

A Context Free Gramma for Key Noun-Phrase Extraction from Text

Ying Liu
St. John’s University
 liuy1@stjohns.edu

Abstract

Topic extraction is a major field in text mining. Key
noun-phrases play a very important role in identifying
the important document topic because the primary
information of a document is described in noun-
phrases. In this paper, we propose a new topic
extraction schema to identify the key noun-phrases by
constructing a context free grammar (CFG) from input
documents. In our new method, documents are
reconstructed as a set of CFG rules using an existing
algorithm called Sequitur. The Sequitur algorithm
infers the resulting context-free grammatical rules,
which can be considered as a hierarchical structure,
from a sequence of discrete symbols. The resulting
hierarchical structure exposes the underlying structure
of input sequence that can help us capture meaningful
regularity. Based on this hierarchical structure of the
input document, we designed a new algorithm to
identify noun-phrases and extract key noun-phrases.

1. Introduction

The technique that identifies the concept of a
document set is called Topic Extraction. Topic concept
is important document knowledge that gives a high-
level, concise and compact description of a document
or a set of documents. It can sufficiently help reader
understand the main contents included in the source
documents. The topic can be represented as key
phrases, which can be either single keywords or
multiword key terms, or text summaries, which are
sentences that describe the content of a group of
documents. Key noun-phrases play a very important
role in identifying the important document topic
because the primary information of a document is
described in noun-phrases and most concept terms are
noun-phrases.

Because key phrases are sufficiently informative,
they can also be used in various applications such as
text clustering and classification [1, 2], thesaurus
construction [3], document similarity analysis [4, 5],
and retrieval engines [6, 7], etc. For example, key
phrases can be used as a low-cost similarity

measurement between documents and further cluster
documents into groups based on the similarity.

The topic of a single document can be manually
provided by authors in forms of key phrase assignment
and abstract. However, it is a very laborious task to
manually read through large numbers of documents
and give an essential summary. Several effective
techniques for automatic key phrase extraction have
been developed [8, 9, 10, 11]. Some of these methods
are machine learning algorithms that require training
data to train their programs. Some methods rely on the
special structural features in the documents. For
example, KIP [12] requires a glossary database
containing pre-identified key words in order to identify
the key phrases.

In this paper, we propose a new topic extraction
schema to identify the key noun-phrases by
constructing a context free grammar (CFG) from input
documents. The CFG provides a simple and precise
mechanism for describing the document by which
some phrases within the document are built from
smaller blocks, capturing the "block structure" of
sentences in a natural way. In our new method, first of
all, the documents are reconstructed as a set of context-
free grammar rules using an existing algorithm called
Sequitur [13]. The Sequitur algorithm infers the
resulting context-free grammatical rules, which can be
considered as a hierarchical structure, from a sequence
of discrete symbols. The basic insight is that phrases
which appear more than once can be replaced by a
grammatical rule that generates the phrase, and this
process can be continued recursively, producing a
hierarchical representation of the original sequence.
The resulting hierarchical structure exposes the
underlying structure of input sequence that can help us
capture meaningful regularity. Based on this
hierarchical structure of the input document, we
designed a new algorithm to identify noun-phrases and
extract key noun-phrases.

2. The Sequitur Algorithm

The Sequitur algorithm is a linear-time online
algorithm [13] that forms a context-free grammar for a
given string input. This algorithm is initially used in
data compression software applications. Here is a brief

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59557
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 1174

review of the algorithm. Starting with a rule with the
non-terminal symbol S at the left hand side, the
algorithm continuously fetches symbols from the input
and appends them to the right hand side of the starting
rule. Duplicate subsequences are checked during
processing and a new production rule is generated for
each repeated subsequence if this is not done before.
After the new rule is generated, the repeated
subsequence is replaced by the left hand side non-
terminal symbol of the rule.
Two properties are ensured in the compressed grammar
representation [13].
• Diagram uniqueness: no pair of adjacent symbols

appears more than once in the grammar. If, by
adding a new input symbol, two adjacent symbols
appear more than once in the grammar, a new
produce rule will be created to replace both
appearances.

