ScholarSpace will be brought offline for upgrades on Wednesday December 9th at 11AM HST. Service will be disrupted for approximately 2 hours. Please direct any questions to

Item Description

Show full item record

Title: Terahertz spectroscopy and laser induced infrared emission spectroscopy of nitromethane and optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 micron wavelength carbon dioxide laser 
Author: Toyoda, Yoshimasa
Date: 2008
Description: Thesis (Ph.D.)--University of Hawaii at Manoa, 2008. In addition, gaseous nitromethane was irradiated with a c.w. CO 2 laser (∼20 W cm-2 intensity, 10.6 mum wavelength) and the laser-induced steady state emission spectrum was analyzed with the IFS 66 v/S spectrometer. The laser-induced emission spectrum showed the characteristics consistent with the laser-heated thermal emission. The decay constant of the emission followed by a 100 ms CO2 laser pulse was measured with a pyroelectric detector and determined to be 0.3 s. In part II, several polycrystalline semiconductors [silicon (Si), germanium (Ge), gallium arsenide (GaAs), and cadmium telluride (CdTe)] were irradiated with a 150 Ps Nd:YAG laser (532/1064 nm wavelength) and induced changes in the optical properties were monitored by measuring the time-resolved reflectance and transmittance of a low power CO2 laser incident on the samples at the Brewster angle. The experimental results showed a sub-nanosecond increase in the reflectance and a longer increase in the absorption as a result of electron-hole pairs (i.e. carriers) generated by absorption of the incident Nd:YAG laser pulses. This work consists of two parts, (1) Terahertz (THz) spectroscopy and laser-induced infrared emission spectroscopy of nitromethane and (2) optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 mum wavelength CO2 laser. In the spectroscopic study of nitromethane, previously unreported low resolution rotational-torsional spectra in the THz frequency were obtained by a Bruker IFS 66 v/S Fourier transform spectrometer. The acquired spectra were then compared with a calculation based on a rotational-torsional Hamiltonian which includes centrifugal distortions and rotational-torsional coupling terms. Even though the constants used in the calculation were a result of fitting the microwave spectrum, a discrepancy was observed between the calculated and the experimentally obtained spectrum. Includes bibliographical references (leaves xxx-xxx). Also available by subscription via World Wide Web 112 leaves, bound 29 cm
ISBN: 9780549787822
Rights: All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Item File(s)

Description Files Size Format View
Restricted for viewing only HAWN_AC1.H3_5131_r.pdf 6.339Mb PDF View/Open
For UH users only HAWN_AC1.H3_5131_uh.pdf 6.331Mb PDF View/Open

This item appears in the following Collection(s)


Advanced Search


My Account