms, and/or homes in a subsequent workshop activity. Parent and educator participants from both workshop groups discussed cyber issues and their expectations in small groups, recorded their notes on poster paper, and presented their discussion notes to the whole workshop group. The list of ethical expectations in Table 4.5 is a compilation of direct quotes from the workshop discussion notes from Workshop Groups I and II. The discussion notes were organized, coded, and categorized into themes (See Table 4.5).
Table 4.5

Ethical Expectations of Parents and Educators

<table>
<thead>
<tr>
<th>Kind and Respectful</th>
<th>Smart</th>
<th>Honest</th>
<th>Aware that cyber and physical worlds can overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students should be kind to others – in words and actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not use mean, hurtful words on the internet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not say mean, hurtful things about people/friends</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should be thoughtful and kind in their online communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children should be kind and empathetic and respectful</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not post hurtful things online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not use technology as a way to harm others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should treat devices with respect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not use devices during family dinners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students (and school staff) should know how social media works, what its uses are for, and what the recommended practices are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should understand the impact of [their] actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not post anything they don’t want others to see</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not post inappropriate – sexual content or images, videos online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not visit inappropriate sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should not use explicit words online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should be careful about personal information sharing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should manage how [their] minds and time get consumed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should protect their sites with passwords</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should do less multi-tasking and learn to develop single-minded focus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students’ activity online should be transparent (no quick switching/closing of windows)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being secretive is sometimes what gets kids into trouble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If there are people around, socialize with them</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The same rules/protocol apply in real life as they do in cyber space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This ethical expectation activity revealed basic virtues and character traits that adults wanted their children to embrace. Overall, parents and educators believed in the virtues of being kind, respectful, smart, honest, and aware. On the surface, these common values may not necessarily be the first things that come to mind when thinking about technology. Yet, these ethical expectations of kindness, respectfulness, honesty,
intelligence, and awareness exhibit a connection to simple, fundamental character traits that could be instilled in all people both in the physical and cyber worlds.

Cyber challenges and goals. In a second workshop activity, participants were asked to list the major challenges that their schools or they, as individuals, experienced in regard to trying to combat cyber issues, like cyber victimization and sexting. They were also asked to reflect upon their ethical expectations from the previous activity and develop specific goals to address their cyber challenges and ethical expectations. Parents and educators were again asked to discuss these issues in small groups, record their notes on poster paper, and present their discussion notes to the whole workshop group. Table 4.6 contains a summary of the cyber challenges and goals that workshop participants shared in their discussion notes.

This workshop activity was intended to address the current study’s fifth research question related to collaborative efforts in goal setting. When teams were able to identify cyber challenges that were specifically relevant to their school contexts, it assisted them in the development of applicable goals to overcome those particular challenges. Those goals, in turn, were then beneficial for teams to ultimately create their school-wide cyber safety action plans.
General Cyber Challenges

| Students and adults may not know appropriate and inappropriate online behavior | • We must teach students and adults appropriate online behavior
• Increase understanding of the seriousness, severity, and consequences of online actions |
| Students think it is the social norm to behave a certain way online (e.g., students think that saying “J/K” (Just Kidding) makes anything they say justified) | • When students think it’s okay to behave a certain way online because it’s a social norm, parents need to step in and take equal responsibility for ethically “potty training” their kids before sending them to school
• Peers should be involved somehow |
| Modeling and accepting personal responsibility (as adults) is often a challenge | We (adults) need to be educated on cyber issues, so we can teach, train, model, and accept personal responsibility for online actions |
| Implementing a school-wide one-to-one iPad initiative - we need to communicate cyber safety importance; what facts are important to know and why? | • We need to educate parents with checklists for safety and resources; also bring in parent speaker series
• We need to hold trainings and sharing of information for other faculty/staff and parents/family members
• We need to have continuous conversations; dialogue regularly with students |
| School vs. personal device use; social networking and privacy (Who is accountable for inappropriate uses of devices? What happens when personal accounts are used on a school-issued device and not the school account? What about “private” vs. “public” conversations?) | • Faculty and staff should gain awareness through in-service training
• Teachers need to be more knowledgeable about school policies
• School policies should be up-to-date
• Utilize existing school resources, like the Parent-Teacher-Student Organization (PTSO) and Parent Community Networking Coordinator (PCNC) to formulate rules/policies |
| Students do not understand the full range of implications of online postings | We need to educate students about age-appropriate behavior (i.e., have the principal, dean, or headmaster talk to students; have guest speakers come in to talk to students) |

Identifying cyber challenges and creating goals to address specific challenges and ethical expectations were only the first steps taken by parents and educators in the cyber safety workshop. These workshop activities gave parents and educators the opportunity to discuss important cyber issues that they may or may not have had the opportunity to do together before. The workshop was to serve as a catalyst for ongoing collaboration.
among the members of each school cyber safety team. After the workshop, it was up to the individual participants and their fellow school team members to follow through on the goals they had set in the workshop. Follow-up communications with participating school teams were conducted, and interview and on-site visit requests were made to all school teams. This qualitative investigation produced three case studies that demonstrate the progress of school cyber safety action teams in regard to the goals and objectives they developed during the workshop.

Case Studies

It was intended for all 16 participating schools (from Workshop Groups I and II) to be followed after the workshops. However, no schools from Workshop Group I responded to the initial follow-up contact email and only three out of seven schools (42.9%) in Workshop Group II were available for the follow-up intervals in the three months following the cyber safety workshop in September 2013. The three schools that willingly participated in the three-month follow-up communications were Workshop Group II–Teams B, D, and F. It is interesting to note that these three schools were the only schools that sent teams of at least one school administrator, one parent representative, and one other school faculty member (prerequisites for the workshop) to attend the September cyber safety workshop. No workshop participants who attended the workshop alone or with only one other school representative responded to any post-workshop invitations to participate in the follow-up portion of this study.

The following case studies demonstrate the varying degrees of action three Hawai‘i schools have taken in regard to cyber safety awareness, digital citizenship education, and the development of cyber safety action teams. The follow-up investigation
with these three schools over a period of three months after the cyber safety workshop provide information about how these schools differ in their progress toward combatting cyber victimization and maintaining safer school environments. The case studies also consider the critical leadership roles within schools that effectively drive action and change.

Case One

School Description

Five faculty members from School One (Workshop Group II – Team B) attended the September 2013 cyber safety workshop—two school administrators, one counselor, one classroom teacher, and the school’s communication director. School One is a private school in Honolulu, Hawai‘i with nearly 2,000 students enrolled in grades K-12. A pilot one-to-one iPad initiative was implemented during the 2012-2013 school year, where each fourth and fifth grade student was given a school-issued electronic tablet. The main purpose of the one-to-one iPad initiative was to support student learning and enhance useful 21st century skills, while also staying current with updated technology trends. The one-to-one program was later expanded to include all students in the junior class (230 students) in early 2013.

With the success of the pilot one-to-one program, the school disseminated iPads to all students in grades K-12 for the 2013-2014 school year. All students were required to attend mandatory device distribution meetings and only the parents of students in grades 3-8 were required to accompany their children to these meetings. School One students were asked to read and sign the School One “Rules for the Use of Electronic Devices” agreement (Appendix H). These rules served as the school’s Acceptable Use
Policy (AUP), holding all students and parents accountable to abide by School One’s rules when using the school-issued iPads.

Follow-up one – October 2013. The first follow-up communication with School One was conducted through email. The five members of the school team, all of whom attended the workshop, collaborated on answering the nine follow-up questions sent via email (Appendix F). From the responses to the questions, the following information was collected.

In the month following the workshop, a counselor from the school team discussed the workshop content addressed with the Dean of the Lower School, the Assistant Dean of School, and a co-counselor. The four faculty members then had a meeting in the Upper School to pull together more members to form a cyber safety team and to collaborate on a comprehensive plan for cyber safety education at their school. Eight people were identified as members of School One’s cyber safety action team: the Assistant Head of School, Director of Communications, ‘Ohana (parent) liaison, Health Education Coordinator, Dean of Faculty, Director of a new school innovation center, Director of Information and Technology Services (ITS), and Director of Counseling. The robust team also developed an overall mission to guide their future efforts: “To develop an all-school plan for cyber safety and to get on the same page about what different departments are doing to educate students, faculty, and parents about cyber safety.”

At the time of the first follow-up, the cyber safety action team at School One had not yet appointed leaders within the team, but was working together collaboratively to address the arising cyber issues occurring in their school. Team members reported that since attending the cyber safety workshop, they had all become more aware of the
importance of cyber safety and were more determined to ensure that effective protocols were in place, especially in light of their one-to-one iPad initiative in every grade.

In regard to cyber victimization, members of the school team did not perceive it as a major problem among their students. School One’s response to the question addressing cyber victimization was:

Cyber bullying has not come to the forefront as a major issue on campus, however we are very aware of the extremely detrimental effects of it and want to do everything in our power to educate students, parents, and faculty/staff about what they can do to prevent and handle it.

A parent member of the team said that because of the cyber safety workshop, she saw her role as a parent differently than before and no longer will let her kids go into their rooms alone with their iPads. All of the members of the School One cyber safety action team agreed that because of the workshop they wanted to take a more proactive stance toward cyber safety, rather than being reactive to potential situations that could arise. Overall, the team stated that what they would ultimately like to see is for School One “students to understand the importance of respecting others online and be aware of the responsibility and risks that are associated with online activity.”

Challenges. School One found it difficult to devise effective ways to create cyber awareness (and/or interest) in parents and educators with varying digital competencies and knowledge. Another challenge was deciphering who (parents or educators) is ultimately responsible for which parts of cyber safety education. “Which group should teach what and how do we know what they are teaching is effective?”
School One reported that their immediate future directions included creating a comprehensive K-12 action plan and to begin ongoing discussions with parents to keep them informed about the progress of their one-to-one iPad initiative. In the short time following the cyber safety workshop, School One was able to address many of the goals and objectives they had set for themselves in the workshop. Not only did they discuss the cyber safety workshop issues with important leaders of the school and formed a cyber safety action team comprised of educators and parents, they also updated their technology code of conduct and started to develop action plans for their Lower and Upper schools.