• Rule utility: every rule is used more than once. The
number of times that a rule is used can decrease
during the processing. If this number is reduced to
one, the rule will be discarded.
To illustrate the Sequitur algorithm, an example

similar to the one shown in [13] is provided in Table 1,
which shows the grammars that result when successive
symbols of the sequence abcbabcbabcabc are
processed. The second column shows the sequence
observed so far, the third column gives the grammar
created from the sequence, and the fourth column notes
constraints that have been violated, and actions that are
taken to resolve the violations.

In the example shown in Table 1, after we add the
fifth input symbol, we have the starting rule as follows:

abcbaS →
After adding the sixth symbol “b”, we get “abcbab”.
Since the subsequence “ab” appears twice, it has to be
replaced by a new rule. Sequitur creates the new rule Z,
with ab as its right-hand side, and replaces the two
occurrences of ab by Z. We then have:

ZcbZS →
abZ →

This illustrates the basic procedure for dealing with
duplicate diagrams. Not every repeated diagram gives
rise to a new rule. If there is an existing rule has a
right-hand side of the new diagram, then no new rule
need to be created. The non-terminal symbol of this
existing rule replaces the repeated diagram. For
example, before the 14th symbol “c” is added, we have:

XXYZS →
YbX →
ZcY →
abZ →

When the 14th symbol “c” is added in Table 1, Zc
appears twice in the grammar, an existing rule Y, with
Zc as its right-hand side, replaces the Zc. That is:

XXYYS →
YbX →
ZcY →
abZ →

However, replacing the Zc leaves only one appearance
of rule Z, violating the constraint of rule utility. For
this reason, Z is removed from the grammar, and its
right-hand side is substituted in the one place where it
occurs. We have:

XXYYS →
YbX →
abcY →

Rule Y now contains three symbols. This is the
mechanism for forming long rules: form a short rule
temporarily, and if subsequent symbols continue the
match, allow a new rule to supersede the shorter one
and delete the latter.

Figure 1 An example of the Sequitur algorithm

In summary, Sequitur’s operation consists of

ensuring both properties. When describing the
algorithm, the properties act as constraints. The
algorithm operates by enforcing the constraints on a
grammar: when the diagram uniqueness constraint is
violated, a new rule is formed, and when the rule utility
constraint is violated, the useless rule is deleted. The
result of the Sequitur algorithm is a set of context-free
grammar rules. Alternatively, the result can be
represented by a directed acyclic graph (DAG) as
shown in Figure 1. The original input sequence can be
reconstructed by traversing the first rule and
recursively replace the non-terminal symbol with the
right-hand side of the rule corresponding to the non-
terminal symbol.

Page 1175

Page 1176

Table 2 summarizes the algorithm, which is also
provided in [13]. Line 1 deal with new observations
in the sequence. Lines 2 through 6 enforce the
diagram utility constraint. Line 3 determines whether

the new diagram matches an existing rule, or whether
a new rule is necessary. Lines 7 and 8 enforce rule
utility. Lines 2 and 7 are triggered whenever the
constraints are violated.

Table 2 The Sequitur algorithm

1 As each new input symbol is observed, append it to rule S.

2 Whenever a duplicate diagram appears,
3 If the other occurrence is a complete rule,
4 Replace the new diagram with the non-terminal that heads the other diagram,
5 Otherwise
6 Form a new rule and replace both diagrams with the new non-terminal

7 Whenever a rule is used only once,
8 remove the rule, substituting its contents in place of the non-terminal

The Sequitur algorithm has been evaluated in

data compression and found that it is competitive
with the best compression algorithms, particularly
when a large amount of text and constructive text is
available [13]. But there is another important
property: Sequitur represents a sequence as a
hierarchical structure that exposes its underlying
structure. The hierarchy infers the lexical structure in
the sequence, so that it aids comprehension of the
structure of input text and capture meaningful
regularity. As a grammatical rule is a representation
of a repeated phrase, a noun-phrase can be identified
based on certain noun-phrase definition. Furthermore,
by keeping track of the frequency of the grammatical
rule replacing the phrases, we can capture the
meaningful regular noun-phrases.

