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ABSTRACT 

The effects of climate change are beginning to be observed more frequently worldwide, 

including bleaching events, or the loss of mutualistic dinoflagellates called zooxanthellae, which 

can result in extensive mortality.  Coral mortality resulting from bleaching events can trigger 

regime shifts, depending on a reef’s resilience, meaning the ability to both resist and recover 

from disturbances.  Recently, managers have been working under a new paradigm to promote 

resilience: resilience-based management.  However, there is a gap in our understanding of how to 

translate resilience-based management at a local scale considering site-specific ecological 

characteristics.  In Hawai‘i, extensive mortality due to back-to-back bleaching events has urged 

managers to seek resilience-building strategies.  The goals of this study are to 1) better 

understand the intervention options available to coral reef managers and develop a way to 

prioritize resilience-based interventions, 2) focusing on a top-ranked intervention, tailor the 

intervention to be applied in the main Hawaiian Islands, and 3) investigate where resilience-

based strategies could be implemented to provide the best chance of success.   

 

Through a systematic literature review, twelve potential management interventions to promote 

coral resilience were scored and ranked, revealing Herbivore Management Areas (HMAs) as the 

top-ranked intervention in Hawai‘i.  Although HMAs are a highly recommended intervention 

and have been shown to be effective, there is currently a lack of design guidance on how to 

implement a network of HMAs addressing local traits.  I developed a set of design principles 

specifically for HMAs incorporating Hawai‘i-specific considerations of habitats, critical areas, 

connectivity, climate, and local threats.  Lastly, I applied the design principles to identify areas 

within West Hawai‘i and Maui Nui where HMAs would be most effective.  Using Marxan, I 

identified multiple resilience hotspots, some of which overlap with the existing network of 

Marine Managed Areas (MMAs).   

 

These results demonstrate a method to translate resilience-based management concepts from 

theory to practical and site-specific guidance that is actionable by Hawai‘i’s coral reef managers.  

Since the global bleaching event 2013-2017, managers in multiple locations have pursued 

collaborative initiatives to apply resilience-based management and change their strategy to 

promote recovery.  Despite an ever-increasing threat of frequent and severe bleaching events in 
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Hawai‘i and around the world, this study provides actions that could be taken at a local scale to 

maintain and re-build herbivory in priority reef sites. 
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CHAPTER 1.  INTRODUCTION 

Coral Reef Resilience 

The effects of climate change are beginning to be observed more frequently worldwide. In coral 

reef ecosystems, climate change has several effects, including increased ocean acidification 

(Anthony et al. 2011), storm intensity (Emanuel 2013), and frequent and severe bleaching events 

(van Hooidonk et al. 2016).  Coral bleaching, or the loss of mutualistic dinoflagellates called 

zooxanthellae, can be triggered by a number of factors, namely high temperature anomalies 

associated with a changing climate.  Bleaching events cause corals to become weakened, and if 

conditions persist, can result in extensive mortality.  A bleaching event is a type of ecological 

disturbance, or change in environmental condition, which can result in regime shifts from a coral 

to a macroalgal dominated ecosystem (Done 1992; Scheffer et al. 2001).  Coral mortality caused 

by coral bleaching events can lead to systematic changes in the structure of tropical ecosystems 

(Bellwood et al. 2006; Hughes et al. 2007; Graham et al. 2013; Ainsworth and Mumby 2015). 

 

A regime shift can be temporary or permanent based on the resilience of the ecosystem.  

Resilience refers to the ability of an ecosystem to “absorb or withstand perturbations such that 

the system remains within the same regime, maintaining its structure and functions”  (Holling 

1973; Walker et al. 2004).  Resilience has two main components: the ability to resist, or prevent 

change from disturbances and recovery, or the ability to regain function following a disturbance 

(Nyström et al. 2008).  A lack of resilience can increase a coral reef’s risk of reaching a tipping 

point, or a point at which recovery to its original state will be almost impossible (Ateweberhan et 

al. 2013; N. A. Graham et al. 2013; Selkoe et al. 2015; Hoegh-Guldberg et al. 2017). 

A New Management Paradigm 

In recent years, a new coral reef management paradigm has emerged which aims to increase 

resilience to disturbance including bleaching events.  Resilience-based management presents a 

strategy to target the fundamental ecosystem functions and processes that may increase both 

resistance and recovery (Chapin et al. 2009; Anthony et al. 2015).  This new paradigm is a 

departure from conventional management, which emphasizes the preservation of a singular, 

optimal stable state, to a focus on absorbing disturbance and retaining function, structure, and 
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feedbacks (Walker et al. 2004).  To accomplish this, managers are recommended to identify 

resilience ‘levers’ or interventions that will directly lessen pressures that reduce ecosystem 

resilience (Anthony et al. 2015). 

Making Resilience-based Management Operational 

Despite the emergence of resilience-based management theory, practitioners struggle to 

operationalize its concepts due to competing definitions, lack of operational examples of 

adaptation principles, guidance on the selection and integration of science recommendations, 

implementation of management strategies supporting resilience, and the pairing of science 

recommendations with ecological evidence (Hughes 2003; Heller and Zavaleta 2009).  

Applications of resilience concepts to date have mainly focused on identifying ways to evaluate 

and map indicators of existing resilience (Maynard et al. 2010) and incorporate these indicators 

into monitoring activities (Green et al. 2009; Lam et al. 2017; Ford et al. 2018). 

 

Interventions following a global mass bleaching event in 2008 were limited and consisted of 

decreasing direct human damage from anchors and trampling (Tun et al. 2010; Yeemin et al. 

2012; Beeden et al. 2014) and coral transplantation experiments (Gomez et al. 2014).  These 

efforts are examples of reef resilience being the explicit motivation for local-scale management; 

however, resulting ecological impacts from these efforts are unclear.  Several questions remain 

as to how managers can promote ecological resilience and implement effective interventions 

(Graham et al. 2015; Dudney et al. 2018). 

The Need for Resilience-based Management in Hawai‘i 

Deemed the third global mass bleaching event to date, high sea surface temperatures triggered 

mass bleaching events in every ocean basin between 2014 and 2017 (NOAA 2015).   High 

temperatures across the Hawaiian archipelago resulted in consecutive bleaching events in 2014 

and 2015 and extensive mortality.  Along the Kona coast of Hawai‘i Island, an average of 50%  

mortality was reported at regularly visited monitoring sites (Kramer et al. 2016).  The event 

spurred urgency to explore how resilience-based management could be applied in Hawai‘i to 

promote recovery from the bleaching event as well as long-term resilience to future climate 

impacts. 
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Dissertation Goals 

This dissertation addresses questions about the application of resilience-based management and 

specifically how the concept could be applied in Hawai‘i to promote recovery and improve long-

term resilience.  The goals of this study are to 1) better understand the intervention options 

available to coral reef managers and develop a way to prioritize resilience-based interventions, 2) 

focusing on a top-ranked intervention, tailor the intervention to be applied in the main Hawaiian 

Islands, and 3) investigate where resilience-based strategies could be implemented to provide the 

best chance of success.   

 

This study focused on a case study of applying resilience-based management in Hawai‘i; 

however, the process could be replicated in other coral reef regions and therefore has 

applicability globally. 

Dissertation Outline  

In Chapter 2, I discuss a method to score and rank intervention options to promote coral reef 

resilience using a systematic review of scientific literature.  The scoring system involved a 

method to weight papers based on their scale, location, and type of data collected and was 

developed to target evidence relevant to coral reef management in Hawai‘i.  

 

In Chapter 3, I tailor the use of herbivore management areas, a top-ranked intervention 

highlighted in Chapter 2, for use in Hawai‘i through the development of design principles.  This 

chapter used guidance from networks of no-take areas and explored how the ecological context 

of the main Hawaiian Islands would drive the creation of a network of herbivore management 

areas as a resilience-building tool. 

 

In Chapter 4, I apply the design principles from Chapter 3 using Marxan, a spatial design ArcGIS 

tool, to identify areas around West Hawai‘i and Maui Nui where herbivore management areas 

may have the greatest chance of building resilience.  This chapter overlays these results with the 

existing network of marine managed areas along the West Hawai‘i coastline and discusses 

potential next steps for managers. 
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 In Chapter 5, I draw conclusions from the preceding chapters as well as discuss potential future 

directions for resilience-based management in Hawai‘i and globally. 
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CHAPTER 2.  TRANSLATING RESILIENCE-BASED MANAGEMENT THEORY TO 

PRACTICE FOR CORAL BLEACHING RECOVERY IN HAWAI‘I 
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Anne Chung, Thomas Oliver, Jamison Gove, Kelvin Gorospe, Darla White, Kristine Davidson, 

William Walsh.  2018.  Translating Resilience-based Management Theory to Practice for Coral 

Bleaching Recovery in Hawai‘i.  Accepted to: Marine Policy. 