Follow-up two – November 2013. The second follow-up communication occurred two months after the cyber safety workshop. This follow up was primarily intended to keep the lines of communication open between the researcher and the school team and to assess the progress of the team (see Follow-up Two questions in Appendix G). In regard to the cyber safety programs implemented in School One, the school team described how they had recently started a K-6 Digital Citizenship program in conjunction with the one-to-one iPad initiative. At the time of Follow-up Two, the school team had not completed their K-12 comprehensive cyber safety action plan that included specific details of the Digital Citizenship program, but requested to have an in-person meeting with the university affiliated Internet safety education expert and myself to help with the fine-tuning of their action plan. The in-person meeting was scheduled for the following month (Follow-up Three). The school team also asked for assistance with their school’s technology policy or AUP, and the Hawai‘i Internet safety education expert was able to provide her guidance and expertise (See Appendix H).
In Follow-up Two, a question was asked if the school could share any cyber victimization incidents occurring at the school. The school team referred me to the Dean of Students who handles student disciplinary actions, and a meeting was scheduled to speak with him as part of the third follow-up.

Follow-up three – December 2013. School One was the only school team that agreed to participate in a face-to-face meeting to share their cyber safety experiences and processes in creating a cyber safety action team. The two-hour in-person meeting with School One’s cyber safety action team consisted of myself, the university affiliated Internet safety education expert, and the seven school faculty members identified in Follow-up One. In this meeting, School One’s K-12 cyber safety action plan was discussed in detail. The school plan included the implementation of K-12 cyber safety lessons derived from Common Sense Media (www.commonsensemedia.org) and digital citizenship lessons from BrainPOP (www.brainpop.com/spotlight/digitalcitizenship). The school team had planned to teach these lessons within the first week of each quarter or semester through the History Department. It was agreed upon in the meeting that the comprehensive cyber safety action plan for K-12 be revamped to divide the curriculum by specific grade-levels. Instead of teaching the same curriculum for the grade clusters: K-6, 7-8, and 9-12, it was decided that it would be best for the curriculum to be geared toward smaller age brackets: K-2, 3-5, 6-8, and 9-12, based on the appropriateness of the content, activities, assemblies, and various resources.

During the meeting, members of the School One team shared that they were thinking about proposing a Parent Speaker Series called the *Cyber Safety and Digital Citizenship Series*, where local experts on cyber safety topics would be invited to speak
to parents. In the same vein, the school counselor provided statistics from a survey completed by approximately 538 parents prior to the iPad device dissemination. One question in particular addressed the issue of the school providing educational opportunities for parents and asked them to rank potential presentation topics for future “parent-teacher coffee hour” presentations based on their levels of interest. Parents ranked the presentation topics on a scale from 1 to 6, with 1 being the topic of highest interest. The suggested topics, in order from highest to lowest preference were as follows: (a) Cyber Safety (ranked 1st; 30.8% (165)), (b) How parents can manage the devices (ranked 2nd; 23.1% (124)), (c) Ways to set up parental controls on web access at home (ranked 3rd; 36.8% (198)), (d) How the school manages the iPad devices (ranked 4th; 36.8% (198)), (e) iPad basics and general use (ranked 5th; 24.9% (134)), and (f) Setting up a wireless network at home (ranked 6th; 38.7% (208)).

During the in-person meeting, the Internet safety education expert provided her guidance on specific areas of cyber safety and digital citizenship to include in the school’s proposed Digital Citizenship program. She posed the following questions to the team to generate discussion: *How does the school define digital citizenship?* and *Are all teachers in the school versed in this content area?* These guiding questions started a deep conversation amongst the members of the school team, where it was noted that (a) deliberate ethics education should start in the early elementary school years and (b) all teachers need to follow the same rules and be on the same page. The members of the school team started brainstorming the idea of using a group of 24 senior students to help concretely define the concept of digital citizenship and to contribute to the comprehensive cyber safety action plan and school-wide technology policies. The team
also started discussing ways parents could be more involved in cyber safety. While the team agreed that it is difficult involving parents in policy development, they said that they understood how parents could be very powerful in assisting in crafting cyber safety protocol. During the meeting, materials from the Enough is Enough (2009) program, including the Rules ‘N Tools Youth Pledge, the Rules ‘N Tools Checklist, and the Rules ‘N Tools Age-Based Guidelines, and Nancy Willard’s (2009) Cyber Savvy Teens: A Guide for Parents were provided to the team members as vetted supplemental resources to share with other teachers, students, and parents.

Motivations for change. When asked about their motivations for the cyber safety changes that the school team had made in the past three months, a member from the school team responded that it had a great deal to do with their one-to-one iPad rollout. Educators and administrators from School One were concerned about whether the proper protocols were in place during the school-wide rollout, and that was what incited the quest to gather as much information about cyber safety, etiquette, and ethics as possible. “With the one-to-one rollout, it is now our (the school’s) responsibility,” said the school counselor, “and education is an important part [of that responsibility].” It was also stated that the iPad initiative was one of the main reasons for attending the cyber safety workshop in September. Another team member said that they were motivated to make these cyber safety changes in their school because they wanted to protect the students, as well as the school—they did not want possible negative student actions online to be a reflection of the school, and wanted to ensure that the school was doing the “necessary things” to protect themselves and the students.
When asked about whether the school changes were directly related to the cyber safety workshop they attended, the overall agreement from the school team was that the changes were in motion before the workshop. Yet, the content presented in the workshop, as well as the ongoing follow-up communications after the workshop helped to reinforce and support the cyber safety-related decisions they were making at their school. The Director of Communications stated: “Technology is part of being a new citizen, and this is the overall movement of the school.”

Proposed action steps for School One. Data collected from the in-person meeting with the School One team included the documentation of specific goals, objectives, and next steps for the cyber safety action team and the school as a whole. The following is a list of action steps that the School One cyber safety action team developed after the in-person meeting:

1) Take all teachers through any digital citizenship classes that we teach to our students

2) Create a Digital Citizenship definition for the school
 - Get parents involved in the definition
 - Get student feedback: What does it mean to be a citizen? *What is your online community?*
 - Students answer question: *What is the identity that you are trying to develop?*
 - Face-to-Face and online identity- make it known that it is OK to wear different hats in their lives as long as they aren't hurting anyone.
• Answer the question: *What is the society that digital citizenship is important in? Just school? At home?*

3) Provide parents (grades 6,7,8) study scenarios to react and share with each other.

4) Provide the opportunities for students to ask anonymous cyber-related questions.

5) Focus group: Ask student leaders what they think they are going to do online after high school? (e.g., language (profanity), personal profiles, digital footprints, sexting conversations (11th & 12th grade))
 • Ideal size for sexting conversation: 25-28 students, break down smaller and come back to large group.

6) Educate the Lower School about using photos/music (copyright, plagiarism).

7) Sustainability aspect of owning devices: wipe data, recycle battery, donate device, recycle, being global minded, consider impact on the world.

8) Grades 2-5: Generate meaningful 'I' Statements
 • Come back to them once a quarter.

9) Discuss the U.S. Bill of Rights with students.

10) Write down protocol for handling a cyber bullying incident.

11) Revise the faculty manual about Social Media
 • Report it to the Dean of Students.
 • Be smart and skeptical- if it can be misinterpreted, it will be misinterpreted.
 • Accepting consequences of your choice of behavior.
The specific objectives listed above as School One’s next steps derived directly from their overall ethical expectations and goals. Although the scope of this study does not include a longitudinal follow-up of the school, it would be of interest to observe what the school can accomplish in the future in regard to their cyber safety objectives.

Cyber incidents. After the in-person meeting with School One’s cyber safety action team, I was referred to the Dean of Students to talk about cyber victimization and sexting incidents that occurred with students from the school. The Dean of Students reported that there were only a few incidents of cyber bullying and no incidents involving sexting. He said that in an average year, he receives about five referrals for cyber bullying in the 7-9th grade levels. One specific incident that was shared revolved around the social networking website called Ask.fm. The Dean of Students reported: “This site allows individuals to post anonymous questions to any user who then can answer them.” The dean reported that he had several cases where an individual’s Ask.fm page was littered with inappropriate and cyber bullying comments. Other cyber bullying incidents involved Facebook, where students who may or may not have been friends were posting negative comments about others on their pages. He said that he observed that both forms of cyber bullying (on Ask.fm and Facebook) tended to happen after two people or a group of people got into an argument or falling out of some kind offline. The dean also mentioned that he was sure that many cases of cyber bullying go unreported: “Most of the postings on these social networking sites take place outside of school and after school hours, so students do not necessarily see this as a school violation or do not want to be a tattletale.” These incidents provide evidence for the need for continuous cyber safety
education and awareness, as well as avenues for students to report cyber incidents anonymously, without fear of retaliation for asking an adult for help.

Reflections. Overall, School One was quick to follow through on the goals and objectives they had set at the cyber safety workshop. The team members were also vigilant about responding to the suggestions and feedback provided by the Internet safety education expert and myself after the workshop. School One’s organizational skills, strong leadership, and dedication from all of its members were the driving forces that lead this team to action. The ongoing effectiveness of this school cyber safety action team is yet to be seen and would require a longitudinal investigation beyond the scope of this study. Yet, in only three months after the cyber safety workshop, the amount of time and effort put into the creation of the cyber safety action team with eight leaders of the school, the revising of the school’s AUP, the development of the school’s comprehensive K-12 cyber safety action plan, and the proactive behaviors of the school team in response to their one-to-one iPad initiative are exemplary steps toward maintaining a safe and productive cyber environment for their school’s technology users.

Case Two

School Description

Five members from School Two (Workshop Group II – Team F) attended the September 2013 cyber safety workshop—the vice principal, two classroom teachers, one technology coordinator, and one parent representative. School Two is a public elementary school located in Honolulu, Hawai‘i and serves approximately 600 students from Pre-Kindergarten to grade 5. The mission of School Two is focused on creating a collaborative community of lifelong learners, which emphasizes the development of
necessary 21st century skills, such as the effective and ethical use of technology. Because of the restrictions from the Hawaii Department of Education to conduct this particular research study in public schools, the participants from School Two knowingly participated as private citizens.

Follow-up one – October 2013. During the first follow-up with School Two, one member of the school team, a classroom teacher, responded to the nine follow-up questions sent via email (Appendix F). From the responses to the questions, the following information was collected.

In the month following the workshop, the school team discussed the contents of the workshop at a School Community Council (SCC) meeting. When asked who the members of School Two’s cyber safety action team were, the five people who attended the cyber safety workshop were indicated as the core team members: the technology coordinator, the Parent-Teacher-Student Organization (PTSO) chairperson, the vice principal, and two classroom teachers. The team reported that the mission of their cyber safety action team is “to inform faculty, staff, parents, and the community about cyber safety.”

