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Abstract 

Airborne light detection and ranging (LiDAR) canopy height metrics are strong 

parameters for tree aboveground biomass (AGB) estimates. Since allometric models, in which 

tree diameter at breast height (DBH) and height are inputs, provide field AGB estimates in the 

LiDAR-AGB modeling processes, tree allometry is expected to impact the LiDAR-AGB model 

performance. The first objective of this study is to investigate how the tree height-DBH model fit 

impacts the LiDAR-AGB model performance. The second objective is to test how choices of 

allometric models for field AGB estimates influence the LiDAR-AGB model performance. A 

field data and simulation combined approach was employed. The primary findings showed that 

decline in the height-DBH model fit led to reduction in the LiDAR-AGB model performance. 

The secondary findings suggested that the LiDAR-AGB models developed from field AGB 

estimates based on both tree height and DBH outperformed models developed from field AGB 

estimates only based DBH.  

 
 
 
 
 
 
 
 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  
	  

iv	  

	  
	  
	  
	  

Table of Contents 

Acknowledgements ........................................................................................................... ii 

Abstract ............................................................................................................................. iii 

List of Tables ...................................................................................................................... v 

List of Figures ................................................................................................................... vi 

Chapter 1 Introduction ..................................................................................................... 1 

Chapter 2 Study area and data ........................................................................................ 5 

2.1 Study site ................................................................................................................... 5 

2.2 Data ........................................................................................................................... 7 

2.2.1 Field data ............................................................................................................. 7 

2.2.2 LiDAR data ......................................................................................................... 7 

Chapter 3 Methods ........................................................................................................... 9 

3.1 Field biomass calculation ........................................................................................ 10 

3.1.1 Jenkins equation systems .................................................................................. 10 

3.1.2 Component ratio method ................................................................................... 12 

3.2 LiDAR processing ................................................................................................... 14 

3.3 Nonlinear statistical modeling ................................................................................. 15 

3.4 The height-AGB model residuals vs. the height-DBH model residuals ................. 17 

3.5 The LiDAR-AGB model residuals vs. the height-DBH model residuals ............... 17 

3.6 Simulation ............................................................................................................... 18 



	  
	  

iv	  

Chapter 4 Results ............................................................................................................ 23 

4.1 Biomass calculations ............................................................................................... 23 

4.2 The height-DBH models and the height-AGB models ............................................ 23 

4.3 LiDAR-AGB models ............................................................................................... 25 

4.5 Simulation ............................................................................................................... 28 

4.5.1 Simulated plot establishment and AGB calculation .......................................... 28 

4.5.2 Constructions of AGB models with pseudo LiDAR metrics ............................ 29 

Chapter 5 Discussion ...................................................................................................... 31 

5.1 Impacts of tree allometry on LiDAR model performance ...................................... 31 

5.2 Potential of increasing LiDAR-based AGB model accuracy .................................. 33 

5.3 Tree height in estimates of AGB ............................................................................. 34 

5.4 Limitations ............................................................................................................... 34 

Conclusion ....................................................................................................................... 35 

References ........................................................................................................................ 37 

	   	  

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  
	  

v	  

List of Tables 

Table 2.1 Major species present in this study area .............................................................. 5 

Table 3.1 Parameters for Jenkins aboveground biomass estimates .................................. 11 

Table 3.2 Parameters for Jenkins-defined foliage ratio calculations ................................ 11 

Table 3.3 Equations of FIA tree bole volume calculation for seven involved species ..... 13 

Table 3.4 Specific gravity of bark and wood for seven involved species ......................... 14 

Table 3.5 LiDAR metrics .................................................................................................. 15 

Table 4.1 Descriptive statistics for field AGB estimates .................................................. 23 

Table 4.2 Results of the LiDAR-AGB model construction .............................................. 26 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  
	  

vi	  

List of Figures 
	  
Figure 1.1 Relationships among tree height, DBH and allometrically derived AGB ......... 4 

Figure 2.1 Location and topogragphy of the study area ..................................................... 6 

Figure 2.2 Sampling design ................................................................................................ 8 

Figure 3.1 Simulation process ........................................................................................... 19 

Figure 3.2 Process of Determing locations of simulated trees .......................................... 20 

Figure 4.1 The fitted height-DBH model and the fitted height-AGB models .................. 24 

Figure 4.2 Results of residual analysis of height-DBH model and height-AGB model ... 25 

Figure 4.3 Observed AGB vs. the LiDAR-AGB model estimates ................................... 26 

Figure 4.4 Results of residual analysis of the height-DBH model and the LiDAR-AGB 

models ........................................................................................................................ 27 

Figure 4.5 Simulated forest stands .................................................................................... 28 

Figure 4.6 Trends of height-DBH model parameters for simulated forest stands ............ 29 

Figure 4.7 Comparisons of trends of the LiDAR-AGB model parameters ...................... 30 

 
 
 
 
 
 
 
 
 
 
 
 
 



	  
	  

1	  

Chapter 1 Introduction 
	  

Global scale carbon balance affects change in climate. Forests are large terrestrial carbon 

sinks, and large proportions of carbon are stocked in forests as biomass(Myneni et al., 2001; 

Pacala et al., 2001; Pan et al., 2011). Tree aboveground biomass (AGB) is the total amount of 

living aboveground organic matter present in trees, including leaves, twigs, branches, main bole 

and bark (Brown 1997). Estimates of forest AGB plays an important role in estimating carbon 

stocks. Destructive harvest of trees provides the most accurate AGB estimates, but this approach 

is time- and labor- intensive and unrealistic in most cases. Due to widely present tree allometric 

relationships among tree characteristics (AGB, stem diameter, tree height, crown size etc.), field 

biomass is typically estimated through the construction and use of allometric models, which are 

developed with destructive AGB measurements and tree structural variables. Tree DBH is 

considered the most important variable in estimating tree aboveground biomass. Therefore, 

DBH-based equations (e.g., AGB = 𝑎!𝐷𝐵𝐻!!, where 𝑎! and 𝑎! are fitted coefficients) have been 

established for AGB estimates at global scales (Bartelink, 1996; Basuki et al., 2009; Jenkins et 

al., 2003; Nelson et al., 1999; Ter-Mikaelian and Korzukhin, 1997; Zianis and Seura, 2005).  