3. Extracting noun-phrases

In this section, we first describe the method of
extracting noun phrases. Then we present the
experiment and results that evaluate its performance
with MEDLINE abstracts
(https://www.ncbi.nlm.nih.gov/pubmed/).

3.1 Extracting noun-phrases method

The noun-phrase extraction schema includes 3
steps. The first step is to define noun-phrase patterns.
The second step is the pre-processing of the input
documents. The last step is to construct context-free
grammar using the Sequitur algorithm and extract
noun-phrases from the grammar rules.

3.1.1 Noun-phrase Pattern

We consider a noun-phrase as a group of words
containing a noun that functions together as a noun.
There are various definitions of noun phrases, some
are simple and some are complex. In our work, we

only identify the simple noun-phrases. A simple
noun-phrase is a noun-phrase without relative
clauses, and its head is the rightmost element and
thus it has no right modification [14]. Many noun-
phrases identification systems only identify simple
noun-phrases [12, 14]. Noun-phrases are identified
using a finite set of rules shown as following:

NP -> restOfNP | restOfNP conjunction restOfNP
restOfNP -> ADJ restOfNP | noun

ADJ -> adjective conjunction adjective | adjective

A noun-phrase can be a sequence of adjectives
followed by a noun, or two noun-phrases combined
with conjunction. And the adjective clause can be
multiple adjectives either with or without
conjunction. The words we are interested are
adjective, noun and conjunctions. Therefore, before
the steps of extracting noun-phrase, Part-of-speech
(POS) tagging is applied to the input documents to
label each word.

3.1.2 Pre-processing

This step consists of part-of-speech tagging,
stemming and indexing. The Noun-phrase pattern is
defined as a finite set of rules which are composed of
noun, adjective and conjunction words. We first tag
each word in input documents using part-of-speed
tagging [15]. Because only noun, adjective, and
conjunction are of interest, we eliminate those words
that are not tagged as noun, adjective, and
conjunction by replace these words with -1. Before
indexing the words, we stem the words so that words
having the same root (e.g., activate, activates, and
activating) are collapsed to the same word for
indexing. The result of the pre-processing is a
sequence of number where each number is either -1
or representing a word of noun, adjective or
conjunction.

Page 1177

3.1.3 Identify noun-phrases using the Sequitur
algorithm

Using the Sequitur algorithm, the result of the
pre-processing is re-represented as a set of context

free grammatical rules. Each grammatical rule may
or may not contain a noun-phrase or a partial noun-
phrase. We go through each of the grammatical rule
to extract noun-phrases from the rules. The algorithm
for extracting noun-phrase is listed in Table 3.

Table 3. The noun-phrase extraction algorithm.

1 Extract_Noun_Phrase(){
2 for each grammatical rule R, do
3 initial phrase as a empty string;

4 Extract_NP_from_Rule(R, phrase);
5 endfor;
6 }

7 Extract_NP_from_Rule(R, phrase){
8 for each symbol s in R, do
9 if s is a non-terminal symbol,
10 Extract_NP_from_Rule (rule of s, phrase);
11 endif
12 elseif the word value of s is -1 //-1 is the delimiter of phrases
13 collect phrase to a phrase list;
14 reset phrase to a empty string;
15 endelseif
16 else
17 append the word value of s to the end of phrase;, and ensure it follows the noun-phrase pattern;
18 endelse;
19 endfor;

Given a context free grammatical rule, the noun-

phrase extraction algorithm is designed to extract
noun-phrases which are delimited by -1 within the
rule. In the algorithm (Table 3), the “for” loop (lines
8-19) travels the right hand side of the rule and
processes each symbol of the rule from left to right. If
the symbol is a non-terminal symbol which refers to a
grammatical rule, it will recursively call the noun-
phrase extraction method on this rule. The variable
phrase is functioned as a buffer that contains a
partial phrase. If the symbol is a terminal symbol
which refers to a word, the word will be appended to
the end of phrase. At the same time, the algorithm
also checks whether or not such appending action
match as the noun-phrase pattern defined in the finite
state rules (Section 3.1.1). The phrase will be sent to
a collection of a phrase list when the value of the
terminal symbol is -1. Because the phrase we refer in
this study must contain more than one word, at this
point, we can set the minimum and maximum
numbers of words of a noun phrase, and only collect
phrases with length within the range. Different rules
may contain the same phrases. The duplicate phrases
can be prevented using a hash table. We can also
apply additional rules to prone noun-phrases, e.g.
phrases with at least one non-stopped word.