Abstract 

More frequent and severe coral bleaching events are prompting managers to seek practical 

interventions to promote ecosystem resilience.  Although resilience-based management is now 

well established theoretically, there have been few examples of implementation.  In Hawai‘i, 

back-to-back bleaching events in 2014 and 2015 caused significant damage, motivating the state 

to seek guidance on next steps for recovery.  Hawai‘i is a unique case study in distilling global 

recommendations to place-based action because of its ecological and social diversity.  This study 

conducted a systematic review of literature using a weighted point system to evaluate and rank 

twelve potential Hawai‘i-specific interventions to promote coral recovery following a bleaching 

event.  Papers were scored based on their ability to achieve their management objective as well 

as their ability to directly affect coral recovery.  A total of 100 papers were included in the 

review which varied in their scale (multi-site or case study), location (inside or outside of 

Hawai‘i), and type of data collected (theoretical or empirical).  Establishing a network of 

herbivore management areas ranked the highest followed by parrotfish size limits for action that 

could promote recovery in Hawai‘i.  Establishing a network of no-take Marine Protected Areas 

(MPAs) was the intervention with the most literature and ranked third.  This method provided a 

systematic way to compare the effectiveness of management interventions, a system that could 

be adapted to other regions. This type of evidence-based approach can lead to more fair and 

transparent decision-making processes, assisting reef managers in navigating the translation of 

resilience-based management from theory to practice. 

 

 

 



9 
 

Introduction 

Climate change is affecting coral reefs worldwide in several ways, including more frequent and 

severe bleaching events, where corals expel zooxanthellae in response to environmental 

disturbance, in many cases from increased ocean temperatures.  The capacity of the coral 

ecosystem to respond to these disturbances is known as resilience, which commonly has two 

components: resistance, the ability to maintain function, and recovery, the ability to regain 

function following a disturbance (Holling 1973).  Ultimately, there is less chance of phase shifts 

from one dominant state to the other in resilient ecosystems and a greater likelihood that 

ecosystem services will be maintained after major disturbances (Nyström et al. 2008).  

Resilience-based management as a theoretical approach attempts to maintain or increase the 

resilience of ecosystems as a means to cope with global climate change.  Broadly, resilience-

based management suggests reducing local human threats while simultaneously managing 

processes that encourage resistance and recovery (Graham et al. 2013).  Specific to coral reefs, 

resilience-based management emphasizes the maintenance of specific processes to maintain 

ecosystem function in the face of repeated bleaching events (Graham et al. 2013; Anthony et al. 

2015; Hughes et al. 2017).  Resilience-based management is an approach to refine focus to 

interventions that will aid in the persistence of coral reefs in a changing climate.  

Challenges and Gaps in Implementing Resilience-based Management 

Despite several studies describing how resilience-based management might be applied, there 

have been few examples of the practical translation from a broad concept to implementation 

action.  Recently, an explicit resilience-based framework was proposed, which integrates 

resilience theory into coral reef management through the identification of management ‘levers’ 

(Anthony et al. 2015).  Levers are actions that will have a direct impact on resilience or reduce 

reef vulnerability. This process identifies broad approaches (e.g. ‘reduce fishing of herbivores’) 

but does not a) identify specific actions (e.g. bag limits versus size limits, etc.) or b) prioritize 

these actions.  Additionally, although global indicators of resilience have been prioritized that 

could be incorporated into spatial planning or monitoring, ways to enhance these indicators were 

not discussed (McClanahan et al. 2012).  Heller and Zavaleta (2009) determined that 

interventions to promote resilience may be limited by several factors including the uncertainty of 

future conditions, the lack of a planning process to select and integrate recommendations into 

existing policies, and the narrowness of recommendations to removing ocean users are restricting 
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resilience interventions.  Additional information is required to develop standard planning 

processes and broadening the spectrum of potential interventions to provide more support when 

integrating reef resilience into management frameworks. 

 

There is also currently little guidance on how to interpret resilience theory to regional actions, 

considering site-specific ecological and social differences.  It is widely understood that several 

ecological factors vary between regions (e.g. the Caribbean versus the Indo-Pacific) and because 

of these differences, there may also be regional differences in resistance and recovery potential.  

Place-based management emphasizes appropriateness of spatial and temporal conditions, 

developing procedures that can accommodate multiple uses and emphasizing stakeholder 

involvement (Young et al. 2007).  Social factors including engagement in management and 

dependence on marine resources may also influence whether a site is doing better or worse than 

anticipated (Cinner et al. 2016).  In addition, individual coral reef areas may have different legal 

and policy capacity and requirements, making resilience intervention more or less practical.  It is 

critical to evaluate the relevancy of resilience recommendations to local ecological and social 

conditions in order to tailor resilience-based interventions and maximize their effectiveness. 

Hawai‘i as a Case Study for the Application of Resilience-based Management 

This study assesses the ecological effectiveness of site-specific strategies in the main Hawaiian 

Islands to improve ecological resilience following a severe coral bleaching event.  The Hawai‘i 

Department of Land and Natural Resources (DLNR), Division of Aquatic Resources (DAR) 

sought out means to promote recovery following the bleaching events in 2014 and 2015 that 

resulted in an average 50% decline in coral cover in select regions (Kramer et al. 2016).   

Although the need for resilience-based management was recognized, it was unclear how to 

prioritize intervention options and evaluate the chance of success given Hawai‘i’s unique 

ecological features.  This gap provided an opportunity to develop a method that could determine 

which existing management tools used in Hawai‘i best aligned with global resilience-based 

management strategies and would be most relevant for local coral reef recovery.   

 

Hawai‘i is a unique region for a case study of the relevancy of global management 

recommendations at local scale.  Geographic and evolutionary factors including the isolation of 

the Hawaiian Islands have resulted in a high level of endemism, e.g. 30% of nearshore fish 
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species.  Ecological patterns within the island chain are strongly influenced by oceanographic 

conditions, including wave action and current patterns (Friedlander et al. 2003; Rodgers et al. 

2012) Several distinct ecological regimes have been identified, varying in community structure 

and coral-algal composition (Jouffray et al. 2014).  Socially, there is a diversity in Hawai‘i’s 

fisheries from subsistence to commercial and high participation in fishing for cultural, 

recreational, and food value (Kittinger 2013; Friedlander et al. 2013).  The main Hawaiian 

Islands present a unique opportunity to consider how resilience-based management interventions 

could be applied considering site-specific ecological and social conditions. 

 

This study uses a systematic review to analyze a list of interventions that are currently in the 

management portfolio in Hawai‘i.  The review tests the relevancy of each management 

intervention based on their documented effectiveness in past applications (management 

effectiveness) and demonstrated ability to promote coral recovery.  The method also integrates 

place-based considerations through a weighted scoring system, allowing comparison between 

global resilience recommendations and Hawai‘i ecological characteristics.  The ability to 

systematically evaluate coral reef recovery interventions can improve the decision-making 

process in marine resource management and support coral reef managers in identifying and 

implementing resilience-based management in a systematic and replicable way. 

Methods  

Identifying Hawai‘i-relevant Management Interventions 

First, a list of twelve interventions was created that managers in Hawai‘i could implement to 

promote coral recovery following a bleaching event.  The list was derived from a preliminary 

review of the literature, suggestions from Hawai‘i’s coral reef managers, interventions 

previously prioritized in a management response workshop with Hawai‘i-based researchers and 

coral experts, interventions already in use in Hawai‘i, and suggestions from ocean stakeholders 

received informally by DAR.  These twelve actions fell into six basic categories: 1) spatial 

planning, 2) fisheries rules, 3) gear rules, 4) aquaculture, 5) land-based pollution mitigation and 

6) enforcement (Table 2.1).  The list was narrowed down from an initial 33 interventions through 

an online survey of coral bleaching experts.  For each intervention, specific metrics were 
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identified to guide the search for relevant literature.  Studies were included if they described the 

ability of the intervention to achieve its particular metrics.   

 

Table 2.1.  Hawai‘i-specific interventions describing potential actions to promote coral bleaching 

recovery. 