However, even with the use of allometric models, it is infeasible to measure every 

individual tree at large spatial scale. Remote sensing instruments enable biomass estimates at 

large scale, overcoming the difficulties of ground sampling (Gibbs et al., 2007). Previous studies 

have demonstrated that LiDAR is a reliable method to estimate AGB, because LiDAR is able to 

accurately estimate stand’s characteristics (basal area, canopy mean height, tree density, stem 

volume, crown diameter etc.) (Lefsky et al. 1999; Hyde, Nelson et al. 2007; Chen et al. 2012). 

These forest structural characteristics are typically highly correlated with AGB. Different LiDAR 
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systems successfully estimated AGB at the stand level, including airborne waveform LiDAR 

(Lefsky, Cohen et al. 1999; Anderson, Martin et al. 2006; Hyde et al. 2006), airborne discrete-

return LiDAR (Lim et al. 2003; Patenaude et al. 2004; Næsset and Gobakken 2008; Asner et al. 

2009; Zhao et al. 2009), and airborne profiling LiDAR (Bruneau et al. 2001; Nelson et al. 2004).  

Regression analysis between field AGB estimated with traditional allometric approaches 

and LiDAR canopy height indices is the most common way to develop the LiDAR-AGB models. 

There is considerable variation in the coefficient of determination (𝑅!), a common measure of 

the goodness of fit, of LiDAR-AGB models across regions. The reported 𝑅! can vary from 0.56 

to 0.96 (Asner et al., 2012; Hall et al., 2005; Means et al., 1999, 1999; Drake et al., 2003; 

Patenaude et al., 2004). The variations of 𝑅! could be related to many different factors such as i) 

whether lidar is integrated with other remotely sensed data (Anderson et al., 2008; Koetz et al., 

2007; Lefsky et al., 2005; Swatantran et al., 2011), ii) statistical modeling approaches (Chen et 

al., 2010; Dalponte et al., 2008; Garcıa-Gutiérreza et al.; Gleason and Im, 2012),iii) lidar sensor 

types (Zolkos et al., 2013), iv) field plot size (Asner et al., 2012; Mascaro et al., 2011; Zolkos et 

al., 2013), and v) forest types (Zolkos et al., 2013; Nelson et al., 2007; van Leeuwen et al., 2011).  

Since AGB has been estimated via allometric methods with individual tree measurements (e.g., 

DBH and height) as inputs, it is expected that allometric methods will have large impacts 

LiDAR-based AGB model prediction. However, surprisingly, few studies have studied the 

impacts of allometric methods on LiDAR-based AGB model 𝑅! (Clark and Kellner, 2012; Zhao 

et al., 2012). Better understanding of sources causing variation in the LiDAR-AGB model 

performance is important to add knowledge of underlying mechanisms that hinder improvements 

of the LiDAR-AGB model performance, and plays an important role in error analysis of LiDAR-

based AGB estimates.  
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𝑅! is calculated as [1]1, where 𝑦! is the observed value, 𝑦 is the mean of the observed 

value, and 𝑦! is the estimated value from regression model. For a given group of samples, 𝑦! and 

𝑦 are observed values, thus 𝑅! is primarily determined by the sum of squared residuals (SSR). 

Large values of SSR will lead to small value of 𝑅!. Using DBH-based AGB allometric models to 

estimate field AGB (see, e.g., Fig. 1.1b) will likely lead to large values of SSR in LiDAR-based 

AGB models (see Fig. 1.1c) as a result of variations in tree height at a given DBH (Fig. 1.1a), 

which in turn are reflected in the residuals —— observed minus model predicted value —— of tree 

height-DBH regression model. Because LiDAR measurements are mainly related to canopy 

vertical profile, variations in AGB at given tree height are hard to be detected by LiDAR. Thus, 

tree height-DBH model residuals are expected to impact the accuracy of the LiDAR-AGB model 

estimates.  

 Exactly how and to what extent tree level height-DBH allometric model residuals impact 

the plot level LiDAR-AGB models remain poorly understood. Large variance of height-DBH 

model residuals would challenge LiDAR’s ability of estimating field AGB, because it increases 

the difficulty of canopy vertical variables to associate with DBH-based AGB estimates. Adding 

tree height in field AGB estimates is supposed to reduce the impacts of height-DBH model 

residuals on LiDAR model performance, due to including AGB variation at given tree height. 

Incorporating both DBH and height as inputs in field AGB estimates directly enhances the 

association between field AGB estimates and LiDAR canopy metrics (Zhao et al., 2012).  

The objective of this study was to address two primary questions: 1) how do the height-

DBH model residuals impact the goodness of fit of the LiDAR-AGB models? And 2) how does 

using different allometric models for field AGB estimates influence the LiDAR-AGB model 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  𝑅!   =   1− (!!!!!)!

!
!!!

(!!!!)!!
!!!

,	  
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performance? To explore answers of these issues, a case study was conducted in a temperate 

conifer forest in Sierra Nevada, California. Two different allometric model systems were applied 

to generate field AGB estimates for developing the LiDAR-AGB models. A simulation approach 

was applied to test the impacts of the height-DBH model residuals on the LiDAR-AGB model 

performance.  

	  

Figure 1.1	  a: DBH vs. height; b: DBH-based tree aboveground biomass estimation model; c: tree 
height vs. tree aboveground biomass. 

a

cb
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Chapter 2 Study area and data 
	  

2.1 Study site 

This study site is located in the United States Forest Service Sagehen Creek Experimental 

Forest in California, which covers approximately 3925 ha and is on the eastern slope of the 

Sierra Nevada approximately 32 km north of Lake Tahoe (Fig 2.1). Conifer species present at 

this study site include white fir (Abies concolor), red fir (Abies magnifica), mountain hemlock 

(Tsuga mertensiana), lodgepole pine (Pinus contorta), Jeffrey pine (Pinus jeffreyi), aspen 

(Populus tremuloides), and western whitepine (Pinus monticola) (Table 2.1). Non-forested areas 

include fens, wet and dry montane meadows, and shrub fields. Elevation ranges from1862 m to 

2670 m with slopes averaging 18% but can reach 70% in parts of the watershed (Chen et al., 

2012). 

Table 2.1 Major species present in this study area.	  