At the time of the first follow up, the cyber safety action team at School Two had not yet appointed leaders within the team. When asked why this was so, the response alluded to the fact that their team had been very busy addressing the rigorous, state mandated demands on all educators regarding Common Core State Standards, and other issues related to their school’s Effective Educator System (teacher evaluation), report cards, parent-teacher conferences, and school holidays and breaks impeded the school team from designating specific leaders in the group to organize the team. The classroom
teacher reported that since attending the cyber safety workshop, she has become “more cautious about having students use computers for research,” and she now only allows Internet sites that she is personally familiar with or sites that come from the school’s website, which have been pre-approved by the technology coordinator and other school faculty.

In terms of cyber victimization at School Two, the teacher did not perceive it as a major problem among her elementary students. However, the teacher was witness to one incident involving a student posting a YouTube video online and another student who found the post and was ready to exploit the video thinking that it was funny. In the cyber bullying anecdote that was shared, the student who had posted the YouTube video was embarrassed by the content of the video (in which details were not divulged) and eventually gave the student who found the post a small amount of money to keep him quiet. The teacher stated: “This [incident] involved bribery and extortion concerns that the parents needed to be made aware of.” Once things with this incident were settled, the teacher used this situation as a “teachable moment” for her class and discussed the dangers of posting things online, as well as the various implications these types of online actions can have offline.

In the cyber safety workshop, the topics discussed were geared toward parents and educators working together to combat the cyber safety issues in their respective schools. However, in the first follow up, it was found that the information from the workshop was shown to have also reached personal corners of the participants’ lives. Since the cyber safety workshop, the classroom teacher said that she now views how important her role is not only as an educator, but as a parent as well. She reported that
while she believes that she needs to be more vigilant as a teacher, she also feels that as a parent of a disabled adult, who has had issues discerning between appropriate and inappropriate Facebook use in the past, she understands the greater need to take on a bigger responsibility when it comes to cyber safety and modeling appropriate technology use for her students and children.

Challenges. The biggest difficulties the classroom teacher from School Two identified when it comes to creating partnerships with parents and educators around the issue of cyber safety were the issues of finding the time to discuss these issues with other school faculty and staff, and figuring out how to provide the opportunities to educate parents about these issues as well. She commented that “everyone is so busy,” which is a common perspective of many educators. The teacher also mentioned her concern regarding how cyber safety education is not just the responsibility of the school and that parents need to be more aware of what their children are doing on a daily basis:

Students rarely share what goes on at home with the computer, but I know many of them stay home alone over the weekends while parents work. Parents believe their child is safer at home than outside wandering around in the city.

The classroom teacher who provided the responses to the first follow-up communication shared insightful stories related to cyber safety that she had experienced in her professional life at school, as well as in her personal life. She also shared how the cyber safety workshop open her eyes to cyber safety concepts that she was previously unaware of. In terms of how the school cyber safety team was acting upon the goals and objectives they had set for their school in the workshop, their progress was yet to be seen
in Follow-up One. Due to the common time constraints and various school mandates of the public school system, School Two’s cyber safety action team had yet to take action.

Follow-up two – November 2013. The second follow-up communication was with the school’s technology coordinator (see Follow-up Two questions in Appendix G). In regard to cyber safety programs or projects implemented in School Two, the technology coordinator reported the following:

During the first weeks of school this quarter, all classes, Preschool through 5th grade, had Internet Safety lessons. Preschool through Kindergarten were taught to tell a safe (or trusted) adult if anything makes them feel uncomfortable. We discussed who the safe adults at home were (e.g., parents, grandparents, family members over 18 years) and who the safe adults at school were (e.g., teachers, principal, vice principal, counselors, custodians). First through 2nd grade students watched an Internet Safety video on BrainPOP and took a quiz as a class. They identified safe adults they can trust to keep them safe online and in real world situations. Third through 5th grade discussed what they already knew about Internet Safety in small groups. The brainstorm ideas were shared on the class microphone and ideas for some classes were jotted down on the projected screen. These 3rd-5th grade students then became Internet Superheroes via [the website:] http://www.att.com/Common/images/safety/game.html. As students completed the activity, they received their superhero certificates and signed their names.

The technology coordinator also reported that she had dedicated a few weeks in the month of November for the students in grades 4 and 5 to review the Internet Safety
Rules. The following rules were highlighted by the technology coordinator, which were derived from the Netsmartz organization website (http://www.netsmartz.org/resources/pledges):

- I will tell my trusted adult if anything makes me feel sad, scared, or confused.
- I will ask my trusted adult before sharing information like my name, address and phone number.
- I won’t meet face-to-face with anyone from the Internet.
- I will always use good netiquette and not be rude or mean online.

The technology coordinator mentioned that the students were assigned to read the Netsmartz Internet Safety Pledge from the website in class and discuss why the pledge was important. The students were asked to recite the pledge together and then individually sign the pledge. Then they were asked to take the pledge home and read it with a parent/guardian, and have the parent/guardian sign the pledge as well. As a final part of this task, students logged into their school-issued Google Drive accounts and wrote about the importance of Internet Safety.

At the time of the second follow-up, School Two’s cyber safety action team had only begun discussing and planning a cyber safety assembly. The technology coordinator reported that at their last PTSO meeting on November 14, the members of the PTSO agreed to combine their next official meeting in February 2014 with a Cyber Safety Workshop for parents and educators. No plans had been finalized at the time of the second follow-up communication.

Follow-up three – December 2013. The cyber safety action team at School Two was unable to participate in an in-person meeting, and the status of the school in terms of
cyber safety had not changed dramatically since the second follow-up communication. However, the technology coordinator shared in an email that she had been working closely with the PTSO president and the school principal to coordinate the PTSO meeting/Cyber Safety Workshop and had secured a date in February 2014. In the same email communication she invited the Internet safety educational expert, the cyber safety law enforcement expert from the cyber safety workshop, and myself to speak at the meeting. Although the outcomes of the February meeting are beyond the scope of this study, the fact that School Two’s cyber safety action team was moving in a positive direction toward parent-school collaboration around the topic of cyber safety was a promising result.

Reflections. School Two’s cyber safety action team made some strides in the three months after the workshop to address their school’s mission of creating a collaborative school environment that focused on lifelong learning and the development of 21st century skills. In terms of their motivations for attending the cyber safety workshop and desiring to make cyber safety changes in the school, they believed that understanding cyber safety rules and etiquette, and having parents, educators, and students involved in this educational process was very important. It remains unclear as to whether the cyber safety actions taking place in School Two were direct results of the cyber safety workshop. However, the workshop and consistent follow-up communications kept cyber safety education in the forefront for the cyber safety team and provided ongoing support for the school when help was requested.
Case Three

School Description

Five members from School Three (Workshop Group II – Team D) attended the September 2013 cyber safety workshop—the Director of the Upper School, the Director of the Lower School, the Middle School Dean, the school nurse, and a parent representative. School Three is a private all-girls school located in Honolulu, Hawaiʻi and serves approximately 550 students from Kindergarten to grade 12. The overarching goal of the school is to provide an academically challenging environment that offers a college-preparatory curriculum integrating arts, sciences, and technology.

School Three has long believed in the integration of technology in their students’ academic growth and was the first private school in the state to integrate a one-to-one digital device initiative for every student in grades 5-12 in 2002. The purpose of the initiative was to help their students develop 21st century knowledge and skills using technology that could help them later in life. Annually, students in grades K-4 are provided in-school access to a notebook computer cart and students in grades K-2 are additionally provided in-school access to an iPad cart. The emphasis on building a strong educational community for School Three’s students is evident in the school’s vision for the implementation of technology from their website:

The [school’s] vision is to be an educational community where the most current technology is being used to strengthen academics as well as communication among teachers, students, parents, administrators and the school's extended family (alumnae, friends and supporters). The boundaries of this community will extend beyond the physical walls of the classroom, and ensure that girls develop the
fluency and adeptness in computer skills that are necessary for higher learning
and for the workplace of the future.

Follow-up one – October 2013. In the first month following the workshop, it was
difficult making initial contact with School Three. Therefore, follow-up one was not
completed, and the questions in Appendix F were not answered.

Follow-up two – November 2013. The second follow-up communication
occurred two months after the workshop. During this month, the point of contact for
School Three, the director of technology, reported that the school team that was formed at
the workshop was trying to coordinate a time to meet and compile their responses to both
the Follow-up One and Follow-up Two questions. The technology director added that the
school team was excited to share what they had learned at the cyber safety workshop with
others at their school. She stated: “We will get to the Follow-Up questions that were sent
in October. We’ve been buzzing – literally – along with our school’s strategic plan, so
things have been hectic!”

Also in the correspondence with the technology director from School Three, I was
invited to speak about cyber bullying at their Parent Night with their school’s Upper
School parents (grades 6-12). The purpose of the parent night was to provide parents with
suggestions, tools, and strategies from local experts on the topics of 21st century
classrooms and cyber safety. The technology director mentioned how an event on cyber
bullying and other cyber safety issues could help to “enlighten some of their parents.” I
responded to the invitation and was intending on continuing the conversation with the
school team for the third follow up.
Follow-up three – December 2013. The cyber safety action team at School Three did not respond to any further email communications after the second follow up, and did not agree to an in-person meeting. Nor were responses collected for the Follow-up One and Follow-up Two questions. However, when collecting existing public data related to technology use in School Three, I found the following information about the school’s technology plans on the school website:

The [school’s] Technology Plan calls for integrating technology into the instructional program and administration of the school. Technology integrated into instruction is a compelling tool for teaching, learning and communication in preparing young women for the 21st century. Faculty actively seek out professional development opportunities to further technology integration in the classroom, as well as present at conferences about their experiences utilizing technology in the classroom. Technology is also integrated into operations as a powerful management tool, enabling the [school] itself to respond to the challenges of the communication age.

Students are connected to this network wherever they may be on campus - in any classroom, in [the] courtyard, or in the gym. Technolog[ies] have become an integral part of the classroom experience for every student, while resources available on the Internet play a vital role in helping students learn to do research, create reports, and better understand the world we live in.

Although the intention to provide responses to the follow-up questions was evident in Follow-up Two, School Three did not complete the three follow-up communications. Perhaps, since School Three has had technology as an integral part of
their existing curriculum longer than many other schools, they had policies and routines in place that already work for their school. Yet, due to the lack of follow-up communication with School Three, the impact of the cyber safety workshop, the school’s cyber safety action plan, motivations for school-wide change, and the challenges in implementing these changes are relatively inconclusive.

