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Abstract 
 

Patient-centered health care information systems 

(PHSs) on peer-to-peer (P2P) networks promise decen-

tralization benefits. P2P PHSs, such as decentralized 

personal health records or interoperable Covid-19 

proximity trackers, can enhance data sovereignty and 

resilience to single points of failure, but the openness of 

P2P networks introduces new security issues. We pro-

pose a novel, simple, and secure mutual authentication 

protocol that supports offline access, leverages inde-

pendent and stateless encryption services, and enables 

patients and medical professionals to establish secure 

connections when using P2P PHSs. Our protocol in-

cludes a virtual smart card (software-based) feature to 

ease integration of authentication features of emerging 

national health-IT infrastructures. The security evalua-

tion shows that our protocol resists most online and of-

fline threats while exhibiting performance comparable 

to traditional, albeit less secure, password-based au-

thentication methods. Our protocol serves as foundation 

for the design and implementation of P2P PHSs that will 

make use of P2P PHSs more secure and trustworthy. 

 

 

1. Introduction 
 

Patient-centered health care information systems 

(PHSs) are scalable information systems that leverage 

information technology to support patients in managing 

and taking an active role in their own health [1]. PHSs 

are not intended to replace conventional electronic 

health records (EHRs); they rather complement them by 

providing ancillary functionality [1]. Among other fea-

tures, PHSs can enable patients to control release of 

 
1 https://solidproject.org/ 
2 https://doc.ai/app-personalized-health-ai-companion 

their data during interactions with other stakeholders 

[2]. A US survey revealed that 80% of 800 patients are 

willing to take ownership of their medical data because 

they currently feel sidelined in the management of their 

data [3]. In line with large-scale efforts to re-decentral-

ize the internet (eg, Tim Berners-Lee’s Solid project1), 

peer-to-peer (P2P) designs are also becoming of interest 

to PHS developers as an alternative to offline USB stor-

age, distributed ledger technologies, or centralized data-

bases [4]. P2P PHSs, for example, Doc.ai2 or OnePa-

tient,3 promise to be less rigid and flexible and store 

health data locally (on any patient edge device) under 

the sovereignty of individual device owners. Other ex-

amples for P2P PHS are Serenity,4 which tracks mental 

wellness, or decentralized systems for Bluetooth-based 

SARS-CoV-2 (or Covid-19) contact tracking, which en-

sure that users’ data stays on owners’ devices and notify 

people when they were near SARS-CoV-2 virus carri-

ers, such as Privacy-Preserving-Proximity-Tracing in 

Europe [5] and Trace-Together in Singapore [6]. As en-

visioned by Alex Pentland et al., a paradigm shift with 

a focus on decentralizing information systems, such as 

P2P PHSs, is on the way to make information systems 

more resilient, flexible, and transparent [7].  

On the one hand, PHSs on P2P networks improve 

data sovereignty because all data is technically and le-

gally governed by patients, disrupted internet connec-

tions will not stop data access, and P2P PHSs are more 

resilient to single points of failure than centralized infra-

structures [8,9]; Moreover, P2P network characteristics 

such as scalability, availability, self-configuration, and 

extendability suit the provision of PHSs [9]. Further-

more, P2P PHSs simplify the technical and organiza-

tional challenges to implement data regulations such as 

the General Data Protection Regulation (GDPR) of the 

3 https://refinio.net/software.html 
4 https://doc.ai/serenity-mental-wellness-companion-mood 
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European Union [10]. On the other hand, provision of 

PHSs on P2P networks poses major security issues, such 

as offline dictionary, sybil, impersonation, reflection, 

replay, parallel session, or man-in-the-middle attacks 

[11-14], which can impede attainment of PHS goals. 

P2P networks are geographically dispersed, and peers 

can freely join or leave the network [13]; this makes P2P 

networks alluring targets for attackers to wreak havoc 

while remaining undetected or untraceable [8]. Moreo-

ver, users need to manage information security largely 

by themselves [8]; a task that challenges even qualified 

professional administrators [8]. Additionally, the ab-

sence of a central entity to act as a trusted third party 

makes it more challenging to establish confidentiality 

and integrity [8]. From a behavioral perspective, P2P us-

ers tend to inadvertently release their sensitive infor-

mation due to the complicated design of some P2P sys-

tems, inattention to appropriate resource sharing, or the 

set-and-forget nature of some P2P systems that run in 

the background [13].  

Due to the high sensitivity of medical data, which 

is worth ten times more than credit card numbers on the 

black market [15], P2P PHS security issues need to be 

addressed to increase patient acceptance and lower the 

risks of using them [16]. Effective authentication proto-

cols are highlighted as a priority among the security 

measures that must be employed to address P2P security 

issues and prevent data breaches and information loss 

[11,16,18]. An authentication protocol involves the use 

of cryptographic algorithms to validate a reported iden-

tity [12] and it assures legitimate access and authorized 

use of information resources [18]. In this study, we fo-

cus on the development of an authentication protocol for 

secure provision of P2P PHSs.  

Some countries, for instance, Germany, planned 

to provide user authentication through smart cards for 

all insured persons and medical practitioners to ease se-

curity management for individual PHS providers [1,19]. 