3.2 Experiment

To evaluate our noun-phrase extraction method,
we conducted an experiment that compares our
method with other two methods. One is Phrase Parser
from the set of SPECIALIST NLP tools developed
by the Lexical Systems group of the Lister Hill
National Center for Biomedical Communications
(http://specialist.nlm.nih.gov/). In our work, we call
this tool the NLP Phrase Parser. This NLP Phrase
Parser tools is also used in the paper [12] for the
purpose of comparison. This parser is primarily a
barrier category parser, relying on parts of speech
that have been already assigned to determine the
beginnings and endings of phrases. This parser
identifies the several kinds of phrases including
noun-phrases, prep-phrases, verb-phrases, et. al. We
are only interested in noun-phrases and prep-phrases.
Because the prep-phrase is a noun-phrase with one or
more prepositions ahead of it. We extract the noun-
phrase within the prep-phrase when measuring the
performance of NLP Phrase Parser.

The other method we compared with is
MontyLingua [15]. MontyLingua is an end-to-end
natural language understands for English. It can
extract subject/verb/object tuples, extracts adjectives,

Page 1178

noun phrases and verb phrases, and other semantic
information.
Because it is time consuming to identify noun-
phrases manually, we use a small set of text
containing 100 documents. These 100 documents are
randomly selected from 3193 documents about soft-
tissue sarcomas (STS) which are downloaded from
MEDLINE. Title and abstract fields are kept for
noun-phrase extraction. All these 100 documents are
processed by our method, NLP Phrase parser and
MontyLingua method, total numbers of noun-phrases
identified by these three methods are 1958, 2401, and
2262, respectively. The Venn diagram of the result is
shown in Figure 2.

In this experiment, in order to obtain the
precision and the recall rate, all the simple noun-
phrases are manually identified by a medical

professional in advance. Here the precision value is
defined as:

Figure 2. The comparison of extracting noun-phrase results

systemby identified phrasesnoun ofnumber totalthe
systemby identifiedcorrectly phrasesnoun ofnumber the precision =

The recall value is defined as:

documents in the phrasesnoun ofnumber totalthe
systemby identifiedcorrectly phrasesnoun ofnumber the recall=

From the 100 documents, the medical expert
identified 2156 simple noun-phrases that match the
noun-phrase pattern defined in Section 3.1.1. We use
these 2156 noun-phrases as the noun-phrases in the
documents. And compare the results of the three
methods with these 2156 noun-phrases to find out the
noun-phrases that are correctly identified by system.
There are some system-identified phrases that are
correct noun-phrases, but not exactly match the
human-identified noun-phrases. We consider this
kind of phrases as correct noun-phrases. For
example, we consider both phrases “brca1 and brca2

mutations” and “brca2 mutations” as correct noun-
phrases.
 Table 4 shows the precision and recall results for all
three noun-phrase extraction methods. The results
listed in Table 4 show that our noun-phrase extractor
performed better than the NLP Phrase Parser and
MontyLingua method. Our results show that the NLP
Phrase Parser and MontyLingua method performed
poor in identify the noun-phrases. However, it does
not mean that these two methods are poor noun-
phrase identifier. It could be because that their
definitions of the noun-phrase pattern are different
from ours.

Table 4. Comparison of the precision and recall values

Methods Number of noun-phrases
extracted by the noun-phrase
extractor

Number of noun-phrases correctly
identified by noun-phrase
extractor

Precision
(%)

Recall
(%)

Medical expert 2156 N/A N/A N/A
NLP Phrase
Parser

2401 1697 70.68 78.71

MontyLingua 2262 1626 71.88 75.42
Our method 1958 1821 93.00 84.46\

Page 1179

4. Key Noun-phrase Extraction
In the previous section, we described our noun-

phrase extraction that extracts all the noun phrases in
the documents. In this section, we present an efficient
key noun-phrase extractor which is performed at the
same time of noun-phrase extraction. We first
describe the method that extracts key noun-phrases,
and then present its performance evaluation.

