IDENTIFICATION OF IRRIGATION RETURN WATER IN THE SUB-SURFACE, PHASE III: KAHUKU, OAHU AND KAHULUI AND LAHAINA, MAUI

by

Pedro A. Tenorio Reginald H.F. Young Nathan C. Burbank, Jr. L. Stephen Lau

Technical Report No. 44

December 1970

Project Completion Report

of

IDENTIFICATION OF IRRIGATION RETURN WATER IN THE SUBSURFACE -- PHASE III

OWRR Project No. B-013-HI, Grant Agreement No. 14-31-0001-1894 Principal Investigator: Reginald H.F. Young Project Period: July 1, 1969 to June 30, 1970

The programs and activities described herein were supported in part by funds provided by the United States _epartment of the Interior as authorized under the Water Resources Act of 1964, Public Law 88-379.

ABSTRACT

This study continued the joint research effort undertaken by the Water Resources Research Center and the Honolulu Board of Water Supply in 1967 to investigate the physical and chemical characteristics of irrigation return water. Initial work concentrated on the Pearl Harbor-Waipahu area of Oahu. The phases reported herein included both Kahuku Plantation on Oahu and the sugar cane cultivation areas of central and West Maui (Pioneer Mill Co. and Hawaiian Commercial and Sugar Co.). Composite well, spring, and stream samples were taken and analyzed in the laboratory for the following constituents: bicarbonate, calcium, magnesium, phosphate, silica, boron, chloride, nitrate, sodium, potassium, bromide, fluoride, sulfate, and total hardness.

On the basis of increased index constituents over uncontaminated ground-water sources used to identify the presence of irrigation return water, it is evident, as previously concluded by Visher and Mink (1964), such irrigation return water, is definitely present in the basal water bodies underlying the three study areas. Considerable increases in the nitrate and sulfate indices, especially, and in the bicarbonate and silica indices, as shown by various methods of interpretation of water quality data obtained over a period of approximately two years or exceeding one complete cycle of planting and harvesting of sugarcane, verify the strong influence of irrigation and agricultural practices in altering the overall quality of the basal water sources in the three areas.

The basal water quality of the HC&S aquifer is most affected regionally, as well as locally, by the prevailing agricultural practices. The deterioration of the water is due in part to fertilization and to a greater extent to heavy pumping and recycling of the basal water. Water quality in the Pioneer Mill area parallels that of HC&S, although on a regional basis, the basal water quality, unlike that of the Pioneer Mill area, is not as deteriorated. Local effects of pumping are also especially noticeable in the Pioneer Mill area.

Ground-water quality in the Kahuku area shows the obvious presence of irrigation return water indices, but, unlike the two plantations on Maui, the magnitude of the increases relative to uncontaminated water sources is considerably smaller. The effect of fertilization on Kahuku may be considered to be a principal factor in the regional distribution of index constituents with a relatively uniform nitrate distribution throughout. Local effects of pumping are quite pronounced and influence overall increases of indices, indicating that where heavy pumping takes place for irrigation, the increase in index constituents are correspondingly greater.

CONTENTS

LIST OF FIGURES
INTRODUCTION1
Purpose and Scope2
LOCATIONS OF WATER SAMPLING STATIONS
Kahuku
Hawaiian Commercial and Sugar Company7
DESCRIPTION OF INVESTIGATION
Sampling Method7
DISCUSSION OF THE RESULTS10
Concentration of Nitrate and Sulfate with Time and Areal Distribution
HYDROLOGY IN RELATION TO RETURN IRRIGATION WATER
Kahuku Area
CONCLUSIONS45
REFERENCES
APPENDICES

LIST OF FIGURES

1	Generalized Geologic Map Showing Locations of Water Sampling Stations and Nitrate and Sulfate Distributions in the Kahuku
	Plantation Study Area4
2	Typical Cross-section of a Vertical Shaft Maui-type Well5
3	Typical Cross-section of an Inclined Shaft Maui-type Well6
4	Generalized Geologic Map Showing Locations of Water Sampling Stations and Nitrate and Sulfate Distributions in the Pioneer Mill Study Area

5	Location of Water Sampling Stations in the HC&S Study Area9
6	Variation of Nitrate and Sulfate with Time in Kahuku Wells12 \ensuremath{Var}
7	Variation of Nitrate and Sulfate with Time in Pioneer Mill Wells13
8	Variation of Nitrate and Sulfate with Time in HC&S Wells14
9	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 1
10	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 217
11	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 318
12	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 418
13	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 5
14	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 6
15	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the HC&S Pump 1820
16	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the Pioneer Mill Well D22
17	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the Pioneer Mill Well F22
18	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the Pioneer Mill Well L23
19	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the Pioneer Mill Well M23
20	Variation of Index Constituents with Irrigation and Non- irrigation Periods in the Pioneer Mill Well R24
21	Variation of Index Constituents with Time in Waiehu Golf Course Irrigation Pond, Wailuku Company Plantation, Maui25
22	Variation of Index Constituents with Time in Maui County Board of Water Supply Mokuhau Well25
23	Variation of Index Constituents with Irrigation and Non- irrigation Periods in Kahuku Pump 126
24	Variation of Index Constituents with Irrigation and Non- irrigation Periods in Kahuku Pump 1226
25	Variation of Index Constituents with Irrigation and Non- irrigation Periods in Kahuku Pump 1527
26	Variation of Index Constituents with Irrigation and Non- irrigation Periods in Kahuku Well 352-AK (Pumps 5, 11)27
27	Distribution of Nitrate with Depth in Kahuku Wells29

28	Average Index Constituents in Uncontaminated Water Sources as Compared to Spring and Well Sources from Southern Oahu and Kahuku Plantation, and Pioneer Mill and Hawaiian Commercial and Sugar Company Plantations on Maui
29	Generalized Flow Net Diagram of the Kahuku Ground-water Basin
30	Generalized Graphic Well Logs and Panel Diagram of Basal Aquifer System (South to North) with Mean Values (PPM) of Index Constituents of Composite Water Samples in Kahuku35
31	Generalized Graphic Well Logs and Mean Index Constituents of Composite Well Water Samples in Kahuku
32	Generalized Graphic Well Logs and Mean Values of Index Constituents of Composite Water Samples in Kahuku
33	Generalized Graphic Well Logs with Mean Values of Index Constituents in the Pioneer Mill Wells40
34	Generalized Flow-net Diagram of the Pioneer Mill Ground- water Basin
35	Generalized Flow-net Diagram of the HC&S Ground-water Basin43
36	Generalized Graphic Well Logs with Mean Values of Index Constituents in the HC&S Vertical Maui-type Wells44

INTRODUCTION

Neither the influence of irrigation nor that of agricultural practices on the quality of Hawaiian basal water bodies has been studied to any considerable extent. In comparison, the influence of surface runoff, sewage disposal, solid waste disposal, and other domestic and industrial disposal practices affecting stream or coastal waters has been rather extensively documented. Almost no quantitative or qualitative assessment of the effects of irrigation water has ever been made on the principal basal water lenses. Water quality data relating the chemistry of the water to its suitability for different uses has often depended on chloride content alone. The monitoring of ground-water resources for their overall physical and chemical properties has been undertaken only recently on a relatively long-term basis.

The changes in the chemistry of the water quality of the basal aquifer which have been attributed to agricultural and irrigation practices have been documented for some areas in the Hawaiian islands where sugarcane cultivation is practiced. A study by Visher and Mink (1964) on the qualitative effects of irrigation water on the basal water aquifer in southern Oahu based the evaluation of such effects as the magnitude of increases in the specific index constituents normally found in uncontaminated waters from various ground-water regions on Oahu. The parameters used as criteria in identifying the presence of irrigation water were silica, nitrate, sulfate, and bicarbonate.

Perhaps, because irrigation return water was not considered a significant factor, no really detailed short-term or long-term study of its possible public health significance has ever been carried out. Previous studies, particularly those dealing with ground-water resources and geology, have only reported detailed chemical analyses of some water samples collected. With the exception of studies by Visher and Mink (1964), which evaluated irrigation return water qualitatively and quantitatively, and the State Board of Health study (included in Takasaki and Valenciano, 1969), which specifically evaluated the presence of nitrate in the ground water of Kahuku, Oahu, all other geologic and ground-water resources studies previously carried out merely showed tabulations of chemical data collected and include little or no discussion on the effects of irrigation return water. In the report of the initial work accomplished under Phase II^1 of the study reported here, Tenorio, *et al.*, (1969) have compiled general water-quality data for the Pearl Harbor-Waipahu and Kahuku regions on Oahu and parts of Maui and included an interpretation of the presence of irrigation water, mainly in the basal lens of the Pearl Harbor-Waipahu region.

One of the most important conclusions that Visher and Mink (1964) made in their study on the effects of irrigation water on the chemistry of the basal aquifer was the verification that a significantly large volume of irrigation water moves into the basal aquifer underlying irrigated areas, carrying with it large amounts of dissolved solids contributed by fertilizers and related agricultural practices as well as from the irrigation water itself.

Purpose and Scope

This report describes the work conducted in the third and final phase of a study to obtain qualitative proof of the presence of irrigation water in the basal ground-water bodies and to assess the magnitude of the index constituents present in three different agricultural areas, each characterized by a more or less unique subsurface geology, hydrologic properties, and modes of recharge, but having a common base in the changing land use from agricultural to urban.

The effects of irrigation return water and associated agricultural practices were identified for the basal ground-water bodies underlying three hydrologically and geologically different areas on the islands of Oahu and Maui which are planted with sugar cane, the principal agricultural crop of the state and one of its major sources of income. The three areas studied were 1) Kahuku Plantation on the island of Oahu, 2) Pioneer Mill Company in West Maui in the Lahaina district, and 3) Hawaiian Commercial and Sugar Company (HC&S) in Puunene in Central Maui, comprising a part of the Wailuku district, otherwise known as the Isthmus.²

¹ Project No. B-012-HI, funded by the Office of Water Resources Research under Grant Agreement No. 14-01-0001-1495.

² The geology and hydrology of the study areas was described in a previous report by Tenorio, et αl ., 1969.

LOCATIONS OF WATER SAMPLING STATIONS

In general, all sampling locations, except for a few which will be discussed later, may be considered to be within or in the vicinity of sugar cane fields.

Kahuku

In Kahuku, as shown by Figure 1, all the wells sampled, except Well No. 337-1, are within the boundary of the sugar cane fields. A spring near Well No. 341, at which an irrigation pump is located, was also sampled.