However, implementation of national health-IT infra-

structures is often complicated, expensive, and pro-

tracted [1]. Hence, current PHS providers should con-

sider implementing more efficient security measures for 

their systems. Although the advantages of a national 

health-IT infrastructure for authentication could be 

enormous, PHS providers should be able to freely 

choose whether to certify their PHS based on national 

specifications [19]. The design of a novel authentication 

protocol can benefit PHS providers outside national 

health-IT infrastructures, for instance, in countries with 

less sophisticated IT infrastructures [20], and serves as 

a medium-term security measure for PHS providers that 

aim to integrate their systems with national health-IT in-

frastructures once they prove effective. 

P2P authentication protocols that support mutual 

(or user-to-user) authentication exist [11,21-23]. 

However, state-of-the-art protocols have disadvantages 

that make them impractical for P2P PHSs: They rely on 

additional card readers [23], which can be lost; use pass-

words to encrypt the cards [11], which are vulnerable to 

offline attacks; incorporate remote cryptographic oper-

ations [24,25], which are unsuitable for P2P PHSs that 

should mainly run on patient devices; apply steganogra-

phy for the authentication process [21], which can be 

detected and blocked in the network; or are dependent 

on biometric attributes for identification [26], which is 

not universally applicable because some people are, for 

instance, visually impaired. To address these chal-

lenges, this study proposes a novel, secure mutual au-

thentication protocol that enables patients to have of-

fline access and establish secure connections with other 

authorized parties (eg, medical practitioners or research-

ers) in wireless multi-hop networks while ensuring pro-

tection against offline and online threats when using 

P2P PHSs. Since PHSs are diverse, offered by multiple 

parties, and can provide any functionality patients find 

useful [1], our protocol design relies on a federated ar-

chitecture for various PHS providers. Furthermore, to 

incorporate features of the proposed German national 

health-IT infrastructure [1] into the design, we use a 

software-based smart card (virtual card or vCard) fea-

ture in the authentication process. Since P2P PHSs 

should predominantly run on patient’s edge devices, 

they should not require resource-intensive operations; 

hence, resource specifications of patient devices were a 

paramount consideration in the design of the protocol. 

The design of the proposed secure authentication 

protocol for P2P PHSs was guided by formal methods 

for developing authentication protocols [12] and pass-

word hardening techniques [27]. The protocol has low 

computational cost due to symmetric encryption, has 

stateless and independent data and vCard encryption 

keys per user, and provides offline data access and mu-

tual authentication. As proof of concept, we imple-

mented the crucial parts of the protocol, password hard-

ening and encryption services, using an opensource net-

working and cryptographic library (Libsodium) and 

demonstrated the feasibility of the protocol with a web 

application. Password hardening is used to make pass-

words unsusceptible to offline attacks; the independent 

and stateless symmetric keys are used for encrypting 

PHS data and the vCard. The security evaluation shows 

that the protocol can resist offline dictionary, man-in-

the-middle, Sybil, impersonation, and typical authenti-

cation protocol attacks, such as replay message, parallel 

session, and reflection attacks [12,14]. 

 

2. Related research 
 

In general, identity authentication can be done 

based on the following factors [12,18]: what users are 
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(eg, behavior or biometrics), what users have (eg, smart 

cards or credentials), and what users know (eg, personal 

identification numbers (PINs) or passwords).  

Traditional password-based authentication is 

widely applied in client-server architectures [12] and 

P2P systems—because it is convenient. Although Bill 

Gates heralded the vulnerabilities of password-based 

authentication already in 2004 at the RSA security sym-

posium [18], 65% of people still used the same password 

for different accounts in 2018 [28] and compromised 

passwords were responsible for 81% of data-related 

breaches in 2018 [29]. Also, reused passwords contrib-

uted to 572 security incidents in 2019 in the US health 

sector; 41 million patient records were affected [30]. Us-

ing strong passwords and storing them in a hashed 

and/or an encrypted form are common methods that are 

applied to tackle such security issues (Figure 1); how-

ever, such methods are arguably an ineffective solution 

since they are susceptible to offline attacks [24,25,27]. 

Identity authentication protocols in wireless ad 

hoc and P2P networks exist. However, low entropy of 

used passwords makes them vulnerable to offline at-

tacks [11] and use of steganography in the authentica-

tion process can be detected and blocked in the network 

[21]. Moreover, protocols that rely on public-key cryp-

tography [22] can be computationally too expensive for 

P2P PHS. Recently, a user-centered identity manage-

ment system was presented [26] for virtual identity der-

ivation and biometrics, but it aims for user-host settings; 

therefore, it does not focus on mutual authentication, en-

cryption services, or protection against offline attacks.  

As a countermeasure to offline attacks and secu-

rity issues of traditional password-based authentication 

protocols, password-hashing authentication leveraging 

remote cryptographic operations to harden the password 

and protect against offline attacks can be employed [24]; 

however, emerging services like P2P PHSs, which run 

locally on patient devices, have a mismatch in their un-

derlying philosophy with remote cryptographic services 

such as those offered by Facebook [24]. Encryption ser-

vices can be added to password hardening approaches 

[25], but they are unsuitable for user-to-user authentica-

tion and impractical for P2P PHS due to third-party de-

pendencies. Moreover, some authentication protocols 

use anonymous credential systems designed using zero- 

knowledge proofs [25,26,31], which may be an undesir-

able feature for P2P PHS with respect to the patient-

practitioner relationship during off- or online treatment  

where the identity of patients and other private infor-

mation needs to be explicitly exposed to practitioners. 

