

A Social Network Perspective on the Success of Open Source Software:
the Case of R Packages

Gianluca Zanella, Charles Z. Liu, Kim-Kwang Raymond Choo

The University of Texas at San Antonio

gianluca.zanella@utsa.edu, charles.liu@utsa.edu, raymond.choo@utsa.edu

Abstract

In this paper, we seek to identify the factors that

influence the impact of open source software (OSS) on

users community through the analysis of the evolution

of the OSS network. Based on longitudinal data

collected from the comprehensive R archive network

(CRAN), we empirically examine how the network of

R packages evolves over time and exert its influence

on the scientific community. We find that critical

network features derived from CRAN, such as page-

rank, closeness, and betweenness centralities, play a

significant role in determining the impact of each

package on the research and publication activities in

the scientific community. Furthermore, the

performance of R packages can be explained as a flow

of information from the core to the periphery that

exhibits strong spillover effects.

1. Introduction

“If I have seen further than others, it is by standing

upon the shoulders of giants” (Isaac Newton). This is

probably the best way to explain the crucial role of an

open source software (OSS) network on providing

support to the scientific community. OSS is a type of

computer software released under a license that grants

users the right to change, reuse, and distribute the

software to anyone for any purpose [1]. OSS facilitates

open collaboration that includes the contributions of

thousands of talented volunteers (e.g. programmers

and scientists) in making conceptual and practical

impacts in their communities, and not surprisingly

OSS has become more mainstream and commercially

viable in recent times [2]. Some popular OSS, such as

Linux, Python, and R, are developed, maintained, and

reused both within and outside of academic

institutions, through the contributions of individuals

from academia, non-profit organizations, commercial

organizations, and other professional entities. Many

authors, whose names are often forgotten or unnoticed,

spend hundreds of hours of their time to develop OSS

that supports and empowers the scientific community.

However, academic metrics do not include a

systematic way to quantify the value of such effort,

except for academic citations [3].

In the research community, very few researchers

have proposed initiatives to quantify OSS

contributions. The only exception is probably the open

source project Depsy.org, developed by Impact Story

[4]. Specifically, it tracks not only citations within

academic literature, but also alternative metrics such

as number of downloads, software reuse through

reverse dependencies, and contributors to the OSS.

Their dataset facilitates the creation of contributors

and dependencies networks that, in turn, allows one to

estimate or quantify the impact of the packages’

network features on the performance, namely number

of downloads and citations [5, 6]. Although datasets

like this have assisted researchers to obtain some

interesting results [5, 7], past research lacks the

longitudinal perspective to have causal relationship

between package attributes and performance (since

such a causal relationship may take a long time to

realize).

Despite the lack of approaches to credit scientists

and programmers for their efforts, the OSS ecosystem

has expands significantly, particularly in the last two

decades [7]. The introduction of technological artifacts

and software-based artifacts for knowledge sharing

and creation has been crucial for the OSS ecosystem

[8]. For example, the literature on free/libre open

source software (FLOSS) emphasizes the role of

knowledge exchange and collaboration in OSS

development [9, 10]. Online OSS free repository

facilitates collaboration and social interaction among

developers that, in turn, improve the effectiveness of

distributed teams [11]. Such repositories also record

and keep track of critical usage information beyond

software description, such as authorship, date of

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 471
URI: https://hdl.handle.net/10125/63797
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

publication, number of daily/monthly downloads,

version, dependencies, reverse dependencies, and

scientific publications. This, in turn, allows both the

authors and users to see the source of contribution and

the path of adoption. The approach used in past

research focusing on the OSS collaboration networks

is largely cross-sectional quantitative or qualitative

evolutionary. Hence, one can observe that there is a

lack of quantitative analysis on the evolution of OSS

collaborative networks over a period of time.

Leveraging the longitudinal data collected through

web scraping of the comprehensive R archive network

(CRAN), our analysis contributes to theory and

practice of OSS movements in three ways. First, we

identify the factors that have the most significant

contributions to the performance of R packages, prior

to establishing causal relationship between such

factors and the outcomes over an extensive period of

time during which the network grows. Second, our

longitudinal approach allows us to uncover how the

network structure changes over time and examine if

such dynamics can affect the package’s performance.

Finally, the longitudinal approach may reveal patterns

and characteristics of the network and its components

that are not identifiable through cross-sectional

analysis. A better understanding of the network

dynamics will contribute to the development of

alternative metrics that reveal the under-recognized

contribution of many scientists and programmers [3]

and provide better incentives to facilitate the

development efforts and consequently the growth of

the network. This is the contribution we seek to make

in this paper.