The principal wells in Kahuku from which water is obtained for irrigation and which were analyzed for this study are designated as Pump Nos. 25, 15, 12, 8, 5, 3, and 2. These designations and their corresponding USGS numbers are given in the data tables in the Appendix. Non-irrigation wells which are located within sugar cane fields and pump water from the basal aquifer for domestic and other non-irrigation needs, include USGS designated Well Nos. 367, 339, 352A-K, 338, and 338-1. Well No. 337-1 is thought to tap water from the Koolau dike-zone and is located some distance away from sugar cane fields. Well Nos. 356, 348, and 365 are non-pumping wells, the latter two are located in sugar cane fields. Well No. 356, a USGS water-level station, located mauka (mountainward of inland of some of the sugar cane fields, yields water for cattle watering, irrigation, and also serves as an emergency domestic water supply.

Pioneer Mill

In the Pioneer Mill plantation, ten principal irrigation wells of the vertical and inclined Maui-type shafts (Figs. 2 and 3) and dug wells were sampled for this study. All sampling locations of the basal water source are within or near sugar cane fields with the exception of Pump Nos. N and P. Water samples from Pump Nos. R, N, and P are collected from Maui-type inclined shafts. Pump No. M is a vertical Maui-type shaft and the remaining basal water sampling stations are from open pits and sumps dug a few feet below the water table.

FIGURE 1. GENERALIZED GEOLOGIC MAP SHOWING LOCATIONS OF WATER SAMPLING STATIONS AND NITRATE AND SULFATE DISTRIBUTIONS IN THE KAHUKU PLANTATION STUDY AREA.

FIGURE 2. TYPICAL CROSS-SECTION OF A VERTICAL SHAFT MAUI-TYPE WELL. (REDRAWN FROM HAWAII ENGINEER, 1956)

FIGURE 3. TYPICAL CROSS-SECTION OF AN INCLINED SHAFT MAUI-TYPE WELL (REDRAWN FROM BULLETIN 5, HAWAII DIVISION OF HYDROGRAPHY, 1940)

and a second second

Dike-water from a tunnel intake in the uplands of Honokowai valley was also sampled periodically. The locations of water sampling stations in the Pioneer Mill area are given in Figure 4.

Hawaiian Commercial and Sugar Company

All water samples collected from the HC&S plantation are basal in origin and are from pump sumps or tunnels located a few feet to a few hundred feet below the ground surface. Open pits where the water table is only a few feet below the ground surface or vertical Maui-type shafts are used for water development. Figure 5 shows the location of sampling stations in the HC&S area.

Additional water samples were collected from other areas in Maui, especially at the Wailuku Sugar Company plantation and adjacent upland areas from stream and dike water sources, coastal areas, and an irrigation pond. A well (Maui County Board of Water Supply Mokuhau well) tapping basal water of the Waikapu aquifer was also sampled. These peripheral sampling stations are shown in Figure 5.

DESCRIPTION OF INVESTIGATION

Sampling Method

The water samples collected from various sources were stored in acidrinsed polyethylene bottles which had been vigorously rinsed three times with the water from the sample source before the sample was taken. Field measurements included pH and temperature which were determined immediately after the sample was collected. The samples were stored in an ice cooler and the remaining tests were done in the laboratory.

Laboratory tests were done as soon as possible to avoid possible deterioration of some constituents. During sampling trips to Maui, a one to three-day storage period of the samples in the cooler was necessary before transportation to Oahu for the remaining analyses. For trips involving this length of time, a Hach chemical kit (Hach Chemical Co., Ames, Iowa) was used to determine alkalinity in the field. Nitrate and phosphate contents were determined immediately upon transport of the

FIGURE 4. GENERALIZED GEOLOGIC MAP SHOWING LOCATIONS OF WATER SAMPLING STATIONS AND NITRATE AND SULFATE DISTRIBUTIONS IN THE PIONEER MILL STUDY AREA (GEOLOGIC UNITS FROM STEARNS AND MACDONALD, 1942, AND YAMANAGA AND HUXEL, 1969).

FIGURE 5. LOCATION OF WATER SAMPLING STATIONS IN THE HC&S STUDY AREA.

samples to the laboratory. Tests for these two constituents and for other chemical analyses were carried out according to established analytical procedures which are described in detail in the report on Phase II of this project (Tenorio, *et al.*, 1969).

DISCUSSION OF THE RESULTS

A series of graphs and maps have been constructed to aid in the interpretation of the results of this study. Graphical methods previously used in studies by Visher and Mink (1964), Takasaki and Valenciano (1969), and from Tenorio, Young, and Whitehead (1969) have been widely utilized here for the interpretation of results obtained by chemical analyses of water samples.

In order to show the magnitude of the increase of the index constituents in the water samples analyzed for this study, a comparison was made with data from previous studies in the islands. In particular, water quality data from Visher and Mink (1964), Takasaki and Valenciano (1969), Tenorio, Young, and Whitehead (1969), Yamanaga and Huxel (1969), and Division of Water and Land Development and Belt-Collins and Associates (1969), were used.

In this report, uncontaminated ground and surface waters is defined as water "whose composition has not been affected by mixing with intruded water or by the addition of irrigation or other water affected by the activity of man."¹

As in most studies of water-quality evaluation, simple statistical procedures have been applied in summarizing water-quality data obtained over the two-year period of study. The collection schedule varied to correspond to irrigation and non-irrigation schedules of the plantation.

Because less than 10 analyses are available, in most cases, for each well sample, the mean is most frequently used in the evaluation of data for comparison with other data and for the construction of graphs and maps intended to show pertinent variations of water quality, principally the index constituents in the various wells sampled. Water

¹ The definition is taken from the report by Visher and Mink, 1964.

quality data collected from analyses were carefully scrutinized to insure their reliability by eliminating unreasonably extreme values which were believed to have been due to experimental errors. All chemical analyses have been corrected by cation-anion balancing to within ±5 percent. The data are generally grouped into two parts: those obtained during irrigation or pumping periods and those obtained during non-irrigation or nonpumping periods, which correspond generally to March-October and November-February, respectively.

Histograms have been constructed to show the relative distributions of the index constituents in waters from the areas studied and to compare their magnitude of increase over uncontaminated water sources. Bar graphs for the index constituents and other water quality constituents have also been constructed and evaluated. Raw data are tabulated in the Appendix.

Concentration of Nitrate and Sulfate with Time and Areal Distribution

Figures 6 to 8 show the nitrate and sulfate concentrations in the various wells studied in each of the three areas with the corresponding time of irrigation and non-irrigation periods over three two-year periods of study, beginning in November 1968 and ending in February 1970. In general, the index values of nitrate and sulfate of the water samples obtained from the study sites are all appreciably greater than values normally found in uncontaminated water sources (Visher and Mink, 1964), and clearly point to the obvious presence of irrigation water and its influence on the chemical composition of the basal water bodies. Baselines showing nitrate and sulfate values in representative uncontaminated ground-water sources graphically indicate the relative degree of increase. The variation in the concentration of the two constituents in samples obtained during pumping and non-pumping periods is also quite marked, particularly for Pioneer Mill and HC&S plantations, though less evident for Kahuku Plantation.

The time lag for irrigation water to reach the basal water body is generally reflected in most of the graphs. This is especially noticeable in those wells in which high concentrations of the two index constituents KAHUKU PLANTATION WELLS

PIONEER MILL WELLS

were encountered during normally wet seasonal periods and low values found during normally dry seasonal periods and, consequently, irrigation periods. The correspondence between high values and excessive pumping during dry periods is much more noticeable in the Maui plantation wells than in the Kahuku wells which generally showed the opposite trend. In Kahuku, where the depth to the point of withdrawal of basal water from the land surface averages about 200 to 300 feet, high nitrate and sulfate values were observed several months after the actual periods of pumping and irrigation. In contrast, the wells at both plantations in Maui show a much more rapid increase, although not instantaneous, of the index constituents following periods of pumping and irrigation. This difference is probably due to the shorter recycling time of the irrigation water on Maui because of the relatively shallow depth to the water table as compared to that at Kahuku Plantation. In some of the wells, this trend is not readily observed; instead, an erratic pattern is more common. The pattern depicted in the graphs for the Maui plantations roughly indicates a correlation of seasonal variations of nitrate and sulfate to irrigation practices. Six factors that may have a direct influence on the time it takes the irrigation water to reach the groundwater table are 1) amount of natural recharge and irrigation water entering the basal water body, 2) aquifer permeability, 3) depth to the water table, 4) depth of well penetration with respect to thickness of the return irrigation water and thickness of the fresh water lens, 5) hydrogeologic relationships of area, and 6) amount of pumping.

The extremely large difference of the index constituents, especially nitrate, found at the Maui sites and that found at Kahuku were probably due to the greater depth to the basal aquifer at Kahuku rather than to differences in the amount of fertilizer applied or the pumping pattern. Comparatively lower values were also found in the Pearl Harbor-Waipahu wells studied (Tenorio, *et al.*, 1969) where well depth into the basal aquifer were generally comparable to that in Kahuku.

The behavior of sulfate infiltrating to the ground-water table followed the general pattern described previously for nitrate. In general, the sulfate content of the water samples decreases correspondingly to the increase in the depth from which the samples were taken. A more noticeable variation showing sulfate reduction with relation to depth in the well can be seen in the Kahuku and Pearl Harbor-Waipahu areas.

Index constituent values for Well Nos. 348 and 356 in Kahuku are persistently low and indicate a complete absence of irrigation return water in these two non-pumping wells. They were bored to relatively shallow depths in the coastal plain caprock and the index constituent values obtained are considered to be unreliable. Previous findings in the Pearl Harbor-Waipahu area by Tenorio, *et al.*, (1969) in Well No. T-241, which taps the caprock water, showed appreciable amounts of the index constituents at the various depths sampled. A possible explanation for the low indices obtained in the Kahuku wells could be the manner in which samples were obtained. It is possible that the samples obtained at Well Nos. 348 and 356 were not representative of the actual ground water as they were taken from the top of the well casings and sufficient time was not allowed for water to flow from the lower portion of the well.

Areal distribution of nitrate and sulfate, in relation to well locations in the three areas, are depicted in Figures 1, 4, and 5. The distribution in Pioneer Mill and HC&S wells are easily delineated and appear to be continuous and uniform over the sugar cane fields. The distribution for Kahuku appears to be less clearly related to areas of cane cultivation.

In general, the index constituents at Pioneer Mill are lowest to the north and west toward the dike and basal water hydrologic boundary, as shown by values from Well Nos. R and M. This trend was expected as these two wells are upgradient from the principal irrigated fields and also in close proximity to the principal perennial streams in the area, which are zones of natural recharge.