Our approach extends the idea of leveraging al-

ready available resources in a web application to protect 

secrets, such as passwords, against offline attacks [27]. 

Initially, we rely upon what users know to derive en-

cryption services and ensure that individual users can  

 

Figure 1. Typical password-based authentication. A 

user with a password P requests access to his stored 
data. The host stores the data in an encrypted form 
CT. When the hash (h) of P matches with the one 
stored, the host decrypts CT using its private key HSK 
and returns the raw data to the user. 

 

benefit from self-sovereign authentication in accessing 

their data offline without any support from PHS provid-

ers. Additionally, we leverage password hardening to 

address the offline vulnerabilities and, in line with the 

P2P spirit, our protocol does not depend on any central 

external entity for the required computations. Moreover, 

acknowledging the merits of emerging nationwide 

health-IT infrastructures that plan to offer user authenti-

cation using smart cards, we incorporate cryptographic 

chunks of user identity and other control information in 

a vCard to ease integration of P2P PHS with future se-

curity infrastructures in the health care domain. 

 

3. Authentication protocol development 
 

We use Alice as a patient who owns her P2P PHS, 

Bob as a practitioner who wants to mutually authenti-

cate with Alice to access her health records and Trent-1 

(supporting personal health records and tracking mental 

health), Trent-2 (supporting pregnancy due date calcu-

lation) and Trent-3 (supporting personal health records) 

as independent PHS providers who host various PHSs. 

Trent (1:n) are federated authorities that trust each other. 

Arguably, national health agencies could serve as a con-

trol infrastructure to ratify various Trents in a manner 

similar to current practices for ratifying X.509 certifica-

tion authorities [12]. 

 

3.1. Theoretical background 
 

Key construction techniques for building identity 

authentication protocols are data-origin authentication, 

entity authentication, and authenticated key establish-

ment [12]. Data-origin authentication aims to establish 

the integrity of the message using message age identifi-

cation and manipulation detection in such a way that old 

messages may have valid data integrity but fail authen-

ticity checks. Entity authentication is a communication 

process for establishing trust concerning a claimed iden-

tity. Authenticated key establishment is a process for 
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using cryptographic keys to establish further secure 

communication at the application level. 

In our protocol design, we used a cryptographic 

nonce (‘number used once’) and cryptographic hash 

functions for data-origin authentication. We avoided the 

use of timestamps because time is not necessarily syn-

chronized between P2P nodes. For entity authentication, 

we rely on a trusted network of Trents to run the authen-

tication and key establishment for their subset of users, 

which is a standard architecture for establishing a key 

agreement between Alice and Bob in wireless multi-hop 

networks [12]. Long-term symmetric and independent 

keys are used for establishing authenticated keys for 

communication of Trents with Alice or Bob, short-term 

keys are used for secure communication between Alice 

and Bob in a multi-hop network.  

 

3.2. Cryptographic techniques  
 

Assuming that i & j ∈ I are the respective identi-

ties of Alice and Bob, who share a secret symmetric key 

K of size 𝑘 ∈ ℕ, that N is the nonce of Alice who is ini-

tiating the mutual authentication request, and that conv 

refers to the protocol conversation history with all en-

countered and authenticated users, the execution of Al-

ice’ protocol oracle ∏(1𝑘, 𝑖, 𝑗, 𝐾, 𝑐𝑜𝑛𝑣, 𝑁) will yield the 

chunk 𝑚,  𝐾𝐴𝐵  & 𝛿 ∈ {0,1} ∗ ∪ {"𝑛𝑜 𝑜𝑢𝑡𝑝𝑢𝑡"}, where 

m is a message to be sent out, 𝛿 is a decision, which can 

be accept, reject, or undefined, of a principal (in this 

case, according to Bob’s protocol) receiving the authen-

tication request. If the protocol accepts the run, a secure 

short-term symmetric key KAB is issued for secure com-

munication between Alice and Bob. 

Applying a generic one-way hash function on 

sensitive information and encrypting it may not lead to 

confidentiality and integrity since an attacker who com-

promised the database containing the sensitive infor-

mation can perform offline brute force attacks on the da-

tabase [12] and unveil users’ sensitive information to 

wreak more havoc. Extant research employs sophisti-

cated cryptographic techniques such as key-homomor-

phic pseudorandom functions but relies on remote cryp-

tographic operations for password hardening [25]. De-

pendence on centralized third parties is undesirable for 

P2P PHSs. Therefore, we rely on services available lo-

cally on patient devices which are located in a separate 

repository within the PHS client software and use a 

keyed-hash message authentication code (HMAC or 

password hardening). Cryptographic hash functions are 

usually keyless when applied to a secret (or password); 

however, cryptographic hash functions can take a cryp-

tographic key and concatenate it with a message m to be 

authenticated to create an HMAC. The key is not meant 

for encrypting m, rather it allows a user in possession of 

the correct key, the original m, and the hash function to 

compute the same output (digest) to authenticate m. Ac-

cordingly, let ℎ[𝑚]𝐾  represent a pair 𝑚, 𝑝𝑟𝑓𝐾  (𝑚) 

where 𝑝𝑟𝑓𝐾:  {0,1} ∗↦ {0,1}𝐾 is a pseudo-random 

HMAC which can be keyed with the hash of m for 

higher integrity and protection against offline attacks. 