In this paper, we use data collected from CRAN on

R packages to generate 77 monthly snapshots in the

time window between October 2012 and February

2019. The data for each package includes the number

of monthly downloads, dependencies and reverse

dependencies, the eventual scientific paper that builds

on the package (if any), and the date of publication.

This allows us to derive a graphical representation of

the relationships among the various packages on

monthly basis. Such a dynamic network construction

provides a systematic way to identify the structural

features of the network, which are then used as the

predictors of each package’s performance. Through

our empirical analysis of this comprehensive panel

dataset, we find that network measures, such as

closeness and page rank, significantly influence the

number of downloads. Moreover, we show that the

number of downloads reflects the flow of information

from the core to the periphery with a salient spillover

effect. Finally, we demonstrate that the network of

packages evolve over time with a consistent pattern,

which applies to not only established entries but also

new entries that are recently added to the network.

The rest of the paper is organized as follows. The

next section provides background information on R

packages, followed by a brief review of the literature.

Then, we introduce our methodology and statistical

approach. Finally, we present and discuss the

implications of the results and conclude the paper, as

well as discussing the implications for both research

and practice.

2. Background

R is a free programming environment for statistical

computing released in 2000 under the general public

license GNU. It is available for various operating

systems, and is highly extensible through user-

submitted packages for specific functions or domains.

This makes R one of the fastest growing data analysis

software on the market. In particular, the

multiplatform orientation and the ease of extending the

functionalities through its lexical scoping rules have

fostered the growth of an ecosystem, in terms of

packages that interact with each other to provide

hundreds of thousands of functionalities. In addition,

the object-oriented nature of R language makes the

reuse of functionalities included in other packages

extremely easy. This generates a network of

dependencies that offers a broad range of statistical

techniques and graphs widely accepted in scientific

publications, and high-quality documentation, such as

LaTex-like output.

To manage the growing body of the releases of the

new packages and the updates of the existing ones, in

2012 the CRAN was developed for users to submit

their improvements to address reported bugs /

vulnerabilities and for systematically storing the most

recent releases of R code and documentation. Since

then, the number of packages through CRAN has

increased from 3,350 to 13,750 (as of February 2019).

CRAN checks each submission to ensure compliance,

verifies the consistency of the dependency network

and the compatibility of packages with the R version,

tracks the package’s version, checks the code for

malicious or antisocial activity, and then makes the

compiled package available publicly. Such activities

assure a set of high-quality standards is consistently

applied to the large number of packages offered to the

growing community of users across a wide range of

domains. Although these packages contribute to

scientific progress, there are no well-established

measures that evaluate such contributions and their

benefit. Hence the key objective of this research is to

Page 472

develop metrics that give credit to the “unsung heroes”

of scientific software for their contributions and

explore the different metrics that can be used to predict

the growth of the network.

3. Related Work

The creators of Depsy, a free website launched in

2015 that tracks the “value of software that powers (or

empowers?) science”, discuss the need to measure the

contribution of software for academic purposes. In

academia, publications are, probably, the most used

metric to measure one’s research achievements,

although publications may not be representative of all

contributions made by the researcher. For example,

they do not cover the efforts devoted to developing a

reusable software and its scientific benefits. Even

when researchers are highly encouraged to explicitly

cite the source of the software used in their research,

merely doing so does not fully address the issue. For

example, a software package may depend on multiple

other packages published earlier. Hence, only citing

the software used for the research does not give credit

to the chain of dependencies on these earlier packages.

For example, the partial least squares package,

“plspm” [12], depends on the functionalities offered

by five other packages, and in other cases the chain of

dependencies can be longer. Therefore, it is not

feasible to use citations as a measure of impact.

From an Altmetrics perspective, Zhao and Wei [6]

propose three influence indicators to evaluate the

impact of OSS, namely the number of downloads, the

number of academic citations, and the network

dependency factor. These three indicators reflect the

three aspects of software reuse. First, software

downloads reflect the usage, the visibility, and, to a

certain extent, the reputation of the software. Second,

the number of citations in scientific publications

measures the usefulness and the direct impact of

software on the research outcomes (although it is still

not a widely-established practice to cite the software

in scientific publications). Third, the network

dependency factor reflects the chain of reuse of a

software, thus measuring the indirect contributions to

a research. From a network structure perspective,

Korkmaz and Kelling [5] propose an approach that

focuses on the relationship between centrality

measures in coauthorship networks and scientific

productivity [13]. They show that network measures,

such as indegree, outdegree, closeness centrality,

betweenness, eigencentrality, and clustering

coefficient, are significantly associated with number

of downloads and citations in both packages’

dependency network and contributor social network.