The bar graphs, depicting the distribution of the index constituents in the wells in relation to sampling periods, indicated even more clearly a distinct presence of irrigation return water associated with agricultural practices in the basal aquifer and its influence on water quality. *HC&S WELLS*. Figures 9 to 15 show the distribution of the index constituents in the HC&S wells. The graphs show that the overall basal water quality of this area is influenced most by irrigation and agricultural practices. The high nitrate values may be virtually all

FIGURE 9. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 1.

FIGURE 10. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 2.

FIGURE 11. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 3.

FIGURE 12. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 4.

FIGURE 13. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 5.

FIGURE 14. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 6.

FIGURE 15. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN THE HC&S PUMP 18.

attributed to contributions from the fertilizer applied on the fields. The presence of high sulfate values may be attributed partly to fertilizer application and partly to the presence of intruded water as evidenced by the generally high chloride content of the water in most of the wells. The exceptionally high bicarbonate content is most probably caused by the frequent recycling which tends to accelerate the reaction of water with organic matter, the soil horizon, and underlying materials, principally the calcareous sediments. The silica content of the water is fairly uniform but shows some seasonal variation and this may be the effect of water recycling and fertilizer application according to Visher and Mink (1964). Extremely high values of silica are found in some wells in the HC&S fields as well as at the Pioneer Mill and Kahuku plantations. These high values could be the result of silica addition as explained by Davis (1969), probably contributed partly by leaching of burned sugar cane material and partly by other dissolved silica sources applied over the fields.

It is shown from the series of bar graphs that the effects of dilution by fresher water sources, such as the surface water diverted from dikes and streams and from precipitation, are masked by the apparently greater influence of the underlying sea-water intruded basal water on the quality of irrigation water.

In general, the most persistently high values found, in decreasing order of magnitude, are bicarbonate, silica, sulfate, and nitrate. This distribution follows the normal concentration pattern found in uncontaminated water sources, although the values in the HC&S wells are considerably higher. The index constituents for uncontaminated water are included in each bar graph for comparison.

PIONEER MILL WELLS. The distribution of the index constituents found in the Pioneer Mill wells (Figs. 16-20) follows the trend found in the HC&S wells. However, the magnitude of the sulfate index is generally higher than that found in the HC&S wells. The high sulfate content may be due to irrigation and fertilization practices, as in the case of the HC&S wells, and also to sea water intrusion, as is evident by the high chloride content of most of the water samples which were analyzed. The nitrate content of water samples from Pioneer Mill is generally lower than that from HC&S, but it is considerably higher than that found in uncontaminated water. The relatively lower nitrate values in the water samples from Pioneer Mill wells, as compared to those from the HC&S wells, may be due to the greater amount of surface and dike-water available for dilution and to the comparatively rapid flushing effect of the topmost portion of the lens in the Pioneer Mill area. The latter area has a steeper hydraulic gradient, averaging about two feet per mile, as compared to an average of one foot per mile in the HC&S area. The high bicarbonate content of the water probably reflects frequent recycling and reaction with the vegetative mantle, the soil, and rock materials.

A bar graph of the index constituents found in water from a pond which collects surface runoff from irrigated fields as well as shallow subsurface flow is shown in Figure 21. The graph may reflect typical concentrations of the index constituents before the water infiltrates into the ground-water body. The bicarbonate content is particularly high and is suggestive of effects of recycling and accelerated reaction of the water with the soil and vegetative mantle at the initial period of irrigation water application onto the fields. A bar graph of the

FIGURE 16. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN PIONEER MILL WELL D.

FIGURE 17. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN PIONEER MILL WELL F.

PIONEER MILL WELL-L

FIGURE 18. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN PIONEER MILL WELL L.

FIGURE 19. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN PIONEER MILL WELL M.

FIGURE 20. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN PIONEER MILL WELL R.

index constituents of a domestic well (Mokuhau), located in a canefield, generally reflecting high quality is given in Figure 22. The distribution of silica in the wells again shows a nearly uniform and unchanging trend, although in the Pioneer Mill wells, the mean silica value is lower than that found in the HC&S wells.

KAHUKU PLANTATION WELLS. The index constituents found in Kahuku, depicted in Figures 23 to 26, show a general agreement in trends with the two areas in Maui. However, the magnitude of the indices is comparatively lower with the exception of silica whose mean value for this area is intermediate in range between the two areas previously discussed. Because of the presumably identical practices in agricultural management for the profitable production of sugar in the three areas, the great difference in magnitude of the index constituents, especially of nitrate and sulfate, is not readily explainable. Irrigation areas underlain by basalt is small compared to caprock areas of Kahuku. Water applied to caprock areas is recycled within the caprock or discharged out to sea.

A possible explanation for high index values on Maui is related to

FIGURE 21. VARIATION OF INDEX CONSTITUENTS WITH TIME IN WAIEHU GOLF COURSE IRRIGATION POND, WAILUKU COMPANY PLANTATION, MAUI.

FIGURE 22. VARIATION OF INDEX CONSTITUENTS WITH TIME IN MAUI COUNTY BOARD OF WATER SUPPLY MOKUHAU WELL.

FIGURE 23. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN KAHUKU PUMP 1.

FIGURE 24. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN KAHUKU PUMP 12.

FIGURE 25. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN KAHUKU PUMP 15.

FIGURE 26. VARIATION OF INDEX CONSTITUENTS WITH IRRIGATION AND NON-IRRIGATION PERIODS IN KAHUKU WELL 352-AK (PUMPS 5, 11).

the greater flushing of the upper portion of the basal water lens, as suggested previously for the Pioneer Mill area, in which flatter hydraulic gradients associated with little or no caprock promotes faster seaward movement of the ground water. This greater ground-water movement may be especially apparent at the topmost portion of the basal lens where irrigation water has been presumed to be present, thus being reflected by the composition of samples taken in this study which generally were from the top of the lens at the two Maui plantations.

In Kahuku, water samples were collected below the water table, normally at the end of the casing or intake points well below the top of the basal lens. Takasaki and Valenciano (1969) have shown the decreasing trend of the nitrate content in the Kahuku wells in relation to increasing depth below the water table. This is shown in Figure 27. Similar results were reported in studies of nitrate distribution with depth in the Pearl Harbor-Waipahu wells of southern Oahu by Tenorio, *et al.* (1969). A comparison of index constituents found in wells and springs in the Pearl Harbor-Waipahu region with those in Kahuku and Maui wells is shown in Figure 28.

FIGURE 27. DISTRIBUTION OF NITRATE WITH DEPTH IN KAHUKU WELLS (REDRAWN FROM TAKASAKI AND VALENCIANO, 1969).

WHITEHEAD, 1969.) COMMERCIAL AND SUGAR COMPANY PLANTATIONS ON MAUI. WELL SOURCES FROM SOUTHERN OAHU AND KAHUKU PLANTATIONS, AND PIONEER MILL AND HAWAIIAN (REDRAWN FROM TENORIO, YOUNG, AND

HYDROLOGY IN RELATION TO RETURN IRRIGATION WATER

Kahuku Area

Because of the complex effects of the caprock on the ground-water regime in the Kahuku area, it is difficult to predict with certainty the natural movement of ground water within and between ground-water compartments overlain by caprock. Basal water and dike water, confined and unconfined, constitute the principal bodies of fresh water occurring in the Kahuku region. The retarding effect of the caprock against the free escape of fresh water from the water body has caused the dike water level to rise to a head of 20 feet above sea level. Because of this effect, the fresh-water body may develop to as much as 800 feet below sea level according to the Ghyben-Herzberg principal. Water levels in the basal water area is much less.

In general, ground-water movement in the Kahuku area is controlled by three principal factors: 1) the amount of recharge and discharge, 2) the ground-water gradients within each dike compartment and the presence of caprock on the dike compartments and the basal aquifer, and 3) by artificial discharge imposed on the basal water body of each area.

Geologic and well-log information previously obtained from studies by Stearns and Vaksvik (1935, 1938), Stearns (1940), and Takasaki and Valenciano (1969) have been extensively used in the determination of the areal extent of the principal hydrologic units, the depth of the caprock formation, and the depths and logs of wells.

Figure 29 shows the movement of ground water to be generally in a northerly direction discharging as natural flows at coastal springs, swampy areas, and leaks in the caprock and as artificial discharge by pumping for irrigation and domestic water uses. Pumping appears to impose the greatest influence on the preferred direction of flow of the ground water as is shown by the steepness of the water table gradient near major pumping wells, such as Pump Nos. 351, 352, and 353. Because of the incompleteness of water level information, it is difficult to construct an accurate natural ground water table map and, hence, to precisely identify the effect of each factor on the movement of ground

FIGURE 29. GENERALIZED FLOW NET DIAGRAM OF THE KAHUKU GROUND-WATER BASIN (GROUND-WATER OCCURRENCE OF WATER LEVEL DATA FROM TAKASAKI, VALENCIANO, AND HO, 1966).

water. It appears, however, that where intensive pumping for irrigation is taking place, the natural water table contours are influenced by that practice.

Figure 29 indicates a close correlation between the effect of natural hydrogeologic elements and that of pumping on the movement of ground water, suggesting the possible migration of chemical constituents to points of excessive artificial discharge. This relationship is shown by the generally greater values for index constituents as well as other constituents found in the heavily pumped wells as compared to other artificial discharge points in adjacent areas which are not so heavily pumped. In general, as in the panel diagrams shown in Figure 30, the presence of irrigation water as measured by the magnitude of the index constituents is most marked in the heavily pumped areas and appears to be channeled toward the central area of the Kahuku study area in the vicinity of Pump Nos. 351, 352, and 353. The magnitude of the index constituents decreases in proportion to their distance away from the central area. The largest concentrations of the index constituents are found in an area approximately bounded by Well No. 337-1 to the north and Well No. 353 (Pump 1) to the south.

The largest chloride values were also generally found in the heavily pumped wells, especially Well Nos. 351, 339, and 352, indicating that intruded water brought about by excessive pumping is also affecting the area. Figures 31 to 32 show a cross-section of well locations in relation to the coast and areas of irrigation. The high index values caused by irrigation practices tend to verify previous hydrologic assumptions that ground water is diverted to the vicinity of the heavily pumped wells which also show the steepest water table gradients throughout the area. The distribution of index constituents with depth and distance from the shore is given in the bar graphs (Fig. 30) which were plotted from data compiled by Takasaki and Valenciano (1969). Values of some of the index constituents for June 1956 and August 1964 were plotted in Figures 31 to 32 for comparison with the present study. Earlier values generally were noted to be smaller than those values found during the present study. Nitrate values show the greatest variation, indicating an appreciable increase over earlier concentrations. Increases in the other indices are also quite noticeable, however, the effects of irrigation and

FIGURE 30. GENERALIZED GRAPHIC WELL LOGS AND PANEL DIAGRAM OF BASAL AQUIFER SYSTEM (SOUTH TO NORTH) WITH MEAN VALUES (PPM) OF INDEX CONSTITUENTS OF COMPOSITE WATER SAMPLES IN KAHUKU.

