Copepod Nauplii and Their Roles in Planktonic Marine Foods Webs

Date
2016-12
Authors
Jungbluth, Michelle
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2016]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Copepod nauplii are numerically dominant metazoan plankton in many marine ecosystems and play important ecosystem roles both as grazers and as prey, but have historically been understudied due to small body size and challenges in identification of taxa. Little is known about naupliar grazing and the effects of environmental forcing on early life history stages of copepods in subtropical ecosystems. In this study, I measured the grazing rates and trophic impacts of two calanoid copepod nauplii on natural prey assemblages and investigated the population dynamics of four common species of copepod nauplii in a subtropical embayment, Kane‘ohe Bay, Hawai‘i, under several ecosystem states. I found that grazing experiments can be biased by methods; extending the duration of grazing incubations from 6 h to 24 h reduced grazing rate estimates by up to 75%. Bestiolina similis nauplii were more selective against 2-5 μm prey than the closely related species, Parvocalanus crassirostris, and P. crassirostris nauplii were capable of significantly impacting prey populations, removing up to 12.9% of chlorophyll from the water column when this species was abundant. Species-level studies of nauplii in mixed field samples required the development of a quantitative PCR (qPCR)-based technique to distinguish species and estimate naupliar biomass across five orders of magnitude. Application of the qPCR method to study naupliar populations during a non-storm period and after two ecosystem perturbation events (i.e. storms), revealed temporal differences in recruitment rates and biomass loss between the four dominant species. After the early-season storm event, naupliar biomass was observed to increase by up to an order of magnitude within days of the storm, biomass was lost by up to 99% in the earliest developmental stages in the days following the storm, and the community structure rapidly returned to levels similar to my observations for a non-storm summer period. My results demonstrate that copepod nauplii can be selective grazers and have important trophic impacts in subtropical marine plankton communities. I also show that ecosystem perturbations alter species-specific copepod recruitment rates and biomass loss across development, promoting ephemeral shifts in species dominance within the naupliar community.
Description
Ph.D. University of Hawaii at Manoa 2016.
Includes bibliographical references.
Keywords
qPCR, copepod nauplii, grazing, population ecology, zooplankton, microzooplankton, storm event
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Oceanography
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.