Biogeochemical impacts of storm runoff on water quality in Southern Kaneohe Bay, Hawai'i

Date
2003-12
Authors
Ringuet, Stephanie
Contributor
Advisor
Mackenzie, Fred
Department
Oceanography
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Fluvial impacts on water quality and ecosystem structure were evaluated in southern Kaneohe Bay, Oahu, Hawaii. Fluvial inputs occurred as small, steady baseflow interrupted by intense pulses of storm runoff. Baseflow impacted only restricted areas around stream mouths, but the five storm events sampled during this study produced transient runoff plumes of much greater spatial extent. Nutrient loading via runoff generally led to an increase of the phytoplankton biomass and gross productivity in southern Kaneohe Bay, but the rapid depletion of nutrients resulted in a fast decline of the algal population for all storm events considered in this study. Because of variability in export and mixing rates of runoff nutrients, the magnitude of the phytoplankton response was not proportional to nutrient loading. Under baseline conditions, water-column productivity in southern Kaneohe Bay is normally nitrogen-limited. However, following storm events, the high dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN:DIP) of runoff nutrients drive South Bay waters towards phosphorus-limitation. A depletion of phosphate (PO43-) relative to nitrate (NO3-) in surface waters was observed following all storm events. Due to high flushing rates, recovery times of bay waters from storm perturbations ranged from three to eight days and appeared to be correlated with tidal range. Storm inputs can thus have significant impacts on the water column ecosystem and biogeochemistry in southern Kaneohe Bay, but the perturbations are only transient events.
Description
xv, 196 leaves
Keywords
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Oceanography; no. 3841
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.