FIGURE 31. GENERALIZED GRAPHIC WELL LOGS AND MEAN INDEX CONSTITUENTS OF COMPOSITE WELL WATER SAMPLES FROM KAHUKU IN AREA A-A' (SEE FIG. 1 FOR TOPOGRAPHIC ORIENTATION).

FIGURE 32. GENERALIZED GRAPHIC WELL LOGS AND MEAN VALUES OF INDEX CONSTITUENTS OF COMPOSITE WATER SAMPLES IN KAHUKU FROM AREA B-B'. SEE FIGURE 1 FOR TOPOGRAPHIC ORIENTATION. (*1956 AND 1964 VALUES OF TAKASAKI AND VALENCIANO, 1969.)

fertilization seem to be demonstrated more clearly by the nitrate values.

Pioneer Mill Site

Figure 33 shows the distribution of mean values of index constituents in the Pioneer Mill wells on a longitudinal direction along the coastline. The basal ground-water body in this region is essentially continuous and ground-water movement is little affected by overlying sedimentary deposits in contrast to the ground-water movement in the Kahuku area. The ground-water body is continuous and increases in thickness in a southerly direction relative to the coastline, attaining a height of 6 feet above sea level near Ukumehame Shaft (Pump No. P). Since the basal water body is hydrologically continuous throughout the area, there is a free exchange of water between the basins and the movement proceeds from areas of high heads to areas of low heads toward the coast. The distribution of index constituents and overall constituents was observed to be essentially uniform and the composition of water seemed to be controlled primarily by different conditions of draft, head, and time. As expected, those wells closer to the coastline with low heads show the greatest effect of irrigation water as compared to wells located relatively farther inland and where heads are correspondingly higher. Pump No. M, located inland and away from the influence of extensive irrigation practice, shows the least effect of irrigation on its index constituents with comparatively lower nitrate content than other wells in the area. The same general condition prevails in Pump Nos. N and P at the southern section of Pioneer Mill. In a transverse direction, although both are located in irrigation fields, water from Pump No. F, located down gradient from Pump No. R, shows a noticeably higher content of index constituents. This could indicate the migration of index constituents from an area of low head.

The rate of natural discharge of ground water is probably greatest at the northernmost section where the water table is generally low and the coastal plain sedimentary deposit is narrow (Fig. 34). A gradual decrease in natural discharge rate should take place toward the southern section where the coastal plain sedimentary deposits extend farther inland and where irrigated fields are essentially narrower. Figure 34

FIGURE 33. GENERALIZED GRAPHIC WELL LOGS WITH MEAN VALUES OF INDEX CONSTITUENTS IN THE PIONEER MILL WELLS.

FIGURE 34. GENERALIZED FLOW-NET DIAGRAM OF THE PIONEER MILL GROUND-WATER BASIN.

also shows that all natural ground-water discharge is toward the coast. Hence, in wells where indices are relatively high as compared to other areas, the high values are probably due to the influence of heavily pumped wells which would tend to divert the subsurface irrigation water flow towards them.

Indication of sea-water intrusion as measured by the chloride content of the water is more readily evident in wells near the coast, being especially pronounced in Pump Nos. A, C, D, F, and L (Fig. 4). Pumps located further inland also show increases in chloride content which suggest the presence of intruded water. However, this increase is generally noticeable only during irrigation periods when peak draft is imposed on the lens.

Hawaiian Commercial and Sugar Company Site

Figure 35 shows the generalized graphic well logs and distribution of index constituents in wells found on the HC&S plantation. A crosssection of the wells over the line AA' (Fig. 36) is presented to show the variation in the indices in relation to the coastline bordering the area on two sides and to the water table elevation in the wells.

Ground-water movement in this region is toward the major areas of discharge along the adjacent coastlines and the lower isthmus plain. Areas of relatively faster flushing rates are encountered on the Kihei coastline, inland of Pump No. 1 and the 4-foot water level on the northern coast, and at the central part of the area where a troughlike depression appears to be present (Fig. 35). Relatively slow ground-water movement is encountered north of the 4-foot water table contour on the northern coast where coastal plain sediments are relatively abundant. No correlation of the ground-water movement and chemical concentration of a given water sample was observed. Quality under different conditions of draft, head, and time remained essentially uniform throughout the duration of study.

All of the wells sampled show large increases of most of the index constituents relative to uncontaminated sources, indicating the obvious presence of irrigation water and possibly the highest degree of basal water recycling of the three areas studied. Pump No. 18, located at much greater elevation and away from the coastline in comparison to the

FIGURE 36. GENERALIZED FLOW-NET DIAGRAM OF THE HC&S GROUND-WATER BASIN.

other wells, showed the least effect of irrigation return water, although the indices were significantly high. The presence of large amounts of index constituents seems to be related to the persistent recycling of the basal water, and hence, different conditions of draft, rather than to locations of the wells relative to each other or to the coastline. The average amounts of nitrate and sulfate contained in all of the well water sampled were uniformly high and could be an indication of the upper limits of these constituents in the basal water contributed by irrigation and fertilization. It is suspected that the high values are a result of long-term accumulation of the constituents over successive cycles of irrigation and fertilization, rather than a single cycle.

The bicarbonate content shows the greatest variation and is highest in wells located in the central and lower parts of the isthmus which are the areas where calcareous sedimentary materials predominate. The high bicarbonate values could be the result of accelerated solution of carbonate material by the frequent recycling of the water for irrigation.

Silica values are also relatively high and uniform. Although the silica increase over the representative uncontaminated sources is significantly large, it is difficult to conclude that the increase was caused either by the leaching of soils or of the underlying unweathered rocks by excessive recycling. The relatively uniformly high silica content in the irrigated fields and the relatively lower silica values in flat water table gradients illustrate the difficulty of determining causes of the high values found.

In general, the high nitrate values found in the HC&S area may be due primarily to the slow flushing of the irrigation return water at the top of the lens owing to the uniformly flat gradients in most areas and by the presence of a troughlike water table region in the central and lower portion of the HC&S plantation.

CONCLUSIONS

From the present study, based on the index constituents used as indicators of return irrigation water and on additional observations and evaluation of overall water quality information, the following conclusions are indicated:

- Qualitative and quantitative evidence have been obtained to verify contentions by earlier studies of the presence of irrigation water in the basal lenses underlying areas of sugar cane cultivation.
- Conclusive evidence is present that fertilizer components, principally nitrate and sulfate, leach into the basal aquifer as a result of irrigation water application on the fields.
- Geology and hydrology control the extent and amount of chemical components present in ground water.

4. Excessive withdrawals of the basal water in simple Ghyben-Herzberg lens conditions accelerates saline water intrusion at a rate faster than that found in areas of more complex hydrology, such as Kahuku and southern Oahu.

REFERENCES

- Davis, S. N. 1969. Silica in streams and ground water of Hawaii. Technical Report No. 29, Water Resources Research Center, University of Hawaii. 31 p.
- Division of Water and Land Development, State of Hawaii, and Belt, Collins and Associates, Ltd. 1969. Water source development plan for Lahaina District, island of Maui. Report R33. 94 p., 27 plates, 8 tables.
- Stearns, H. T. 1940. Supplement to geology and ground-water resources of Oahu, Hawaii. Bulletin 5. Hawaii Division of Hydrography. 164 p.
- Stearns, H. T. and G. A. Macdonald. 1942. Geology and ground-water resources of the island of Maui, Hawaii. Bulletin 7. Hawaii Division of Hydrography. 344 p.
- Stearns, H. T. and K. N. Vaksvik. 1935. Geology and ground-water resources of the island of Oahu, Hawaii. Bulletin 1. Hawaii Division of Hydrography. 478 p.
- Stearns, H. T. and K. N. Vaksvik. 1938. Records of the drilled wells on Oahu, Hawaii. Bulletin 4. Hawaii Division of Hydrography. 213 p.
- Takasaki, K. J., S. Valenciano, and A. M. Ho. 1966. Preliminary report on the water resources of the Kahuku area, Oahu, Hawaii. Circular C39. Hawaii Division of Water and Land Development. 33 p.
- Takasaki, K. J. and S. Valenciano. 1969. Water in the Kahuku area, Oahu, Hawaii. United States Geological Survey Water-Supply Paper 1874. 59 p.
- Tenorio, P. A., R. H. F. Young, and H. C. Whitehead. 1969. Identification of return irrigation water in the subsurface: water quality. Technical Report No. 33. Water Resources Research Center, University of Hawaii. 90 p.
- Visher, F. N. and J. F. Mink. 1964. Ground-water resources in southern Oahu, Hawaii. United States Geological Survey Water-Supply Paper 1778. 133 p.
- Yamanaga, G. and C. H. Huxel. 1969. Preliminary report on the water resources of the Lahaina District, Maui. United States Geological Survey Circular 51. 47 p.

APPENDICES

.

APPENDIX A. CHEMICAL ANALYSES OF KAHUKU WATER SAMPLES.