4.1 Extracting key noun-phrase method
The Sequitur algorithm generates a set of

grammatical rules that re-represent a sequence as a
hierarchical structure which reveals its underlying
structure. As a grammatical rule is a representation of
a repeated subsequence, we can identify the
frequently appeared subsequences by keeping track
of the frequency of the grammatical rules replacing
the subsequences. We can find the key noun-phrases
by extracting the noun-phrases from these frequently

appeared subsequences. Our key noun-phrase
extraction method is an efficient method because we
only need to extract the noun-phrases from the top
frequent rules instead of extracting all the noun-
phrases and then rank them.

The frequency of a rule is the number of times
the subsequences represented by this rule appeared in
the original input stream. Please notice that the
frequency of a rule in this work is not the number of
times the rule is used in the grammar. Computation
of the frequency can be performed at the same time
as the Sequitur algorithm constructs the context free
grammar. Whenever a rule is used to replace a
subsequence, its frequency is increased by one. With
the grammatical rules sorted by their frequencies, key
noun-phrases are the noun-phrases extracted from a
certain number of top frequent rules. The key noun-
phrase extraction algorithm can be easily modified
from the noun-phrase extraction algorithm. The
algorithm for extracting the key noun-phrase is listed
in Table 5.

Table 5 The key noun-phrase extraction algorithm.

1 Extract_Key_Noun_Phrase(){
2 sort_rule();
2 for each grammatical rule R, and the frequency of R is larger than a threshold, do
3 initial phrase as a empty string;
4 Extract_NP_from_Rule(R, phrase);
5 endfor;
 }

As shown in Table 5, our key noun-phrase
extraction algorithm is a simple algorithm that
slightly modified from our noun-phrase extraction
method. The key noun-phrase extracting algorithm
first sorts the rules by the frequency in decreasing
order, and then performs the noun-phrase extraction.
To limit the number of key phrases extracted, we can
either set a threshold or define a specific number of
key phrases to be extracted. Only those rules with
frequency higher than the threshold will be processed
and the phrases will be extracted only from these
rules in decreasing frequency order. Or the key noun-
phrase extraction will be terminated once the number
of extracted noun-phrase reaches the predefined
number. The frequency of a phrase is the frequency
of the rules from which it is extracted. For example,
in Table 1, the context-free grammar for sequence of
“abcbabcbabcabc” is:

XXYYS →
YbX →
abcY →

Rule Y represents sequence of “abc”. The frequency
of rule Y is 4, assume subsequence “bc” is a noun-
phrase, the frequency of the noun-phrase “bc” is also
4. Furthermore, if there is a noun-phrase, NP1, which
is a subsequence of a noun-phrase, NP2, NP1 will be
extracted before NP2. And the frequency of NP1 is
not less than that of NP2. For example, in Table 1,
rule X represents subsequence “abcb” with frequency
value of 2. Assume “abcb” is also a noun-phrase,
noun-phrase “bc” will be extracted before noun-
phrase “abcb” because rule Y has higher frequency
value than rule X. The frequency value of “bc” is 4,
which is larger than that of “abcb”.

From the algorithm shown in Table 5, we can
conclude that our key noun-phrase extraction method
is an efficient and effective method due to following
3 reasons.

1. Noun-phrases are extracted from a
certain number of top frequent rules. Because
the goal of this work is to extract the key noun-
phrases instead of extracting all the noun-phrases,
it is not necessary to process all the grammatical
rules. By setting a threshold on the frequency of