 

4. Results 
 

4.1. Overview of the protocol 
 

The overview of the protocol is shown in Figure 

2. Within the remainder of the manuscript, we refer to 

any module that is local on a patient’s device that pro-

vides strong cryptography as crypto module. PHS pro-

viders (Trents-1:n) form a federated, structured P2P net-

work, where peers’ public identities (registered Alices’ 

and Bobs’) are securely maintained under the control of 

distributed hash tables (DHT) [9]. The entire index is 

equally distributed among participating Trents; each 

Trent has to maintain it for lookup functionality. Net-

work communications between Trents can be handled 

via an end-to-end-encrypted public-key infrastructure. 

Our core scenario is that Alice wants to register 

with Trent-1 while Bob is registered with Trent-3. 

Trent-1 can issue and manage tokens that have a limited 

validity to Alice after they personally verify that they 

are eligible to use the PHS. In the case of Alice, token 

issuance can be offline in offline processes such as val-

idation of health insurance. In the registration phase, Al-

ice supplies her password and a valid token to the PHS 

client software from which the PHS locally HMACs the 

password in the crypto module and derives a stateless 

and independent data encryption key (DEK) along with 

a vCard encryption key (VEK) from the password. Next, 

the registration request is forwarded to Trent-1 and, af-

ter validation and verification, Trent-1 issues a vCard to 

Alice, which is stored in her PHS client software. Bob 

has to pass a similar registration process as Alice with 

Trent-3. In the next run (ie, login phase), Alice and Bob 

can access their respective PHS services offline without 

involving any Trent. In the mutual authentication phase, 

when Bob wants to access Alice’s PHS in a wireless 

multi-hop network, he can search for Alice's public 

identity online using the lookup functionality from 

Trent-3 and then request a ticket to mutually authenti-

cate with Alice. This communication works when 

Trent-1 and Trent-3 support the same PHS functionality. 

The ticket with limited validity, containing a short-term 

secure key, can be issued to Bob by Trent-3 and shared 

with Alice via Trent-1 after validation and verification. 

The mutual authentication focuses on wireless 

multi-hop networks. At a single-hop network level (eg, 

via Wi-Fi Direct or Bluetooth), when Alice and Bob are 

both physically present in the same location (eg, in a 

practice or hospital) and require faster PHS access, they  
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Figure 2. Authentication protocol overview 

 

can mutually authenticate via a QR code feature on Al-

ice’s PHS client software. Bob can scan the QR code at 

which time his self-signed public key is shared with Al-

ice's PHS. After establishing a network connection, Al-

ice can permit Bob to access her health records, which 

allows the protocol to decrypt the records using her 

DEK and Bob’s public key to temporarily encrypt the 

data. This permission can be revoked by Alice or due to 

network disconnection upon which the protocol re-

moves the access rights and re-encrypts the data using 

Alice's DEK. This is a vital feature for P2P PHS to be 

independent of Trents. 

 

4.2. Registration phase 
 

We assume that PHSs implement a setup algo-

rithm that activates whenever a PHS client software is 

first downloaded by any user, in this case Alice. Alice’s 

self-signed private-public key pairs [ASK, APK,], the 

crypto module’s private-public key pairs [CSK, CPK,], 

and the public key [TPK] of the respective Trent (here 

Trent-1) are then made available to the PHS.  

Initially, Alice supplies her token to, username 

un, and password pw (flow (1): toi || uni || Alice || pwi ) 

to the PHS client software. The private key of the PHS 

and the crypto module are concatenated, appended, and 

processed with a cryptographic hash function h to 

harden the password h(pwi)ASK || CSK. Random data saltx 

and salty are generated and used individually with the 

h(pwi) to generate the VEK and DEK, respectively. 

Only the HMAC-passwords (HMAC-pw), saltx, and 

salty are stored in the PHS database; h(ASK) is stored lo-

cally within the PHS in a secure repository, the actual 

VEK and the DEK are stateless and only derived after 

each successful login. To ensure confidentiality, the 

VEK is used for encrypting the vCard while the DEK is 

used for encrypting health information and other sensi-

tive information in the PHS. The registration request 

(flow (2): [h(to) || Alice || uni || APK || h(VEK)]TPK), 

which is encrypted using Trent’s public key is for-

warded to Trent-1. If Trent-1 successfully decrypts this 

request message using his private key while the supplied 

to is valid, Trent-1 generates a long-term secret session 

key KAT for secure communication between him and Al-

ice (or KBT in case of Bob with Trent-3) and computes 

XA = (h(uni || h(TPK)) + h(uni || h(VEK)) mod 2) and 

vCard = [Alice ||uni || KAT || XA]h(VEK). Trent-1 does not 

store the VEK of Alice. He only stores Alice’s public 

identity which is maintained in the DHT and KAT. Fi-

nally, Trent-1 sends the vCard (flow (3): vCard, at the 

provider side) to Alice and it is stored locally on Alice’s 

PHS client software. From this point onwards, Alice can 

access her data offline without any support from 

Trent-1. This concept of storing private and identifica-

tion information locally on owners’ devices aligns well 

with P2P PHS goals and mitigates risks for insider 

threats while providing higher integrity. 