SAMPLE DEPTH	DATE OF COLLECTION	<u>Si02</u>	Ca	Mg	Na	ĸ	HCOs	SO ₄ PPM	<u>C1</u>	F	Br	I	NO 3	POs	8	TOTAL HARDNESS	NON-CARB. HARDNESS	CALC. SOLIDS	рН	T,°C
PUMP 2	5/1/69	56	51	31	78	2.5	90	20	220	0.041	2		4	0.07	0.4	268	180	510	7.4	22
337 WAIALEE SCHOOL	9/4/68 10/31/68	45 51	10 10	8.5 8.5	27 26	1.4 1.5	61 62	7.0 7.2	43 43	0.45	0.2	0.01	1.6 2.9	0.22	0.0	60 60	10 9	174 180	6.9 6.0	22 21.5
337-1	5/1/69 8/12/69 11/13/69 1/20/70	54 77 35 49	11 10 15 12	9.8 8.5 6 10	26 26 24 20	1.4 1.9 1.3 1.4	64 64 68	7 11 7 7	43 37 42 38	0.39 0.5 0.19 0.17	0.37 0.28 0.2 0.37		1.5 1.5 1.6 3.4	0.15 0.001 0.2 0.22	0.8	68 60 62 72	16 8 10 16	187 206 164 175	7.5 7.6 7.65 7.7	20 20.5 22 23
338 PUMP 14	9/4/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	49 45 52 77 36	19 19 17 17 18	19 20 16 16 27	48 43 45 50 43	2.5 2.6 2.8 2.8 2.7 NO S	64 66 66 66 66 AMPLE	17 17 15 21 25	118 118 97 99 104	0.50 0.64 0.066 0.47 0.25	0.8 0.1 1.0 0.64 0.45	0.01	1.6 2.0 1.7 1.8 2.1	0.19 0.24 0.2 0 0.2	1.5	126 132 110 110 162	73 78 56 54 103	309 301 281 319 311	7.8 7.3 7.7 7.6 7.8	25 22 22 22 22 22.5
338-1 KAWELA TANK	9/21/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	52 51 48 54 77 36 50	12 15 17 15 15 23 18	20 15 18 17 13 25 15	46 51 46 49 44 55 50	1.3 1.7 1.6 1.6 1.9 1.8 1.6	64 68 66 66 84 70	17 16 18 13 20 17 18	92 98 108 94 84 134 98	0.49 0.29 0.80 0.03 0.04 0.46 0.12	0.2 0.1 0.2 0.84 0.64 0.62 0.88	0.00 0.01 0.02	2.3 1.8 2.0 1.5 1.5 2.4 3.4	0.25 0.16 0.26 0.26 0.76 0.34 0.38	0.4 0.5 0.1 1.4 0.2	114 100 115 106 92 160 106	60 43 62 52 37 91 49	276 284 293 283 291 337 291	7.3 7.2 6.3 7.2 7.4 7.1 7.2	23 23 21 22 22.5 22 22
339-A8	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	54 54 56 87 40 50	52 54 52 52 52 52 52 65	52 62 58 53 54 60 53	96 102 86 120 96 95 92	1.2 2.6 2.4 2.9 4.2 2.7 2.6	83 84 86 82 84 86 86	27 28 30 27 41 50 25	342 342 333 350 328 322 323	0.64 0.08 0.47 0.41 0.11 0.15 0.22	4.0 1.2 0.6 3.2 1.7 1.4 2.9	0.01 0.02 0.01	5.5 4.6 5.8 5.4 1.4 5.6 8.8	0.23 0.00 0.24 0.17 0.001 0.2 0.24	0.9 0.3 0.2 0.2	342 390 410 348 352 376 380	276 321 340 280 280 300 310	676 692 682 710 706 672 665	7.3 7.2 6.5 7.4 7.4 7.2 7.4	23 23.5 22.5 22.5 22.5 22.5 22.5 22.5 22
341	10/31/68 5/1/69 8/12/69 11/13/69 1/20/60	59 61 92 40 54	54 71 98 71 91	58 78 58 77 45	100 86 93 95 110	3.2 3.5 4.1 3.5 3.2	80 76 74 98 78	30 35 55 10 32	348 400 423 414 393	0.19 0.024 0.04 0.48 0.18	0.9 3.8 2.5 1.6 3.5	0.03	6.1 3.4 4.8 4.4 7.7	0.14 0.09 0 0.17 0.17	0.0 0.4 0.2	375 500 480 500 412	308 440 420 414 350	698 780 867 766 778	7.1 7.2 7.2 7.15 7.2	23 22 22.1 22 22
SPRING 341	9/4/68 10/31/68 1/30/69	56 56 70	75 74 71	105 72 88	92 92 80	3.0 3.4 2.8	75 75 81	39 38 38	455 415 393	0.30 0.09 0.64	4.5 1.0 0.5	0.02 0.02 0.02	3.4 4.4 4.6	0.15 0.12 0.22	0.4 0.8 0.0	570 480 540	509 419 474	871 794 789	7.2 7.1 6.9	22.5 23 22
348	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	1.0 1.0 0.0 1 2.5 1 1.5	56 56 54 53 52 64	17 19 15 14 19.5 9.7	35 37 32 38 38 35 32	1.2 1.5 1.2 1.4 0.9 1.3 1.4	10 10 13 12 11 10 10	1.0 1.0 0.0 0.75 5 3	208 198 193 184 179 188 188	0.50 0.10 0.76 0.066 0.1 0.32 0.22	2.2 0.5 0.6 2.3 1.25 0.86 2.1	0.01 0.02 0.00	0.0 0.4 0.0 0 3.8 0 0	0.02 0.00 0.00 0 0 0.43	0.2 0.0 0.0 0.5	210 220 217 198 188 210 200	202 210 206 188 180 202 195	327 319 309 302 310 308 308	8.0 7.2 6.5 7.6 7.7 7.10 7.4	26 32.5 22 24.5 25.5 24 23.5
351	9/4/68 10/31/68 2/6/69 8/12/69 11/13/69 1/20/70	52 51 47 72 32 49	59 54 56 53 66	44 33 39 34 37 23	58 60 63 60 73 54	1.8 2.2 1.8 2.3 2.3 2	76 78 110 81 96 102	25 23 26 34 41 22	255 220 208 218 224 198	0.47 0.20 0.65 0.05 1 0.34	2.3 0.4 0.1 1.3 0.9 1.9	0.02 0.05 0.01	3.7 4.1 0.0 4.3 7.1 10.2	0.23 0.14 0.15 0 0.2 0.24	0.0 0.0 0.0 0.35	328 370 296 280 286 260	266 207 206 210 207 175	538 486 494 522 519 477	7.4 7.2 7.1 7.4 6.75 7.7	21.5 21.5 24 21.5 23.5 23
352-AK PUMPS 5, 11	10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	46 44 67 14 20	129 157 156 98 226 273	105 166 136 58 56 56	160 242 260 110 114 124	7.0 5.8 6.3 5.2 4	119 74 76 110 214 204	65 89 88 32 44 47	688 923 920 448 688 700	0.12 0.80 0.048 0.1 0.34 0.39	1.8 0.0 8.8 2.7 2.6 6.6	0.05	1.1 3.2 2.3 0 8.3 13	0.54 0.14 0.12 0.13 0 0.76	0.0 0.0 0.3 0.2 0.1	750 1075 950 485 794 912	657 1015 885 390 620 745	1262 1667 1622 876 1263 1346	6.0 6.8 7.5 7.5 7.05 7.3	25 22 22.5 25 23.5 22
353-АЕ РИМР 1	10/31/68 1/30/69 2/6/69 5/1/69 8/12/69 11/13/69 1/20/70	44 25 47 56 87 43 50	46 29 29 34 39 43 36	34 25 24 26 22 36 24	48 38 44 40 70 51 38	1.8 1.4 1.3 1.7 1.9 1.7 1.2	72 87 86 83 86 82 84	22 17 16 18 59 33 19	195 123 118 132 155 390 123	0.05 0.46 0.72 0.18 0.1 0.9 0.31	0.7 0.2 0.3 1.5 0.96 0.64 1.3	0.01 0.01 0.00	4.8 2.7 5.6 4 0.7 4.3 8	0.00 0.12 0.28 0.24 0.1 0.3 0.3	0.0 0.0 0.0 1.4	254 173 171 194 188 254 190	196 104 101 125 118 187 120	431 305 328 356 478 643 342	7.4 6.8 7.3 7.5 7.45 7.5 7.6	26 20.5 22 22 22 22 22 22 22 22
356 KAHUKU MILL	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	3.0 2.5 1.5 2 2.5 1 2.5	78 76 71 70 69 90	50 61 75 64 51 55 41	.98 96 84 92 96 100 82	3.4 4.0 3.4 4 3.7 4 3.8	26 25 27 22 22 24 24	1.0 0.0 1.0 1 0.5 11 3	455 452 428 425 408 418 407	0.16 0.04 0.24 0.023 0.03 0.1 0.18	5.4 1.2 0.0 4.5 2.6 1.08 4.6	0.02 0.02 0.01	0.0 1.1 0.0 3.2 0.4 0	0.02 0.00 0.02 0 0.17 0.04	0.6 0.0 0.0 0.4 0.1	400 440 500 442 384 400 394	379 420 476 424 368 380 374	708 706 682 675 648 672 646	8.0 6.9 6.5 8.2 7.9 8.25 7.6	26 26 21 23 25 22.5 22
357 PUMP 8	2/6/69 5/1/69 8/2/69 11/13/69 1/20/70	9.5 45 59 32 42	85 25 80 83 107	67 277 361 71 42	65 165 66 70 58	2.5 8.0 6.8 2.7 2.8	46 63 63 70 55	30 85 74 30 31	363 1030 1185 380 361	0.50 0.016 0.44 0.38 0.22	0.1 9.2 6.5 1.4 3.2	0.02	0.0 1.2 2.2 2 2.6	0.00 0.07 0 0.1 0.17	0.0 0.5 0.2	490 1200 1680 500 442	452 1150 1630 440 395	650 1677 1804 708 677	7.3 7.5 7.6 7.5	25 22 22 22.5 23
358 LAIE	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	40 42 47 42 58 30 41	32 34 27 30 33 34 40	28 21 19 26 29 26 22	46 47 40 42 40 41 40	2.6 3.1 2.4 3.2 3.1 3	68 68 72 70 72 70 72 70 68	19 17 16 18 28 11 19	155 148 123 140 141 150 150	0.58 0.09 0.33 0.084 0.06 0.25 0.22	1.6 0.2 0.2 1.5 0.9 0.62 1.6	0.01 0.02 0.00	1.2 2.1 1.6 1.2 0 1.7 2.8	0.15 0.02 0.16 0.09 0 0.13 0.13	1.1 0.3 0.0	194 170 145 184 200 194 190	138 116 87 125 143 136 135	361 348 312 339 369 333 354	7.9 7.4 6.7 7.7 7.7 7.85 7.7	21.5 21.5 22 21.5 22 21.8 22