Species Common name Species code 

Abies concolor White fir ABCO 

Abies magnifica California red fir ABMA 

Tsuga mertensiana Mountain hemlock TSME 

Pinus contorta Lodgepole pine PICO 

Pinus jeffreyi Jeffrey pine PIJE 

Populus tremuloides Aspen PILA 

Pinus monticola Western whitepine PIMO 
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Figure 2.1	  Location of the study area. Top-right: Aerial photographs draped over the LiDAR 
DEM. Bottom-right: A hillshade of the LiDAR DEM (Chen et al., 2012).	  
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2.2 Data 

2.2.1 Field data 

A systematic sampling grid with sampling density 125 m was established (Fig 2.2). The 

locations of sampling plots were finally determined by a handheld Garmin eTrex recreational 

GPS with horizontal accuracy of 3 to 11 m for field sampling. Total 79 plots with both a 

recreational GPS and a differential GPS geo-reference were finally selected to construct the 

LiDAR-AGB models. The area of each circular sampling plot is 0.05 ha. All the field 

measurements were conducted by Chen et al., (2012) between 2004 and 2005.  

At each plot, all trees greater than 5 cm in DBH were measured with a nested sampling 

design. Tree species, DBH, tree height, crown class crown ratio and vigor are measured. Vigor 

was defined into six different classes: 1) healthy trees with no visible defects, 2) healthy trees 

with minimal damage or defect (broken top/dead top, abnormal lean, etc.), 3) live trees that are 

near death or will be dead in the next five years, 4) recently dead trees with little decay and that 

retain their bark, branches and top, 5) trees that show some decay and have lost some bark, 

branches and may have a broken top, and 6) extensive decay and missing bark and most 

branches and have a broken top. The first three vigor classes are for live trees and the last three 

are for dead trees. 

A total of 1393 trees, identified as dominant, co-dominant and intermediate crown classes, 

are finally used to develop the LiDAR-AGB models. These trees compose the overstory canopy, 

which are easily measured by LiDAR signals. Dead trees and suppressed trees are excluded from 

the LiDAR-AGB model constructions.  

2.2.2 LiDAR data 

LiDAR data were collected from September 14 to 17, 2005 for the study area using an 
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Optech ALTM 2050 system on an airplane flyingat an altitude of ~800 m and average velocity of 

260 km per hour. The ALTM 2050 acquired up to three returns per pulse at a pulse frequencyof 

50 kHz, scan frequency of 38 Hz, and a maximum scanangle of 15°, creating a swath width of 

~580 m. The point density is about 2–4 returns per square meter. Optech, Inc. rates the RMSE 

precision of individual point locations surveyed by the ALTM 2050 as ±15 cm vertical and ±50 

cm horizontal (Chen et al., 2012). 

 

Figure 2.2 Field plots of vegetation measurements. The smaller dots indicate the plots located 
with a recreational GPS. The larger dots indicate the plots located with both a recreational GPS 
and a differential GPS. The thick line is the boundary of the vegetation (Chen et al., 2012).  
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Chapter 3 Methods 
	  
 

When the height-DBH model is perfectly fitted, LiDAR canopy height indices are 

expected to perform best in explaining variations of field AGB. In reality, residuals exist in the 

height-DBH model; thus, LiDAR’s ability of predicting field AGB estimates is limited. Tree 

level height-DBH model and the plot level LiDAR-AGB models were constructed with simple 

linear regression processes at log-transformed scale. Root mean square residual (RMSR) was 

used to aggregate tree level height-DBH model residuals to plot level residual measure. 

Relationships between RMSR of the height-DBH model and absolute residuals of the LiDAR-

AGB models were examined. Positive relationships between them indicate that the height-DBH 

model residuals are associated with errors of the LiDAR-AGB models. Furthermore, a 

simulation approach was employed to reveal the general pattern that how the height-DBH model 

residuals influence the LiDAR-AGB model performance.  

Two sets of LiDAR-AGB models were compared: models constructed from field AGB 

estimates merely based on DBH, and models constructed from field AGB estimates based on 

both DBH and height. I used two AGB allometric model systems to derive field AGB estimates: 

Jenkins methods (Jenkins et al., 2003) and component ratio methods (CRM) (Heath et al., 2008). 

The former is a DBH-based AGB allometric model system, which was developed for national-

wide tree AGB estimates. The latter is consistent with Jenkins AGB allometric system in 

definition of tree components (bark, bole, branch, and foliage), and it also includes species- and 

site-specific volume calibration and species specific gravity in the biomass calculation.  
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3.1 Field biomass calculation 

In this study, only woody tree biomass was considered, including tree trunk, bark, 

branches and stump. Foliage biomass was excluded from calculations. First, individual tree AGB 

was calculated. Then, plot level AGB density (Mg/ha) was the summation of individual tree 

biomass in that plot divided by the plot area:  

AGB!"#$   =   
!"#!!

!!!
!"#$!"#$

	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq	  3.1	  

Where 𝐴𝐺𝐵!"#$ is the plot level aboveground biomass density (Mg/ha), 𝐴𝐺𝐵! is the aboveground 

biomass of ith tree in the plot, n is the number of trees in the plot, and 𝐴𝑟𝑒𝑎!"#$ is the area of the 

plot.  

3.1.1 Jenkins equation system 

General form of Jenkins AGB allometric models are described as: 

AGB = e!!!!!!"  (!"#)                                Eq 3.2 

where AGB is the tree total aboveground biomass, e is the base of the natural logarithm, β! and 

β! are parameters that are dependent on specific tree species group, DBH is diameter at breast 

height, and ln is natural logarithm.  

Woody AGB is calculated as total AGB minus foliage AGB. Tree bole, branches and 

stump are different wood components. Tree component ratio is calculated as follows: 

ratio =   e!!!!
!!!
!"#                                Eq 3.3 

where ratio is the ratio of a component to total aboveground biomass for trees, DBH is diameter 

breast height, e is the base of the natural logarithm, β′! and β′! are model coefficients that are 

determined by specific tree components.  

Woody AGB is calculated as follows: 
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𝐴𝐺𝐵!""#$ = 𝐴𝐺𝐵 ∗ (1− 𝑟𝑎𝑡𝑖𝑜!"#$%&')  

where 𝐴𝐺𝐵!""#$ is the woody AGB, and 𝑟𝑎𝑡𝑖𝑜!"#$%&' is the foliage ratio.    

Table 3.1	  Parameter s for Jenkins aboveground biomass estimations. 