Page 1180

the rules or define the number of key noun-phrases,
we can dramatically reduce the number of rules
that need to be processed.
2. The rules with high frequency are usually
rules representing short sequences. Processing
time of these rules could be short. Because the
rule representing a long sequence, (R1), is very
possible contains a rule representing a short
sequence, (R2), which is either appear in rule R1
more than once or appear in other rules. For
example, in Figure 1, rule Y is a non-terminal
symbol of rule X, while rule Y is also a non-
terminal symbol of rule S. The frequency of rule Y
is larger than that of rule X. Therefore, rule Y is
processed before X.
3. Our method precisely computes the
frequency of a noun-phrase which is also a sub-
sequence of another noun-phrase. A noun-phrase
could be a sub-sequence of another noun-phrase.
Normal existing key phrase extraction systems
ignore the existence of the sub noun-phrase.
Because our method computes the number of times
a subsequence appeared in the original input text,
the frequency of this kind of noun-phrases can be
precisely obtain. For example, in the full text with
the title of “Correspondence analysis of microarray
time-course data in case-control design”, which is

publish in Journal of Biomedical Informatics,
Volume 37, Issue 5 (October 2004), Pages: 358-
365, the phrase “time-course” is also sub-phrase of
“time-course experiment”, “time-course pattern”,
“time-course data”, “microarray time-course data”,
etc.. The total frequency number of “time-course”
is 64. However, the frequency numbers of “time-
course” computed using NLP and MontyLingua
methods are only 4 because they didn’t count the
frequency of “time-course” when it is a sub-phrase
of another noun-phrase. This means that our
method in favor of those phrase with short length.
As we know that most key phrases provided in the
paper normally have length of 2 to 3, our method
can produce a good performance in extracting key
noun-phrase.

4.2 Experiment
We evaluate our key noun-phrase extracting

method by measuring how well the system-generated
key phrases match the author-provided key phrases
for documents. To evaluate the effectiveness of our
method, the precision, recall and F value were
computed using the author-provided key phrases for
documents. In this experiment, the precision value is
defined as:

cutoff ranking of valuethe
extractedcorrectly been have that phrasesnoun key ofnumber the precision =

The recall value is defined as:

authorby assiged phraseskey ofnumber the
extractedcorrectly been have that phrasesnoun key ofnumber the recall=

There is usually a trade-off between recall and precision, and either of them alone does not explain the system
performance well. Therefore, the F measure was invented to show the combined results. The formula for F is:

)/(2 recallprecisionrecallprecisionF +××= .
We use 110 medical full text papers as the test

documents in this evaluation. These papers are
randomly selected from Journal of Biomedical
Informatics published between 2005 and 2008. All
these 110 papers have author assigned key phrases.
The average length of these full text papers is 12.73,
and the average number of author-assigned key
phrases is 4.56. In this work, we consider the phrase
length should be larger than 1. Therefore, we ignore
those author-assigned key phrases with only one
word. The average length of the author-assigned key
phrases is 2.38. This number again shows that most
key phrases provided in the paper are normally has
length of 2 to 3.

 We also want to know if our method is better
than other method, so we compare our method with
NLP and MontyLingua methods. We extract all the

noun-phrases using these two methods respectively,
and then count the frequencies of each phrase and
rank them by frequency.

We calculate the average precision, recall and F
value for all three methods on 110 papers when the
number of extracted key phrases was 5, 10, 15, 20,
30, 40, 60, 80 and 100 respectively. The precision
result is shown in Figure 3, the recall result is shown
in Figure 4, and the F value result is shown in Figure
5. From these figures, we can see that our method
performed better than NLP Phrase Parser and
MontyLingua method at all the comparison points.

Page 1181

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120

Number of extracted keyphrases

A
v
e
r
a
g
e

p
r
e
c
i
s
i
o
n

v
a
l
u
e

NLP Phrase Parser MontyLingua Our Method
 Figure 3. Comparison of the precision of our method, NLP

Phrase Parser and MontyLingua method

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120

Number of extracted keyphrases

A
v
e
r
a
g
e

r
e
c
a
l
l

v
a
l
u
e

NLP Phrase Parser MontyLingua Our Method

Figure 4. Comparison of the recall of our method, NLP
Phrase Parser and MontyLingua method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120

Number of extracted keyphrases

A
v
e
r
a
g
e

F

v
a
l
u
e

NLP Phrase Parser MontyLingua Our Method
Figure 5. Comparison of the F value of our method, NLP

Phrase Parser and MontyLingua method

However, these performance numbers are

misleadingly low due to several reasons. One of them
is that the author-assigned key phrases are usually
only a small subset of the set of good quality key
phrases for a given document. And some author-
assigned key phrases are not simple noun-phrases.
Another reason is that some author-assigned key

phrases may not appear anywhere in the document
they are assigned to. According to Turney [10], about
70% to 80% of author provided key phrases appear
somewhere in the body of their documents, which
means the highest possible average recall for a
system could only be as high as 70%, even when all
the phrases are extracted from the documents. A
more accurate picture can be obtained by asking
professional readers to rate the quality of the system
output, which is a costly process.