SAMPLE DEPTH	DATE OF COLLECTION	<u>SiO2</u>	Ca	Mg	Na	<u>K</u> .	HCO3	SO4 PPM	C1	F	Br	I	NO ₃	POs	В	TOTAL HARDNESS	NON-CARB. HARDNESS	CALC. SOLIDS	p₩	T,°C
361-AB PUMP 12	10/31/68 2/6/69 5/1/69 8/12/69 11/13/69 1/20/70	49 46 47 67 35 47	21 18 18 21 20 25	15 13 12 15 17 11	35 38 56 33 31 38	1.5 1.0 1.3 1.9 1.2 1.2 1	83 98 97 92 98 10	13 12 12 19 19 13	82 53 51 62 54 60	0.11 0.27 0.038 0.07 0.58 0.28	0.0 0.7 0.57 0.46 0.24 0.88	0.02	0.0 4.0 2.8 3.7 3.8 3.2	0.14 0.25 0.17 0.27 0.24	0.4 0.0 0.9 0.35	116 99 94 112 120 106	46 18 14 39 40 18	258 234 249 269 23 0 254	7.6 7.5 7.5 7.6 7.7 7.5	22.5 22.5 22.5 22 22.5 22 22.5 23
362-1 PUMP 6	2/6/69 5/1/69 8/12/69 11/13/69 1/20/70	61 96 40 47	14 14 16 15 19	13 11 15 16 12	51 40 39 45 41	1.0 1 1.2 1.1 1.2 1.6 1	.06 86 86 88 .02	16 12 19 29 13	58 57 61 56	0.90 0.056 0.07 0.64 0.4	0.5 0.7 0.56 0.32 0.62	0.01	5.0 3.4 4.2 4.8 4.4	0.44 0.24 0.16 0.3 0.4	0.0 0.5 0.3	88 80 106 102 97	2 9 31 31 13	273 243 294 265 246	7.4 7.4 7.6 7.5	25 22.5 23.6 23 23
362-AF PUMP 3	10/31/68 2/6/69 5/1/69 8/12/69 11/13/69 1/20/70	54 13 56 72 36 25	40 29 30 34 41 22	24 26 26 35 15	42 25 43 42 43 29	1.9 3.5 1.7 1.5 1.8 3.2	86 66 88 90 86 62	19 12 18 29 40 13	140 73 124 128 166 86	0.11 0.74 0.035 0.11 0.52 0.2	0.2 0.5 1.25 1.2 0.82 0.86	0.02	1.1 0.6 3.4 3.2 4.2 1.2	0.22 0.10 0.19 0.04 0.15 0.29	0.0 0.0 0.6	200 112 180 190 246 118	128 58 110 118 226 66	364 200 347 383 411 227	7.3 8.3 7.4 7.4 7.6 7.4	23 23 22 24 23.5 23
363 PUMP 7	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	40 42 45 42 59 31 42	55 52 48 51 53 48 60	47 35 39 35 33 37 29	50 51 44 53 45 48 48	2.8 2.9 2.5 3.3 4.1 3 3.2	63 60 65 65 64 64 66	24 23 24 23 23 23 22 21	242 230 208 208 200 214 205	0.60 0.02 0.28 0.02 0.05 0.2 0.2	2.4 0.9 0.1 2.3 1 0.86 2.2	0.01 0.01 0.00	0.4 1.1 1.4 0.9 1.8 1.4 2.8	0.11 0.00 0.09 0.05 0 0.1 0.13	0.5 0.1 0.0	330 272 282 270 266 270 270	279 225 227 217 220 218 215	496 468 444 450 452 438 442	7.8 7.5 7.2 7.5 7.7 7.8 7.7	25 25 22 22 22 22 22.5 22
365 LAIE	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	46 50 43 52 74 35 48	17 16 17 16 17 20	14 13 13 14 15 14 25	30 32 29 30 26 31 27	1.1 1.3 1.7 1.5 1.2 1.2	93 91 91 91 92 90 90	13 13 13 12 12 12 11 13	52 50 58 49 54 51	1.5 0.95 1.3 0.048 0.07 0.15 0.18	0.2 0.0 0.1 0.57 0.26 0.29 0.58	0.01 0.02 0.02	2.0 3.4 3.0 2.3 1.4 3.8 3.8	0.27 0.16 0.28 0.24 0.01 0.24 0.24	0.4 0.5 0.1 0.1	100 94 95 98 100 98 110	24 19 21 23 26 24 38	223 225 224 224 241 212 212 224	7.7 7.5 7.0 7.5 7.5 7.7 7.5	23 22.5 22 22 22.2 22.2 22
367 LAIE	9/4/68 10/31/68 1/30/69 5/1/69 8/12/69 11/13/69 1/20/70	46 50 44 50 72 35 48	17 18 16 17 16 25 20	17 11 14 12 11 7.2 12	28 31 28 30 30 30 27	1.2 1.3 1.2 1.2 1 1.1 1.1	96 88 92 92 92 92 90 92	13 13 13 12 13 11 12	50 51 58 46 48 54 49	0.76 0.09 0.80 0.07 0.06 0.23 0.17	0.2 0.0 0.9 0.7 0.34 0.26 0.6	0.01 0.02 0.02	2.3 2.8 3.2 2.8 3 3 4.8	0.27 0.12 0.24 0.22 0.01 0.24 0.24	1.0 0.2 0.3 0.2 0.1	112 90 98 92 85 92 100	34 18 23 17 10 18 23	226 222 225 217 671 211 220	7.6 7.4 6.8 7.6 7.6 7.7 7.5	22 22 22 22 22 22 22 22 22
373 PUMP 25	2/6/69 5/1/69 8/12/69 11/13/69 1/20/70	47 56 84 36 51	12 12 13 11 19	13 13 11 13 7.9	32 35 31 33 31	I.0 1 1 0.85 9 1.1	02 92 88 92 92 92	10 9 15 22 11	48 50 38 49 40	0.38 0.038 0.07 0.28 0.3	0.7 0.47 0.34 0.2 0.42	0.00	3.0 1.2 1.8 0.8 3.1	0.24 0.19 0.13 0.3 0.29	0.0 0.8	85 84 78 80 80	1 9 6 5	217 224 238 220 210	7.5 7.5 7.6 7.7 7.3	24 22.5 22.5 22.5 22.5 23

APPENDIX A. CHEMICAL ANALYSES OF KAHUKU WATER SAMPLES (CONT.).

APPENDIX B. CHEMICAL ANALYSES OF PIONEER MILL WATER SAMPLES.