Reflections. From my observations in the workshop and in personal one-to-one conversations with participants, the members of School Three’s cyber safety action team were enthusiastic and eager to participate in the workshop activities and the ongoing follow-up portion of the study. However, they were unable to respond to the follow-up questions. One explanation as to why these questions were not addressed was that the school team had been busy, as indicated in the second follow-up communication. Another possibility could be that because School Three has had one-to-one technology integrated into their school curriculum since 2002, the school team may not have found the workshop content and follow-up communications to be as timely or relevant compared to other schools that were embarking on or thinking about implementing one-to-one device initiatives at that time. Perhaps School Three had encountered cyber problems early on in their one-to-one initiative, and in the decade since implementation have found effective strategies to solving those issues in their unique school context. However, due to the lack of communication with School Three, the results are inconclusive. School Three was included as a case study with Schools One and Two to illustrate how schools vary in their courses of action and can fall anywhere on the spectrum of thought and action. Comparisons of the three case studies on a thought-action continuum and the interpretations of the findings are discussed further in the following chapter.
CHAPTER 5
DISCUSSION

The purpose of this study was to investigate the effects of a cyber safety workshop. The research question was as follows: How will a cyber safety workshop for parents and educators enhance participants’ (a) awareness and knowledge of current cyber safety issues; (b) digital citizenship knowledge; (c) self-efficacy in addressing cyber victimization and digital citizenship education; (d) attitudes about parent and educator collaboration to address cyber behavior; and (e) collaborative efforts in goal setting and creating a cyber safety action team? The study’s results give insight to the effectiveness of the workshop and the range of thought and action in regard to cyber safety goal setting and action planning.

The Cyber Safety Workshop

Cyber safety awareness. After the cyber safety workshop, participants from both workshop groups increased their cyber safety awareness from pre to post survey intervals. Participants who attended the workshop either as individuals or in teams increased their pre to post scores in this construct area as well. Participant comments on the post surveys or in personal communications after the workshop revealed that many participants believed they were more knowledgeable and aware of which signs to look for if a student or child has been a victim of cyber bullying and the proper steps to take in a cyber victimization situation. Participants also generally reported a greater understanding that peer bystanders are helpful in resolving cyber victimization situations.

Digital citizenship knowledge. Participants responded in the post survey or in personal communications after the workshop that they were more knowledgeable about
digital citizenship—what it is, what to specifically talk about with students, and that it is an important topic for technology users to know more about. Participants in both Workshop Groups I and II increased their digital citizenship knowledge from pre to post survey intervals, and in general, participants who attended the workshop either in teams or as individuals increased this knowledge as well.

Cyber safety self-efficacy. Participants in Workshop Group I increased their cyber safety self-efficacy from pre to post survey intervals. Yet, Workshop Group II participants had a decreased self-efficacy after the workshop. This decrease in self-efficacy could indicate three possibilities: (a) that participants in Workshop Group II were not as confident as the participants in Workshop Group I in their abilities to teach others safe and responsible technology use, (b) the participants in this group had a more conservative perception of their cyber safety teaching abilities by the end of the workshop, or (c) participants could have previously thought they were competent in this area and the workshop revealed that they may not have been as knowledgeable as they had thought.

In a closer inspection of the individual survey items to understand the decrease in self-efficacy, only one item had a decrease in pre- to post-survey means (See Appendices A and B; Parent survey item 31; Educator survey item 33). In this particular item, participants were asked how much they agreed with the following statement: *I can prevent my child/students from saying or doing mean or hurtful things to other children using digital technology.* The decrease from pre to post means for this survey item is somewhat puzzling because one of the main purposes of the workshop was to increase adults’ beliefs that they had the ability to influence positive cyber changes and behaviors
in their schools. It is possible that the content of the workshop, while making adults more aware of cyber dangers that currently exist and the strategies adults could use to combat those dangers, may have adversely influenced participants’ beliefs that they could stop children from saying or doing unethical things online. Although the participants’ self-efficacy beliefs minimally decreased, this may have been a temporary effect of their increased knowledge. Perhaps parents and educators could increase their cyber safety self-efficacy by attending on-going professional development focused on cyber safety and digital citizenship education. In terms of cyber safety self-efficacy, this construct has not existed in literature prior to this study. Therefore, it is a new construct. Additional research is needed to assess whether more professional development would help participants increase their self-efficacy as they practice cyber safety skills.

Perceptions of family-school collaboration. Participants in both Workshop Groups I and II increased their perceptions of parent-educator collaboration from the pre to post survey intervals. They also positively increased this understanding regardless of whether they attended the workshop alone or in a team. Participants reported in the post survey or in personal communications after the workshop that they were more aware of how parents and educators can work closely to prevent cyber victimization and other cyber misconduct. They also reported gaining specific, concrete skills from the workshop, which could allow them to contribute to a team to help teach students to be safer online.

Overall, participants responded that they were more aware of the cyber dangers that currently exist, the components of digital citizenship education, and the importance of home-school partnerships around cyber safety. Participants reported gaining specific,
concrete skills, and strategies from the workshop that they could use to help their schools in creating safer online environments for students.

Teams vs. no teams. When comparing the pre- and post-survey means of participants who attended the workshop in teams as opposed to attending alone, the quantitative results revealed that this variable did not significantly affect participants’ responses in any of the four survey constructs. However, when it came to the follow-up communications with each cyber safety action team, participants in teams were more responsive and active after the workshop than those who did not have a team.

All participating schools in Workshop Group II had verbally agreed to contribute to the follow-up meetings. Yet, when follow-up invitations were sent to each school, only three schools consistently responded. Those three schools were described in the case studies and they each followed the workshop prerequisite of attending the workshop in a team or PLC (each school attended with five team members). The participating schools that attended the workshop with only one or two members, on the other hand, did not respond to any of the follow-up communications. Perhaps attending the workshop in a professional learning community provided enough additional support from multiple school and parent representatives to hold each member accountable to act upon the goals and objectives created in the workshop.

Parent and educator collaboration. According to the two open-ended questions on the cyber safety surveys, respondents unanimously agreed that creating partnerships between the home and school was an important step toward developing school-wide cyber safety protocols and policies. Five ideas emerged from these questions that included: (a) continuously educating all technology users on safe and ethical technology
use; (b) keeping the lines of communication open between all school stakeholders; (c) creating and consistently following through on rules at home and at school; (d) being vigilant about what children are doing online; and (e) treating parents, educators, and the community as potential partners, where each group of stakeholders should be able to weigh in on cyber situations, rules, and policies. Another trend found through the open-ended questions, similar to Bandura’s (1977) concept of modeling, was that adults should pay more attention to monitoring and modifying their own technology behavior to model appropriate technology use for children and to perpetuate positive values within their community.

Shariff (2008) ultimately believed that a shift in perceptions must take place in order for parents and educators to realize that working together to develop cohesive and collaborative approaches to cyber victimization prevention is a viable solution. She was a strong proponent of educating adults about cyber safety issues and digital citizenship concepts and believed that there is a great need for informed and improved professional development for educators, school officials, and policymakers. The themes above align with Shariff’s beliefs, as well as with Ribble and Bailey’s (2007) digital citizenship curriculum and Epstein’s (1987) overlapping spheres of influence, where families, schools, and the community should all share an equal responsibility in modeling appropriate behaviors on and offline to set examples for children and ensuring that children are behaving ethically, responsibly, and safely.

Ethical expectations. During the workshop, participants were asked to list their ethical expectations of children regarding technology use in either a classroom or at home. In acknowledgement of Lamb’s (2011) lifelong learning assumption that adult
learners be critically reflective, this activity was conducted to help participants focus on their own values to determine their schema of how they believed children should behave. These expectations, in turn, helped school teams create cyber safety goals for their schools that could ultimately lead to the development and execution of a cyber safety action plan that was consistent with their ethical cyber expectations. When teams shared their ethical expectations with one another, it helped to confirm that while some of the participants’ values differed, the overall expectations of having kind, respectful, smart, honest, and aware children was consistent among all school teams. If parents, educators, and other adults in the community can instill these values and ethics in young children, perhaps certain gaps could be bridged between online and offline worlds.

The cyber safety workshop was intended to be a unique opportunity for parents and educators to sit down with one another to discuss their schools’ specific cyber challenges and to start a dialogue on how they could work together to create a cyber safe school community. Overall, participants demonstrated a growth in knowledge of cyber safety awareness, digital citizenship, and the importance of parents and educators working together to keep children safe. Participants also learned about proactive cyber strategies to combat cyber dangers before they happen, they identified cyber challenges, created school goals and objectives, were tasked to continue the dialogue within their school teams, as well as with others from their school, and were asked to follow through on the goals they had created in the workshop.

Cyber Safety Action Teams on a Thought-Action Continuum

The qualitative results from the case studies demonstrate various stages of progress regarding taking cyber safety action. The three school teams described in the
case studies participated in the September 2013 cyber safety workshop (Group II) and each had developed specific goals and objectives for their individual school action plans. Yet, at the different follow-up intervals, it was observed that each team was moving at varying rates of change. From the observations and comparisons of the three case studies, I started to question why some school teams were progressing more efficiently than others. *Were some school teams more prepared or ready to change than other teams?* *Was the timing of the cyber safety workshop better for some schools and not others? In what ways do different circumstances, motivations, values, and priorities influence behavior changes in terms of cyber safety action at different schools?*

It was from these emergent questions and observations of the school teams that a connection was made to the stages of change model, also known as the transtheoretical model of behavior change. Prochaska (1979) posited that change could be explained through a series of five stages on a continuum: (a) pre-contemplation, (b) contemplation, (c) preparation, (d) action, and (e) maintenance of behavior. He asserted that it is one thing to think about acting on a decision and another to effectively act it out. In terms of developing cyber safety awareness, digital citizenship knowledge, and parent-educator partnerships, Prochaska’s five stages of thought and action describe the different levels of readiness and varying motivations to pursue changes in behaviors and perspectives. Essentially, Prochaska determined that effective action cannot take place without critical thinking and planning prior to that action.

According to Prochaska, Redding, Harlow, Rossi, and Velicer (1994), there are several strategies within the transtheoretical model that can assist in the progression from one stage to the next. Some of those strategies include: *consciousness-raising*—
increasing one’s awareness of the problem; social liberation—realizing that one’s society can help; self-reevaluation—identifying desired behaviors; and commitment and helping relationships—seeking out people who are supportive of the change. These strategies can be understood when thinking about an example of changing cyber behaviors from simply creating technology rules in a computer classroom to creating an overall school culture focused on adults modeling appropriate on and offline behavior and parents and educators collaborating on proactive cyber behaviors rather than reactive behaviors.