 

4.3. Login phase 
 

Alice’s input (flow (1): uni || pwi) to log in to her 

PHS client software is used to retrieve the stored 

HMAC-pw. Alice’s PHS uses its crypto module’s and 

her private keys to recalculate the HMAC-pw with Al-

ice’s input of her password. Only if the derived hmac-

pw digest is equal to the stored digest (HMAC-pwi’ == 

h(pwi)ASK || CSK), login access is granted while the VEK 

and the DEK are derived from the password. The DEK 

is used to temporarily decrypt all other stored infor-

mation, the VEK is used to decrypt the vCard. In a wire-

less multi-hop network, Alice can activate her vCard 

(flow (2): vCard, at the patient side) for her P2P public 

identifier to be published online by Trent-1 via DHT so 

that other peers, such as Bob, can find her. The PHS lo-

cally computes Alice's public P2P identifier (Apid = (XA 

+ h(uni || h(VEK))) mod 2 || NA) and then forwards a 

request to Trent-1 who sets her P2P identifier to online 

(flow (3): Apid || Alice || h[NA]KAT). Without depending 

on this request, Trent-1 computes Alice’s P2P identifier 

using the information he already has (Apid’ = h(uni || 

h(TPK)) || NA). Only when the received P2P identifier is 

the same as the derived one (Apid’ == Apid,) will Trent-1 

set Alice online. Trent then computes a confirmation re-

sponse (flow (4):h[NA - 1]KAT) and sends it to Alice's 
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PHS client software while Alice's protocol can only ac-

cept this message if nonce NA is valid. 

 

4.4. Mutual authentication phase 
 

In this phase, it is expected that Bob and Alice 

both logged in and activated their P2P identifiers. We 

assume that Bob can acquire Alice's public identifier by 

accessing the lookup service from Trent-3 since indexes 

of all participating peers are maintained in the Trents’ 

supernode network; Bob can log the mutual authentica-

tion request (flow (1): [Bob || Alice || h[NB]]KBT) with 

Trent-3 before connecting to Alice's health record(s). 

After verification, Trent-3 can issue a ticket (flow (2): 

ticketA || [{KAB}KBT || h[NB] || Alice || Bob || Apid ]KBT) to 

Bob while parallelly notifying Alice (via the DHT and 

Trent-1) with the ticket (flow (3): ticketA’ = [{KAB || Bpid 

}KAT || T || Alice || Bob || Apid]KAT) about the request. 

Both tickets have a secure short-term key KAB which has 

a cryptographic association with their identities and 

message age identifiers NA and NB. If the messages are 

altered during transmission, changes can easily be de-

tected. Moreover, each ticket has a valid time T so that 

an attacker that compromised Bob by replaying old ses-

sions from Alice and Bob can be detected by the proto-

col since the old session key may have valid data integ-

rity but fails authenticity. Next, Bob sends the ticket 

(flow (4): ticketA) directly to Alice. She accepts this re-

quest only if the tickets received from Trent-1 and Bob 

are the same and T is valid. Next, Alice sends an en-

crypted nonce (flow (5): h[NA]KAB) as a challenge to 

Bob. To obtain NA, Bob decrypts the challenge using 

KAB and then sends a response (flow (6): h[NA - 1]KAB) 

to Alice. At this point, if message decryption is success-

ful by Alice and NA is valid, she will use KAB until it ex-

pires for secure communication over a wireless multi-

hop network with Bob. Finally, Alice can securely use 

the PHS supported by Bob and improve her treatment. 

 

5. Evaluation 
 

5.1. Security 
 

For the security evaluation of our protocol, we as-

sumed that the attacker is powerful enough and pos-

sesses all the necessary tools and techniques to eaves-

drop, intercept, change, and inject malicious content in 

a wireless multi-hop network. Network-layer attacks re-

quire little effort. Techniques to mount such attacks lev-

erage, for instance, WI-FI Protected Access II (WPA2) 

security protocol vulnerabilities [32] to conduct man-in-

the-middle attacks based on free and open-source tools 

like Driftnet or Wireshark. The attacker focuses on the 

unauthorized and undetected acquisition of crypto-

graphic credentials and not on breaking the 

cryptographic algorithm [12]. PHS providers should de-

cide what cryptography to adopt (eg, AES) depending 

on system requirements and other factors to strengthen 

security. Moreover, we assume that each protocol prin-

cipal (Alice, Bob, or the federated network of Trents) 

behaves honestly and does not expose any users’ shared 

short-term or long-term session keys to unintended par-

ties. Although our protocol resists many attacks, such as 

offline dictionary, replay, Sybil, impersonation, man-in-

the-middle, parallel session, reflection, or interleaving 

attacks, we only present the interesting evaluations due 

to page restrictions. The detailed evaluation report is 

available from the authors upon request. 

 

5.1.1. Offline dictionary attack 

 

In a scenario in which an attacker compromised a 

PHS database containing passwords and other sensitive 

information, the attacker cannot successfully brute force 

the password even when ASK is leaked since the other 

key used for HMACing the password (CSK) is neither 

stored in the PHS database nor in its source code accord-

ing to our protocol design and the defined assumptions. 

Therefore, even a password with the lowest entropy, like 

‘12345’, cannot be unveiled through offline attacks (due 

to HMAC). On the contrary, traditional password hash-

ing functions like BCrypt, PBKDF2, or SCrypt [27] will 

merely slow down the password cracking process [27]. 