  Metric  

Category Intervention Ability to achieve 

management objective 

Ability to promote 

coral recovery 

Source 

Spatial 

Planning 

Establish a network of 
permanent, fully protected 

no-take MPAs. 

Increase of fish biomass 
within and around areas 

closed to take of marine 
resources. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Existing 
intervention 

Establish a network of 
permanent Herbivore 

Fishery management 

Areas. 

Increase in herbivore 
biomass within and 

around areas closed to 
take of marine resources. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Existing 
intervention 

Fisheries  
Rules 

Prohibit all take 
(commercial and non-
commercial) of 

herbivorous fish. 

Increase in herbivorous 
fish. 

Increase in coral cover, 
increase in coral reef 
ecosystem health 

Literature review, 
management 
response 

workshop, existing 
intervention 

Prohibit all take 
(commercial and non-

commercial) of 
parrotfishes. 

Increase in parrotfish 
abundance. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Literature review 

Establish size limits to 
protect parrotfishes. 

Increase in parrotfish 
biomass. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Existing 
intervention 

Establish bag limits to 
protect parrotfishes. 

Increase in parrotfish 
biomass. 

Increase in coral cover, 
increase in coral reef 
ecosystem health 

Existing 
intervention 

Gear Rules 

Prohibit laynets. Increase in herbivorous 

fish targeted by laynets. 

Increase in coral cover, 

increase in coral reef 
ecosystem health 

Existing 

intervention 

Prohibit SCUBA 
spearfishing. 

Increase in biomass of 
herbivorous fish targeted 

by SCUBA spearfishing. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Existing 
intervention 

Aquaculture 

Identify, collect, 

propagate, and replant 
bleaching-resistant corals. 

Increase in percent cover 

of bleaching-resistant 
corals. 

Increase in coral cover, 

increase in coral reef 
ecosystem health 

Stakeholder 

suggestion, 
management 

response workshop 

Land-based 

Pollution 
Mitigation 

Implement sediment 

mitigation in adjacent 
watersheds. 

Decrease in sediment 

levels because of land-
based mitigation. 

Increase in coral cover, 

increase in coral reef 
ecosystem health 

Existing 

intervention 

Institute nutrient/chemical 
mitigation in adjacent 

watersheds. 

Decrease in nutrient levels 
because of land-based 

mitigation. 

Increase in coral cover, 
increase in coral reef 

ecosystem health 

Existing 
intervention 

Enforcement 
Concentrate marine 
enforcement efforts on 

Increase in compliance to 
coral reef-related rules. 

Increase in coral cover, 
increase in coral reef 

Stakeholder 
suggestion 
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rules relating to coral reef 
recovery.  

ecosystem health 

 

Determining the Inclusion of Studies in the Systematic Review 

This study developed a place-based systematic review methodology to evaluate each bleaching 

recovery intervention option (Figure 2.1).  Studies were sought out that described the ecological 

outcomes of implementing various types of management interventions.  A study was included in 

the analysis if it described the outcome of using an intervention and the ability of that 

intervention to achieve its management objective and/or its ability to promote coral recovery.  

For example, if a study described the use of a parrotfish bag limit, it would be included if it 

contained information on whether that approach was effective at increasing parrotfish biomass 

(its management objective), and/or if it provided information on whether increased parrotfish 

biomass promoted coral recovery (ability to promote coral recovery).  This included 

interventions used after a bleaching event but was not limited to only bleaching recovery 

measures.  Studies were excluded if they did not fit these systematic review components.   
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Figure 2.1. A conceptual diagram of the place-based systematic review framework used to 

evaluate the ecological effectiveness of each management action in the context of coral 
bleaching recovery in Hawai‘i.  The framework begins with a central question, then literature 

was filtered through three guiding questions.  Literature evidence was then organized into 
evidence describing the ability of an intervention to achieve its management objective and the 

ability of the intervention to promote coral recovery.  Effectiveness scores were calculated for 
each paper based on a weighted ranking system, then averaged, then normalized.  The 

normalized scores were multiplied by the normalized number of papers collected for a given 
intervention to give a mean ranking score.  Finally, the mean ranking scores were summed to 

calculate the final combined ranking score for each management intervention. 
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Next, specific search terms were used to search the Web of Science database and Google 

Scholar.  To search for relevant papers, the name of each intervention (e.g. “no-take Marine 

Protected Area”, “parrotfish size limit”) was used along with the phrase “[intervention] AND 

management effectiveness” and “[intervention] AND coral recovery”.  Gray literature, including 

technical and final scientific reports, were included from the Reef Resilience Network 

(http://www.reefresilience.org/).  Academic dissertations were also collected from corresponding 

institutions and included if their contents had not been published.   

Creating a Weighted Scoring Scheme with an Evidence Hierarchy  

To organize the literature, papers were scored based on categories of evidence quality and 

weighted based on criteria, or through an evidence ‘hierarchy’.  This study adapted the evidence 

hierarchy first used in the medical field  (Stevens and Milne 1997) and then modified for 

conservation use (Pullin and Knight 2003).  Three unique criteria were used to evaluate each 

paper: the a) location and b) scale of the research, as well as c) the type of data collected.  The 

location of the research was determined to be either inside or outside the Hawai‘i.  The type of 

data collected was either empirical (based on direct observation) or theoretical (based on 

hypotheses or models).  The scale of the study was either ‘local’ scale (single site/region, case 

study) or ‘global’ scale (multiple sites, meta-analyses).   

 

A score was assigned to each unique combination of the criteria described above, valuing 

empirical evidence over theoretical, research from the case study location over research from 

outside of it, and global studies over local-scale studies. Studies that found a particular 

intervention to be effective were positively weighted, while those that found the intervention to 

be ineffective were negatively weighted. This resulted in twelve categories with corresponding 

point values based on these criteria and weighting (Figure 2.2).  Each paper included in the 

systematic review was assigned a point value ranging from -6 to 6 based on this evidence 

hierarchy. 
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Figure 2.2. Evidence hierarchy used to assign score values to each paper included in the 
systematic review based on the type of data, scale, and location of the evidence. 

Data analysis 

Three measurements were used to describe the ability of each intervention to promote coral 

bleaching recovery: (i) a mean score for each intervention based on its management 

effectiveness, which was calculated by averaging the weighted scores across all papers for that 

intervention, (ii) a mean score for each intervention’s ability to promote coral recovery using the 

same calculation, and (iii) the total number of papers collected for each intervention.  Next, the 

ranking scores for management (ability to achieve management objective) and recovery (ability 

to promote coral recovery) for each action were calculated by normalizing the number of studies 

and the mean effectiveness and recovery score, then multiplying these metrics.   Lastly, the 

management and recovery scores were summed to calculate the final, combined ranking score 

for each management action.  
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Results  

Qualitative Description of Synthesized Evidence 

A total of 100 studies were collected that fit the components and search strategy of the 

systematic review (see Supplemental Information for full bibliography and categorization).  

Several studies fell into multiple intervention categories and so were used multiple times when 

comparing the interventions to each other.  Studies used multiple times were counted only once 

when describing the entire body of evidence.  Studies were found for each intervention that 

described both effectiveness and ineffectiveness, except for one (prohibition of SCUBA 

spearfishing) which only had evidence of being effective.  Studies were identified with both 

empirical and theoretical evidence as well as at each scale category   

Distribution of Evidence across Evidence Hierarchy Categories 

The number of papers varied by each of location, scale, and type of data collected (Figure 2.3).   

For the location of the research, the majority of the 100 papers collected (n=76) conducted 

research outside of Hawai‘i while 24 were conducted inside of Hawai‘i.  Related to the type of 

research in the collected studies, 72 were based on empirical evidence, while 28 were based on 

theoretical evidence.  Finally, related to the scale of the research 67 were local scale, meaning 

they focused on a single site or case study, while 33 papers were global studies based on multiple 

sites.   
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Figure 2.3. The number of papers collected based on a) the location of the research, b) the type 

of data collected, and c) the scale of the research. 

