IQ demodulator for DC coupled Doppler radar

Date
2010-12
Authors
Zhao, Xi
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2010]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The work in this thesis demonstrates the possibility of using DC coupled signal in Doppler radar systems. The microwave radar system can detect the periodic motion which can extend to the cardiopulmonary activity of human beings. One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in the baseband outputs. This DC offset is largely resulting from the parasitic signal leakage between radar ports. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply AC couple radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This thesis present the first DC coupled Doppler radar design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in very low radar DC offset, on the order of mW. The printed circuit board (PCB) quadrature (IQ) demodulator was designed and fabricated using the high isolation mixers. The IQ demodulator was tested in the radar system to detect the motion of the moving target. DC offset in radar system was analyzed and measured. Two quadrature radar systems were tested for comparison (PCB system and coaxial system). Due to the lower LO leakage in the PCB system, significantly reduced DC offset was measured for both I and Q channels. The DC coupled signals from the PCB radar system were successfully detected before saturation of LNA. The DC coupled and AC coupled data were compared. The DC coupled results show great advantages of less signal distortion and more accurate rate estimation. This is the first reported DC coupled Doppler radar measurement result.
Description
M.S. University of Hawaii at Manoa 2010.
Includes bibliographical references.
Keywords
Doppler radar, IQ demodulator, DC
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Electrical Engineering.
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.