However, even if an attacker compromised the crypto-

module’s private key, our protocol HMAC uses a 

BLACK2 hash function, which is invulnerable to colli-

sions, immune to length extensions, and differential 

enough for random oracles [33]. This serves as another 

layer of protection that obstructs the cracking process. 

Furthermore, other private information in the database, 

encrypted using DEK or VEK, is strongly protected 

since those keys are stateless and not stored anywhere—

they are only vulnerable to brute force attacks. Moreo-

ver, those keys are only derived when a correct pass-

word is provided to the PHS. Consequently, attackers 

can only start tedious brute-force attacks on the DEK 

and VEK once the first hurdle has been taken. 

 

5.1.2. Parallel session attack 

 

This is a form of an attack in which a disgruntled 

insider concurrently orchestrates and executes more 

than one run of the protocol while blocking and replac-

ing messages flowing from one user to the other [12]. 

We refer to this insider as Malice—a malicious and nor-

mal user (eg, a patient)—who also shares a secret sym-

metric key KMT with a Trent (1:n) in the network. Even 

if Malice has a valid KMT and initiates a simultaneous 

run, mutual authentication is not expected in the case of 

our protocol since each ticket issued by a Trent contains 
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a secure short-term session key with a validity period 

that does not allow more than one user to connect to an-

other user at the same time (this can be ensured via DHT 

[9]). Again, each ticket contains the identities of the au-

thenticator and the user to be authenticated; therefore, 

use of a ticket issued for communication between Bob 

and Alice by Malice will be rejected. Although network 

delay can open doors for eclipse or routing attacks [14], 

Malice’s reuse of the nonce of one user to establish a 

connection with another users (for example, reuse of 

Bob’s nonce for Alice; flow (5) Mutual authentication 

phase) will fail since nonces are cryptographically and 

randomly generated; therefore, even if Malice can block 

a user (eg, through eclipse or routing attacks), a parallel 

session attack is impractical.  

 

5.1.3. Impersonation attack 

 

Assuming Malice intercepts Bob’s request to be 

online on a P2P network and alters the message contents 

by replacing her identifiable information with his fake 

identity information (flow (3) in Login phase: Mpid || 

Malice || h[NB]KBT) with the intention of masquerading 

as Bob (eg, to steal patient data) and then forwarding the 

altered message to Trent-3 to set Bob’s identity online 

before accepting Bob’s nonce NB, Trent-3’s verification 

and validation of Bob’s P2P identifier will fail since 

Bpid’ ≠ Bpid and Trent-3 will reject the request. Again, 

Malice ≠ Bob and, consequently, identity verification 

fails. This method of explicitly adding identities of the 

participants in establishing the meaning of a message 

also curtails other vulnerabilities such as attacks based 

on name omissions [12]. Consequently, in combination 

with our concept of token issuance and verification, the 

protocol is also insusceptible to Sybil attacks. 

 

5.2. Implementation and performance 
 

As proof of concept, we implemented the crucial 

parts of the protocol, password hardening and key deri-

vation, using a Libsodium cryptographic library. The 

code is available from the authors upon request. We im-

plemented the protocol within the context of a PHS as a 

web application developed using PHP/MySQL. We 

hosted the PHS locally on an Apache web server in a 

virtual workstation sharing resources from a host system 

that uses 4-cores and 8-logical processors (AMD 

Ryzen 7 2700U CPU). We leveraged the existing cryp-

tographic modssl module on Apache as crypto module 

to provide most cryptographic operations of our proto-

col. Importantly, we directly used modssl to generate 

CSK for the password hardening. Our selection of this 

 
5 https://blake2.net/  
6 https://password-hashing.net/#phc  

key is different from the secret key used for transport 

layer security [27]. Therefore, it is independent of any 

external or remote service. Moreover, we used the 

BLAKE2b5 cryptographic hash function, which is faster 

and more secure than MD5, SHA-2, SHA-3 for the 

HMAC computation [33]. For key derivation, we use 

the award-winning password hashing function 

A2gon2id6 due to its higher resistance to side-channel 

and time-memory trade-off attacks. 

We used the Apache Benchmarking tool7 to cal-

culate the overhead per successful login attempt. We 

used two cases for evaluation. First, we used a P2P PHS 

with a password authentication without any hashing or 

key derivations. Second, we used a P2P PHS with pass-

word hardening and key derivations. For each case, we 

used 100 requests with 10 concurrent users and enabled 

HTTP keep-alive and authentication features. The first 

test completed in 9.337 milliseconds (ms) while the sec-

ond case completed in 9.913ms; therefore, the overhead 

in terms of connection times per successful login at-

tempt for using an HMAC-pw and key derivation on the 

P2P PHS is almost equal to using the default insecure 

authentication methods. Therefore, despite the added se-

curity provided by the proposed authentication protocol 

on P2P PHS, it has a similar performance with still de-

fault, albeit less secure (see evaluation steps above), au-

thentication methods. Furthermore, we compared our 

proposed authentication protocol with protocols re-

viewed in the related research section with respect to 

standard authentication construction requirements, se-

curity, and other requirements for P2P PHS authentica-

tion. The summary of the comparison is shown in Table 

1 and discussed in the following section. Our protocol 

does, not only, perform better in terms of security, but 

also, outperforms the existing authentication protocols 

in terms of their incompatibility with P2P PHSs.  