Self-efficacy and value-driven decision-making are key determinants that guide behavior changes in this model (Heimlich & Ardoin, 2008), where the beliefs in one’s ability to influence change and the deep, core values that an individual possesses can ultimately impact change or the desire to change. Bandura (1977) found that self-efficacy influenced the initiation of new behaviors, as well as the ongoing maintenance of those behaviors. Researchers argue that individuals most often behave in ways that are consistent expressions of their values, beliefs, and upbringing (Enomoto & Kramer, 2007; Heimlich & Ardoin, 2008; Kidder, 1995). Yet, behaviors and value-driven decisions are not unbendable, and various factors and extrinsic motivations can either positively or negatively impact outcomes. It is, therefore, important for parents and educators (as well as others in the community) to work closely with each other to start merging their home and school (and community) values and beliefs. Table 5.1 shows the three case studies at their varying stages of change.
Table 5.1

The Stages of Change Model in Relation to the Case Studies (Prochaska, 1979)

<table>
<thead>
<tr>
<th>Five Stages</th>
<th>Definition</th>
<th>School One</th>
<th>School Two</th>
<th>School Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-contemplation</td>
<td>Individual or group is unaware of the problem or there is no immediate intention to change the behavior</td>
<td></td>
<td></td>
<td>INCONCLUSIVE: School Three reported a desire to create school-wide policy changes and a cyber safety action team; time constraints may have influenced the team’s lack of follow-up responses. However, the school’s long-standing 1-to-1 device initiative could indicate that School Three attended the workshop to sustain or strengthen their existing cyber safety efforts.</td>
</tr>
<tr>
<td>Contemplation</td>
<td>Individual or group is aware of the problem or is seriously considering the change in behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>Individual or group is intending to take action</td>
<td></td>
<td>School Two was in the early stages of taking action; they were making small, but effective steps toward larger school-wide changes.</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Individual or group modifies behavior, experiences and/or environment</td>
<td>School One accomplished their set goals; due to their one-to-one iPad program, this team was ready to take action.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Individual or group works toward sustaining and strengthening gains</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Levels of Commitment and Readiness for Change

Danter (2005) found that at the end of a professional development training, a person’s commitment to act upon the ideas from the workshop could predict that person’s future behavior. In a study comparing types of commitment strategies, Cobern, Porter, Leeming, and Dwyer (1995) found that participants with greater commitments or stronger convictions to the content of a training, eventually maintained the behaviors learned in a training at a statistically significant level and at varying lengths of time after the training. Those individuals were also found to have successfully engaged others to support the cause as agents of change.

Knowles (1970) believed that much of the success of a PD program or workshop hinges on whether learners are willing and ready to learn. He defined those who are ready as individuals who are eager and interested in learning, and simply find the need to learn or change (Knowles, 1980). The parents and educators who participated in this study’s workshop each possessed varying levels of commitment to cyber safety issues, the readiness to change, and differing motivations for attending the workshop. These factors most likely influenced the levels of behavior change at each school after the workshop. Levels of action after a PD workshop, follow-up communications between PD groups and facilitators, and commitment strategies are all topics worthy of investigation in future studies.

As for the school teams that did not participate in the follow-up communications, a possible assumption could be that the desire and readiness for change was present, yet various factors may have hindered the school team from acting upon those desires. Without further investigation and the cooperation of those schools, it is difficult to
determine the specific factors that prevented those teams from participating in the post-workshop follow-up communications. Perhaps schools in the pre-contemplation or contemplation stages of behavior change that are looking to create school-wide behavior changes can utilize the transtheoretical model or the three case studies depicted in this study to help them identify where they stand on the thought-action continuum.

Organizational Change

The behavior changes observed in the case studies reflected the values and goals of the individual members of each school team. School One’s team members were all in agreement that their one-to-one iPad initiative was the driving motivation behind their desires for making changes in their school. The team members were unified in their mission, they were organized throughout each follow-up interval, each member knew what their specific role was in the overall plan, and they were aware of what everyone else was doing in their cyber safety efforts, as well. These traits of School One were in accord with Vaanholt’s (2008) conclusion that for successful organizational change, every team member must be on the same page with one another.

School One also demonstrated strong school leadership in assuming the roles of the initiators of change. Bolman and Deal (1999) and George, White, and Schlaffer (2007) found that the presence of strong leadership, or lack thereof, could determine the successes or failures of change initiatives in any organization. In the case studies, Schools One and Two had one or more school deans and other school leaders as members of their cyber safety action teams, and thus made the largest strides in their behavior changes. Habegger (2008) and Van Voorhis and Sheldon (2004) demonstrated the importance for
strong leaders to collaborate with school stakeholders, share their overall vision, and influence successful behavior changes for the entire school.

Implications for Parents and Educators

While one of the major foci of this study revolved around cyber victimization, most participating school teams identified that cyber bullying was not a prominent problem among the students at their schools and that it was just one problem out of a multitude of existing cyber dangers. School teams instead, demonstrated a deeper concern for their students’ overall wellbeing and believed that educating students and adults about the appropriate and inappropriate uses of technology was a more proactive way to help address and reduce any type of cyber misconduct.

In regard to Bandura’s (1977) concept of modeling, many workshop participants believed that adults needed to pay more attention to monitoring their children’s online activities and modifying their own technology values, ethical decision-making skills, and behavior. Perhaps parents and educators could ask the following questions: *Are my children/students making ethical online and offline decisions? Am I making ethical online and offline decisions?* Families, schools, and community members could work together to combat cyber dangers, by modeling appropriate ethical decision-making and educating others about the importance of safe, responsible, and ethical technology use (Baum, 2005; Ribble & Bailey, 2007).

When it comes to enforcing essentially unenforceable online behavior, where existing rules and regulations oftentimes do not yet exist, it is important for adults to sit down with children to go over appropriate and inappropriate behaviors (Cross, 2009; Ribble & Bailey, 2007; Villano, 2008). Rules and structure are also important, especially
for younger children. Marzano (2011a) stated that oftentimes children are not included in policy- or rule-making processes. Adults should enlist the help of children to create cyber rules to provide them with more ownership of their limitations and to hold them more accountable for their actions (Marzano, 2011a).

Limitations

While there are many known limitations and challenges to analyzing qualitative research, such as the personal influence of the researcher during observations, the time and effort it took to collect the data, and the subjectivity of interpretations, I believe that the inclusion of qualitative data from interviews, observations, and existing documents in this study provided a richer set of information.

Follow-up communication issues. It is difficult to know if cyber safety actions were taken by schools that did not participate in the follow-up communications. It is only through my assumptions as the researcher that any interpretations can be made from the lack of responses from the four schools in Workshop Group II and nine schools in Workshop Group I who did not respond. Perhaps these school teams did not have sufficient time to apply what they had learned at the workshop, or they may have lacked strong leaders within their teams who could help organize the team to follow through on the goals and objectives they had developed in the workshop. Another explanation could be that schools were in the process of working on their cyber safety action plans, but were simply moving at a slower pace. As for School Three in the case studies, one-to-one devices have been a part of their school’s culture since 2002. Perhaps for them, the issues presented in the workshop and follow-up communications were not new, and they did not have changes in behavior to report.
For the school teams from Workshop Group I that were invited to participate in the follow-up communications 18 months after the workshop, it is a possibility that too much time had gone by since the workshop. This could indicate that immediate follow up after a training session is important to keep schools accountable to apply what was learned during the training. Other extraneous factors may have interfered with the follow-up process as well, but it is not possible to confirm these assumptions without further investigation. It is possible that, had these schools responded, the data would have shown different results.

Validity Issues

External validity. There was a concern about the external validity, or the generalizability of the study’s results to different populations, settings, and times because random selection and assignment of participants were not possible, and participation in the treatment workshop and follow-up communications was voluntary. Individuals who seek out or are willing to take part in a study may have personal traits or characteristics that set them apart from those who do not volunteer to participate, such as motivation, age, ability, gender, race, or ethnicity (Parker, 1993). However, with the detrimental loss of research access to public schools in Workshop Group II, this study was limited to a convenient sample of private and charter school volunteers, which may not be representative of the larger group of public schools.

In addition, the case studies were unique to their settings and individual school situations; thus those findings cannot be easily generalizable to all other locations and contexts. Yet, it is possible for schools that are interested in making school-wide
behavioral changes to use the case studies as exemplars to measure where they lie on the transtheoretical model of behavior change.

Internal validity. Both internal and external validity are important in research, and neither one is better than the other (Campbell & Stanley, 1963). However, these two types of validity are often at odds with each other. Many times purposefully controlling one type of validity threat can unintentionally compromise the state of the other (Campbell & Stanley, 1963; Ferguson, 2004). For the purposes of this study, I cautiously prioritized the smaller threats to internal validity over the threats to external validity to ensure that most of the interpretations of the data were supported.

The possible internal threats in this study included history, testing, and participant mortality threats. History threats relating to actual events that happened before or between the pre- and post-survey intervals could have influenced participants’ responses. For example, during the in-person meeting with School One, a team member stated that one of her motivations for making their cyber safety changes was the school’s one-to-one iPad initiative, which was established well before the cyber safety workshop. Other extraneous factors could have included reading or watching news coverage on cyber victimization prior to the cyber safety workshop, hearing a public service announcement supporting cyber safety on the radio, or previously attending a cyber safety assembly.

There are often concerns in studies that include pre and posttests. Sometimes participants can remember their pre-survey responses, thus influencing their post-survey scores. The use of self-reported surveys as the major quantitative data collection instrument was another limitation. Controlling for the over or under representations of parents’ and educators’ perspectives was a challenge out of the control of the researcher.
Participation withdrawal was an additional concern. The inclusion of multiple follow-up communications for a three-month period after the workshop could have caused the large reduction in the participation rate. However, Rice and Trafimow (2011) reasoned that forcing participants to remain in a study could actually cause more of a threat to internal validity than the threat of participant mortality itself. It was with this understanding that after three or four follow-up communication attempts with no responses, I did not pursue participation with the unresponsive schools.

Fraenkel and Wallen (2006) acknowledged that in any study there are differences among participants and settings that are beyond a researcher’s control. I addressed these issues by reporting the demographic characteristics and specific details of each school team in the case studies. In addition to standardizing the conditions of the cyber safety workshop and using pre- and post-testing so participants could serve as their own controls, I included a covariate question in the follow-up communications regarding the sources that motivated participants to take cyber safety action in their schools. Adding that question in the follow-up communications helped to minimize the history threat and allowed more accurate conclusions to be made about the effectiveness of the cyber safety workshop.

