Wearable Biosensors to Evaluate Recurrent Opioid Toxicity After Naloxone Administration: A Hilbert Transform Approach

Date
2018-01-03
Authors
Chintha, Keerthi Kumar
Indic, Premananda
Chapman, Brittany
Boyer, Edward W
Carreiro, Stephanie
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Opioid abuse is a rapidly escalating problem in the United States. Effective opioid reversal is achieved with the antidote naloxone, but often does not last as long as the offending opioid, necessitating in-hospital observation. Continuous physiologic monitoring using wearable biosensors represents a potential option to extend monitoring capability outside the clinical setting across the spectrum of opioid abuse including post- naloxone administration. The present study aims to identify the physiologic change that marks the cessation of naloxone’s effect. Eleven participants were recruited in the Emergency Department after naloxone administration for an opioid overdose and continuously monitored using a wearable biosensor measuring heart rate, temperature, electrodermal activity and accelerometry. Hilbert transform was used to evaluate a 90- minute post naloxone time point. Physiologic changes were consistent with the onset of opioid drug effect across parameters, but only changes in heart rate and skin temperature research statistical significance.
Description
Keywords
Real-World Evaluation of Biosensor-Based Interventions in Healthcare, wearables, biosensors, opioids
Citation
Extent
6 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.