Species code 
Parameter 

𝛽! 𝛽! 

ABCO, ABMA,TSME -2.5384 2.4814 

PICO, PIJE, PIMO -2.5356 2.4349 

POTR -2.2094 2.3867 

 

	  
Table 3.2	  Parameters and equation for estimating foliage ratios of total aboveground biomass for 
hardwood and softwood species. 

 

Species code Biomass component 

Parameter 

𝛽′! 𝛽′! 

Hard wood 

(POTR) 
Foliage –4.0813 5.8816 

Softwood 

(ABCO,ABMA,PICO 

PIJE,PIMO) 

Foliage -2.9584 4.4766 
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3.1.2 Component ratio methods 

Component ratio methods require the use of FIADB defined tree volume for the Pacific 

Northwest (Zhou and Hemstrom, 2010) and tree component ratios from Jenkins. The calculation 

process of CRM is as follow:  

For trees > 5 inches DBH, 

𝐴GB   = DryBio!"#$   + DryBio!"#$% + DryBio!"#       Eq 3.4 

where AGB is tree aboveground biomass, DryBio!"#$ is the dry biomass from tree bole including 

wood and bark of the main stem of tree that also defines sound volume, DryBio!"#$% is tree 

aboveground biomass from ground level to 1 foot stump, and DryBio!"# is the biomass from top 

and branches of the tree.  

For trees < 5 inches DBH, 

DryBio!"#$%&'= (BioSap!"#$%#& – Foliage)* (1-Jenkins_Sapling_Adjustment)         Eq 3.5 

Where DryBio!"#$%&'is the aboveground biomass of the sapling tree, BioSap!"#$%#&is the 

aboveground biomass calculated using Jenkins model, Foliage is Jenkins et al. 2003 defined 

foliage biomass, and Jenkins_Sapling_Adjustment is the	  factor	  that	  adjusts	  Jenkins biomass for 

trees < 5 inches DBH (Heath et al., 2008). Table 3.4 and Table 3.5 are the FIA defined regional 

tree bole volume calculations and wood specific gravities for the species in this study, 

respectively. 

DryBio!"#$(Kg) = (VOLCFSND x 62.4 x SG_BARK x BRK_VOL_PROP) + (VOLCFSND x 

62.4 X SG_WOOD) * 0.4536  

where VOLCFSND is the volume of tree bole, BRK_VOL_PROP is Jenkins define bark ratio, 

SG_BARK is specific gravity of bark, SG_WOOD is the specific gravity of wood. 
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Top component ratio = (Jenkins total aboveground – Jenkins merchantable – Raile stump – 

Jenkins foliage) / (Jenkins merchantable)  

where Raile stump (Kg) = DBH*DBH* RAILE_STUMP_B1 and Stump ratio = Raile stump/ 

Jenkins merchantable.  

Thus, final tree aboveground biomass is defined as: 

𝐴GB   = DryBio!"#$   + DryBio!"#$% + DryBio!"#  

          = DryBio!"#$*(1 + Top component ratio + Stump component ratio).  

	  
Table 3.3	  FIA tree bole volume calculations for seven involved species (Zhou and Hemstrom, 
2010).  

Species   Equations  

ABCO,ABMA 𝑒(!!.!"#$!!.!"##∗!"#$%!!.!"#"∗!"#$) 

PICO   10(!!.!"##$"!!.!"#$%"∗!"#!"!"#!!.!"#$$%∗!"#!"!")  

PIJE,PIMO   10(!!.!"##$!!!.!"!#$%∗!"#!"!"#!!.!"#$"%∗!"#!"!")  

POTR   10(!!.!"#"!!!.!"#$%"∗!"#!"!"#!!.!"#$%&∗!"#!"!")  

TSME   0.001106485 ∗ 𝐷𝐵𝐻!.!"#$#%& ∗ 𝐻𝑇!.!"##$!%  
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Table 3.4 Specific gravity of bark and wood for seven involved species (Zhou and Hemstrom, 
2010). 

	  

3.2 LiDAR processing 

First, LiDAR point cloud was filtered and separated into ground and non-ground returns 

(Chen et al., 2007). The ground return was used to develop a Digital Elevation Model (DEM) of 

1m cell size. Canopy height was derived as the subtractions of DEM cell elevation from 

individual points’ z values. Multiple LiDAR height metrics were calculated (Table 3.6).  

 

 

 

 

 

 

 

 

Species Bark specific gravity Wood specific gravity 

ABCO 0.56 0.37 

ABMA 0.44 0.36 

PICO 0.38 0.38 

PIJE 0.36 0.37 

PIMO 0.47 0.36 

POTR 0.5 0.35 

TSME 0.5 0.42 
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Table 3.5 LiDAR metrics (Chen et al., 2012). 

LiDAR	  metrics	   Description	  

𝐻𝑇!"#$,𝐻𝑇!"#$ ,𝐻𝑇!"# 	   Mean,	  standard	  deviation,	  skewness,	  kurtosis	  of	  height	  

ofLiDAR	  points	  

𝑝!!"!, 𝑝!!"!",… , 𝑝!!"	   Proportion	  of	  LiDAR	  points	  within	  height	  bins	  (0	  to	  5	  m,	  

5	  to10	  m,	  …,	  ,	  and>50	  m)	  

ℎ!, ℎ!",… , ℎ!!""	   Percentile	  height	  of	  LiDAR	  points	  

𝐻𝑇!"#$ 	   Quadratic	  mean	  height	  of	  LiDAR	  points	  

	  
	  

3.3 Nonlinear statistical modeling 

McMahon (1971) found the power model (L   ∝ D!) could represent the general size and 

shape growing relationships between length and diameter of an organism (McMahon, 1971). 

Many studies constructed DBH-height models with linear regression analysis by logarithmically 

transforming DBH and tree height (Bartelink, 1996; Niklas, 1995; O’Brien et al., 1995). The tree 

height-DBH model was constructed with tree height as the independent variable and DBH as the 

dependent variable. At the individual tree level, height-AGB models were constructed to 

investigate if tree height is a strong parameter for AGB estimates. If individual tree height is a 

strong parameter of AGB, LiDAR canopy vertical measurements are expected to be powerful in 

predicting plot AGB as well.  

