ScholarSpace will be brought offline for upgrades on Wednesday December 9th at 11AM HST. Service will be disrupted for approximately 2 hours. Please direct any questions to

Item Description

Show full item record

Title: The Drosophila ATP-Binding Cassette transporter gene dMRP is related to the human Multidrug Resistance-associated Protein (MRP) family and functions as a xenobiotic transporter 
Author: Cogbill, Jolene Noelani Tarnay
Date: 2008
Description: Thesis (Ph.D.)--University of Hawaii at Manoa, 2008. Transport proteins provide essential cellular functions for archaea, bacteria and eukaryotes. Of the over 550 classified transporter families the ATP-Binding Cassette (ABC) Superfamily is one of the largest. The ABC Transporter Superfamily is divided into eight subfamilies designated A thru H. Members of this superfamily are involved in the transport of a variety of physiologically important substrates including ions, sugars, amino acids, vitamins, peptides, lipids and hormones. ABC transporters are also involved in diverse cellular processes such as lipid trafficking, antigen processing, nutrient uptake, and xenobiotic detoxification. Mutations in several ABC transporters result in various genetic diseases, while overexpression of certain key members of the ABCB/Multidrug Resistance (MDR) and ABCC/Multidrug Resistance-associated Protein (MRP) subfamilies can lead to the development of cellular multixenobiotic resistance. Phylogenetic analysis of the Drosophila genome has identified the Drosophila MRP (dMRP) gene as orthologous to three human genes capable of conferring xenobiotic resistance, the human ABCC1/MRP1, ABCC2/MRP2 and ABCC3/MRP3 genes. In vivo and in vitro experiments have shown that the dMRP gene is ubiquitously expressed throughout Drosophila development and established the dMRP gene as a functional ABC transporter. In vivo and in vitro pesticide assays indicated that dMRP is a pesticide-inducible xenobiotic transporter involved in pesticide metabolism. Includes bibliographical references (leaves 209-240). Also available by subscription via World Wide Web 240 leaves, bound 29 cm
ISBN: 9780549600404
Rights: All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Item File(s)

Description Files Size Format View
Restricted for viewing only Ph.D._AC1.H3_5019_r.pdf 11.45Mb PDF View/Open
For UH users only Ph.D._AC1.H3_5019_uh.pdf 11.44Mb PDF View/Open

This item appears in the following Collection(s)


Advanced Search


My Account