5. Conclusion
This chapter presents a new topic extraction

schema to identify the key noun-phrases by
constructing context free grammar from input
documents using the Sequitur algorithm. Noun-
phrases are extracted from the grammatical rules.
Key noun-phrases are identified from top frequency
rules without extracting all the grammatical rules.
Our key noun-phrase extraction method is effective
in identifying key concepts from documents. The
experimental results show that our method performed
better than the systems it was compared to.

6. References

[1] S. Jonse, M. Mahoui, Hierarchical document

clustering using automatically extracted keyphrase.
In Proceedings of the 3rd International Asian
conference on Digital Libraries. Seoul, Korea.
2000;113–20.

 [2] Y. Zhang, N. Zincir-Heywood, E. Milios, Term-
Based Clustering and Summarization of Web Page
Collections. In Advances in Artificial Intelligence,
Proceedings of the Seventeenth Conference of the
Canadian Society for Computational Studies of
Intelligence, London, ON, Canada, May 17–19,
2004;60-74.

[3] B.Kosovac, D.J. Vanier, T.M. Froese, Use of
keyphrase extraction software for creation of an
AEC/FM thesaurus. Electronic Journal of
Information Technology in Construction,
2000;5:25–36.

[4] I. Witten, Browsing around a digital library. In
Proceedings of the Australasian Computer Science
Conference, 1999;1-14.

 [5] E. Milios, Y. Zhang, B. He, L. Dong, Automatic
Term Extraction and Document Similarity in
Special Text Corpora. In Proceedings of the Sixth
Conference of the Pacific Association for
Computational Linguistics, Halifax, NS, Canada,
August 22–25, 2003;275–284.

[6] Q. Li, Y.B. Wu, R.S. Bot, X. Chen, Incorporating
document keyphrases in search results. In
Proceedings of the 10th Americas Conference on
Information Systems, New York, New York, 2004.

[7] S. Jones, M. Staveley. Phrasier: A system for

Page 1182

interactive document retrieval using keyphrases. In
Proceedings of SIGIR’99, Berkeley, CA, 1999.

[8] B. Krulwich, C. Burkey, Learning user information
interests through the extraction of semantically
significant phrases, In M. Hearst and H. Hirsh,
editors, AAAI Spring Symposium on Machine
Learning in Information Access, 1996.

[9] Y.B. Wu , Q. Li , R.S. Bot, X. Chen, Domain-specific
keyphrase extraction, Proceedings of the 14th ACM
international conference on Information and
knowledge management, Bremen, Germany, 2005.

 [10] P. Turney, Learning to extract key phrases from
text, Technical Report ERB-1057, National
Research Council, Institute for Information
Technology, 1999.

[11] F. Eibe, P.W. Gordon, W.H. Ian, G. Carl,
N.G. Craig, Domain-Specific Keyphrase Extraction,
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, 1999;668-
673.

 [12] Q. Li, Y.B.Wu, Identifying important concepts from
medical documents. Journal of Biomedical
Informatics, 2006;39:668-679.

 [13] C.G. Nevill-Manning, I.H. Witten, Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm. Journal of Artificial Intelligence
Research, 1997;7:67-82.

[14] A.R. Aronson, T.C. Rindflesch, A.C. Browne,
Exploiting a large thesaurus for information
retrieval. In Proceedings of RIAO 1994:197-216.

[15] Liu, Hugo, MontyLingua: An end-to-end natural
language processor with common sense, 2004.
Available at:
web.media.mit.edu/~hugo/montylingua.

Page 1183

