Please use this identifier to cite or link to this item:

Processing and characterization of continuous fiber ceramic nanocomposites by preceramic polymer pyrolysis

File Description SizeFormat 
M.S.Q111.H3_4019_uh.pdfVersion for UH users3.07 MBAdobe PDFView/Open
M.S.Q111.H3_4019_r.pdfVersion for non-UH users. Copying/Printing is not permitted3.07 MBAdobe PDFView/Open

Item Summary

Title: Processing and characterization of continuous fiber ceramic nanocomposites by preceramic polymer pyrolysis
Authors: Gudapati, Vamshi Mohan
Keywords: Fiber-reinforced ceramics
Issue Date: 2005
Abstract: In this work, two types of Continuous Fiber Ceramic Composites (CFCCs) were manufactured using preceramic polymer pyrolysis method for corrosion and mechanical testing. The two types of fiber reinforcements were Nicalon™ and Carbon fibers, and KiON CERASET® preceramic polymer was used as the matrix in this study. Further, the effects of nanoparticles on processing and flexural mechanical performance of Nicalon/KiON CERASET® continuous fiber ceramic composites by preceramic polymer pyrolysis method have been investigated. Five different nanoparticles varying in size from 15-55 nanometers were used. These nanoparticles were: titanium oxide, yttrium oxide, zinc oxide, silicon carbide, and carbon. Nicalon™ ceramic fiber was used as the reinforcement. KiON preceramic polymer was mixed with nano size fillers in the presence of a surfactant agent to give a good dispersion of the particles and was used as the matrix. Initial work from nanoparticle reinforced CFCCs led to further investigations in the effects of using varying weight percentage of nanoparticle inclusions on mechanical performance of continuous fiber ceramic nanocomposites. Yttrium oxide nanoparticles with an average size of 29 nm was used as the inclusion with varying weight percentages of 5, 10, 15, and 20. Two different types of nanoparticle filled composites were manufactured through different processing routes. Characterization analysis and dispersion studies of the samples using scanning electron microscopy were reported. Four-point bending test was also conducted to evaluate the flexural mechanical performance of the ceramic nanocomposites samples at room temperature. Nanoparticle filled samples consistently showed significant improvement in flexural strength compared to their counterparts without nanoparticle reinforcement.
Description: Thesis (M.S.)--University of Hawaii at Manoa, 2005.
Includes bibliographical references (leaves 56-61).
xi, 61 leaves, bound ill. 29 cm
Rights: All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Appears in Collections:M.S. - Mechanical Engineering

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.