Dynamics With Variable-Order Operators

Date
2005-05
Authors
Soon, Cory M.
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
In this work, the novel concept of Variable-Order (VO) Calculus is explored. VO Calculus extends the notion of Constant-Order (CO) Calculus by allowing the order of differentiation or integration to be a function of pertinent variables. VO Calculus is a powerful tool to model history-dependent processes and may allow solutions of CO partial differential equations to be reduced to simple VO expressions. Such expressions are extremely useful for parametric studies of complex systems such as fuel cells. Following a review of fractional calculus, the behavior of proposed Variable-Order Differential Operators (VODOs) is analyzed and it is shown that these operators must interpolate between integer-order derivatives. A VODO that returns the associated CO derivative at any instant in time is identified. The selected VODO is used to formulate a VO Differential Equation (VODE) of motion for a variable viscoelasticity oscillator. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator is composed of a linear spring of stiffness k that inputs a restitutive force Fk = -kx(t), a VO damper of order q(x(t)) that generates a damping force Fq = -cq1Ji(x(t)) x(t), and a mass m. A Runge-Kutta method is used in conjunction with a product-trapezoidal numerical integration technique to yield a second-order accurate method for the solution of the VODE. The VO oscillator also is modeled using a CO formulation where a number of CO fractional derivatives are weighted to simulate the VO behavior. The CO formulation asymptotically approaches the VO results when a relatively large number of weights is used. For the viscoelastic range of 0< q < 1, the dynamics of the oscillator is well approximated by the CO formulation when 5 or more fractional terms are included (e.g., 0, 1/4, 1/2, 3/4, and 1).
Description
Keywords
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Mechanical Engineering; no. 3967
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.