Conversely, they provide evidence that pagerank is not

associated with the number of downloads in the

dependency network. Although these studies provide

interesting results, the cross-sectional nature

embedded in these studies does not enable the

inference of causality among variables. In addition,

past research on co-citation networks was based on

undirected networks [14], thus failing to recognize the

asymmetric relationship between nodes.

As proposed by Korkmaz, OSS development for

scientific research is closely related to the social

network of collaborative production [5]. Indeed,

patterns of contribution and interaction among the

contributors’ network are crucial in explaining the

success of FLOSS projects [15]. The topological

properties of the OSS development community enable

fast communication of information that optimizes

resource allocation [16]. Perhaps, this highlights the

crucial role of communication and information

transfer in the development of FLOSS. Knowledge

reuse, one of the mechanisms that enables information

transfer, benefits the development of OSS in many

ways, such as reduced projects’ costs, shorter

development time, and enhanced quality of the

software produced [17]. Therefore, the inclusion of

one or more OSS artifacts, such as R packages, in a

project is a form of knowledge reuse. Given the nature

of the interactions, the open source package network

is directed and non-acyclic. It is directed because the

dependency relationship is directional, reflecting the

fact that package A requires package B. It is non-

acyclic because it is not possible to return to the same

node following a non-trivial path. In social networks,

including the coauthors network, if author A is linked

to B, B to C, and C to A, it is possible to follow a (non-

trivial) path A -> B -> C -> A that returns to the

starting point, which is the definition of cyclic

network. In a dependency network, cyclic paths, such

as the one shown above, are not possible due to the

nature of the relationships. Since the direction of a link

contains important information such as asymmetric

influence or the direction of the information flow, a

link between a pair of nodes may represent a

fundamentally different dynamic when its direction is

reversed. Therefore, disregarding the direction may

fail to explain the dynamics and the function of the

network.

We propose to approach the study of OSS networks

from a one-to-many information dissemination

perspective, which will contribute in two ways to the

understanding of this topic. First, the broadcast of

information to all recipients reflects the flow of

information that exists between a package and its

Page 473

dependents. In this sense, the creators of a package are

like broadcasters of information that may benefit other

users in the community [18]. Past research that

adopted this perspective has focused on examining

information dissemination in blogs [19] or microblogs

(like Twitter) [20]. Second, the information flow

perspective allows us to introduce the temporal

dimension to our network analysis. For example,

Yasseri and Sumi [21] estimate the geographical

distribution of a network of editors through the study

of differences in their temporal activity. For these

reasons, our approach is consistent with the directed

acyclic nature of OSS networks and adds the temporal

perspective that, in our opinion, is crucial to

understand the behavior of dynamic networks.

4. Methodology
4.1 Data

We collected data on all the R packages listed on

CRAN (13,572 packages as of March 7th, 2019) and

scraped the monthly downloads statistics using the R

function cran_stats included in the package dlstats

[https://cran.r-project.org/package=dlstats]. In total,

the information collected spans over 76 time points

(months), from November 2012 to February 2019, and

includes several key characteristics for each package

at each time point, such as the dependency and

reverse-dependency list, monthly downloads,

contributors' names, publication date, citations of the

scientific papers that build on the package (if they

exist), and tags (labels identifying additional

characteristics of the OSS package). Table 1 presents

the network statistics in two-year intervals throughout

our sample period (except the last interval which

covers only one year). One can observe that the nodes,

edges, and the number of downloads increase steadily,

along with the average Indegree measure and network

diameter. At the same time, the number of packages

with a zero indegree value also increases, and the list

of top downloaded packages has shown a moderate

turn-over rate, with several constant top performers

constantly showing up on the list.

One can also observe from Table 1 that the top

three downloaded packages are ‘ggplot2’, a popular

graph package, ‘plyr’, a package that offers a set of

function to manage datasets, and ‘rcpp’, a package to

integrate c++ programs into R. The average indegree

value changes over time, reflecting the fact that the

complexity of the network is increasing. This is also

confirmed by the increase in the network diameter,

defined as the longest of the collection of shortest

paths between each pair of nodes. The number of

packages without indegree is almost stable at 75

percent of the whole population. These packages can

be considered as the passive receivers of the flow of

information in the network.