Other limitations. Two separate workshops were supposed to be held for Workshop Group II, however, no schools registered for the first workshop date. Therefore, only the September 2013 workshop was held, which resulted in a smaller sample size. This shortcoming ultimately led to the inclusion of the sample group from Workshop Group I. Also, when recruiting participants, schools were asked to attend the cyber safety workshop in teams consisting of at least one administrator, one parent
representative, and other school faculty members. Yet, not all schools complied with this regulation.

Epstein’s (1995) theory on school, family, and community partnerships shows that it is possible for people from different groups who share common interests, goals, and responsibilities for children to work closely together to create positive changes and better opportunities for students. However, although many of the participating teams in this study did not have strong parent representation at the workshop, they were able to develop appropriate school goals and action plans around cyber safety. Perhaps some schools were in early stages of developing family partnerships and did not have certain relationships with parents in place at the time of the workshop to generate greater parent interest in cyber safety.

Families can very well be involved in any or all parts of the cyber safety team and action plan development. Yet, the results of this study indicate a possibility that parent representatives may not necessarily be an essential part of such an early stage in cyber safety action plan development process. While parents are a vital part of home-school partnerships, perhaps school representatives could attend professional development cyber safety workshops, and then provide continuous opportunities at their respective schools at a later time to bring all potential partners to the table. It is possible for schools with strong leadership to take the reigns when it comes to providing parents with appropriate information and to elicit parent participation in school-wide endeavors related to cyber safety and ethics.

Heimlich and Ardoin (2008) stated that simply telling people something in a training session or workshop does not mean that the concept was taught and that the
recipients of that information will necessarily take action. In terms of behavior change, Heimlich and Ardoin stated that studies on behavior and motivation are challenging because these concepts are difficult to observe and measure, and multiple internal and external factors can affect the decisions individuals make. Yet, they concluded that because no two individuals are alike, it is important to simply be aware that people are motivated by different things and have various capabilities when it comes to their thoughts and actions.

Future Directions

The results of this study give insight into how important it is for all stakeholders—students, parents, and educators alike—to understand the extent of problems like cyber victimization and how to work together to keep all technology users safe. Parents and educators are crucial conduits to engage children in ongoing discussions on cyber safety and what it means to be an ethical digital citizen in an online world.

Further evaluation is needed to assess the effects of cyber safety training workshops for adults, as well as to evaluate the levels of collaboration among stakeholder groups regarding the formation of cyber safety action teams. Ongoing support and feedback from the PD facilitator and other local cyber safety experts during and after a PD training could provide the necessary encouragement and assistance school teams need to act upon their cyber safety goals. Although the scope of this research was narrowed to primarily parent and school faculty perspectives, the community also plays a critical role in home-school-community partnerships. Community perspectives would be a worthwhile topic for future research, as illustrated in Epstein’s (1987) spheres of influence model. Future workshops could highlight the importance of the community and
how non-school-related organizations can assist in the efforts to reduce cyber misconduct.

More parent representatives should be encouraged to attend cyber safety workshops of this nature to work and learn alongside educators. Yet, future cyber safety workshops should especially target school administrators and school board members, since they are key players when it comes to communication and collaboration between schools and homes, and school rules and policy changes often start with them. DuFour and Mattos (2013) found that one of the most powerful administrative strategies to improve teaching and learning is for administrators to develop collaborative school cultures through the creation of professional learning communities. In those communities, teachers and administrators can work and continuously learn together. In addition, DuFour and Mattos believed that state or district mandates on schools should not debilitate them into thinking that they cannot incorporate non-core subject material into the mandated curriculum or state- or district-wide policies. They stated that: “A highly effective principal [or teacher] will look for ways to align the process to a culture of collective responsibility for learner-focused outcomes” (DuFour & Mattos, 2013, p. 39).

Therefore, it is highly important for school administrators to be strong leaders who guide and support teachers, parents, and students toward a more collaborative and collective school community.

In Prochaska’s (1979) transtheoretical model of behavior change, individuals and groups vary greatly in their levels of readiness and motivations to make changes in their lives. Prochaska determined that effective action can only occur when the individual or group is ready to change. Further research could include the investigation of schools’
motivations for their desires to develop cyber safety action teams, enforce school-wide policy changes, and create cyber safety action plans. It is important to understand the starting point for school teams and how motivated they are to change. Knowing whether motivations are intrinsic or extrinsic could help to determine the speed at which teams make positive progress or the amount of effort that is contributed by various team members. Because all individuals and schools have differing needs and motives for wanting to change, looking at baseline motivations of schools that desire to form cyber safety action teams could help in assessing just how ready and prepared they are to make those changes.

Cyber safety research needs to start exploring a new direction, beyond the what, and into the realm of what now (Tokunaga, 2010). Tokunaga (2010) concluded that findings from cyber victimization research vary from study to study and provide little clarity, especially for practitioners trying to prevent cyber victimization from occurring. Therefore, it is important to begin the search for more proactive solutions to the problem. Cyber safety action teams have roots in family, school, and community partnerships and collaborative efforts stemming from these teams could help in combating the growing list of cyber safety issues. Continuous research on how such partnerships can elevate the school academically, behaviorally, socially, and emotionally is needed.

Conclusion

Sheldon and Epstein (2002) emphasized that school and home cultures must merge together within the context of the larger community in order to assist student growth. However, these cultures each hold different perceptions of cyber safety, how to resolve cyber misconduct, and how to use technology safely. Parents usually trust their
children online more than do educators, are not as aware of cyber behaviors, and do not feel completely prepared to handle negative cyber incidents if they occur (Nguyen, Mark, & Liebengood, 2011). Educators, on the other hand, are generally more aware of cyber issues and feel better prepared to handle situations if they arise. Yet, Nguyen, Mark, and Liebengood (2011) found that educators believed the onus for monitoring online behavior should fall on parents, while parents believed that educators should be responsible for this task. Parents and educators are just starting work together to find proactive solutions for reducing cyber misconduct being committed by young technology users. Especially when incidents, like cyber victimization, sexting, and online impersonation are increasing among today’s youth (Hinduja & Patchin, 2009; Mark & Ratliffe, 2011; Nguyen, Mark, & Liebengood, 2011; Patchin & Hinduja, 2012; Willard, 2006), vigilance on the part of adults and the willingness to intervene in cyber situations could assist in reducing these problems. Many parents and educators must also realize that they are not as technologically unsavvy as they may think (DeFranco, 2011). While cyber dangers are occurring on devices that may be unfamiliar to some adults, the problems themselves are not necessarily new. Yet, if parents and educators lack specific knowledge of how to promote cyber safety among young technology users, then training of parents and educators is a necessary step.

The Cyber Safety Action Team Workshop was intended for parents and educators to work together as school teams to learn more about current cyber issues affecting their children and students, and to work toward creating effective partnerships around cyber safety. The content of the workshop encouraged Hawai‘i parents and educators to keep up with the current trends of technology and become more knowledgeable of the current
federal and state laws that impact how schools can legally deal with specific cyber issues. It was also an important goal of the workshop to demonstrate to adults, especially parents that they have the power to influence school-wide policies and practice.

Overall, the workshop participants increased their cyber safety awareness, digital citizenship knowledge, and attitudes about parent-educator collaboration. When it came to dealing with following through and acting upon the school-specific, cyber safety goals and objectives set in the workshops, not all school participants were ready for action. Educators and workshop facilitators could help and encourage schools to become proactive in cyber safety readiness, and can provide the necessary skills and strategies for parents and educators to work together. Readiness is a critical aspect in professional development (Knowles, 1970), yet not all schools are at the point of being ready to make the necessary cyber changes. The one school that was ready to take action in terms of creating a cyber safety action team and following through on their action plan, demonstrated that the inclusion of strong, competent school leaders could encourage and drive the forward momentum needed for school-wide change.

It is important to note that the school teams in this study demonstrated minimal apprehension about the specific problem of cyber victimization. Yet, they did share a general concern about all cyber dangers and a genuine desire to protect their students from emotional, psychological, and physical harm. While cyber victimization may not be a high priority in some schools, overall cyber safety issues and teaching self-sustaining digital etiquette and ethics strategies, online and offline social skills, and overall character development are important 21st century concepts that schools should incorporate into their school-wide plans. Character education concepts that exemplary 21st century
schools have been successful in promoting have included the following: (a) promoting the alignment of ethical values and action across the school community, (b) seeking leaders who operate ethically and actively inspire ethical behavior in others, (c) expecting teachers to build positive relationships with students rather than simply delivering content, and (d) inviting students to take authentic roles in administration and stewardship of their school (Kidder, 1995, p. 31). Overall, cyber safety, digital citizenship, and character education are not about right vs. wrong. These concepts encompass the ethical expectations and core values of a community, and the success of adopting these concepts within a school culture is dependent on the willingness of school stakeholders to be up for this challenge.

This study could generate critical dialogue between parents and educators around the ideas of assessing their school communities’ values and priorities, and setting goals and objectives around creating a collaborative school cyber safety action team. Ongoing communication and parent-teacher meetings to work on school policies, codes of conduct, and procedures to form action teams would require further investigation.

People are not born with the innate understanding of cyber safety, digital citizenship, cyber ethics, etiquette, and rules. These skills must be taught, and not just by teachers alone—mothers, fathers, grandparents, siblings, neighbors, community members, and student peers can develop the abilities to teach these 21st century concepts to others. Successful lifelong learning is not only for the young and it does not have to occur within the walls of a classroom. All technology users—young and old; natives and immigrants—need to learn these valuable skills to safely, wisely, and ethically navigate the uncharted realms of the ever-changing cyber world.
APPENDIX A

The Cyber Safety Parent Questionnaire

Information for Parents

This survey of Hawai‘i middle school parents’ perspectives on cyber safety and Digital Citizenship is part of a research project from the University of Hawai‘i. Thank you for agreeing to participate in this study.

My goal is to learn more about adult perspectives on Internet safety issues so I can understand how parents can take part in educating their children about the ethical and responsible uses of technology.

Approximately 15 parents and 30 educators from four to six Hawai‘i middle and high schools will be participating in this study. Your participation in this study is voluntary, and you may discontinue participation at any time.

If you have any questions regarding this research project, please contact Lauren Mark, at [contact information redacted] or lmark@hawaii.edu.

If you have any questions regarding your rights as a research participant, please contact the University of Hawai‘i Committee on Human Studies by phone (808) 956-5007, email uhirb@hawaii.edu, or mail 1960 East-West Road, Biomedical Building B-104, Honolulu, HI 96822.

