Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/100748

Steroid metabolism, nitrosative stress and inflammation : mechanisms for placental dysfunction in assisted reproduction

File Description SizeFormat 
Sato_Brittany_r.pdfVersion for non-UH users. Copying/Printing is not permitted3.97 MBAdobe PDFView/Open
Sato_Brittany_uh.pdfVersion for UH users4.22 MBAdobe PDFView/Open

Item Summary

Title: Steroid metabolism, nitrosative stress and inflammation : mechanisms for placental dysfunction in assisted reproduction
Authors: Sato, Brittany Leilani Mika
Keywords: assisted reproduction
blastomere removal
placenta
steroid metabolism
nitrosative stress
show 1 moreinflammation
show less
Issue Date: Dec 2013
Publisher: [Honolulu] : [University of Hawaii at Manoa], [December 2013]
Abstract: Assisted reproduction technologies (ART) have led to the births of more than five million children worldwide. Pre-implantation genetic diagnosis (PGD) is used in conjunction with ART procedures for genetic screening of embryos prior to uterine transfer. While many couples conceive healthy infants through ART, studies suggest an association with ART and negative obstetric, neonatal, and postnatal outcomes; mechanistic studies aimed at uncovering how ART might mediate these outcomes are lacking. In this dissertation, the effects of blastomere removal associated with PGD on sex steroid homeostasis, inflammation, and nitrosative stress were investigated. We hypothesized that blastomere removal, in conjunction with in vitro fertilization (IVF), results in 1) altered sex steroid homeostasis within the maternal-placental-fetal unit, and 2) increased inflammation and nitrosative stress within the placenta, ultimately leading to detrimental obstetric and neonatal outcomes associated with assisted reproduction. Characterization of the ex vivo primary placental explant technique for the study of sex steroid endocrine studies in humans and mice was performed (Chapter 2). Blastomere removal was shown to alter sex steroid hormones (progesterone, estrone, and estradiol) in the fetus and placenta in mice and to significantly downregulate glucuronidation and sulfonation metabolism pathways within the placenta (Chapter 3). Embryo biopsy also increased nitrosative stress within the placenta of mice (Chapter 4), as demonstrated by elevated concentrations of nitrate species, lipid peroxidation and expression of several matrix metalloproteinase (MMP) enzymes. Embryo culture associated with blastomere removal also increased placental interleukin-6 (IL-6) levels from biopsied and sham-biopsied mouse embryos, thus activating the Janus kinase (JAK) signal transducer and activator of transcription (STAT) pathways as seen by significant increase in phosphorylated STAT1 and reduction in negative regulators, SOCS2 and 3. Taken together, these results suggest that blastomere removal in conjunction with IVF induces nitrosative stress and inflammation as well as dysregulation of steroid homeostasis, specifically within the placenta. Activation of signaling pathways associated with these findings provide novel insights into potential mechanisms mediating the negative outcomes associated with ART and illuminates the need to refine these procedures to minimize the maternal and fetal risks, in order to ensure healthy pregnancies.
Description: Ph.D. University of Hawaii at Manoa 2013.
Includes bibliographical references.
URI/DOI: http://hdl.handle.net/10125/100748
Appears in Collections:Ph.D. - Cell and Molecular Biology



Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.