Table 1: Network statistics over time

Time

Point
Nodes Edges

Number of

Downloads

Top Downloaded

Packages

Avg

Indegree

Packages

w/out

inDegree

Network

Diameter

Nov 2012 3,438 3,846 529,359 plyr / colorspace / stringr 1.90 2,469 9

Feb 2014 4,644 5,881 3,085,126 digest / plyr / ggplot2 2.06 3,394 9

Feb 2016 7,482 12,627 15,485,019 rcpp / ggplot2 / digest 2.42 5,545 9

Feb 2018 11,785 27,709 33,665,863 rcpp / tibble / rlang 2.96 8,800 11

Feb 2019 13,752 35,315 72,492,261 rlang / rcpp / ggplot2 3.14 10,335 11

4.2 Dependency Network

We perform the analysis of the OOS network based

on approaches used in the information broadcast

literature. In social network analysis, information

relationships reflect the type and amount of

information exchanged between actors (or nodes) [18].

The pattern of such relationships reveals the

probability for actors to be included into an exchange

of information which, in turn, is instrumental in

assessing the level of influence of each node in the

communications at a local level and across the whole

network. The directional patterns of the

communication describe how information moves

around and how much actors can facilitate or control

the flow. A number of aspects of information can be

studied using approaches in social network analysis,

including information needs, information exposure,

information flow, information control, and

information opportunities [22]. As discussed in the

introduction, the major drawback of the social network

approach lies in its cyclic nature. In our case, a cyclic

network characterization is not possible due to the

nature of the relationships between packages. In

Page 474

addition, the increasing popularity of the analysis of

communication network has led to the emergence of

new and more sophisticated ways to model network

structures [23]. Among these models, the broadcast

communication network is a good fit for our study.

The broadcast communication network is a form of

acyclic directed network in which the information

flows from sources of information toward the

community of users [24]. This approach is useful in

identifying patterns of information flow from a sender

to receivers and to identify influential actors and

gatekeepers in the network [25].

In the same way, we can identify packages as

actors in a communication network, and the reuse of a

package is a relationship directed from the receiver

toward the source of information. Under this setup, the

dependency structure between packages available in

the online repository CRAN defines the sender-

receiver relationship in the network. The dependency

is instrumental in measuring the flow of information

within a network. An edge directed from package ‘A’

to package ‘B’ indicates that package ‘A’ reuses

functionalities from package ‘B’. From an information

broadcast perspective, the direction of the link goes in

the opposite direction of the flow of information. In

other words, the link points towards the source of

information. The network defined in this way is

directed and acyclic, since it is impossible for a

software project to be dependent upon itself. The OOS

network is thus suitable to be analyzed as a

communication broadcast network. From here

thereafter, we will use the terms “information

network”, “broadcast communication network”, and

“communication network” interchangeably. Figure 1

shows an overview of the R packages network. Graph

visualizations enable one to more easily understand

the complexity and underlying structure of the graph.

For example, Figure 1 depicts the evolution of the R

packages network over three point of time

(respectively 11/01/2012, 02/01/2016, and

02/01/2019). The size of each node reflects their

inDegree centrality measure and the color reflect their

respective cluster. These clusters can be explained by

the functions and disciplines of the packages [14] and

take the name of the most influential package.

Figure 1. Evolution of the R packages network over time

4.3 Measures

The focus of this research is to examine how the

performance of a package, as measured by the number

of downloads, is affected by its network properties and

measures of centrality such as indegree, outdegree and

measures of dependency between nodes. As predictors

of our model, we select centrality measures that are

relevant for directed acyclic network. The selection is

limited to the most commonly used measures of

centrality in social network analysis, namely indegree,

outdegree, betweenness, closeness centrality, and a

variant of Eigenvector centrality, PageRank [26]. In

our OOS network, the value of the indegree measure

reflects how many times each package has been

reused. Accordingly, the outdegree value shows how

many packages have been reused in each package.

From a flow of information perspective, the two most

frequently used measures in the analysis of

information transmission in social networks are the

vertex betweenness and vertex closeness centrality

[27]. These centrality measures are based on the

assumption that when possible, information is

transmitted along the shortest paths. While

betweenness centrality measures the degree to which a

node (vertex) may control the communication channel

between any two vertices (the number of shortest paths

that passes this node for a given pair of vertices), and

closeness is just the inverse of the average shortest

distance to other vertices. Intuitively, betweenness

centrality represents the degree to which a node stands

between each other. For example, a node with higher

Page 475

betweenness centrality would have more control over

the communication within the network, because more

information will pass through that node. On the other

hand, closeness centrality reflects the nominal

definition of centrality. The more central a node is, the

closer it is to all other nodes.