Distribution of Evidence across Interventions 

Evidence was collected for each of the interventions and evidence quality categories, resulting in 

a total of twelve bodies of relevant evidence scored from -6 to 6.  The distribution of this 

evidence varied across the categories of location, scale, and type of data (Figure 2.4a-c).  Related 

to the location of the research, the interventions with the highest numbers of papers from Hawai‘i 

were “Establish a network of no-take Marine Protected Areas (MPAs)”, “Establish parrotfish 

size limits”, and “Establish a network of herbivore management areas” (Figure 2.4a).  Tools with 

little or no papers from Hawai‘i were “Replant bleaching resistant corals”, “Reduce sediment 

through land-based mitigation”, “Reduce nutrients through land-based mitigation”, and 

“Enhance enforcement.”  Related to the scale of research, the interventions with the highest 

global scale research were “Establish a network of no-take MPAs”, “Enhance enforcement”, and 

“Ban all parrotfish fishing” (Figure 2.4b).  Related to the type of data collected, the management 

tools with the highest number of papers based on empirical data were “Establish a network of no-

take MPAs”, “Establish parrotfish size limits”, and “Ban all parrotfish fishing” (Figure 2.4c).  

The tool to “Enhance enforcement” had a relatively high proportion of papers based on 

theoretical evidence. 
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a) 

 

b) 
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c) 

 

Figure 2.4.  The distribution of papers collected across each intervention indicating the number 
of papers by a) the location of the research, b) the scale of the research, and c) the type of data 

collected. 
 

The total number of papers collected also varied by intervention.  Overall, the most evidence was 

found for spatial planning, fisheries rules, and enforcement strategies, while gear restrictions, 

aquaculture techniques, and land-based mitigation strategies had considerably less evidence.  

“Establish a network of permanent, fully protected no-take MPAs” had the highest number of 

papers (32 papers) describing its effectiveness while “Prohibit all use of laynets” had the fewest 

number of papers (4 papers).  The average number of papers found for an intervention was 14.6 

papers.   

 

All interventions included in the review had evidence showing both effectiveness and 

ineffectiveness.  Furthermore, both the number of papers and distribution of the evidence quality 

varied by intervention (Figure 2.5).   Overall, there was more supporting (describing 

effectiveness) evidence versus limiting (describing ineffectiveness) evidence.  A ‘network of no-

take MPAs’ had the highest number of papers (n=5) with empirical data at a global scale 

(category 6).  A ‘Network of herbivore management areas’ had five papers in the 6 category.  A 

‘network of no-take MPAs’ also had the highest number of papers describing its ineffectiveness.  
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Figure 2.5. The total number of papers for each management tool that described either limiting 
or supporting evidence. Colors indicate the score categories that papers for each tool were 

categorized into ranging from -6 to 6. 

 
In the final ranking of the management interventions, which accounted for the management and 

recovery metric as well as the number of papers describing the effectiveness of that intervention, 

‘Network of herbivore management areas’ had the highest combined score (0.63) while fisheries 

rules focused on parrotfish (size limit, bag limit, and fishing ban) also received high scores 

(Table 2.2).  ‘Prohibit laynets’ had the lowest combined score (0.02).   
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Table 2.2.  Final combined ranking scores of potential management interventions to promote 
coral recovery in Hawai‘i. 

Management Action Management 

Ranking Score 

Recovery 

Ranking 

Score 

Final Combined 

Ranking Score 

Network of herbivore management 

areas 

0.28 0.35 0.63 

Parrotfish size limits 0.20 0.28 0.48 

Network of no-take MPAs 0.39 0.04 0.43 

Ban all parrotfish fishing 0.25 0.11 0.36 

Parrotfish bag limits 0.20 0.12 0.32 

Ban SCUBA Spearfishing 0.25 0.06 0.31 

Enhance enforcement 0.13 0.06 0.19 

Ban all herbivore fishing 0.12 0.04 0.16 

Reduce sediment through land-based 

mitigation 

0.03 0.08 0.11 

Reduce nutrients through land-based 

mitigation 

0.04 0.02 0.06 

Replant bleaching-resistant corals -0.02 0.04 0.02 

Prohibit laynets -0.05 0.07 0.02 

 

Recovery and management ranking scores differed between all management interventions 

(Figure 2.6).  In most cases, the management ranking score was higher than the recovery ranking 

score (e.g. Ban SCUBA spearfishing).  For other interventions, the recovery ranking score was 

higher (e.g. Reduce sediment through land-based mitigation).  In two instances the management 

ranking score was negative (replant bleaching-resistant corals and prohibit laynets).   
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Figure 2.6. The management and recovery ranking score as well as the final combined ranking score for 

each management intervention. 

 

Discussion 

This study compared and evaluated the effectiveness of a wide array of coral reef management 

intervention options to promote coral bleaching recovery in Hawai‘i.  Previous efforts have 

either a) focused on one particular intervention category such as MPAs (Sciberras et al. 2015) or 

gear types (Cinner et al. 2009) or b) have synthesized broad recommendations without 

prioritization or detailing specific interventions (Heller and Zavaleta 2009).  There was 

considerable variability in the strength of evidence (average paper score) and the amount of 

evidence (number of papers) for the different potential interventions.  Combining that 

information allowed for a ranking of interventions in a way that can be clearly communicated to 

managers.  With this relative comparison of interventions, managers can hone in on actions that 

have been shown to be effective and which are suited to the region.  This systematic review can 

thus be a decision-support tool that provides a way for managers to synthesize large amounts of 

information and apply it to prioritize locally relevant interventions. 
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Relative Effectiveness of Top-Ranked Interventions 

Establishing a network of herbivore management areas ranked as the top intervention because of 

success in other regions, what is known about Hawai‘i’s herbivorous fish species, and previous 

success of herbivore management areas in Hawai‘i.  In the first six years of the Kahekili 

Herbivore Fisheries Management Areas on Maui, Hawai‘i mean parrotfish and surgeonfish 

biomass increased by 139% and 28% respectively (Williams et al. 2016).  Coral has also 

benefited at Kahekili where levels have stabilized and showed a slight increase from 2012 

through early 2015 prior to the bleaching event (Williams et al. 2016).  Additionally, the redlip 

parrotfish (Scarus rubroviolaceus), a critical species to nearshore fisheries in Hawai‘i and a key 

reef herbivore, is a good candidate for spatial management because of its high site fidelity 

(Howard et al. 2013).  In previous applications, spatial management has been found to have a 

strong connection to the ecological mechanism of herbivory and its role in shaping benthic 

communities, though this role has not been completely shown to lead to coral recovery (Graham 

et al. 2011).  However, herbivores that form large roving schools and utilize large portions of 

reef may require additional management measures in addition to spatial management (Welsh and 

Bellwood 2012).  Lastly, like all types of MPAs, there will be variability in its success based on 

the capacity of individual reefs to support herbivores (Heenan et al. 2015).   

 

Parrotfish fisheries rules (a fishing ban and size and bag limits) also ranked high as interventions 

to promote recovery following a bleaching event.  Parrotfish play multiple ecological functions 

in coral recovery, including controlling algal overgrowth and creating new space for coral 

settlement, and these relationships have been confirmed in Hawai‘i (Jayewardene 2009).  

Specifically, scrapers (Chlorurus spilurus, Chlorurus perspicillatus, and Scarus rubroviolaceus) 

were most strongly associated with Hawai‘i’s reefs maintaining a coral-dominated state (Jouffray 

et al. 2014).  There is evidence from a parrotfish ban in Belize that populations can recover 

quickly from overfishing (O’Farrell et al. 2015).  Bag limits essentially equate to a partial ban on 

parrotfish harvest and therefore would have many of the same benefits, but likely with less 

impact.  In Hawai‘i, it has been suggested that prohibiting the take of male parrotfishes would 

protect against overfishing of sex-changed male fish (Ong and Holland 2010).  Because the 

bioerosion abilities of parrotfish increase with size, protecting larger parrotfish will compound 

their ability to aid in coral recovery processes (Jayewardene 2009; Ong and Holland 2010; Bozec 
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et al. 2016).  However, because there are natural differences in the capacity of reefs to support 

herbivores, these restrictions may not have a consistent effect across all sites (McCook et al. 

2001; Knowlton 2004; Bellwood and Fulton 2008; Heenan et al. 2016).   

 

The interventions ranking the lowest in this review were restricted either in the amount of 

evidence available in the literature or in a lack of successful attempts to implement.  Regarding 

reducing land-based pollution, there is sufficient information on the negative effects of both 

sediment and nutrients on coral (Gil et al. 2016).  However there are extremely few examples of 

the successful reduction of sediments or nutrients on a large scale and subsequent coral revival 

(Kroon et al. 2014).  Similarly, there have been successful pilot projects to replant bleaching-

resistant corals (Van Oppen et al. 2011) and limited examples of consistent success on a larger 

scale (McClanahan et al. 2005; Aswani et al. 2015).  There were only two studies, including one 

from Hawai‘i, that explored the connection between laynets and their effect on herbivore 

populations and found that lay nets were not in the top gear types for herbivore catch (Cinner et 

al. 2009; Puleloa 2012).  Drawing conclusions from this limited evidence could generalize local-

scale patterns that may or may not represent a larger area. 