SAMPLE	DEPTH	DATE OF COLLECTION	SiO ₂	Ca	Mg	Na	ĸ	HCO3	SO4 PPM	C1	F	Br	I	NÖ3	PO ₄	<u></u> B	TOTAL HARDNESS	NON-CARB. HARDNESS	CALC. SOLIDS	рН Т,°С
PIONEER	MILL C D F L N O P R	2/13/70	60 55 50 45 40 45 45 60 55	140 130 45 70 30 70 90 85 40	109 111 56 70 62 30 62 67 29 17	170 430 550 150 130 170 150 180 120	15 25 20 20 10 5 6 5 15 6	246 194 172 118 150 76 120 120 130 64	120 190 100 100 60 30 40 70 50 26	600 980 850 975 410 280 480 460 400 260	0.20 0.30 0.40 0.20 0.15 0.65 0.35 0.15 1.25 0.9	11 12 9 8 5 2 2.5 4 6.0 5.0		15 22 13 4.3 14 6.6 7.7 5.9 11 7.7	0.15 0.2 0.5 0.4 0.20 0.30 0.15 0.10 0.05 0.80	1.5 0.5 4.0 1.0 2.0 1.5	800 830 400 430 200 380 500 330 158	597 622 289 304 307 136 332 402 225 117	1487 2150 1791 1941 977 635 1006 1017 969 610	7.2 7.2 7.1 7.4 7.4 7.8 7.8 7.5 7.8 7.8
9-A 9-A	25' 25'	4/23/68 7/1/68 1/22/69 4/9/69 8/11/69 10/31/69	48 90 51 52 47 46	120 30 116 153 135 135	66 158 100 136 105 98	225 795 240 410 340 396	19 16 10 17 6.8 9.4	224 324 278 240 232 232	113 160 85 107 100 65	582 993 630 1040 853 909	0.30 0.36 0.17 0.13 0.3 0.9	5.4 13 7.2 10 5.6 2.1	0.25 0.11 0.04	14 0.8 16 15 14 13	0.10 340 0.13 0.14 0.1 0.62	0.0 0.0 2.3 0.0 0.2 0.1	570 725 700 940 770 742	388 460 473 744 565 550	1333 2756 1395 2058 1722 1788	7.2 6.3 6.8 25 7.3 29 7.7 7.3 28
HONOKOW INTAKE	AI		15	6	3.7	7.0	2.0	42	1.0	10	0.05	0		1.2	0.03		30	0	118	7.3
HONOKOW TUNNEL 20-A	AI INTAKE	4/24/68 7/28/68 2/19/68 5/1/69 8/11/69 10/31/69	10 26 26 17 34 21	3.1 5.1 5.1 8 6	0 0.0 5 6.4 0 4.1 0 1.8 2.9 14	7.0 6.0 7.0 5.0 4 5.5	0.8 0.9 0.7 0.4 0.7 0.7	14 32 30 22 30 35	2.0 0.0 2.0 1.0 5 30	7.0 15 13 5.0 7 15	0.07 0.40 0.17 0.02 0.05 0.3	0.0 0.0 2.2 0.0 0.1 0	0.01 0.00 0.00	0.8 2.2 0.0 0.0 0.9 1.4	0.05 0.10 0.04 0.02 0 0.17	0.0 0.0 0.6	6 40 32 20 32 72	0 14 7 0 7 44	38 79 76 47 78 121	7.4 7.8 7.2 7.3 7.45 7.5 16
HONOKOW 2-F	AI 65'	4/23/68 7/2/68 1/22/69 11/9/69	51 52 52 22	27 38 42 24	35 53 58 34	280 430 335 240	19 19 14 9.5	105 103 130 92	86 120 90 64	473 780 625 390	0.40 1.0 0.37 0.14	3.7 8.6 8.4 6.0	0.11 0.04 0.04	11 11 9.2 3.2	0.52 0.44 0.52 3.3	0.0 0.0 2.3 0.0	212 310 345 198	125 229 237 124	1038 1563 1301 841	7.5 7.9 6.7 22 8.1 23
36-R	320'	4/22/68 7/2/68 1/22/69 4/9/69 8/11/69 10/31/69	55 49 92 46 58 51	8.0 19 7.0 6.0 13 24	0 6.9 44 0 7.4 0 8.5 15 57	83 250 61 67 158 170	5.1 12 3.0 3.5 9.7 26	71 77 61 60 66 83	23 66 14 15 55 34	106 455 85 90 235 400	0.20 0.76 0.27 0.08 0.15 1	1.0 4.4 1.2 1.2 2 2.3	0.08 0.02 0.03	8.8 7.6 7.2 7.4 6.5 9.1	0.70 0.50 0.75 0.71 0.44 0.6	0.0 1.0 3.2 0.0	49 230 48 50 92 296	0 165 0 1 40 228	333 947 312 275 586 793	7.4 8.1 7.1 20 7.9 20 7.45 7.7 20
kaanapa 3-D	LI 20'	4/23/68 7/2/68 1/22/69 4/9/69 8/11/69 10/31/69	39 56 44 52 61 50	33 43 18 36 40 59	39 59 26 66 61 13	265 465 195 385 475 440	23 20 8.8 17 24 12	124 157 106 128 150 406	130 124 80 107 100 95	430 840 300 660 808 880	0.30 1.00 0.32 0.20 0.29 0.56	3.7 8.8 4.6 8.8 5.4 3.8	0.11 0.03 0.04	15 13 10 16 13 0	1.10 0.48 0.38 0.51 0.06 0.32	0.5 0.0 2.8 0.0 	244 350 150 362 350 666	141 221 65 257 228 335	1040 1708 742 14.2 1661 1867	7.4 7.1 7.0 21.5 7.5 22 7.65 7.4 22.5
КАНОМА 5-М	320'	1 <u>/22</u> /69 4/9/69 8/11/69 10/31/69	36 40 44 46	14 12 16 28	15 10 15 37	63 82 110 220	3.7 4.2 5.9 10	56 58 74 144	17 20 47 34	115 125 177 400	0.19 0.66 0.08 0.82	1.5 1.9 1.3 1.7	0.03	4.0 4.8 3.6 3.9	0.29 0.50 0.23 0.24	2.5 5.4 	95 72 100 224	51 24 41 104	300 335 457 853	7.1 22 7.8 22.5 7.5 7.3 25
LAHAINA 7-C	MILL 30'	4/23/68 7/2/68 1/22/69 4/9/69 8/11/69 10/31/69	57 56 34 56 52	90 120 25 95 86 115	85 124 21 137 167 117	435 700 62 640 660 552	26 24 4.0 26 37 10	193 193 129 194 194 192	134 178 25 122 100 89	890 1440 102 1325 1418 1280	0.30 0.56 0.09 0.11 0.2 1.15	7.6 9.0 1.6 11 10 3.1	0.20 0.08 0.30	11 0.0 2.0 17 15.2 8.3	0.22 0.74 0.04 0.20 0 0.36	0.0 0.0 2.5 1.0 	575 810 150 800 900 770	416 652 43 641 745 610	1831 2746 343 2531 2645 2323	7.2 7.2 6.6 23 7.2 24.5 7.3 24.5
OLOWALU 10-N	SHAFT	4/22/68 7/1/68 1/22/69 4/9/69 8/11/69 10/31/69	53 46 54 54 66 52	30 45 29 37 61 135	18 29 24 31 49 84	93 146 91 127 148 228	4.5 5.7 3.5 4.8 7.9 8.8	198 172 202 220 160 77	30 41 28 38 66 21	112 275 110 191 338 780	0.80 1.6 0.25 0.17 0.23 0.54	1.0 2.7 1.7 2.7 2.5 2.6	0.40 0.04 0.03	8.5 5.6 10 12 8.1 3.8	0.02 0.06 0.17 0.20 0	0.0 1.6 2.5 7.3	149 230 170 220 354 682	0 91 6 40 223 620	449 684 454 613 826 1354	7.0 8.4 6.9 23 7.3 25 7.3 7.2 21
11-0	15'	4/23/68 7/1/68 1/22/69 4/9/69 8/11/69 10/31/69	32 53 57 45 58 47	15 74 69 49 51 67	6.5 59 48 34 35 24	17 118 115 92 93 156	2.3 7.2 5.8 4.0 5 3	75 222 196 150 140 137	11 45 42 35 57 29	22 305 270 208 223 303	0.15 1.1 0.13 0.14 0.13 0.9	0.1 3.0 3.8 2.7 1.6 1.2	0.06 0.01 0.02	2.2 20 16 14 10.4 10.0	0.01 0.02 0.10 0.06 0 0.05	0.0 0.0 1.9 0.9	64 430 370 263 270 364	3 246 209 139 157 152	143 795 726 559 603 709	7.8 7.3 6.4 25.5 7.2 25 7.2 7.2 25.5
UKUMEHAI 12-P	ME SHAF	T 7/1/68 1/22/69 4/9/69 8/11/69 10/31/69	66 71 71 58 59	38 68 60 53	23 24 21 17 15	210 205 240 198 200	19 16 17 36 10	50 111 124 132 147	42 40 47 66 21	420 400 432 373 354	2.6 0.26 0.08 0.12 1.2	4.0 5.6 5.1 3 0.94	0.12 0.04	9.0 14 13 10 5.5	0.02 0.03 0.06 0 0	0.0 3.0 2.4	190 270 256 220 194	149 178 155 112 74	859 902 978 886 792	9.0 7.3 33 7.7 34 7.5 7.5 33
WAHIKUL 6-L	25'	4/22/68 7/1/68 1/22/69 4/9/69 8/11/69 10/31/69	32 46 45 46 31 46	29 60 61 50 7 47	22 56 53 56 4.5 114	97 187 190 212 7.5 99	6.9 8.0 8.2 1 4.1	114 154 148 142 38 142	26 56 51 59 7 25	186 440 400 435 11 459	0.06 1.1 0.12 0.11 0.07 0.76	1.3 4.8 5.2 6.0 0.13 1.2	0.01 0.02 0.02	3.6 16 20 13 0.4 6.3	0.00 0.04 0.22 0.22 0 0.05	0.0 0.0 2.5 0.0 	164 420 380 356 36 580	70 295 249 239 5 470	460 961 909 956 89 872	6.6 7.4 6.7 25 7.2 25.5 7.5 7.2 24.5

APPENDIX C.	CHEMICAL AN	NALYSES OF	HC&S AND	WAILUKU	WATER	SAMPLES.
-------------	-------------	------------	----------	---------	-------	----------

