Show simple item record



Item Description

dc.contributor.author Alles, Martin C. A en_US
dc.date.accessioned 2009-07-15T17:42:55Z en_US
dc.date.available 2009-07-15T17:42:55Z en_US
dc.date.issued 1990 en_US
dc.identifier.uri http://hdl.handle.net/10125/9743 en_US
dc.description Typescript. en_US
dc.description Thesis (Ph. D.)--University of Hawaii at Manoa, 1990. en_US
dc.description Includes bibliographical references (leaves 214-215) en_US
dc.description Microfiche. en_US
dc.description xv, 215 leaves, bound ill. 29 cm en_US
dc.description.abstract The development of simple coding and decoding schemes for the Phase Ambiguous Additive White Gaussian Channel is considered in this dissertation. By phase ambiguous we mean that a narrowband signal transmitted over the Additive White Gaussian ( AWG ) Channel is shifted in phase by a random variable that remains fixed for the duration of the signal. When the phase ambiguity is modeled as an uniformly distributed random variable, the channel is referred to as the Noncoherent Additive White Gaussian ( NAWG ) Channel. When the first stage of the decoder is a phase locked loop, the phase ambiguity can be modeled by a discrete random variable that takes values corresponding to the phase angles of the signal set underlying the constellation used by the encoder. This channel is termed the Acoherent Additive White Gaussian ( AAWG ) Channel. Even when the encoder is a finite state machine, the optimum decoder for the NAWG channel cannot be implemented. We examine a suboptimum decoding scheme for the NAWG Channel. The primary component of the suboptimum decoder is a set of p identical decoders for the AWG Channel. When a finite state machine is used as the encoder, the suboptimum decoders we propose are implementable, We study the performance of our suboptimum decoder in relation to that of the optimum decoder for the NAWG channel and that of the optimum decoder for the AWG channel. We show that the suboptimum decoder, for values of p equal to 4 and 8 performs close to optimum in a variety of situations. Reliable communication for the AAWG channel is achieved by using rotationally invariant (RI) codes. We demonstrate that the decoders used in RI schemes are suboptimum. We develop a performance measure for our decoder when used on the AAWG channel. We construct alternative codes, which, when used with our suboptimum decoders, perform as well and in some cases even better, than RI codes. Finally we simulate the performance of the scheme we propose, and demonstrate its reliability for communication over the AAWG and NAWG channels. en_US
dc.language.iso en-US en_US
dc.relation Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Electrical Engineering; no. 2497 en_US
dc.rights All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner. en_US
dc.subject Data transmission systems en_US
dc.subject Coding theory en_US
dc.title Reliable communication for the noncoherent additive white Gaussian channel en_US
dc.type Thesis en_US
dc.type.dcmi Text en_US

Item File(s)

Description Files Size Format View
Restricted for viewing only uhm_phd_9107016_r.pdf 3.485Mb PDF View/Open
For UH users only uhm_phd_9107016_uh.pdf 3.420Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search


Advanced Search

Browse

My Account

Statistics

About