Focus on No-Take Marine Protected Areas  

Establishing a network of no-take MPAs was the intervention with the most papers by a 

substantial margin.  Globally and in Hawai‘i, no-take MPAs have been found to have both 

fisheries and ecosystem benefits (Selig and Bruno 2010; Graham et al. 2011)  MPAs have 

maintained coral cover over time (but not necessarily increased it) and in some cases prevented 

algal overgrowth (Mumby et al. 2007; Stockwell et al. 2009) though they have failed to 

specifically accelerate coral recovery (Graham et al. 2011).  No-take MPAs in Hawai‘i have been 

largely unsuccessful because they are too small given the current system of Marine Life 

Conservation Districts (Friedlander et al. 2007).  Regional environmental and habitat variability 

also strongly affect MPA success and therefore strategic placement of no-take areas is crucial to 

their success (Heenan et al. 2015, Williams et al. 2015a,b,c). 

 

This review also emphasizes the extent to which research and management has focused on a 

narrow handful of potential interventions, in particular no-take MPAs.  These results indicate 

that other fisheries rules and gear restrictions have potential to be effective management tools but 
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there is not sufficient evidence to properly assess them.  Likewise, since managers must balance 

competing interests, this study suggests that focusing on each intervention’s biological impacts 

as measured by specific metrics may be a successful method to evaluate relative effectiveness.  

Developing and implementing a diverse management toolbox has been found to be effective, 

particularly in rapidly changing and degraded environments like many coral reefs (Rogers et al. 

2015).  In addition, this method allows for connections to be made between what is understood 

biologically and what tools are available.  For example, it is well understood that the process of 

herbivory, especially the protection of parrotfishes, can have a positive effect on coral recovery 

from disturbances (McCook, Jompa, and Diaz-Pulido 2001; Graham et al. 2013; Cheal et al. 

2013).  Several herbivore-specific management options including bag and size limits and a ban 

of SCUBA spearfishing had a higher average score than no-take MPAs; however, there are far 

fewer papers on those, and therefore less certainty on these outcomes.   To clarify this question, 

future research should examine the effectiveness of interventions across a wider spectrum in 

order to provide managers with comprehensive recommendations.   

Focus on Coral Recovery  

This study identified management interventions following a bleaching event, focusing on the 

recovery aspect of coral reef resilience, which is the improvement of ecological function 

following the disturbance.  The interventions that were selected as part of the review were 

chosen because they could be implemented after a bleaching event either to prevent further 

mortality or to accelerate coral regrowth.  This has been the case in previous mass bleaching 

events where managers worked following the event and implemented recovery strategies 

(Beeden et al. 2014).  Generally, this may be a common reality for managers due to policy 

restrictions or standard protocols that result in a lag in response time.   

 

However, it also lessens focus on the second component of resilience as defined by Holling 

(1973), which is resistance, meaning the ability of the ecosystem to remain unchanged when 

subject to disturbance.  Of the interventions included in this review, two have the potential to 

also aid in building bleaching resistance: networks of no-take MPAs and herbivore management 

areas (West and Salm 2003).  Strategic design of spatial management networks to include areas 

with natural resistance due to a combination of physical factors (e.g. topography, wave energy, 

turbidity, slope, etc.) would ensure a holistic approach to resilience-based management.  



27 
 

Focusing on resistance could also raise the priority of actions to control nutrient and sediment 

run-off, which typically involve agency collaboration and planning and thus are typically mid- or 

long-term strategies.   

Difference between Global and Hawai‘i-Specific Management Interventions 

The systematic review also identified gaps in the scale and location of the research.  This study 

found the highest number of papers fell into the category of a single study site, outside of 

Hawai‘i.  The review identified one intervention (“Prohibit all use of laynets”) that had only one 

study inside Hawai‘i and another (“Replant bleaching resistant corals”) that had zero studies 

inside Hawai‘i.  This ultimately affected the ability to measure the difference of place-based 

weighting on the results because there were insufficient papers from Hawai‘i.   

 

All of the interventions included in the review had limiting evidence lowering its average score.  

The content of the limiting evidence varied by intervention, yet common themes emerged that 

should be considered before implementation.  A common theme in the literature was that 

regional environmental and habitat variability strongly affected the success of a managed area 

whether it was no-take or focused on herbivores in a given location (Heenan et al. 2015).  

Because of this, strategic placement of MPAs is crucial based on the specific goals of the 

protected area and local-level natural drivers that will increase the likelihood of successful 

spatial management.  Natural variability has also been found to affect the success of protected 

areas to increase herbivore biomass (McCook, Jompa, and Diaz-Pulido 2001; Knowlton 2004; 

Bellwood and Fulton 2008).  Success will vary based on the capacity of individual reef areas to 

support herbivores (Heenan et al. 2015).  Fisheries rules may also be strategically zoned based 

on spatial drivers and managers should likewise consider which reef areas have the highest 

exposure to stress as well as where their management actions may have the greatest effect.  

Understanding the local-scale environmental drivers of key management species and habitats 

will increase the likelihood of successfully implemented policies on coral reefs. 

Limitations and Biases 

There are several limitations to the present study related to inherent biases in the scientific 

literature including the focus on case studies, the popularity in investigating certain interventions, 

and the fact that most papers report supporting evidence (when findings point towards 
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effectiveness versus ineffectiveness).   As described, the majority of evidence consisted of case 

studies based on one specific study area.  Case studies can be useful, particularly if built on 

empirical data, to build broad theory (Eisenhardt 1989).  However, frequent use of case studies 

has given rise to some challenges including building theory from cases that are not 

representative, dealing with various types of evidence across the case studies, and identifying the 

emergent theory from a set of examples (Eisenhardt and Graebner 2007).  Secondly, published 

research tends to focus on certain topics of high popularity, which produces considerable 

discussion on both the pros and cons of these topics.  From a management perspective, this 

dilutes intervention recommendations by creating a large and mixed pool of evidence through 

which to navigate, as well as potentially ignoring the breadth of interventions to be considered.   

 

Lastly, scientific literature disproportionately reports complete studies with significant outcomes, 

known as publication bias.  Publication bias has been found to produce an additional ‘outcome 

reporting bias,’ in that reported results have been revised based on the results of the study (Chan 

et al. 2004).  It is also more common to report effective studies with significant results than 

studies that were ineffective, referred to as ‘positive publication bias’ (Sackett 1979).  Thus, it is 

the inherent weakness of any systematic review to contain biases based on the body of evidence 

that it is reviewing, but perhaps like in this study, the biases can highlight areas for future 

research to create more consistency across topics. 

 

This study also had a bias in the interventions that were considered.  Because the systematic 

review focused on a specific case study, interventions were chosen that were relevant to Hawai‘i 

stakeholders.  The twelve interventions were not an exhaustive list and did not include all 

potential types of actions (e.g. preventing physical damage to coral through mooring buoys).  

Interventions were chosen based on the case study context of managers in Hawai‘i searching for 

effective ways to promote coral recovery following a mass bleaching event (i.e., recovery rather 

than resistance) and represented a filtered set of options based on expert opinion.  Including the 

22 interventions initially presented to the experts in this analysis could have further expanded the 

results yet were not assessed due to time restrictions. 

 

Conclusions 
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This work expands the application of resilience-based management to promote coral bleaching 

recovery by developing a systematic review framework (Figure 2.1).  That framework was then 

applied to the case study of Hawai‘i, where managers were seeking to identify effective 

management tools following a recent mass bleaching event.  The review process was tailored to 

the Hawai‘i example by identifying 12 place-based interventions and weighting the evidence of 

effectiveness so that evidence from Hawai‘i had greater influence.  Building a systematic method 

for coral reef management decision making in this way helps to increase transparency and 

accountability of conservation actions (Bennett et al. 2017).  Systematic reviews increase 

transparency by providing a clear map of the rationale for decisions, including the costs and 

benefits of options being considered, and ensure that this information is accessible to all 

stakeholders in a succinct format.   