Thank you,
Lauren Mark
The Cyber Safety Questionnaire for Parents

This questionnaire is designed to help me gain a better understanding of how parents perceive their influences on their children’s technology use. Please indicate your most honest opinion about each of the statements below by circling the appropriate number and filling in specific responses when asked to do so. Your answers will be kept CONFIDENTIAL and you will NOT be identified.

*Parents, please keep ONE child in mind while completing the survey.

<table>
<thead>
<tr>
<th>I. DEMOGRAPHIC INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. School name:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. The role I play in my child’s life is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grandmother</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. My child is in the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th-grade</td>
</tr>
<tr>
<td>Other: specify</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. My child is (gender):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Does your child have access to an Internet connection at home or outside of school (e.g., broadband, dial-up, cable, cell phone plan)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. INTERNET RULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questions 6-9: How much do you agree with the following statements?</td>
</tr>
<tr>
<td>Statements</td>
</tr>
<tr>
<td>6. I have Internet rules for my child.</td>
</tr>
<tr>
<td>7. I have time limitations for my child’s Internet use.</td>
</tr>
<tr>
<td>8. I have monitoring software installed on the computer/laptop my child uses.</td>
</tr>
<tr>
<td>9. I have restricted my child from certain Internet web sites.</td>
</tr>
</tbody>
</table>
III. CYBER VICTIMIZATION AWARENESS

<table>
<thead>
<tr>
<th>How much do you agree with the following statements?</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. I know what cyber bullying is.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11. I am aware of how often cyber bullying occurs among students from my child’s school.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12. I am concerned about how cyber bullying could affect my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>13. I would know if my child were involved in cyber bullying (as a victim, bully, or both).</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14. My child has been a victim of cyber bullying.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>15. I know the proper steps to take in cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>16. I know how my child’s school handles cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>17. I have discussed Internet Safety issues with my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>18. Educating my child about Internet safety is important.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>19. I believe that peer bystanders are key components in helping to resolve cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>20. Cyber bullying prevention is everyone’s responsibility (e.g., parents, educators, students)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

IV. DIGITAL CITIZENSHIP

<table>
<thead>
<tr>
<th>How much do you agree with the following statements?</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. I know what Digital Citizenship is.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>22. I know what to talk about when discussing Digital Citizenship with my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>23. I have discussed Digital Citizenship with my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>24. Digital Citizenship education is valuable for my child and other students his/her age.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
25. Who is *most* responsible for educating children about Digital Citizenship? (Please prioritize: 1 = most responsible; 8 = least responsible)

- Parents
- Teachers
- Counselors
- Peers
- Principal/administration
- Law enforcement
- Library Media Specialists
- Technology Coordinator
- Other: _______________

V. PARENT CYBER SAFETY SELF-EFFICACY

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. I can make a significant educational difference in the life of my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>27. I can help my child see that Internet safety is important.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>28. I can help my child be safe and responsible when using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>29. I can keep my child out of trouble when using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>30. I can prevent my child from being bullied over the Internet or other type of digital device.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>31. I can prevent my child from saying or doing mean or hurtful things to other children using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>32. I can keep track of what my child is doing when he/she is not at home.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>33. I have instilled responsible values and ethics in my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>34. I can influence certain curriculum that is taught by my child’s teachers.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>35. I can help and support my child if he or she is cyber bullied.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>36. I can make my child’s school a safe place for children to learn and grow.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>37. I can help other parents and school personnel to work together to protect students and educate them about Internet safety.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>38. I can help neighborhood groups and school</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
personnel to work together to protect students and educate them about Internet safety.

VI. ATTITUDES TOWARD PARENT AND TEACHER COLLABORATION

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39. Parents and educators need to work together on cyber bullying awareness and prevention.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>40. I know how to work with other parents and educators to prevent cyber bullying.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>41. I have worked with other parents and educators to prevent cyber bullying.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>42. I have the skills to contribute to an “Internet Safety Action Team” working with school staff and other parents to keep all students safe.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>43. I want to contribute to an “Internet Safety Action Team” working with school staff and other parents to keep all students safe.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>44. What are one or two ways parents and educators can work together to prevent or decrease cyber bullying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45. What are one or two ways parents and educators can work together to teach students about Digital Citizenship and Internet safety?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your participation in this study!
APPENDIX B

The Cyber Safety Educator Questionnaire

Information for Educators

This survey of Hawai‘i middle school faculty perspectives on cyber safety and Digital Citizenship is part of a research project from the University of Hawai‘i. Thank you for agreeing to participate in this study.

My goal is to learn more about adult perspectives on Internet safety issues so I can understand how teachers can take part in educating their students about the ethical and responsible uses of technology.

Approximately 15 parents and 30 educators from four to six Hawai‘i middle and high schools will be participating in this study. Your participation in this study is voluntary, and you may discontinue participation at any time.

If you have any questions regarding this research project, please contact Lauren Mark, at [phone number] or lmark@hawaii.edu.

If you have any questions regarding your rights as a research participant, please contact the University of Hawai‘i Committee on Human Studies at phone (808) 956-5007, email uhirb@hawaii.edu, or mail 1960 East-West Road, Biomedical Building B-104, Honolulu, HI 96822.

Thank you,
Lauren Mark
The Cyber Safety Questionnaire for Educators

This questionnaire is designed to help me gain a better understanding of how educators perceive their influences on their students’ technology use. Please indicate your most honest opinion about each of the statements below by circling the appropriate number and filling in specific responses when asked to do so. Your answers will be kept CONFIDENTIAL and you will NOT be identified.

I. DEMOGRAPHIC INFORMATION

1. School name:

2. My educational role at school is:

 - Classroom teacher
 - Administrator: specify ___________
 - Counselor: specify ___________
 - Other: specify ___________

3. [For Classroom teachers] – I teach:

 - 6th-grade
 - 7th-grade
 - 8th-grade
 - 9th-grade
 - 10th-grade
 - Other: specify ___________

4. My gender:

 - Female
 - Male

5. My subject area expertise is (e.g., math, science):

6. Including this year I have been working at my current school for: ___________ years

7. I have had __________ hours of training or Professional Development on Internet Safety issues within the last five years.

8. In addition to being an educator, I am also a parent:

 - Yes
 - No

II. INTERNET RULES

<table>
<thead>
<tr>
<th>How much do you agree with the following statements?</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. My school has Internet rules for students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10. There are time limitations for students’ Internet use at my school.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11. My school has monitoring software installed on all school-issued devices.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12. Students are restricted from certain Internet websites at school.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
III. CYBER VICTIMIZATION AWARENESS

<table>
<thead>
<tr>
<th>How much do you agree with the following statements?</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. I know what cyber bullying is.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14. I am aware of how often cyber bullying occurs among students from my school.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>15. I am concerned about how cyber bullying could affect my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>16. I would know if a student(s) were involved in cyber bullying (as a victim, bully, or both).</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>17. I know the proper steps to take in cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>18. Parents of my students know how to handle cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>19. I have discussed cyber bullying issues with my class.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>20. Educating my students about Internet Safety is important to me.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>21. I know that peer bystanders are key components to helping to resolve cyber bullying situations.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>22. Cyber bullying prevention is everyone’s responsibility (parents, educators, students, etc.)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
IV. DIGITAL CITIZENSHIP

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>23. I know what Digital Citizenship is.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>24. I know what to talk about when discussing Digital Citizenship with my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>25. I have discussed Digital Citizenship with my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>26. Digital Citizenship education is valuable for my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

27. Who is most responsible for educating children about Digital Citizenship?

(Please prioritize: 1 = most responsible; 8 = least responsible)

<table>
<thead>
<tr>
<th></th>
<th>Parents</th>
<th>Law enforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teachers</td>
<td>Library Media</td>
</tr>
<tr>
<td></td>
<td>Counselors</td>
<td>Specialists</td>
</tr>
<tr>
<td></td>
<td>Peers</td>
<td>Technology</td>
</tr>
<tr>
<td></td>
<td>Principal/ Coordinators</td>
<td>Technology</td>
</tr>
<tr>
<td></td>
<td>administration</td>
<td>Other: _____________</td>
</tr>
</tbody>
</table>

V. TEACHER CYBER SAFETY SELF-EFFICACY

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>28. I can make a significant educational difference in the lives of my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>29. I can help my students see that Internet safety is important.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>30. I can help my students be safe and responsible when using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>31. I can keep my students out of trouble when they are using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>32. I can prevent my students from being bullied over the Internet or other type of digital device.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>33. I can prevent my students from saying or doing mean or hurtful things to other children using digital technology.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>34. I can keep track of what my students are doing online when they are not at school.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>35. I have instilled responsible values and ethics in my students.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>36. I can influence what parents teach my students at home.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>37. I can help and support a student if he or she is cyber bullied.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
38. I can make my school a safe place for children to learn and grow.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

39. I can help parents and school personnel to work together to protect students and educate them about Internet safety.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

40. I can help neighborhood groups and school personnel to work together to protect students and educate them about Internet safety.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

VI. ATTITUDES TOWARD PARENT AND EDUCATOR COLLABORATION

<table>
<thead>
<tr>
<th>41. Parents and educators need to work together on cyber bullying awareness and prevention.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>42. I know how to work with parents and other educators to prevent cyber bullying.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>43. I have worked with parents and educators to prevent cyber bullying.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>44. I have the skills to contribute to an "Internet Safety Action Team" working with school staff and parents to keep all students safe.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>45. I want to contribute to an "Internet Safety Action Team" working with school staff and parents to keep all students safe.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

46. What are one or two ways parents and educators can work together to prevent or decrease cyber bullying?

47. What are one or two ways parents and educators can work together to teach students about Digital Citizenship and Internet safety?

Thank you for your participation in this study!
APPENDIX C

The Cyber Safety Workshop Announcement

To: Educators

Re: CYBER VICTIMIZATION. SEXTING. ONLINE IMPersonATION. How can parents and schools work together to address these issues?

Aloha Educators,

I am a Ph.D. student in Educational Psychology at the University of Hawai‘i. I will be offering a FREE Cyber Awareness Workshop for Parent and School Teams (date), from 8:30am to 12:00 noon in the University Laboratory School band room.

The purpose of this FREE event is to provide the opportunity for teachers, administrators and parents to work in teams to collaborate on a school safety action plan to keep children safe.

To attend this event, please fill out an APPLICATION FORM (available on Survey Monkey – link or call me at (808)956-6369).

*PREREQUISITE: To qualify for this workshop, school staff must attend the workshop together with: 1) at least one parent representative and 2) at least one counselor or administrator. Other school staff members are welcome too!