 

6. Discussion 
 

In the future, many health care information sys-

tems could reap the benefits of decentralization; P2P 

PHS are a promising, possible future development that 

comes with enormous advantages, such as improved pri-

vacy management, data sovereignty, and resilience to 

single points of failure—a new paradigm shift as pic-

tured by Alex Pentland et al [7]. However, future P2P 

PHSs will introduce new challenges, such as requiring 

patients to manage information security for their PHSs. 

P2P networks pose major new security issues while in-

heriting other security issues that any other networked 

application running on the internet faces. The synergies 

of P2P networks and wireless multi-hop networks are 

7 https://httpd.apache.org/docs/2.4/programs/ab.html 
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Table 1. Comparisons of authentication protocols with 

our protocol with respect to authentication requirements 

and other features of P2P PHS1 
 Protocol [11] [25] [22] [26] Our 

Requirement      

Data-origin 
authentication 

+ ++ ++ ++ ++ 

Entity authentica-
tion  

++ ++ + ++ ++ 

Authenticated key 
establishment 

++ -   ++ 

Protection against      

Authentication  
attacks2 

+  + + ++ 

Offline attacks3 - ++  + + 

Other      

Mutual 
authentication 

+ - + - + 

Biometrics4 - - - ++ - 

Anonymity   +  + - 

Encryption services  - ++ - - ++ 

Virtual card feature + - - - ++ 

Offline data access  - - - - ++ 

Dependent on re-
mote crypto-mod-
ule4 

- ++ + + - 

1requirement with '++' are fulfilled, '+' partially fulfilled, '-'                                 
not fulfilled, and ‘ ’ could not be identified from the source. 
2attacks evaluated in this study such as impersonation and 
replay message, parallel session, and reflection. 
3offline dictionary attacks on passwords or sensitive infor-
mation in a compromised database  
4biometrics are problematic from a usability perspective 
and such identifiers cannot be replaced once compromised  
5reliance on remote cryptographic services in the pass-
word hardening computations 

 

known [34] but pose new security risks for P2P-PHS 

communications at the network level due to lack of a 

centralized security infrastructures and the open nature 

of wireless mediums [34]. Given these concerns and the 

high sensitivity of medical data, our study investigates 

the factors that could enhance the design of user authen-

tication as a security measure for P2P PHSs. To reduce 

susceptibility to vulnerabilities due to abuse or offline  

attacks in P2P PHS, our protocol design was designed 

with encryption services that are stateless and independ-

ent per user. Independent encryption keys per user in a 

PHS also provide integrity to patients from the perspec-

tive of a PHS provider while mitigating the impacts of 

central attack profiles [12].  

Additionally, for mutual authentication in wire-

less multi-hop networks, we used a federated and trusted 

network of PHS providers to provide authentication and 

key establishment in the registration phase. Subse-

quently, patients can access their data locally and mutu-

ally authenticate with other entities at a single-hop net-

work level using QR codes without requiring involve-

ment of any third party. Our protocol is interoperable 

since it allows for P2P PHS users of different providers 

while still allowing for mutual authentication; the public 

identities are collaboratively and securely maintained 

under DHT [9]. This feature can, for example, be useful 

for interoperability between multiple national Covid-19 

proximity trackers deployed in different geographical 

regions. For example, when a user visits a foreign coun-

try, she can activate her Covid-19 tracker app to receive 

exposure notifications of diagnosed Covid-19 patients 

in that country while people of that country can get no-

tifications of visitors that are diagnosed with Covid-19. 

Further, our protocol design is based on a decentralized 

approach, which ensures no entity beyond a device 

owner stores any personally identifiable information of 

the user, which addresses the privacy concerns that cen-

tralized infrastructural approaches for Covid-19 trackers 

are bound to cause (eg, the UK government has been 

criticized for wanting to store individuals’ data for 

twenty years for their NHSX Covid-19 contact-tracking 

app [35]). This self-sovereign identity feature provides 

data protection to both the infected, non-infected, and 

other entities involved, increases trust, and prevents 

abuse of data. 

Our protocol works in a federated architecture 

and enables mutual authentication of users of different 

PHS provided by different parties supporting similar 

PHS services. Basically, users’ public information is 

maintained by a distributed network of supernodes 

(PHS providers) but under the control of DHT to facili-

tate issuance of authentication keys and lookup func-

tionality. National health agencies could serve as a 

trusted third party to ensure and ratify that all PHS pro-

viders can be trusted and misbehaving parties are black-

listed. Such considerations are required to establish a 

P2P architecture suitable for PHS deployment, espe-

cially in the current situation, where countries like Ger-

many, France, and the UK [36] identified a need to link 

their large health-IT infrastructures and their developing 

SARS-Cov-2 (or Covid-19) proximity tracking systems, 

although such plans may infringe user privacy [6]. 