 

This study also has applications to the management of coral reefs in Hawai‘i and beyond.  Coral 

reef managers across the world require new ways to distill evidence into locally-relevant and 

practical strategies, especially for jurisdictions with limited capacity and thus a need to prioritize 

action in a relatively straightforward way.  This method could be applied in other regions also 

navigating how to select effective strategies following severe bleaching events.  By pursuing 

systematic reviews which examine the biological effectiveness of interventions, managers can 

develop evidence-based policies, providing better understanding of the relative biological 

effectiveness of management tools on a place-based level.  Repeating this type of effort for a 

different coral reef region would likely garner different results based on the natural biological 

and ecological variability of those regions.  This type of systematic, place-based review may also 

support managers in distilling local-scale interventions from global-scale recommendations 

presented in the literature.  The use of place-based considerations in the framework would 

benefit from additional research investigating the effectiveness of resilience-based strategies on 

coral reef ecosystems or by repeating this method in a locale with more extensive site-based 

research.  This type of evaluation will ultimately support managers adapting their decision-

making process to a resilience-based approach. 

 

This study provides a transparent, objective, repeatable, and place-based method for coral reef 

managers in Hawai‘i to understand the relative effectiveness of management tools in their 
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portfolio.  This type of evidence-based analysis is critical to justify and communicate the need 

for management action in the marine environment.  The need for evidence synthesis to support 

decision-making is becoming increasingly critical as coral reefs around the world face new, 

frequent, and severe disturbances.  With tools like systematic reviews, perhaps we can move 

from a piecemeal, subjective, and fragmented paradigm to one based more firmly in available 

evidence.  Methods of evaluating the effectiveness of interventions, including systematic 

reviews, can support managers to achieve evidence-based decision-making and ensure that 

challenges in the marine environment are overcome in an objective, logical, and transparent way.  

This type of evidence-based decision-making can then lead to an efficient process, systematically 

translating resilience-based management theory into practice. 
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Appendix 1. Literature compiled for each management intervention organized by metric it describes (ability to achieve management 

objective or ability to promote coral recovery).  A total of 100 individual studies were used in the systematic review.  

Management 
Intervention 

Metric Literature 

Network of no-
take MPAs 

Ability to achieve 
management objective 

Heenan et al. 2016, Williams et al. 2015a, Williams et al. 2015b, Williams et al. 2015c, Magris et al. 2015, Beverton 
and Holt 1957, Polacheck 1990, DeMartini 1993, Saldek et al. 1999, Bellwood et al. 2004, McClanahan 2009, 

Friedlander et al. 2007, Christie et al. 2010, Wedding and Friedlander 2008, Friedlander and DeMartini 2002, 
McClanahan and Kaunda-Arara 1996, Roberts et al. 2001, Russ et al. 2004, Abesamis and Russ 2005 

Ability to promote coral 
recovery 

Graham et al. 2011, Mumby and Steneck 2008, Stockweel et al. 2009, McCook et al. 2001, Knowlton 2004, 
Bellwood and Fulton 2008, Graham et al. 2013, Bohnsack 1998, Mumby et al .2007, Ledlie et al. 2007, Stockwell et 

al. 2009, Friedlander et al. 2007, Selig and Bruno 2010 

Network of 
herbivore 

management 

areas 

Ability to achieve 
management objective 

Heenan et al. 2016, McLoed et al. 2009, Graham et al. 2011, McClanahan et al. 2011, Howard et al. 2013, Williams 
et al. 2016, Friedlander and DeMartini 2002, Bellwood et al. 2012, Edwards et al. 2014 

Ability to promote coral 
recovery 

Graham et al. 2011, McCook et al. 2001, Knowlton 2004, Bellwood and Fulton 2008, Edwards et al. 2011, Rogers et 
al. 2015, Graham et al. 2013, Nash et al. 2016, Holbrook et al. 2016, Cramer et al. 2017, Jaywardene 2009, Williams 

et al. 2016, Hixon et al. 1996, Smith et al. 2010, Bellwood et al. 2004, Hughes et al. 2004, Marshall and 
Schuttenberg 2004 

Prohibit laynets Ability to achieve 
management objective 

Puleloa 2012, Cinner et al. 2009 

Ability to promote coral 

recovery 

Mangi and Roberts 2006, McClanahan and Cinner 2008 

Ban all 

herbivore 
fishing 

Ability to achieve 

management objective 

Heenan et al. 2016, Mumby et al. 2014, O'Farrell et al. 2016, Cox et al. 2013, Heenan et al. 2016, Friedlander et al. 

2007 

Ability to promote coral 
recovery 

Carassou et al. 2013, Mumby et al. 2014, Smith et al. 2002, Friedlander et al. 2007 

Enhance 
enforcement 

Ability to achieve 
management objective 

Kaplan et al. 2015, Selig and Bruno 2010, Edgar et al. 2014, McClanahan et al. 2006, Crawford et al. 2004, Kaplan 
et al. 2015, Pollnac et al. 2010, DLNR 2015 

Ability to promote coral 

recovery 

Selig and Bruno 2010, Haisfield et al. 2010, 

Ban SCUBA 

Spearfishing 

Ability to achieve 

management objective 

 Cinner et al. 2009, Lindfield et al. 2014, Meyer 2006, Howard et al. 2013, Stoffle and Allen 2012, Gillet and Moy 

2006, 

Ability to promote coral 
recovery 

Cinner et al. 2009, Nash et al. 2016,  

Ability to achieve 
management objective 

Mangi and Roberts 2006, Heenan et al. 2016, O'Farrell et al. 2015, Cox et al. 2012, O'Farrell et al. 2016, Friedlander 
et al. 2007, Heenan et al. 2016, Bellwood et al. 2012, Edwards et al. 2014 
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Ban all 
parrotfish 

fishing 

Ability to promote coral 
recovery 

Graham et al. 2011, McCook et al. 2001, Knowlton 2004, Bellwood and Fulton 2008, Bozec et al. 2016, Graham et 
al. 2013, Bellwood et al. 2006, Ledlie et al. 2007, Jaywardene 2009, Jouffray et al. 2014, Mumby et al. 2006 

Parrotfish size 

limits 

Ability to achieve 

management objective 

Heenan et al. 2016, Kuempel and Altieri 2017, Friedlander et al. 2007, Heenan et al. 2016, DeMartini et al. 2016, 

Ong and Holland 2010, Bellwood et al. 2012, Edwards et al. 2014 

Ability to promote coral 

recovery 

Bozec et al. 2016, Graham et al. 2013, Bellwood et al. 2006, Ledlie et al. 2007, Lokrantz et al. 2008, Jaywardene 

2009, Ong and Holland 2010, Mumby et al. 2006 

Parrotfish bag 
limits 

Ability to achieve 
management objective 

Heenan et al. 2016, DeMartini 2016, O'Farrell et al. 2015, Friedlander et al. 2007, Heenan et al. 2016, Bellwood et 
al. 2012, Edwards et al. 2014 

Ability to promote coral 
recovery 

McCook et al. 2001, Knowlton 2004, Bellwood and Fulton 2008, Bozec et al. 2016, Graham et al. 2013, Bellwood et 
al. 2006, Ledlie et al. 2007, Jaywardene 2009, Mumby et al. 2006 

Reduce 

sediment stress 
through land-

based 

mitigation 

Ability to achieve 

management objective 

Kroon et al. 2014, Richmond et al. 2005, Richmond et al. 2007, Chu et al. 2009 

Ability to promote coral 

recovery 

Kroon et al. 2014, Richmond et al. 2005, Zimmer et al. 2006, Jokiel et al. 2006, Gil et al. 2016, Rodgers et al. 2012 

Reduce nutrient 
stress through 

land-based 

mitigation 

Ability to achieve 
management objective 

Hunter and Evans 1995, Richmond et al. 2005, Richmond et al. 2007, Kroon et al. 2014 

Ability to promote coral 
recovery 

Mumby and Steneck 2011, Kroon et al. 2014, Risk et al. 2014, Richmond et al. 2005, Zimmer et al. 2006, Jokiel et 
al. 2006, Gil et al. 2016, Smith et al. 1981, Rodgers et al. 2012 

Replant 
bleaching-

resistant corals 

Ability to achieve 
management objective 

Aswani et al. 2015, McClanahan et al. 2005, D'Angelo et al. 2015, Mbije et al. 2013, Gomez et al. 2014, van Oppen 
et al. 2011 

Ability to promote coral 

recovery 

Aswani et al. 2015, Cremieux et al. 2010, Rinkevich 2005, Rinkevich 2006, Rinkevich 2008 
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CHAPTER 3. BUILDING CORAL REEF RESILIENCE THROUGH SPATIAL 

HERBIVORE MANAGEMENT IN HAWAI‘I 

 Submitted As: 

Anne Chung, Lisa Wedding, Alison Green, Alan Friedlander, Grace Goldberg, Amber Meadows, 

Mark Hixon.  2018.  Building Coral Reef Resilience through Spatial Herbivore Management in 

Hawai‘i.  Submitted to: Frontiers in Marine Science. 