For developing the LiDAR-AGB models, LiDAR mean canopy height (MCH) and 

quadratic mean canopy height (QMCH) are selected as the independent variables, since they are 

found to be most powerful parameters to associate with field AGB estimates (Asner et al., 2012; 

Lefsky et al., 1999; Means et al., 1999). Previous study found LiDAR MCH and QMCH were 
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nonlinearly correlated to allometrically derived AGB estimates (Asner et al., 2012). Thus, the 

LiDAR-AGB models were also developed with simple linear regression at log-transformed scale.  

Additionally, since DBH is the major variable correlated with tree age, I also constructed 

DBH-height models, in which DBH was the predictor and tree height was response variable. 

DBH-height model would be used to generate tree height for forest stands simulation. 

All the nonlinear models were constructed with linear regression between logarithmically 

transformed explanatory and response variables as follows: 

ln(𝑌) =   𝛼! + 𝛼! ∗ ln 𝑋 +   𝑒! 𝑒!~  𝑁(𝑂, 𝛿!)                 Eq 3.6 

where Y is the response variable, and X is the explanatory variables, 𝛼! and 𝛼! are the estimated 

parameters, and 𝑒! is the residual of the predictions.  

Root mean square error (RMSE) and r! are two straightforward measures for the 

goodness of fit of linear models. The best model was evaluated with highest r! and lowest 

RMSE.  

RMSE   =    (!!!!!)!!
!!!

!

2
                    Eq 3.7 

where 𝑦! is the predicted value, 𝑦! is the field AGB value, and n is the numbers of observations. 

Jenkins and CRM allometric models generate different AGB estimate. Thus, simply using RMSE 

to compare model performances is inappropriate. Instead of evaluating model performance with 

RMSE, I used relative RMSE to evaluate the model performance. Relative RMSE is given as 

RMSE/𝑦, where 𝑦 is the mean of the field AGB values. Fitted models were further validated 

with leave-one-out validation. All the predicted values were back transformed and multiplied by 

a correction factor (CF) to address the issue of heteroscedastic variance of prediction errors 

(Baskerville, 1972) .  The correction factor is s given by CF =   e!"#/!, where MSE isthe mean 

square error of the regression model.  
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3.4 The height-AGB model residuals vs. the height-DBH model residuals 

Without tree height as an input, trees with same DBH are estimated to contain the same 

amount of AGB. Because there are large variations in tree height at given DBH, these variations 

cause residuals of height-AGB model. I expect the tree level height-DBH model would generate 

accumulative effect on height-based AGB estimates at plot level. I aggregated the tree level 

height-DBH and height-AGB model residuals to plot level residual measures by using root mean 

square residuals (RMSR), which are expressed as following:  

𝐑𝐌𝐒𝐑𝐃𝐁𝐇𝐢 =   
(𝑫𝑩𝑯𝒋!𝐃𝐁𝐇𝐣)𝟐𝐧

𝐣!𝟎

𝐧
                              Eq 3.8 

RMSR!"#!   =   
(!"#!!!"#!)!!

!!!

!
                              Eq 3.9 

where RMSR!"#! is the root mean square residual of DBH at plot i, DBH! is the estimated DBH 

of tree j in plot i from the height-DBH model, DBH! is the field-measured DBH. RMSR!"#! is 

the root mean square residual of AGB of plot i, AGB! is the estimated AGB of tree j in plot i, and 

𝐴𝐺𝐵! is the field-estimated AGB from Jenkins and CRM allometric models.  

Correlation between RMSR!"# and RMSR!"# reflects if height-DBH model residuals 

influence on plot-level height-based AGB estimates. Positive relationship between RMSR!"# 

and RMSR!"# indicates that height-DBH model residuals impact height-based AGB estimates. 

The greater the correlation denotes the larger impact of height-DBH model residuals on height-

AGB model performance.  

3.5 The LiDAR-AGB model residuals vs. the height-DBH model residuals 

I further investigate impact of height-DBH model residuals on the LiDAR-AGB model. 

Accumulative height-DBH model residuals within a plot are supposed to cause residuals of 

LiDAR model.  The absolute value of residuals of the LiDAR-AGB models are expressed as: 
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Resid!   =    |AGB! − AGB!|                             Eq 3.10 

where Resid! is the absolute value of residual of LiDAR-AGB models constructed with Eq 3.6 

for plot i. The correlation between RMSR!"#(Eq 3.8) and Resid! reflects the impact of height-

DBH allometry on performance of the LiDAR-AGB models. Positive correlation between them 

suggests that deviation of tree DBH from the fitted value of DBH-height model will lead to 

residuals of the LiDAR-AGB models.  

3.6 Simulation 

The increasing variance of residuals would lead to decrease the DBH-height model fit. I 

assume that the increasing variance of the DBH-height model residuals will cause reduction in 

the LiDAR-AGB model performance. Section 3.4 and section 3.4 only detect whether the height-

DBH model residuals are correlated with residuals of the LiDAR-AGB models, however, these 

approaches do not test the hypothesis that increasing variances of residuals of logarithmically 

transformed DBH-height model would lead to decrease in 𝑅! of the LiDAR-AGB models. A 

simulation approach was applied to investigate how the log-transformed DBH-height model 

impacts LiDAR-AGB model performance.  

Forest stands with different variances of the DBH-height model residuals were 

established (see Fig 3.1). Then, pseudo LiDAR point clouds were generated from the canopy 

surface. Finally, the LiDAR-AGB models were constructed from the AGB calibration of 

simulated stands and the canopy height indices derived from pseudo LiDAR point clouds. The 

simulation was coded with JAVA language under Eclipse Integrated Development Environment.  
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Figure 3.1 Forest stand and LiDAR point cloud simulation process. *refer the model general tree 
height from DBH, error term 𝒆𝟎is controlled as a random number from 𝑵(𝟎,𝑹), R is the 
variance of the normal distribution. The magnitude of R is controlled to simulate the dispersion 
of the error. R represents the general deviations of tree height from fitted value of the model. 
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Step 1: Deciding locations of trees 

Simulated tree DBH and number of trees in a plot were determine by field measured 

Data. Since field tree location information was missing, for each plot, the first tree with was 

planted on a random location. Distance between any pairs of trees is determined with a rule that 

distance!" ≥ 1.5 ∗   (DBH! + DBH!), where distance!" is the distance between ith and jth trees in 

the same plot, DBH! and DBH!  are  the  diameter  at  breast  height  of  ith  and  jth  trees;  then, I 

move to next tree, till all trees’ locations were determined (Fig 3.2).   

