Novel heterogeneous fenton oxidation using magentic iron oxide-decorated carbon nanotube to remove endocrine disrupting compounds in wastewater and water

Date
2014-12
Authors
Cleveland, Vincent
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2014]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Endocrine disrupting compounds are becoming a growing concern in our modern world. Bisphenol A, a known estrogen mimic, is produced on a massive scale exposing it to humans and the environment on a daily basis. Recent studies since 1995 have shown that bisphenol A has negative effects even at ultra-low concentrations. Unfortunately, bisphenol A is biologically recalcitrant and passes through most traditional waste water treatment methods. In order to develop an effective and efficient treatment method, a combined approach is proposed. Iron amended carbon nanotubes can act as a heterogeneous Fenton catalyst and as an adsorbent of the contaminant. This project synthesized and characterized a magnetite decorated carbon nanotube catalyst. Additionally the adsorption kinetics and thermodynamics were investigated in both batch adsorption and column adsorption reactors.
Description
M.S. University of Hawaii at Manoa 2014.
Includes bibliographical references.
Keywords
fenton oxidation, carbon nanotube, wastewater, BPA
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Molecular Biosciences and Bioengineering.
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.