Other authentication protocols for P2P systems 

exist [11, 21-23]; however, they either tackle isolated 

security concerns, are unsuitable for P2P PHSs, or do 

not provide independent offline data access (Table 1). In 

contrast to existing protocols, which assume users to be 

anonymous at the application and network levels, health 

care ecosystems can rely on established trust relation-

ships. We avoid the use of biometric features, which are 

not universally applicable, in the design and focused on 

the use of HMACed passwords to improve usability and 

ensure that our authentication protocol can be adopted 

in P2P PHSs and used by all patients and practitioners 

on a global scale (Table 1). Additionally, we accounted 

for emerging nation-wide health-IT infrastructures 

[1,19]. Identifying opportunities how individual PHS 

providers can leverage such national infrastructures for 
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user authentication is useful and can serve as a founda-

tion for the design of P2P PHSs. However, such infra-

structures are tedious to establish and restricted to geo-

graphic regions [1], therefore, we used a vCard (Table 

1) in our protocol as a security feature in the authentica-

tion protocol design that is also useful for PHS providers 

outside national health-IT infrastructures and serves as 

a medium-term security measure for PHS providers that 

plan to integrate their systems with large-scale health-

IT infrastructures. Such considerations serve as con-

cepts and foundations in both theory and practice for 

PHS providers, PHS developers, and security service 

providers in the domain of PHS and P2P systems. 

Our study investigates state-of-the-art solutions 

for mitigating security concerns of traditional authenti-

cation protocols in both P2P and user-host settings and 

presents useful contributions for P2P PHSs as well as 

the P2P network domain. Existing password hardening 

techniques used to address offline security issues in 

password authentication are unsuitable for P2P PHSs 

because of their dependence on remote cryptographic 

services (Table 1), which may affect patients’ flexibility 

in accessing their data offline. Furthermore, state-of-

the-art soluations are computationally expensive when 

adopted for P2P PHSs. For our protocol design, we lev-

eraged the available cryptographic services on patients' 

devices to provide cryptographic operations and pass-

word hardening. We implemented the registration and 

login phases of the protocol but focused on password 

hardening and encryption services using an opensource 

networking and a cryptographic library (Libsodium) and 

demonstrated the feasibility of the protocol within the 

context of a PHS as a web application. We used a ge-

neric hashing function, a keyed message authentication 

code with a password at time of registration, and the pri-

vate keys of the PHS client software and the crypto-

module for the password hardening. Therefore, we sup-

plement established theories for authentication design 

that provide integrity, confidentiality, and access control 

services with a practical utility that enables less estab-

lished services like P2P PHSs to leverage already avail-

able services in such infrastructures to improve security. 

Our study has limitations which offer opportuni-

ties for future research. First, our study is limited to the 

perspective of authentication as a security contribution 

for P2P PHSs. How other innovation characteristics 

such as usability and deployability will affect adoption 

by patients and health care providers is beyond the scope 

of this study. This is an interesting opportunity for future 

research investigating the behavior of P2P users and 

systems concerning technological maturity, which will 

also affect organizational decisions to adopt more se-

cure authentication protocols. Second, the proposed pro-

tocol design has flexibility features that could be im-

proved in many ways, for instance, by adding safety-

related requirements like emergency access or guardian 

support. Additionally, a password change phase can be 

directly added to the protocol to protect against online 

threats such as guessing attacks. Limits for password 

validation requests can as well be incorporated. Reliable 

and patient-centered backup options to facilitate the re-

placement of a patient’s credentials in a situation where 

patients lose access to their credentials (eg, a stolen lap-

top) can also be implemented.  

 

7. Conclusions 
 

P2P PHSs are an emerging phenomenon that will 

become more relevant in the future. So far, dedicated 

literature is sparse and requires research from many per-

spectives. With the evolving global outbreak of Covid-

19, proximity tracking P2P PHSs are emerging and of 

growing interest for controlling the spread of the virus; 

however, such developments come with complications 

with respect to privacy risks resulting from security 

threats. This study takes an authentication protocol ap-

proach as a security contribution to the emerging P2P 

PHS landscape and is based on considerations of social 

aspects in health care from the perspectives of patients, 

practitioners, PHS providers, and large health-IT infra-

structures. A global pandemic requires global solutions 

that go beyond national initiatives. Our protocol is in-

teroperable and can enable users of different national 

implementations of proximity trackers (or other P2P 

PHSs) to mutually authenticate with each other over sin-

gle or multi hop networks to share exposure notifica-

tions and enables health care practitioners to recom-

mend interventions such as testing or quarantine. By be-

ing borderless, our protocol can contribute to effectively 

fight the Covid-19 pandemic. A secure authentication 

protocol could mitigate the inherent security issues of 

PHS deployment on P2P networks and boost the inten-

tion of patients and other stakeholders to use PHS.  

We assert that our protocol is computationally se-

cure based on the security evaluation conducted since an 

attacker with protocol oracle observation capabilities 

(∏ , ∏  𝑡
𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒 𝑠, 𝑡 ∈ ℕ𝑠

𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 ) fails to convince a pa-

tient’s (or practitioner’s) protocol to accept his mali-

cious requests due to data-origin and entity verifications 

[12]. Moreover, even with the added security provided 

by the proposed authentication protocol for P2P PHS, 

the evaluation shows that it has similar performance as 

the extant insecure authentication methods. This study 

can help PHS developers and providers to better under-

stand the concepts and processes required for instantiat-

ing authentication protocols that resists most offline and 

online threats. Moreover, this study serves as an intro-

duction for security service providers to the emerging 

landscape of P2P PHS and outlines the need for future 

research to curtail other prevalent security issues. 
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