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 3.2 Process of setting locations for simulated trees. 
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Step 2: Estimating tree crown size and tree height 

Crown size was determined by the crown positions. Crown sizes for dominant and co-

dominant trees were determined with available models from Gill et al. (2001). Crown sizes for 

intermediate trees were determined with USDA Forest Vegetation Simulator described in Keyser 

and Dixon (2008). Tree crown was defined as symmetrical cone. Tree height was determined 

from the DBH-height model and plus a randomly generated error 𝑒! (𝑒!~𝑁  (0,𝜎!)). Crown ratio 

was obtained from field sampling. Total biomass of each plot was calculated with both Jenkins 

and CRM equations. The canopy surface was then derived from the established trees. 

Step 3: Generate pseudo LiDAR point clouds 

Pseudo LiDAR point clouds were collected from the simulated canopy surface with a 

density two to four returns per square meter. LiDAR MCH and QMCH were derived from the 

pseudo point clouds. All the returns were classified as ground returns and foliage returns. Thus, 

MCH and QMCH were calculated as: 

𝑀𝐶𝐻 = !!!
!
!!!
!

                   Eq 3.12 

𝑄𝑀𝐶𝐻 = !!!
!!

!!!
!

                   Eq 3.13 

where n is the total numbers of returns, ℎ𝑡! is the height of ith element.  

Step 4: Constructing LiDAR-AGB models 

Field AGB estimates were calculated with Jenkins and CRM systems respectively. And 

Four LiDAR-AGB models were constructed by exhaustively combining of field AGB 

calibrations (Jenkins & CRM) and LiDAR metrics (MCH & QMCH). 
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Step 5: Changing the variance of the DBH-height model residuals 

For each time, variance (𝜎!!) of the log-transformed DBH-height model residuals was 

increased by 0.05. Tree height was limited under 45 m, which was maximum tree height 

measured in this study area. Without controlling the upper limit of tree height, the increasing 𝜎!! 

would not lead to change of slope and intercept of the log-transformed DBH-height model. 

However, the increasing 𝜎!! finally generated extremely high value of tree height. The 

controlling upper limit of tree height will lead to downward (upward) change of slope (intercept) 

of log transformed height-DBH relationship. To eliminate effect of random locations of trees and 

canopy overlapping, 1000 realizations of simulated forest stands were created by repeating step 1 

to 4, under each 𝜎!! of the log-transformed DBH-height model.  

 

 

 

	  
	  
	  
	  
	  

  



	  
	  

23	  

Chapter 4 Results 
	  

4.1 Biomass calculations 

As it shows in Table 4.1, without considering the height variation, Jenkins generated 23% 

higher mean plot woody AGB estimates than CRM. Plot estimated with most abundant 

aboveground biomass had AGB density 699 Mg/ha and 627 Mg/ha from Jenkins and CRM, 

respectively.  

 

            Table 4.1 Descriptive statistics for field AGB estimates. 

	  

4.2 Height-DBH models and height-AGB models 

As it shows in the Fig 4.1 b and c, the height-Jenkins model generate larger variance of 

the residuals than the height-CRM model, and the greater variance is probably introduced by 

lack of AGB variation at given tree height.  

At plot level, both RMSR!"#(!"#$%#&) and RMSE!"#(!"#) are significantly correlated with 

RMSR!"#, implying the height-DBH model residuals influence accuracy of the height-AGB 

model estimates. The higher correlation between RMSR!"# and RMSR!"# suggests larger 

accumulative effect of the height-DBH model residuals on the height-AGB model performance. 

Expectedly, because of absence of tree height variation in AGB estimates, greater R! of 0.71 is 

found in RMSR!"#(!"#$%#&) vs. RMSR!"#. In comparison, R! of RMSR!"#(!"#) vs. RMSR!"# is 

weaker with a value of 0.59, suggesting applying CRM in AGB estimates reduces the scatter of 

Estimation	  Method	  
Total	  aboveground	  biomass	  

Mg/ha	  
Mean	   s.d.	   Max	   Min	  

Jenkins	   223.46	   147.99	   699.30	   19.04	  

CRM	   181.81	   123.54	   626.56	   12.19	  
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relationship between tree height and AGB. Since tree height and LiDAR metrics are canopy 

vertical structure, Therefore, the increasing association between tree height and CRM AGB 

estimates is expected to enhance LiDAR’s ability of predicting field AGB estimates.  

	  

Figure 4.1 a: the DBH-height model; b: the Jenkins AGB-height model; c: the CRM AGB-height 
model. 

a

b c
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Figure 4.2	  Relationships between root mean square residual of DBH-height models and AGB-
height models. Upper: AGB model derived from Jenkins allometric models; lower: AGB model 
derived from CRM allometric models. 

	  
	  

4.3 LiDAR-AGB models 

Four LiDAR models were constructed (Table 4.2). The results show that QMCH is a 

better parameter of field AGB derived from both Jenkins and CRM allometric models. Model 

CQ outperformed model JQ, producing higher 𝑅! (0.82 vs. 0.76) and lower relative RMSE (0.29 

vs. 0.37). As it shows in Fig 4.2, Although regression lines of observed vs. predicted for four 

models were not significantly different from the identical line (1:1), the variances of the model 

residuals were lower in model CQ (CM) than model JQ (JM).  
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Table 4.2 Coefficients LiDAR biomass estimation model (𝑙𝑛𝐴𝐺𝐵= 𝑎!+𝑎!*lnℎ𝑡!"#$%). 

Note: JM is model developed with LiDAR mean canopy height and Jenkins AGB estimation; 
CM is model developed with LiDAR mean canopy height and CRM AGB estimation; JQ is 
model developed with LiDAR quadratic mean canopy height and Jenkins AGB estimation; CQ is 
model developed with LiDAR quadratic mean canopy height and CRM AGB estimation. 
 

	  
Figure 4.3	  a: Jenkins field-measured AGB against LiDAR aboveground biomass estimates; b: 
CRM field-measured AGB against LiDAR aboveground biomass estimates; red square indicates 
aboveground biomass estimates of the LiDAR-MCH-based models, blue diamond indicates 
aboveground biomass estimates of LiDAR-QMCH-based models, dash line is 1:1 reference line.  

