Show simple item record



Item Description

dc.contributor.author Cao, Keping en_US
dc.date.accessioned 2012-03-15T18:54:42Z en_US
dc.date.available 2012-03-15T18:54:42Z en_US
dc.date.issued 1998-05 en_US
dc.identifier.citation Cao K. 1998. Simultaneous removal of carbon and nitrogen by using a single bioreactor for land limited application. Honolulu (HI): Water Resources Research Center, University of Hawaii at Manoa. en_US
dc.identifier.uri http://hdl.handle.net/10125/22230 en_US
dc.description Thesis (M. S.)--University of Hawaii at Manoa, 1998. Includes bibliographical references (leaves 149-156). en_US
dc.description.abstract An Entrapped-Mixed-Microbial-Cell (EMMC) process was investigated for its simultaneous removal of carbon and nitrogen in a single bioreactor with the influent COD/N ratio varying from 4 to 15 and influent alkalinity of 140 mg CaCO3/L and 230 mg CaCO3/L. The reactor was operated with alternate schedules of intermittent aeration. Two different sizes of carriers (10 * 10 * 10 mm3 and 20 * 20 * 20 mm3) were studied. The medium carrier (10 * 10 * 10 mm3) system presents higher nitrogen removal and COD removal compared to the large carrier system. The nitrogen removal efficiency is related to the ratio of COD/N in the influent. With the increase of the COD/N ration in the influent, the nitrogen removal efficiency is increased. The average reductions of nitrogen were over 92% and the average reductions of SCOD and BOD5 are over 95% and 97%, respectively, in the medium carrier system. This is operated at the HRT of 12 hours and 0.5 hour aeration and 2 hours of non-aeration, and the COD/N ratio of 15 in the influent. Changing alkalinity from 140 to 230 mg CaCO3/L has no effect in both large and medium carriers for the nitrogen removal efficiency. The pH, oxidation – reduction potential (ORP) and dissolved oxygen (DO) were used to monitor the biological nitrogen removal. It was found that the ORP (range from -100 to 300 mV) can be used to provide better effluent quality measured as total-nitrogen of less than 10 mg/L. Also, the impact of influent COD/N ratio on the effluent quality (measured as Inorg.-nitrogen) for the EMMC process is very important. Compared to other two compact biological wastewater treatment processes, membrane bioreactor (MBR) and moving bed biofilm reactor (MBBR), the EMMC process with the intermittent aeration has higher removal efficiencies of carbon and nitrogen, easier operation, lower O&M cost, lower energy requirement, and more compact. The total cost requirement is less than $3.27 per 1000 gallons (3.785 m 3) of treated settled domestic sewage per day. It is apparent that the EMMC process is technically feasible for the simultaneous removal of carbon and nitrogen under the operation on a schedule of intermittent aeration and suitable to be used for replacement or upgrading of existing treatment plant at land limited area. en_US
dc.format.extent xv + 156 pages en_US
dc.language.iso en-US en_US
dc.publisher Water Resources Research Center, University of Hawaii at Manoa en_US
dc.relation Theses for the degree of Master of Science (University of Hawaii at Manoa). Biosystems Engineering; no. 3352 en_US
dc.relation.ispartofseries WRRC Unedited Reports. en_US
dc.relation.ispartofseries 1998-07 en_US
dc.rights All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner. en_US
dc.subject.lcsh Sewage--Purification--Biological treatment. en_US
dc.subject.lcsh Sewage--Purification--Aeration. en_US
dc.subject.lcsh Sewage--Purification--Nitrogen removal. en_US
dc.subject.lcsh Bioreactors. en_US
dc.title Simultaneous Removal of Carbon and Nitrogen by Using a Single Bioreactor for Land Limited Application en_US
dc.type Thesis en_US
dc.type.dcmi Text en_US
local.identifier.callnumber Q111 .H3 no.3352 en_US

Item File(s)

Description Files Size Format View
Restricted for viewing only WRRC-98-07_r.pdf 14.94Mb PDF View/Open
For UH users only WRRC-98-07_uh.pdf 60.36Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search


Advanced Search

Browse

My Account

Statistics

About