Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/51630

Approximate Dynamic Programming Methods for Residential Water Heating

File Description SizeFormat 
2015-12-ms-motoki_r.pdfVersion for non-UH users. Copying/Printing is not permitted3.3 MBAdobe PDFView/Open
2015-12-ms-motoki_uh.pdfFor UH users only3.47 MBAdobe PDFView/Open

Item Summary

Title: Approximate Dynamic Programming Methods for Residential Water Heating
Authors: Motoki, Matthew
Issue Date: Dec 2015
Publisher: [Honolulu] : [University of Hawaii at Manoa], [December 2015]
Abstract: In this thesis, we address the problem of minimizing the operating cost of a residential water heater while maintaining a desired level of comfort for the customer. We state the problem as a discrete-time finite-state average cost Markov decision problem (MDP).We view hot water usage as a random process and develop a model of the water heater system. We develop approximate dynamic programming algorithms to solve the MDP. Specifically, we use aggregation to obtain a simplified, but related problem, we use density estimation to calculate transition probabilities, and we consider the Q-Learning algorithm that can be used when a model of the water heater is not known and/or the transition probabilities are not available. We prove that our algorithms can be at least as good as existing methods, in terms of minimizing the objective cost. Using numerical simulations, we evaluate our algorithms' performance. Our simulations suggest that our algorithms can decrease operating costs by about 15% while maintaining a specified level of comfort. Finally, we discuss modifications to the basic water heater optimization problem that apply to solar water heating and automated demand response.
Description: M.S. University of Hawaii at Manoa 2015.
Includes bibliographical references.
URI/DOI: http://hdl.handle.net/10125/51630
Appears in Collections:M.S. - Electrical Engineering


Please contact sspace@hawaii.edu if you need this content in an alternative format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.