In this research, we use the normalized form of

closeness and betweenness centrality that allows

comparisons between nodes of graphs of different

sizes. In addition to these four centrality measures,

indegree, outdegree, closeness and betweenness, we

also include a measure of network influence, the

pageRank centrality measure [28]. PageRank

measures a node’s influence by taking into account

how well connected a node is, and how many links

their connections have, and so on, through the

network. This measure fits our approach because high

values indicate a strong influence over nodes that are

more than a step away. In contrast to other measures

of network influence, such as EigenCentrality,

PageRank is designed specifically for directed

networks. Therefore, it is able to uncover influential or

important nodes in a directed graph whose reach

extends beyond just their direct connections. In respect

to an undirected network approach, our approach

through an information flow perspective has some

advantages. First, it fits very well the acyclic directed

network of OSS packages. A flow of information

assumes a sender (that creates the information) and a

receiver (that uses the information). The inDegree and

outDegree centrality scores of each package

respectively measure the creation and the use of

information. In contrast, in an undirected network,

inDegree and outDegree will have the same value for

each node. Second, from the information flow

perspective closeness and betweenness centrality

reflect the speed and frequency of exchange of

information within a network. These are salient

features of our longitudinal dataset, and first well fits

our proposed panel data analysis (to be discussed

later). Finally, using the amount of downloads as a

proxy for package performance is consistent with our

approach. The reuse of a package through inclusion in

the dependency list reflects a transfer of knowledge

between nodes in the network.

4.4 The Temporal Perspective

In a highly dynamic network such as the open

source network for the R package, the temporal

dimension contains rich information about the growth

and evolution of the network. We find that the average

number of dependencies per node increased by three

times over the time frame of our study. Such a speed

of evolution is usually not observed in a static

network. In addition, the number of downloads

increased 140 times in the same period, reflecting the

increasing popularity of this statistics framework.

Table 1 shows the change of the average indegree

value over time, reflecting the fact that the complexity

of the network is increasing. This is also confirmed by

the increase in the network diameter, defined as the

longest of the collection of shortest paths between

each pair of nodes.

4.5. Analysis

We perform the longitudinal analysis of our sample

through a panel data analysis. A key benefit of panel

data is the ability to control for the effect of all stable

covariates without explicitly including them in the

model. We apply a longitudinal fixed-effect model

that uses within-package variance to estimate the

coefficients and then averages the estimates across the

packages. The fixed-effect models are optimal for

removing the pernicious effect of omitted variable bias

when multiple panels (sections) of data are present and

available. Moreover, the Hausman test [29] suggests

some evidence against the random effects model and

in favor of the fixed effects model. Due to the nature

of our dependent variable (count data), we adopt a

generalized linear model approach through the

Poisson regression. Furthermore, to avoid the

underestimation of the standard errors caused by

overdispersion of the number of downloads, we adopt

the quasi-likelihood estimation [30]. Instead of

specifying a probability distribution for the data, only

the relationship between the mean and the variance is

specified by a function that includes a multiplicative

factor (overdispersion or scale parameter) that is

estimated directly from the data. Past research shows

that the quasi-likelihood estimation for a Poisson

distribution gives a better fit to the overall variance-

mean relationships [31]. Given the dynamic nature of

the OSS network, we cannot assume the invariance

over time of the predictors’ effects on performance.

Therefore, to test for moderating effects we introduce

interaction terms for each variable in the model [32].

We perform forward selection including the first-order

interactions between predictors to identify only the

significant variables.

We use normalized measures of indegree and

outdegree centrality in order to allow for comparisons

between nodes of graphs of different sizes. For the

same reason, for each cross-section we normalize the

number of downloads as the percentage of the number

of downloads of the whole network. We would like to

point out that the centrality measures are derived from

Page 476

the network configuration at the first day of each

month, while the number of downloads refers to the

total number of daily downloads in that month. The

purposely introduced time lag between the two

measures provide additional support to the claim of

causal relationship between predictors and dependent

variable.

Another issue to address before running the

analysis is the multicollinearity between many of the

centrality measures included in this study. For

example, the pageRank score depends upon the

number of indegree links, therefore we can expect high

variance inflation factor (VIF) values when both

features are included in the model. Moreover, we

expect the closeness to be correlated with indegree,

because the higher the number of incoming links, the

shorter the average path to each node of the network.

Indeed, the Pearson correlations of pageRank with

indegree and closeness are 0.76 and 0.79, respectively,

thus implying that multicollinearity may be an issue.

The correlation coefficient between closeness and

indegree is 0.83. Following the best practices in

literature, we set the VIF cutoff equal to 5. Table 2

reports the VIF scores for all the variables included in

our model. The values are below the cutoff value.

Table 2: Variance Inflation Factors (VIF)

Variable VIF

closeness 4.18

betweenness 1.37

indegree 4.34

outdegree 1.02

pRank 3.25

5. Findings

Table 3 reports the results of the regression for the

panel data analysis. All the centrality measures that we

have included in our study have a significant effect on

the dependent variable except for Page Rank (PR).