SAMPLE DEPTH	DATE OF COLLECTION	<u>SiO2</u>	Ca	Mg	Na	ĸ	HCO3	SO4 PPM	C1	F	Br	I	NO ₃	PO ₄ B	TOTAL HARDNESS	NON-CARB. HARDNESS	CALC. SOLIDS	рН	T,°C
CAMP 2 1201 2 0	6/17/68 6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	55 60 51 71 39 63 56	22 24 13 20 20 22 25	40 44 22 41 35 50 46	260 255 152 245 220 270 250	17 18 2.8 16 8.2 10 14	175 176 107 180 186 180 140	63 58 33 49 59 67 36	428 430 232 385 333 450 448	1.3 2.0 0.76 0.72 0.42 1.5 2.7	5.7 5.6 2.2 2.7 1.8 1.5 3.3	0.01 0.02 0.06	18 19 14 18 17 14 14	0.60 1.7 0.52 0.2 0.42 0.2 0.74 0.0 0.59 1.4 0.56 0.1 0.68	220 239 122 220 194 260 250	75 43 35 72 42 113 137	999 1003 576 938 827 1039 964	6.8 6.8 7.1 7.4 7.3 7.1 7.2	23 23 22 23 23 23 22 22 22
HAIKU DITCH 9 180'	6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	58 73 52 38 59 59	17 16 21 11 18 22	31 32 30 31 34 36	220 188 220 220 208 170	18 13 17 10 6 15	196 191 204 200 204 150	47 37 44 59 18 33	318 260 300 288 340 287	1.08 0.64 1.3 0.37 1.1 1.6	4.8 2.8 2.7 1.9 1 2.8	0.01	18 18 17 16 13 13	0.30 1.3 0.28 2.3 0.33 0.0 0.16 0.24 0.1 0.36	170 172 176 154 186 202	0 15 9 0 19 80	830 737 805 774 800 714	6.9 7.4 7.5 7.5 7.3 7.3	23 23.5 23.2 23.2 23 23
IAO STREAM	4/18/68 6/19/68 1/21/69 4/7/69 8/8/69 10/29/69 1/12/70	19 18 23 12 11 23 19	5.5 7.0 8.0 4.0 5 8	2.0 2.6 6.1 1.7 4.3 6.2 6.8	5.0 6.6 7.5 4.7 6.3 7 4.5	0.8 0.7 0.4 0.3 0.4 2 0.4	27 28 40 18 30 26 45	5.4 10 7.0 2.0 8 15 5	4.1 6.0 7.0 5.0 6.9 12 7	7 0.08 0 0.20 0 0.15 0 0.03 5 0.05 0.25 0.18	0.0 0.1 0.1 0.14 0.12 0.1	0.03 0.01 0.02	0.0 0.0 2.7 0.0 1.5 0.6	0.00 0.0 0.20 1.5 0.03 2.1 0.04 0.0 0.00 0.7 0.05 0.13	22 28 45 17 30 38 48	0 5 2 6 17 11	56 67 81 41 57 85 73	6.6 6.6 7.3 7.6 7.4 7.5	20 21 16 16.5 19.5 20 19
IAO TUNNEL	6/19/68 1/21/69 4/7/69 8/8/69 10/29/69 1/12/70	33 37 36 32 38 31	8.0 9.0 9.0 7 8 9	2.9 2.9 4.3 3.5 6.8 4.3	10 10 10 11 7.5 6	2.2 1.4 1.4 2.1 1.4 1.4	42 46 48 40 40	3.6 4.0 3.0 4.5 13 4	11 10 12 10 15 12	0.24 0.20 0.06 0.07 0.36 0.25	1.2 0.2 0.6 0.15 0.18 0.19	0.01 0.03	0.0 0.1 3.8 0.8 0.8 0.8	0.30 0.9 0.16 1.8 0.16 0.0 0.00 0.7 0.09 0.78	32 37 40 32 48 40	0 2 0 15 8	94 100 103 96 111 90	7.2 7.1 8.2 7.9 8.0 7.9	19 20 20 20 20 20
KAHEKA 550' 18	6/17/68 1/20/69 4/8/69 8/7/79 10/30/69 1/13/70	48 57 66 33 57 53	38 11 13 16 24 9	46 10 18 19 35 11	425 71 93 130 150 60	22 4.9 6.6 4.6 7.4 4.3	84 76 106 106 100 70	112 25 33 53 24 20	750 105 119 183 300 76	0.84 0.48 0.30 0.28 1.1 0.98	9.6 1.4 1.3 1.1 1 0.72	0.02	10 5.8 15 14 14 14 8.6	0.68 2.4 0.42 2.3 0.99 0.0 0.73 0.4 0.56 0.1 1.42	286 70 106 118 204 66	215 6 19 31 122 11	1506 331 418 508 662 280	7.4 7.8 7.7 7.2 7.5 7.7	22 21.5 22 21.3 21.5 21
KAPUNA E. MENDEZ DOMESTIC WELL	4/19/68 6/19/68 1/21/69 4/7/69	16 28 36 13	3.0 11 13 13	1.1 6.8 7.1 9.1	12 32 28 34	1.7 2.7 2.2 2.6	20 104 106 118	5.0 9.3 16 13	13 22 17 20	0.10 0.60 0.26 0.14	0.1 0.9 0.4 0.3	0.01 0.01 0.03	0.2 1.5 1.4 2.7	0.05 0.0 0.20 1.3 0.13 1.9 0.07 0.0	12 56 61 70	0 0 0	62 167 175 166	6.2 6.8 7.2 7.9	23.5 24 23 23.5
KIHEI 20' 1	6/18/68 1/20/69 4/8/69 8/7/69 1/13/70	45 23 48 29 50	36 4.0 21 40 46	39 9.7 37 45 52	343 18 260 384 300	20 3.1 18 10 20	452 45 286 440 360	75 6.0 50 72 44	460 20 340 483 455	2.8 0.39 0.90 0.62 3.3	6.2 0.3 2.6 3.4 4.4	0.05	21 2.6 16 18 15	0.16 1.8 0.28 0.3 0.22 0.0 0.0 0.9 0.49	250 30 204 284 328	0 0 0 34	1273 105 935 1303 1167	7.0 8.0 8.1 7.5 7.5	25 22 24 24.5 24.3
K1HEI 300' 3	6/18/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	52 62 66 33 59 54	20 19 20 22 21 24	37 34 41 34 41 43	260 208 250 260 260 205	20 15 20 21 8.6 19	305 300 312 316 320 300	58 42 50 64 55 34	335 262 315 328 340 273	1.7 0.66 0.90 0.62 2.2 2.8	4.6 2.2 2.6 1.9 1.1 2.7	0.01	23 16 17 17 14 13	0.46 1.4 0.24 0.7 0.22 0.1 0.64 1.8 0.12 0.2 0.26	203 188 220 194 220 230	0 0 0 0 0	963 810 937 940 960 819	7.2 7.7 7.7 7.7 7.5 7.5	23.5 24 24 23.5 23.5 23
KUAU 120' 12	6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	44 42 29 61 54	10 2.0 7.0 9 10 14	11 3.6 8.4 13 28 15	175 55 86 180 160 166	8.5 3.4 6.4 52 13 8	122 88 134 130 122 150	44 19 7.0 57 50 29	218 36 82 223 235 200	1,4 0.62 0.26 0.32 0.9 1.2	3.5 0.5 1.3 1.6 0.74 2.8	0.01 0.02	20 1.4 2.7 16 14 11	0.26 1.2 0.45 1.9 0.45 0.0 0.95 0.4 0.95 0.1 1.2	70 20 52 75 140 96	0 0 0 40 0	598 211 309 599 633 576	6.5 7.2 7.2 7.2 7.2 7.2	29.5 23 22.5 22 22 21.5
LOWER PAIA 16 30'	6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	55 62 63 33 61 51	31 25 27 24 37 27	69 42 39 30 76 40	520 228 240 230 400 185	28 14 15 8.7 19 14	176 188 182 196 170 140	126 55 48 59 71 37	938 348 340 338 800 342	0.8 0.39 0.27 0.42 1.6 1.3	12 4.0 3.5 2.1 2.6 2.2	0.03	18 16 17 16 14 12	0.30 1.2 0.31 1.9 0.40 0.0 0.26 0.4 0.71 0.2 0.4	360 235 230 180 5 406 230	217 81 79 23 268 117	1886 889 883 839 1567 780	6.7 6.7 7.1 6.5 7.2 7.2	24 24.3 25 24.3 23 25
MOKUHAU WELL	6/19/68 1/21/69 4/7/69 8/8/69 10/29/69 1/12/70	47 45 61 32 34 31	18 18 19 18 19 23	11 15 16 13 15 10	26 28 25 26 23 24	2.2 2.0 2.3 22 23	86 97 94 92 108 75	20 17 21 22 14 21	40 50 38 39 55 45	0.61 0.50 0.11 0.12 0.64 0.32	0.6 1.0 0.5 0.41 0.23 0.5	0.01	5.8 4.0 7.0 4.6 3.2 4.6	0.36 1.5 0.20 2.5 0.22 0.0 0.03 0.9 0.17 0.52	90 106 112 99 112 98	20 27 35 23 21 37	215 231 236 203 259 174	6.7 6.7 7.3 7.5 7.5 7.5	22 22 22 22.2 23 21.8
PUUNENE 5 60 '	4/18/68 6/17/68 1/20/68 4/8/69 8/7/69 10/30/69 1/13/70	63 58 74 71 33 32 59	44 43 35 46 26 42 58	40 25 58 55 50 61 62	375 405 390 385 375 300 275	25 22 22 23 26 17 19	412 421 598 524 480 480 390	20 81 62 61 64 38 44	325 508 478 465 458 450 477	1.0 2.5 0.70 0.60 0.45 1.9 2.7	5.4 7.2 5.0 3.5 3 1.6 4.6	0.30 0.05 0.04	1.8 32 12 16 18 14 14	0.10 0.0 0.16 0.9 0.22 1.9 0.22 0.0 0.02 0.7 0.17 0.2 0.62	278 262 375 340 268 5 354 398	0 0 0 0 0 80	1303 1392 1454 1384 1291 1215 1208	6.7 6.9 7.2 7.3 7.2 7.2 7.2 7.3	26 26 26 26 26 26 26
PUUNENE 6 140'	6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	60 72 71 38 59 56	18 17 18 20 15 28	27 29 33 33 70 34	350 242 335 300 158 230	21 14 20 19 12 14	234 235 248 200 240 180	69 47 57 68 24 38	490 338 435 468 305 376	1.7 0.74 0.60 0.47 1.25 2.2	6.8 3.8 3.5 2.9 1.0 4.6	0.01	23 15 17 16 4.4 13	0.30 0.4 0.42 1.0 0.33 0.0 0.15 0.5 0.4 0.1 0.74	158 161 180 182 326 208	0 0 22 130 62	1182 896 1112 1065 768 886	6.9 7.2 7.5 7.3 7.3 7.4	23.5 23 24 23.5 23.5 23.5 23.5
SPRECKLESVILLE 4	6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	62 72 7.0 39 66	19 16 3.0 19 24	28 35 2.1 39 40	325 250 5.0 325 270	19 15 0.7 9.7 15 -NO SA	172 172 12 176 176 MPLE	69 52 3.0 74 72	485 392 8. 488 430	1.2 0.66 5 0.10 0.45 1.3	6.8 6.2 0.1 3 1.5	0.01 0.03	20 19 4.8 18 16	0.50 1.1 0.45 0.8 0.06. 0.0 0.34 0.9 0.4 0.3	158 182 16 208 226	22 43 6 64 80	1122 944 40 1104 1024	5.9 7.0 7.2 7.3 7.4	24 22.5 20 23 23

								·····												
SAMPLE DEPTH	DATE OF COLLECTION	SiO2	Ca	Mg	Na	ĸ	HCO3	SO ₄ PPM	C1	F	Br	1	NO3	PO ₄	<u> </u>	TOTAL HARDNESS	NON-CARB. HARDNESS	CALC. SOLIDS	pH	T,°C
WAIEHU GOLF. CLUB POND	4/18/68 6/19/70 1/21/69 4/7/69 8/7/69 10/29/69 1/12/70	42 37 46 23 25 45 31	30 23 11 32 20 25 28	11 9.4 33 3.4 16 10 14	90 93 95 93 110 100 93	3.8 3.5 3.0 3.1 3.7 29 3	306 278 332 286 270 270 300	23 11 22 15 26 23 15	30 30 38 52 50 60 46	0.80 0.94 0.18 1.1 0.56 5.6 1.3	0.4 0.6 0.7 0.7 0.6 0.36 1.6	0.2 0.02 0.02	11 14 15 17 16 19 5.8	0.60 0.60 0.45 0.53 0.26 0.24 0.21	0.0 1.6 3.0 0.0 1.2 0.1	127 96 162 94 112 84 126	0 0 0 0 0 0 0 0	394 362 421 382 403 450 387	7.6 7.5 7.4 7.9 8.7 8.9 8.8	26 26 21 23.5 33.3 29 22
WAIHEE 5' DAIRY #2	4/18/68 6/19/68 4/7/69 8/7/69 10/29/69 1/12/70	27 26 25 20 25 33	25 192 67 18 36 24	26 0.6 31 42 66 12	495 540 450 430 250 480	35 38 24 20 27 36	1070 1620 1400 1100 930 1330	111 120 54 64 69 36	188 208 95 78 98 20	1.8 0.86 0.41 0.5 0.64 1.3	2.5 5.8 2.0 1.3 5 7.8	0.40	73 7.2 3.8 0.8 6.3 1.8	0.05 0.40 0.30 0.00 1.41 0.9	0.0 1.2 0.0 0.9 0.6	166 480 295 216 360 450	0 0 0 0 0	1512 1938 1443 788 1043 1303	7.1 7.4 7.4 7.2 7.7	25 26.5 24 25 26 26 24
WAIHEE 5' DAIRY # 3	4/18/68 6/19/68 4/7/69 8/7/69 10/29/69	6.5 20 34 20	20 58 95 20	12 33 76 53	50 154 170 120	5.8 9.2 20 9.8 NO SA	194 565 1155 500 MPLE	6.0 49 16 27	36 100 90 90	0.30 1.0 0.16 0.32	0.6 8.8 7.4 4.4	0.20	0.4 0.0 4.2 0.3	0.05 0.40 4.1 0.0	0.0 1.2 0.0 0.9	100 280 550 264		233 713 1086 592	7.2 7.3 7.3 7.4	24 24.5 24 24.5 24
WAIKAPU 7 125'	4/18/68 6/17/68 1/20/69 4/8/69 8/7/69 10/30/69 1/13/70	52 34 30 59 30 54 47	29 31 18 30 32 36 32	27 30 13 39 41 41 39	265 295 55 280 245 290 200	18 15 3.0 14 7.7 10 7	324 337 124 352 356 368 280	86 60 17 51 64 27 35	304 380 70 330 300 370 273	0.80 0.98 0.2 0.52 0.23 1.5 2.2	2.3 5.0 0.8 2.7 2.7 1.2 3.7	0.30 0.01 0.02	1.6 22 6.6 17 17 14 13	0.20 0.44 0.13 0.33 0.15 0.28 0.20	0.0 2.1 1.6 0.0 0.9 0.1	182 200 97 234 249 266 242	0 0 0 0 0 0 11	946 1040 276 1003 916 1026 790	6.7 6.7 7.1 7.4 7.3 7.3 7.4	24 23.5 23.5 24 23.5 23 23 23

APPENDIX C. CHEMICAL ANALYSES OF HC&S AND WAILUKU WATER SAMPLES (CONT.).

, ,