	  
	  
	  
	  
	  
	  
	  
	  
	  

a b

Model 𝑎! Standard 
Error P-value   𝑎! Standard 

Error P-value 𝑅! RMSE 
(Mg/ha) 

Relative 
RMSE 

JM 3.4900 0.1292 <2e-16 1.0429 0.0748 <2e-16 0.716 99.142 0.4437 

CM 3.1518 0.1223 <2e-16 1.1238 0.0710 <2e-16 0.773 72.097 0.3929 

JQ 1.7007 0.2236 5.8e-11 1.5665 0.0988 <2e-16 0.766 81.682 0.3655 

CQ 1.2237 0.2048 5.4e-07 1.6883 0.0905 <2e-16 0.820 53.896 0.2937 
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Plot level RMSE!"# was significantly correlated with absolute value of the LiDAR-AGB 

model residuals. 𝑅!  was stronger in AGB models derived from Jenkins AGB estimates (0.16 & 

0.20) than AGB models derived from CRM AGB estimates (0.10 & 0.17) (Fig 4.6), suggesting 

that the height-DBH model residuals have larger impact LiDAR-AGB models derived from 

Jenkins AGB estimates. The correlations were also stronger in AGB models derived from 

QMCH. This is probably because more weights are given to each height elements, and the 

impact of the height-DBH model residuals was amplified.  

	  

Figure 4.4	  Absolute value of the LiDAR-AGB model residuals vs. root mean square height-
DBH model residuals.  
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4.5 Simulation 

4.5.1 Simulated plot establishment and AGB calculation 

Plots with different variance of the log-transformed DBH-height model residuals were 

established (Fig 4.5). Increasing variance of the log-transformed DBH-height model residuals led 

to change in slope, intercept and R! of the fitted model (Fig 4.6). When 𝜎!!from 0.05 to 0.5, 

mean R! decease from 0.98 to 0.28, the slope drop from 0.71 to 0.62, and the intercept increase 

from 0.3 to 0.60. 

 

 

Figure 4.5 Simulated forest sampling plot with different variability of height-DBH relationship. 
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Figure 4.6 Trends of slopes, intercepts and 𝑹𝟐of lnHT vs. lnDBH, as the 𝝈𝒆𝟎 increases. Each 
point indicates the mean of 1000 realizations. 

	  

4.5.2 Constructions of AGB models with pseudo LiDAR metrics 

The model comparisons were conducted between models constructed with different field 

AGB estimates and different LiDAR canopy height indices. I mainly compared two aspects of 

models’ sensitivities: 1) the goodness of fit and 2) stability of estimated slopes and intercepts.  

As variance of the DBH-height model residuals increased from 0.05 to 0.5 at log-

transformed scale, relative RMSE of model JQ increased from 23% to 45% (Fig 4.7 d). In 

contrast, relative RMSE of model CQ only increased from 23% to 29%. Similar pattern was 

found in comparison of model JM and CM. Relative RMSE of model JM increased from 36% to 

48%, and relative RMSE of model CM kept constant around 34% (Fig 4.7 d).  These patterns 

demonstrated that performance of LiDAR-AGB models constructed based on Jenkins AGB 

estimates was more sensitive to the decreasing DBH-height model fit. Furthermore, model CM 

also show strong stability that the slope and intercept of model CM were not strongly influenced 

by the changing slope and intercept of the log-transformed height-DBH model. Similar trends are 

also found in QMCH-based models. Thus, LiDAR-AGB models constructed based on CRM 

AGB estimates were not only robust in their model performance but also stable in the estimated 

a b c
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parameters.  

 

Figure 4.7 Trends of parameters of LiDAR-AGB models, as the 𝝈𝒆𝟎of lnHT-lnDBH relationship 
increase, a: slope, b: intercept, c: 𝑹𝟐 and d: relative RMSEs. Every point represents average of 
1000 realizations at given 𝝈𝒆𝟎. Red solid line indicates model JM; red dashed line indicates 
model JQ; blue solid line indicates model CM, blue dashed line AGB model CQ.  
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Chapter 5 Discussion 
 

This study aims at investigating the underlying mechanisms driving the variation in the 

LiDAR-AGB model performance. Previous studies have extensively examined the sources 

causing the change in the LiDAR model performance. Integration LiDAR data with optical 

imageries could improve the AGB estimate results (Anderson et al., 2008; Koetz et al., 2007; 

Lucas et al., 2008; Swatantran et al., 2011), because the latter could provide canopy biophysical, 

chemical and geometric properties, which are highly related to the tree productivity. Increasing 

plot size could reduce errors of LiDAR-based AGB estimates (Asner et al., 2012; Mascaro et al., 

2011; Zolkos et al., 2013). Applications of machine learning approaches could also increase 

LiDAR performance in AGB estimates, because machine learning approaches take the internal 

correlations and underlying nonlinearity among canopy structural variables into account (Chen et 

al., 2010; Dalponte et al., 2008; Garcıa-Gutiérreza et al.; Gleason and Im, 2012).  

Most studies focused on improving model performance by manipulating external data 

processing. However, few studies researched on the forest intrinsic structural factors that 

fundamentally constraint the LiDAR model performance. Although few studies mentioned that 

variations in tree height at similar DBH introduce errors to LiDAR-based AGB estimates (Clark 

and Kellner, 2012; Zolkos et al., 2013), none of these studies used quantitative method to assess 

variation of the LiDAR-AGB model performance caused by this forest stands’ inherent property. 

This study improves the understandings of tree allometry’s impacts on accuracy of LiDAR-based 

AGB estimates.  

5.1 Impacts of tree allometry on LiDAR model performance 

My objectives are to answers two questions: 1) how do the tree level height-DBH 

allometric model residuals impact the plot level LiDAR-AGB models? And 2) how does using 
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different allometric models for field AGB estimates influence the LiDAR-AGB model 

performance?  Truly measured data test and simulation results provided explanations for these 

questions. Truly measured data was important for manifesting the ground truth phenomenon. The 

simulation further confirmed truly measured data results, revealing the general pattern —— how 

the LiDAR-AGB model performance vary with the change in the height-DBH model fit and how 

the model performance varies in models constructed from different field AGB estimates.  