This result echoes the findings reported in [5], and can

be explained by looking at the definition of this

centrality measure. Page Rank [33] is designed to

reflect a global ranking of all web pages based solely

on their location in the network. It performs very well

on strongly connected and static networks, such as

identifying influential websites on the Internet.

However, it suffers from a number of limitations when

analyzing dynamic and weakly connected topologies,

such as identifying influential leaders in social

networks [34]. In our case, the network or R packages

is weakly connected and the topology changed rapidly

since the beginning. This makes Pagerank not so

useful for predicting influential nodes and, in turn,

their performance.

Table 3: Results for Panel Data Fixed Error
Poisson Regression with Robust Error Estimates

DV=Downloads Coef.
Rob Std

Err.
95% CI

closeness 7.473* 3.04 1.517 13.43

betweenness -11658*** 2686 -16924 -6392

indegree 52.64*** 13.34 26.48 78.80

outdegree 1019.9*** 102.4 819.1 1220

prank -33.97ns 19.32 -71.85 3.907

time*inDegree -.4009*** .1105 -.6175 -.1842

time*outDegree 8.855*** 2.541 3.873 13.83

Note: ‘***’ p < 0.001; ‘**’ p < 0.01; ‘*’ p < 0.05; ns = not
significant

Within our approach of modeling the OOS network

as a flow of information, closeness centrality plays a

crucial role as it represents the speed of transmission.

A node that is closer, on average, to all other nodes in

the network, will have faster communication with

nodes in the network. In other words, betweenness

reflects frequency of arrival (or transit) of information,

and closeness reflects time-until-arrival of the

information flowing through the network. The

betweenness score reflects how often the node plays a

role in the communication between two randomly

chosen nodes. Nodes with high betweenness score are

more influential for the flow of information, because

the removal of such nodes could seriously disrupt the

communications [35]. In other words, packages that

reuse more functionalities from other packages and

that are reused by many packages become more

influential in the network. This perspective explains

the positive effect of closeness on the number of

downloads. Surprisingly, betweenness centrality has a

negative influence on the packages’ performance

(Figure 2). A plausible explanation is that, in a more

complex network, it is easier to find an alternate route

in respect to the path through the influential node.

The role of inDegree centrality shows a temporal

pattern consistent with our approach. The number of

incoming links reflects the number of packages that

reuse the information included in each node. This

reflects the level of influence of each node that, in turn,

affects the number of downloads. In addition, the

interaction term with time is significant and negative.

This means that inDegree has more influence on the

performance in the early stages of the network. In

other words, high scores of inDegree centrality are

more important in small networks than in bigger ones.

There are two potential explanations. First, as shown

Page 477

in Table 4, the proportion of nodes with incoming

links slightly decreases over time, which, in average,

negatively influences the effect of inDegree on the

number of downloads over time. Second, over time the

network become more complex. Table 1shows that the

network diameter, a measure of complexity, increases

from 9 in 2012 to 11 in 2019. In a more complex

network, there is more competition among packages

that, in turn, negatively affects the relationship

between inDegree and performance.

Finally, outDegree has a strong positive influence

on the number of downloads. This finding aligns with

cross-sectional results in past studies [5]. From a

communication perspective, in the OSS context,

outDegree reflects the reuse of information provided

by other packages. Therefore, a package with higher

levels of outDegree centrality is more likely to

contribute more to the local flow of information that,

in turn, influences the visibility and performance of the

node. Interestingly, the outDegree increases its

influence on the performance when the network

becomes more complex. This suggests that there are

substantial network externalities in the OSS networks

such that an increase in network size may

exponentially leverage the impact of various network

properties on outcome variables such as the number of

downloads.

Figure 2. Betweenness vs Standardized
Downloads

Table 4: InDegree and outDegree over time

Time Point Graph Size Number of Edges Nodes with indegree>0 Nodes with outdegree>0

Nov 2012 3,438 6,525 969 (28%) 2,224 (65%)

Feb 2014 4,644 9,580 1,250 (27%) 3,093 (67%)

Feb 2016 7,482 18,117 1,936 (26%) 5,298 (71%)

Feb 2018 11,785 34,939 2,985 (25%) 8,901 (76%)

Feb 2019 13,752 43,166 3,417 (25%) 10,956 (77%)

