Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach

Date
2017-01-04
Authors
Wu, Meng
Xie, Le
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper presents an online data-driven algorithm to detect false data injection attacks towards synchronphasor measurements. The proposed algorithm applies density-based local outlier factor (LOF) analysis to detect the anomalies among the data, which can be described as spatio-temporal outliers among all the synchrophasor measurements from the grid. By leveraging the spatio-temporal correlations among multiple time instants of synchrophasor measurements, this approach could detect false data injection attacks which are otherwise not detectable using measurements obtained from single snapshot. This algorithm requires no prior knowledge on system parameters or topology. The computational speed shows satisfactory potential for online monitoring applications. Case studies on both synthetic and real-world synchrophasor data verify the effectiveness of the proposed algorithm.
Description
Keywords
Data mining, false data injection attack, outlier detection, synchrophasor.
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.