Once you register, you will be sent more information about the workshop and will be asked to complete a survey that will assist in cyber safety research.

*Content covered in the workshop:
 • Cyber victimization and sexting awareness (including prevention and coping strategies)
 • Digital Citizenship Education (cyber ethics and etiquette)
 • Legal ramifications and stakeholder accountability
 • The importance of collaboration between home and school to address cyber safety
 • Creating a School Cyber Safety Action Team

*Please forward this message to all who might be interested in this event. Mahalo.
APPENDIX D

The Cyber Safety Workshop Application

Via the Survey Monkey website (link)

You have reached the APPLICATION FORM for the Cyber Safety Workshop for Parents and Educators. The event will be held on (date) in the [location] from 8:30am-12:00pm.

Please complete all questions below. Thank you.
1. Last name:
2. First name:
3. Email address:
4. School:
5. Role at your school (e.g., counselor, vice principal):
6. (*PREREQUISITE: To qualify for this free workshop, school staff must attend the workshop together with: 1) at least one parent representative and 2) at least one counselor or administrator. In addition to these required participants, other school staff members are welcome too!) Please provide the names, roles, and email addresses of your fellow school colleagues and parents who will be attending the event with you:
 Parent Representative(s):
 Administrator(s):
 Counselor(s):
 Teacher(s):
 Other:

7. How many people will be attending this event with you? (Total, including yourself)

Thank you for applying to the Cyber Safety Workshop for Parent and School Teams. An email will be sent to the addresses of the team members you included above. You and your team will be contacted with more information and will be asked to fill out an important survey that will contribute to continuous cyber safety research.
APPENDIX E

The Cyber Safety Workshop Agenda

The workshop is a one-time event consisting of three parts over the course of three-and-a-half hours:

Part I: Cyber awareness and key cyber issues
Part II: Digital Citizenship Education
Part III: Creating family and school partnerships and developing clear school goals and objectives as a Cyber Safety Action Team

The content taught in the workshop has been adapted from Ribble and Bailey’s (2007) Digital Citizenship Curriculum focused on ethical uses of technology and the Olweus Bullying Prevention Program (Limber, Kowalski, & Agatston, 2008) in regard to cyber safety prevention.

The purpose of the event is to provide schools and parents the opportunity to work together to:

• Learn more about cyber victimization and sexting awareness and prevention
• Create family-school partnerships focused on cyber safety
• Discover what it means for children and adults to be digital citizens
• Collaborate on a school-wide safety action plan and action team at their schools

Workshop agenda:

8:30-10:15 am: Part I – Cyber Awareness and Key Cyber Issues
Topics:
Awareness of cyber victimization (including prevention and coping strategies)
Cyber Etiquette and the modeling of appropriate online behavior by adults
Rule-setting at home and school
Legal ramifications and accountability
10:25-11:00: Part II – Digital Citizenship Education
Topics:
Ethical expectations for technology use
Acceptable Use Policies and Conduct Codes
The importance of collaboration between the home and school to consistently practice Digital Citizenship

11:00-11:40 pm: Part III – Creating family and school partnerships and developing clear school goals and objectives as a Cyber Safety Action Team
Activities:
Team goal and objective setting
Developing clear cyber action plans/procedures at the class, school, and family-levels
Discussing the process of creating School Cyber Safety Action Teams (including the benefits of peer-mentorship programs and venues for anonymous/confidential cyber victimization bystander reporting systems that the action teams can oversee).

11:40-12:00: Participants to complete the post-survey and workshop evaluations before the end of the workshop (Pre-surveys were directly sent to the workshop registrants via email and were completed before attending the workshop).
APPENDIX F

Follow-up One Questions

1. Since the cyber safety workshop, have you and other team members discussed the workshop topics with other staff/faculty at your school? Could you explain?

2. Since the workshop, has cyber bullying or cyber safety been addressed with the students at your school? (Follow up: If any, what type of action has taken place as a result of the workshop? Please explain.

3. In the workshop we discussed the importance of a Cyber Safety Action Team. Has one been formed at your school? Please explain. (Who’s involved? Who is leading the charge?)

4. Have you noticed a difference in how students are using technology (as opposed to before you attended the workshop)? How so?

5. What is your overall perception of cyber bullying at your school? (Do you perceive it as a major problem among teens?)

6. Since the cyber safety workshop, do you view your role as an educator/parent differently when intervening in incidents of cyber bullying? How so?

7. Are there difficulties that you have encountered when it comes to creating partnerships between parents and educators around the issue of cyber safety? What types of difficulties have you encountered? (Follow up: Why do you think these are challenging barriers?)

8. Ideally, what do you like to see done about this problem in your school? (Follow up: What future directions would you like to see happen at your school?)

9. Do you have any other comments about cyber bullying that you would like to share?
APPENDIX G

Follow-up Two: Contact Letter and Questions

Aloha Cyber Safety Teams,

Thank you again for your participation in my Cyber Safety study thus far. I just wanted to follow-up with your school for the month of November to see how your Cyber Safety School Teams are doing.

I understand that time is a valuable commodity, especially for educators and parents. But, I would be very grateful for any updates you may have regarding any or all of the following:

- Have any Cyber Safety programs or projects been implemented in your school or classroom? If so, please explain.
- Have any Cyber Safety assemblies for students, parents, or teachers been (or are planned to be) held? If so, please explain.
- Descriptions of any cyber bullying issues that may have occurred at your school in the last year (e.g., school reports; please no identifying information).
- What motivated you/your school to make these cyber safety changes (if any)?
- If no changes have been made in your school regarding Cyber Safety, what were the barriers?
- Have you noticed a change in cyber bullying at your school after implementing school interventions? If so, how has it changed?

With your permission, I would like to conduct a school site visit to observe any projects/lesson plans/etc. regarding cyber safety. Please let me know if we can coordinate a date and time for a meeting.

Thank you again for taking the time to help me out with this study!

I’ll be doing one final follow-up before Christmas break in December (per my data collection protocol). I’ll be in touch again! Take care!

Mahalo nui loa
APPENDIX H

School One - Rules for the Use of Electronic Devices with Edits

The school believes that technology is an important part of education. The school has provided opportunities for students to use electronic devices throughout the campus. Every student is expected to observe proper decorum and should understand that any behavior which is unacceptable in person is also unacceptable in the use of these devices. Electronic devices include, but are not limited to, school-owned or personal desktop and laptop computers, tablets, mobile phones, and iPads.

An e-mail account is not the personal property of any student. The school reserves the right to monitor or read the contents for inappropriate language or information, threatening, obscene or demeaning comments, or any activity that is illegal. Furthermore, the school reserves the right to monitor and access all school-issued iPads for inappropriate content, applications or other misuse.

The use of electronic devices is a privilege and any student who violates a rule may be punished by penalties including restricted use of the device, detention, study hall, probation or expulsion, depending on the severity of the violation.

The following constitutes specific misuse of electronic devices. Other forms of misuse not specifically described below will be subject to the same corrective action if, in the determination of the Dean, such behavior fails to respect human or property rights of others or disrupts the educational process.

- Uploading, downloading or installing inappropriate programs, files or applications
- Sending, accessing, uploading, downloading or distributing offensive, profane, harassing, threatening, pornographic, obscene, violent or sexually explicit material
- Recording or posting videos, pictures or voice files of students, faculty or staff without their permission
- Participating in electronic meeting places or using messaging services for inappropriate activities
- Sending or forwarding chain or flame mail
- Borrowing, loaning or switching a school-issue iPad
- Installing, storing or transmitting copyrighted materials
- Jailbreaking or tampering with settings and installed profiles and certificates or pre-installed software or applications
- Circumventing network filter or firewall
- Performing any act that makes an electronic device or system inoperable
- Printing non-school-related assignments on school printers

School also adheres to and supports the Children's Online Privacy Protection Act and the Children's Internet Protection Act. School's network, firewall and filter are in place to protect children's privacy and protect children from sites that may be inappropriate for them.
General Principles of Internet Safety

- Remember that there is no privacy online. Do not send anything that you would not be happy to see posted in the hallway with your name attached. Any behavior which is unacceptable in person is also unacceptable online or in electronic form.
- Things you post online become part of your "digital footprint" and may have been saved on other computers or be accessible online even if you deleted/removed them. Do not post anything that you would not want future college administrators or employers to see.
- School cannot protect students from all inappropriate or illegal materials.
- When using sites that may be viewed by people outside the School community, such as Facebook, avoid communicating your full name, age, phone number, or other personal information and do not provide such information about other people. A non-School email address is recommended for all non-school use.
- Talk to your parents or guardians before agreeing to meet in person with someone you met online.

Loss and Damage of School-owned devices

- There is insurance for the Apple iPad devices that will cover non-warranty repairs with a $50 deductible for the first two incidents. After the 2nd non-warranty repair, or if the device is lost, there is a $250 cost for replacement. After these insurance options have been exhausted, full price for replacement will be charged. Students will be responsible for these costs when incurred.
- If a device is thought to be lost, please check with the Dean of Students to see if it has been turned in. The loaner device and replacement policy will be followed if necessary.
- If a device is damaged or not usable, report it to a teacher who will confirm and contact IT Services for support if it is necessary.

I have read and fully understand the rules for use. By accepting the iPad, I agree to abide by these rules for use.

Parent Signature Date

Student Signature Date

Student PRINTED Name Student Year of Graduation

If you think others are being bullied or harassed online or are participating in an inappropriate activity, you should report it. Otherwise, you should report those inappropriate actions to school authorities.
APPENDIX I

S.M.A.R.T. Goal Worksheet from the Cyber Safety Workshop

<table>
<thead>
<tr>
<th>SMART Goal Worksheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this worksheet as a guide to writing SMART goals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part I: Identify your goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write your goal in the space below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II: Is your goal SMART?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate the goal you listed above according to the SMART criteria. If you can answer “yes” to all of the following questions, your goal is SMART.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is your goal...</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achievable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-limited:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answered “no” to any of the criteria above, you may want to consider rewriting your goal. Rewrite your new, SMART goal in the space below.
REFERENCES

Retrieved from http://www.cyber victimization.us/Cyber
victimization_Scenarios.pdf

Koehler, M., & Mishra, P. (2009). What is Technological Pedagogical Content Knowledge (TPACK)? *Contemporary Issues in Technology and Teacher*

The_Emerging_Online_Life_of_the_Digital_Native-03.pdf

166
Willard, N. (2008, November 8). *Cyber victimization and cyber threats: Responding to the challenge*. Presentation at the 10th Annual Safe and Healthy Schools Conference, Oklahoma City, OK.