6. Discussion and Conclusions

This paper focused on the evolution of the OSS

network of R packages over time and the effect of the

network dynamics on each package’s performance. By

compiling a longitudinal dataset collected from the

online repository CRAN, we were able to apply an

information transmission approach for analyzing the

network dynamics through a panel data analysis. We

found that the betweenness, closeness, inDegree, and

outDegree centrality measures influence the

performance of each package, as measured by the

monthly downloads. When starting an OSS project,

the contributors should take into account the

positioning of their software in a complex network

such as CRAN. Their package should be strategically

positioned in a way that can be accessed and reused by

a meaningful number of relevant projects. Doing so

will positively influence the centrality scores and, as a

consequence, the visibility of the package. In addition,

a package’s betweenness centrality measure should be

minimized by positioning the project close to the

center of a specific area of the network. In other words,

package developers should focus on features and

functionalities that are related to the most popular

packages currently available in the network. Over

time, closeness and outDegree centrality measures are

the best predictors of package performance. Within a

network characterized with frequent communication

and collaboration, and thus highlighting the fact that

communications are most effective when conducted

through shorter paths. On the other hand, the

outDegree measure reflects the amount of information

reused and subsequently propagated by the package to

other downstream packages. Such a measure captures

Page 478

the levels of connectivity and influence of each node

within the communication network and, to some

extent implies the ability of a network to inherit

knowledge and pass it from generation to generation.

6.1 Implications for research

We offered a new approach to explore the factors

that affect the impact of OSS packages on the users’

community. From a methodological standpoint, due to

the longitudinal perspective and the panel data

analysis approach, it is not surprising that some of our

results contradict past findings [5]. Past research

focuses mainly on scientific literature contributions

(i.e. citations), thus shifting the focus away to

outcomes that are exogeneous to the network and

failing to capture the important directional and

noncyclical nature of the OSS networks. To address

these limitations, our study seeks to capture the above

network characteristics by modeling the creation and

transmission of information through a directional

network. With R packages and their contributors as

nodes and information broadcast (package

dependencies) as directional relationships, the

resulting network and the relevant centrality measures

allow us to assess the crucial role of generating

scientific knowledge in term of influence and

performance. Further conceptual work and literature

review are required to fully validate our perspective.

The longitudinal approach to the evolution of the OSS

network from an altmetrics perspective should

incorporate additional measures of performance (e.g.

number of citations). In addition, it may be interesting

to explore the potential interactions between the OSS

artifacts network and the FLOSS developers’ network.

In short, do the developer team’s social connections

affect the positioning of the OSS artifact (e.g.

dependency list)?

6.2 Implications for practice

The present research, even in its exploratory state,

offers some suggestions for OSS artifact design. In the

early stages of the artifact design, the developer team

decides the functionalities that need to be created and

what functionalities can be reused from other artifacts.

These choices will affect the artifact initial positioning

within the network and its future trajectory. Through

our analysis, regular patterns of information flow

reveal opportunities for the packages contributors in

terms of exposure and performance. Moreover, the

longitudinal perspective contributes to the discovery

of the trajectory of each package’s influence and

performance over time, thus enabling the scientific

community to recognize and evaluate the

contributions of various network participants, and

informing the contributors on the best routes for

delivering scientific values. A detailed understanding

of the factors that influence the artifact success would

help FLOSS contributors in optimizing the artifact

design and maximizing the impact on the community.

7. References

[1] Laurent, A.M.S., Understanding open source and free
software licensing: guide to navigating licensing issues in
existing & new software. 2004, Sebastopol, CA: O'Reilly
Media, Inc.
[2] Fitzgerald, B., The transformation of open source
software. MIS quarterly, 2006: p. 587-598.
[3] Singh Chawla, D., The unsung heroes of scientific
software. Nature News, 2016. 529(7584): p. 115.
[4] Piwowar, H., Altmetrics: Value all research products.
Nature, 2013. 493(7431): p. 159.
[5] Korkmaz, G., et al. Modeling the Impact of R Packages
Using Dependency and Contributor Networks. in 2018
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). 2018. IEEE.
[6] Zhao, R. and M. Wei, Impact evaluation of open source
software: An altmetrics perspective. Scientometrics, 2017.
110(2): p. 1017-1033.
[7] Kikas, R., et al. Structure and evolution of package
dependency networks. in Proceedings of the 14th
International Conference on Mining Software Repositories.
2017. IEEE press.
[8] Lanzara, G.F. and M. Morner. The knowledge ecology of
open-source software projects. in European Group of
Organizational Studies (EGOS Colloquium), Copenhagen.
2003.
[9] Crowston, K., et al., Free/Libre open-source software
development: What we know and what we do not know.
ACM Computing Surveys (CSUR), 2012. 44(2): p. 2-37.
[10] Howison, J. and K. Crowston, Collaboration Through
Open Superposition: A Theory of the Open Source Way. Mis
Quarterly, 2014. 38(1): p. 29-50.
[11] Crowston, K., et al. Effective work practices for FLOSS
development: A model and propositions. in Proceedings of
the 38th Annual Hawaii International Conference on System
Sciences. 2005. IEEE.
[12] Sanchez, G., PLS Path Modeling with R. 2013, Berkeley,
CA: Trowchez Editions.
[13] Yan, E. and Y. Ding, Applying centrality measures to
impact analysis: A coauthorship network analysis. Journal of
the American Society for Information Science and
Technology, 2009. 60(10): p. 2107-2118.