Abstract 

Coral reef managers currently face the challenge of mitigating global stressors by enhancing 

local ecological resilience in the face of a changing climate. Effective herbivore management is 

one tool that managers can use in order to prevent regime shifts from coral to macroalgae 

dominated reefs.  One recommended approach is to establish networks of Herbivore 

Management Areas (HMAs), which prohibit the take of herbivorous reef fishes; however there is 

a need to develop design principles to guide planning and implementation.  We refine available 

guidance from no-take Marine Protected Area (MPA) networks and develop a set of 12 

ecological design principles specifically for HMAs.  We then provide a case study of how to 

apply these principles using the main Hawaiian Islands.  We address site-specific considerations 

in terms of protecting habitats, including ecologically critical areas, incorporating connectivity, 

and addressing climate and local threats.  This synthesis integrates core marine spatial planning 

concepts with resilience-based management and provides actionable guidance on the design of 

HMAs.  When combined with social considerations, these principles will support spatial 

planning in Hawai‘i and could guide the future design of HMA networks globally.  

Introduction  

Coral reefs are among the most diverse and complex ecosystems in the world and provide 

biological, economic, and cultural resources as well as ecosystem services to millions of coastal 

residents in nearly 100 nations (Moberg and Folke 1999). When climate-induced coral bleaching 

events act in concert with local stressors (e.g., overfishing, land-based pollution, and coastal 

development), the result is often an increased potential for regime shifts (e.g., coral-dominated to 

macroalgae-dominated systems) leading to a loss of biodiversity as well as ecosystem goods and 
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services (Graham et al. 2013; Ateweberhan et al. 2013; Hoegh-Guldberg et al. 2017).  Enhancing 

the ecological resilience of coral reefs has become a central focus for managers worldwide as the  

frequency of coral bleaching increases (Hoegh-Guldberg 1999; Baker et al. 2008). Improving 

coral reef resilience relies on fostering its two central components: the ability of coral reefs to 

both resist and recover from ecological disturbances, (Holling 1973).  To achieve increased 

resilience through conservation planning, that is, resilience-based management, managers must 

reduce local stressors while fostering key resilience processes throughout their jurisdiction 

(Graham et al. 2013; Anthony et al. 2015).   

 

Herbivory is a critical ecological process that underpins the ability of corals to recover from 

disturbances and resist regime shifts to algal-dominated reef states. Herbivores prevent algal 

overgrowth (e.g., thick turfs and macroalgae) that can inhibit coral settlement and survival, 

thereby reducing reef structural complexity (Hixon 2015).  Integrating herbivore management 

into local conservation planning has been identified as a key mechanism to bolster coral 

resilience to global stressors (Heller and Zavaleta 2009; Graham et al. 2013a; Hughes et al. 

2017). Thus, herbivore management areas (HMAs), where the take of herbivorous fishes and 

invertebrates (such as some urchins) is prohibited while other extractive and non-extractive uses 

are allowed, may be an effective tool to prevent ecosystem shifts and increase the resilience of 

coral reef ecosystems (McClanahan et al. 2012; Graham et al. 2013a; Mumby et al. 2014; Bozec 

et al. 2016).  

 

Consecutive and unprecedented mass coral bleaching events in 2014 and 2015 in the main 

Hawaiian Islands ignited a new conversation about the role of herbivore management areas in 

promoting coral reef resilience in Hawai‘i.  Exposure and severity of temperature stress during 

these two consecutive events was variable across the state, with some coastlines far exceeding 

levels previously observed (Figure 3.1).  In 2015, areas along the west coast of Hawai‘i island 

(known as west Hawai‘i) reached 16 degree heating weeks (DHW), which is double the level of 

accumulated temperature stress expected to trigger widespread bleaching and significant coral 

mortality (NOAA Coral Reef Watch).  Following these bleaching events, the average coral loss 

along west Hawai‘i was 50% (Kramer et al. 2016) and substantial mortality was also reported 

around the islands of Maui and O‘ahu (Figure 3.2).   
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a)  
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b)  

Figure 3.1. The maximum Degree Heating Week (DHW) observed in 2014 (a) and 2015 (b) 
across the main Hawaiian Islands (climate data source: NOAA Coral Reef Watch).  
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Figure 3.2. Coral bleaching across the main Hawaiian Islands in 2014 and 2015, where reefs 
experienced up to 16 degree heating weeks. Clockwise from left: west Hawai‘i, Hawai‘i Island, 

credit: DAR; Kāne‘ohe Bay, O‘ahu, credit: Catlin Seaview Survey; Molokini crater, Maui, 
credit: DAR. 

 

Concerns about the long-term resilience of coral reefs in Hawai‘i spurred local resource 

managers to consider intervention measures. In Hawai‘i, the Department of Land and Natural 

Resources (DLNR) Division of Aquatic Resources (DAR) is responsible for “managing, 

conserving, and restoring the state’s aquatic resources and ecosystems for present and future 

generations” (DLNR 2018).  In 2016, DAR initiated the development of The Hawai‘i Coral 

Bleaching Recovery Plan, which evaluated 12 management options following major bleaching 

events.  Establishing a network of HMAs was ranked as one of the top recommendations from 

multiple expert opinion surveys and a literature review (Rosinski et al. 2017).  DAR is currently 

considering options for spatial management as well as revised statewide bag and size limits that 

would further protect herbivorous fishes (especially parrotfishes).  These efforts create a realistic 
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opportunity for the design principles to be developed and applied to create a scientifically 

rigorous network of herbivore management areas using systematic conservation planning. 

 

Currently, there are 84 existing Marine Protected Areas (MPAs) across the main Hawaiian 

Islands, which includes several types of spatial designations, including Marine Life Conservation 

Districts, Fisheries Management Areas, and Community-based Subsistence Fishing Areas (DAR 

2018). Despite numerous MPAs, only a few of these areas (e.g. Kaho‘olawe) provide full 

protection for herbivorous fishes, while most provide only partial or no herbivore protection 

(Figure 3.3).  Furthermore, the Kahekili HMA on Maui is the only area specifically aimed at the 

recovery of herbivore populations and their habitats.  

 

 

Figure 3.3.  The current extent of spatial herbivore management around the main Hawaiian 
Islands. 

 

Although the existing MPAs were not designed as an ecologically connected network, previous 

success with spatial management suggests that a network of herbivore management areas could 

be successful in a Hawai‘i-specific context.  For example, the existing Marine Life Conservation 

Districts, where fishing and consumptive uses are limited (and in many completely prohibited), 
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generally have higher herbivore biomass, larger overall fish size, and higher biodiversity than 

adjacent areas of similar habitat quality (Friedlander et al. 2007a; Friedlander et al. 2007b).  In 

the first six years of herbivore management at the Kahekili HMA on Maui, mean parrotfish and 

surgeonfish biomass increased by 139% and 28%, respectively, macroalgal cover remained low, 

crustose coralline algae (a settlement habitat for coral larvae) increased from 2% to 15%, and 

coral cover stabilized from a declining trend (Williams et al. 2016).  Thus, HMAs appear to be a 

useful tool to assist with coral reef recovery in Hawai‘i.   

 

Despite global recommendations to improve the management of herbivorous fishes to increase 

reef resilience, there is currently a lack of practical guidelines on how this theoretical goal could 

be achieved.  In this study, we identify design principles specifically to develop a network of 

herbivore management areas as a climate adaptation tool.  To demonstrate how to apply this 

concept, we use Hawai‘i as a case study to explore unique place-based factors that could guide 

site-specific implementation.  This process could guide the configuration and placement of 

networks of herbivore management areas to build climate resilience in other areas globally. 