All the nonlinear models were developed with simple linear regression at log-transformed 

scale. Although log transformed linear modeling approach may not provide the best model fit 

results, the simplified model form could straightforwardly describe the height-DBH and the 

LiDAR-AGB relationships. Thus, it is plausible to compare two sets of model residuals at 

different spatial levels.  

My primary results showed that plot level RMSR of the height-DBH model was 

correlated with absolute value of all LiDAR-AGB model residuals. It manifested that the tree 

level height-DBH model residuals generated accumulative effect on accuracy of plot level 

LiDAR-based AGB estimates. In a word, scatter of the height-DBH relationship limits LiDAR’s 

ability of estimating AGB. But it has to be noticed that heteroscedastic variance of log 

transformed linear model residuals also contributed to strong correlations between the height-

DBH and LiDAR-AGB model residuals. Moreover, these correlations varied in models 

developed based on different field AGB estimates, suggesting that the extent of the height-DBH 

allometry impact on LiDAR model performance depends on whether tree height is included in 

field AGB estimates. Zhao et al. (2012) found choices of allometric models impact the LiDAR-

AGB model performance. In consistent with Zhao et al. (2012), my results showed LiDAR 

models developed from field AGB estimates based on both tree height and DBH outperformed 
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models developed from field AGB estimates only based on DBH. If tree height is absent from 

field AGB estimates, LiDAR could generate misleading AGB estimates. I extended their work, 

not only comparing the LiDAR-AGB model performance, but also associating the difference in 

the LiDAR-AGB model performance with impacts from the height-DBH model residuals.  

Simulation results further confirmed that the height-DBH model residuals would 

introduce errors to LiDAR-based AGB estimates. Increasing variance of the height-DBH model 

residuals led to the reduction in the LiDAR-AGB model performance, though the severity of the 

reduction trends differed in the LiDAR-AGB models developed from different field AGB 

estimates and LiDAR canopy metrics. The LiDAR-AGB model performance reductions were 

slower in models constructed from field AGB estimates based on both tree height and DBH 

remained relatively constant, as the variance of the log-transformed height-DBH model residuals 

increase.  

Hence, applications of allometric models including tree height as an input in the LiDAR-

AGB modeling processes not only improves LiDAR canopy metrics’ ability of estimating AGB, 

but also enhances robustness of the LiDAR-AGB model performance towards to the increasing 

variance of the height-DBH model residuals. This finding also demonstrates that LiDAR is 

reliable in estimating canopy timber volume.   

5.2 Potential of increasing LiDAR-based AGB model accuracy 

When the height-DBH model was well fitted (𝑅! = 1), there were considerable (>20%) 

errors in the LiDAR-AGB models. Since systematic or random errors did not exist in 

measurements of simulated data, these errors were attributed to canopy overlapping and the 

underlying nonlinearity between tree-level AGB and plot-level AGB. High accurate LiDAR-

AGB model estimates are preferable. ±10% relative RMSE is the standard. However, even 
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errors introduced by tree allometry were excluded; the best LiDAR-AGB model only achieved 

23% relative RMSE. Although using multiple LiDAR metrics, integrating LiDAR data with 

other remote sensing data and applications of advanced statistical modeling approaches could 

also largely improve the LiDAR-AGB model performance, these models, developed from one 

study site, are not applicable to other study sites. Considering the relative small plot size and 

LiDAR sampling density of this study, the LiDAR-AGB model performance could be further 

improved by increasing the plot size and point cloud density.  

5.3 Tree height in estimates of AGB 

Since field tree height measurements are less accessible than DBH, the necessity of 

including tree height in field sampling is concerned. Particularly, uncertainties of tree allometry 

increase with the forest structural complexity in primary forest, where there is need to sample 

tree height in field measurements. Many studies have successfully estimate individual tree height 

via LiDAR measurements, and the difficulties of LiDAR individual tree height measurements lie 

on tree crown and top identifications (Chen et al., 2006; Edson and Wing, 2011; Falkowski et al., 

2006; Hyyppa et al., 2001; Kwak et al., 2007). Incorporating LiDAR individual tree height 

measurements and field DBH in developing the LiDAR-AGB models could potentially increase 

the model performance.  

5.4 Limitations 

Finally, there were limitations in the simulation approach. This simulation approach only 

considered the variation in DBH-height relationship. The variations of crown size and crown 

ratio were not taken into consideration. Crown sizes were estimated from exiting DBH-crown-

size models. Crown ratio was collected from field sampling. They were fixed values at each 

simulation. Crown size estimation would determine the canopy cover rate of simulated sampling 



	  
	  

35	  

plots. Since LiDAR canopy height indices were extracted by weighing crown size, crown size 

estimation would also contribute the disparity between simulated and truly measured data.  

Conclusion 

This study was driven by investigating an underlying factor —— the height-DBH model 

residuals —— that fundamentally constraints the LiDAR-AGB model performance. Since 

allometric models provide field AGB estimates in LiDAR-AGB modeling processes, the scatter 

relationships among tree structural variables inevitably introduce errors to the LiDAR-AGB 

models. Without considering the internal relationships among tree structural variables, models 

developed from one site cannot be directly compared with models developed from other sites. 

Although previous studies stated tree allometry is not a major factor strongly influencing the 

LiDAR-AGB model performance, my primary findings suggested that decline in the height-DBH 

model fit led to apparent reduction in the LiDAR-AGB model performance. Especially, when 

inappropriate allometric models were selected in field AGB estimates, the LiDAR-AGB models 

were severely influenced by the height-DBH allometry. In this study, I compared two allometric 

model systems for field AGB estimates: Jenkins and CRM. The latter was found preferable in 

constructing the LiDAR-AGB models. First of all, models developed based on CRM field AGB 

estimates outperformed models developed based on Jenkins field AGB estimates in goodness of 

fit, generating less relative RMSE. Secondly, the performance of models developed based on 

CRM field AGB estimates remained robust with the increasing variance of the height-DBH 

model residuals.  

Although field tree height measurements are difficult to achieve in closure canopy area, I 

recommend combining LiDAR individual tree height estimates with field DBH measurements to 
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examine the relationship between height and DBH, when researchers develop the LiDAR-AGB 

models. Assessing variance of the height-DBH model residuals plays an important role in 

directing researchers to select appropriate allometric models for field AGB estimates, and it also 

sever as an guidance in error analysis of the LiDAR-based AGB estimates.  
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