Page 479

[14] Li, K. and E. Yan, Co-mention network of R packages:
Scientific impact and clustering structure. Journal of
Informetrics, 2018. 12(1): p. 87-100.
[15] Crowston, K., et al. Core and periphery in free/libre and
open source software team communications. in Proceedings
of the 39th Annual Hawaii International Conference on
System Sciences (HICSS'06). 2006. IEEE.
[16] Xu, J., et al. A topological analysis of the open souce
software development community. in Proceedings of the
38th Annual Hawaii International Conference on System
Sciences. 2005. IEEE.
[17] von Krogh, G., S. Spaeth, and S. Haefliger. Knowledge
reuse in open source software: An exploratory study of 15
open source projects. in Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. 2005.
IEEE.
[18] Haythornthwaite, C., Social network analysis: An
approach and technique for the study of information
exchange. Library & Information Science Research, 1996.
18(4): p. 323-342.
[19] Adar, E. and L.A. Adamic, Tracking Information
Epidemics in Blogspace, in Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web
Intelligence. 2005, IEEE Computer Society. p. 207-214.
[20] Kwak, H., et al., What is Twitter, a social network or a
news media?, in Proceedings of the 19th international
conference on World wide web. 2010, ACM: Raleigh, North
Carolina, USA. p. 591-600.
[21] Yasseri, T., R. Sumi, and J. Kertész, Circadian Patterns
of Wikipedia Editorial Activity: A Demographic Analysis.
PLOS ONE, 2012. 7(1): p. e30091.
[22] Case, D.O. and L.M. Given, Looking for information: A
survey of research on information seeking, needs, and
behavior, ed. J.E. Mai. 2016, Bingley, UK: Emerald Group
Publishing.
[23] Monge, P.R. and N.S. Contractor, Emergence of
communication networks, in The new handbook of
organizational communication: Advances in theory,
research, and methods, F.M. Jablin and L.L. Putnam, Editors.
2001, Sage: Thousand Oaks, CA. p. 440-502.
[24] Zinoviev, D. and V. Duong. A game theoretical
approach to broadcast information diffusion in social
networks. in Proceedings of the 44th Annual Simulation
Symposium 2011.
[25] Gursakal, N. and A. Bozkurt, Identifying Gatekeepers in
Online Learning Networks. World Journal on Educational
Technology, 2017. 9(2): p. 75-88.
[26] Landherr, A., B. Friedl, and J. Heidemann, A critical
review of centrality measures in social networks. Business &
Information Systems Engineering, 2010. 2(6): p. 371-385.
[27] Wasserman, S. and K. Faust, Social network analysis:
Methods and applications. Vol. 8. 1994, Cambridge, MA:
Cambridge university press.
[28] Brin, S. and L. Page, The anatomy of a large-scale
hypertextual web search engine. Computer networks and
ISDN systems, 1998. 30(1-7): p. 107-117.

[29] Hausman, J.A., Specification tests in econometrics.
Econometrica: Journal of the econometric society, 1978.
46(6): p. 1251-1271.
[30] Wedderburn, R.W.M., Quasi-likelihood functions,
generalized linear models, and the Gauss—Newton method.
Biometrika, 1974. 61(3): p. 439-447.
[31] Ver Hoef, J.M. and P.L. Boveng, Quasi-Poisson vs.
Negative Binomial Regression: How should we model
overdispersed count data? Ecology, 2007. 88(11): p. 2766-
2772.
[32] Allison, P.D., Fixed effects regression models. Vol. 160.
2009, Thousand Oaks, CA: SAGE publications.
[33] Page, L., et al. The PageRank citation ranking: Bringing
order to the web. 1999.
[34] Chen, D.-B., et al., Identifying influential nodes in large-
scale directed networks: the role of clustering. PloS one,
2013. 8(10): p. e77455.
[35] Borgatti, S.P., Centrality and network flow. Social
networks, 2005. 27(1): p. 55-71.

Page 480