 

Methods 

Networks of no-take MPAs have been shown to enhance fish stocks within their boundaries and 

provide fisheries benefits outside these protected areas (Gaines et al. 2010; Lubchenco and 

Grorud-Colvert 2015; Baskett and Barnett 2015).  Thus, the use of no-take MPA networks has 

been strongly recommended for fisheries management, preservation of biodiversity, and 

intervention to foster adaptation to climate change (Salm and Coles 2001; Keller et al. 2009; 

Baskett et al. 2010; Ban et al. 2011; Roberts et al. 2017).  Ecological principles for designing 

networks of no-take MPAs provide criteria required to rebuild fish stocks, conserve biodiversity, 

and mitigate climate impacts in tropical marine environments worldwide (McLeod et al. 2009; 

Weeks et al. 2014).  Thus, the general framework for designing networks of no-take MPAs 

provides a useful foundation for developing specific criteria for designing networks of herbivore 

management areas.  
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Results 

Starting with design principles for no-take MPAs, we developed 12 principles that were adapted 

and refined specifically to design a network of herbivore management areas (Table 3.1), where 

the aim is to build reef resilience and prevent ecological phase shifts.  We also provide specific 

considerations for applying these principles to design a network of herbivore management areas 

in Hawai‘i based on local ecological conditions.  
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Table 3.1. Ecological design principles for the development of a network of herbivore management areas. 

 

Category 
Herbivore Management Area Design 

Principle 
Considerations in Hawai‘i References/Data sources 

Habitats 

1. Protect 20-40% of each habitat type that 

supports herbivores. 

Include areas with multiple habitat types that support 

multiple herbivore functional groups (aggregate reef, 

patch reefs, spur and groove, rock/boulder, rubble, sand, 

pavement). 

Costa and Kendall 2016 
1. Protect habitat types relevant to each 

herbivore functional group. 

Critical Areas 

3. Protect areas with naturally high herbivore 
biomass and/or functional diversity. 

Include areas predicted to have high current herbivore 

biomass and functional diversity  

Hawai‘i Monitoring and 

Research Collaborative 

data 

4. Protect areas likely to have the greatest 

herbivore fisheries recovery potential. 

 Include areas predicted to have high potential gain in 

resource fish biomass with reduction in fishing intensity 

 Stamoulis et al. 2018; 

Gorospe et al. 2018 

5. Ensure the network includes areas 
important for the ecological needs of all 

post-settlement life-history stages of 
herbivores (e.g. nursery, sheltering, 
feeding, and spawning grounds). 

Include known spawning habitat (e.g. boulders, 7-10 m 

deep). 

Schemmel and 

Friedlander 2017 

 Include known nursery grounds as well as juvenile and 

adult habitat (e.g. shallow, coastal waters and deeper 

reef areas 1-30 m depth). 

Randall 1961; Friedlander 

and Parrish 1998; Ortiz 

and Tissot 2012; Kane 

2018 

Connectivity 

6. Ensure larval connectivity within the 

network. 

Areas should be replicated within major shores (e.g. 

north, east, south, and west) on each major island. 

Christie et al. 2012; 

Toonen et al. 2011; 

Stamoulis and 

Friedlander 2013 

Due to strong physical drivers (e.g. prevailing currents, 

wave forcing), space areas appropriately to the 

geography and biophysical attributes of the coastline. 

Dollar 1982; Friedlander 

and Parrish 1998 

7. Ensure network is large enough to sustain 
herbivore populations. 

Ensure areas cover no less than 1 km of the coastline to 

accommodate known home ranges of large-bodied 

herbivores, establish multiple areas per coastline. 

 See Table 3.2 
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8. Scale size and spacing of HMAs based on 
movement patterns of herbivorous species. 

Climate 

Considerations 

9. Include areas that have withstood 

ecological disturbance in the past. 

Include areas with high water temperature variability 

that resisted and recovered from the 2014-2015 

bleaching events. 

Hawai‘i Coral Bleaching 

Collaborative data 

10. Include some areas likely to withstand 

future disturbances. 

Spread future climate risk by including areas stratified 

evenly across and within islands (i.e. across major 

shores: north, south, east, west). 

Salm et al. 2006, Green et 

al .2007, van Hooidonk et 

al. 2016 

11. Include some areas at high risk of regime 

shifts from coral to algae. 

Prioritize Maui, Moloka‘i, Lana‘i, and west Hawai‘i, 

and within these islands, areas that reached > 8 degree 

heating weeks during the 2014-2015 coral bleaching 

events. 

NOAA Coral Reef Watch 

2018 

Local Threats 
12. Avoid areas with unnaturally high levels of 

sediment and nutrients (that are beyond the 
direct jurisdiction of fisheries managers). 

Avoid areas near: 1) high sediment outfalls, 2) urban 

effluent, 3) agriculture, 4) golf courses, and 5) major 

impervious surfaces (paved roads, etc.). 

Lecky 2016; Wedding et 

al. 2018 

Pair marine areas adjacent to priority watershed 

management areas as identified by the Division of 

Forestry and Wildlife. 

Sustainable Hawai‘i 

Initiative 2018 
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Habitats  

The first principle is to represent habitat heterogeneity that occurs at multiple scales from 

individual reefs to the entire MHI within the network.  Spatial pattern metrics can be applied to 

describe seascape structure and habitat complexity (Wedding et al. 2011).  These metrics have 

already been put into practice in Hawai‘i to describe relationships between habitat structure and 

reef fish assemblages (Wedding et al. 2008ab), with more complex seascape structure associated 

with greater abundance, species richness, and biomass of reef fish.  

 

Areas with a high diversity of habitats relevant to herbivorous fishes should be included in the 

network. Throughout Hawai‘i, parrotfish distributions are significantly correlated with areas of 

high rugosity, coral cover, non-turf macroalgae, and crustose coralline algae (Howard et al. 

2009) and in particular shallow (5-10m) spur and groove habitat (Ong and Holland 2010).  

Zebrasoma flavescens, a common surgeonfish, is known to forage in shallow complex reef flat 

and boulder habitats (Claisse et al. 2011).  Herbivore density is also highest in shallow, backreef 

habitat (Friedlander and Parrish 1998), whereas biomass shows a negative relationship with 

macroalgal cover (Friedlander et al. 2007).   

 

Critical Areas 

In Hawai‘i, herbivore biomass and functional diversity are variable and therefore hotspots of 

both characteristics should be incorporated into the network.  Herbivores have been classified in 

groups based on their functional role as grazers, scrapers, or browsers, so a combination of their 

unique ecological roles will be critical to build resilience (Choat, Robbins, and Clements 2004; 

Hixon 2015).  In Hawai‘i, the distribution of herbivorous fishes varies by habitat regime, which 

is driven by ecological and biophysical characteristics (Donovan et al. in review).  In addition, 

current herbivore biomass naturally varies considerably across the archipelago driven by 

differences in benthic habitat cover, physical characteristics, and oceanography (Gorospe et al. 

2018).  HMAs should be prioritized for the network that have a diversity of functional groups 

and presently high biomass to maximize benefit to corals.  In Hawai‘i, herbivorous fish data has 

been synthesized from multiple agencies and organizations and then mapped using a predictive 

model based on approximately 10,000 in-water observations, known as the Hawai‘i Monitoring 

and Research Collaborative. 
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While many species of herbivores are considered overfished in Hawai‘i, there are areas that are 

predicted to have high potential gain if fishing were reduced and thus should be included in the 

network.  There is strong evidence of overfishing in the MHI when compared with the 

neighboring, unpopulated northwestern Hawaiian Islands (Friedlander and DeMartini 2002) as 

well as historical levels on the main Hawaiian Islands (Friedlander and DeMartini 2002; 

Williams et al. 2011; Howard et al. 2013; Heenan et al. 2016).  In a recent stock assessment, 

surgeonfishes and parrotfishes had the highest number (83% and 50% respectively) of species 

with low Spawning Potential Ratio (SPR) values, which defines overexploitation (Nadon 2016).  

However, there is also substantial spatial variation in the predicted ability of nearshore areas to 

recover from fishing pressure (Gorospe et al. 2018; Stamoulis et al. 2018).  These hotspots for 

fisheries recovery should be prioritized for inclusion in the network of HMAs. 

 

It is also important to ensure that herbivores will be protected at all life-history phases within the 

HMA network.  In particular, herbivores are concentrated in areas that are important for their 

various ecological needs (e.g. nursery, sheltering, feeding, and spawning areas), and protecting 

these critical habitats can yield significant benefits for conserving herbivore functional groups 

(Green et al. 2014a,b, 2017). Thus critical areas for herbivores during spawning and nursery 

stages, as well as feeding and sheltering, should also be prioritized for protection within a 

network of HMAs.  For example, spawning aggregations of Acanthurus nigrorus have been 

observed in large boulder habitat 7-10 m deep near a steep (25-30 m) dropoff (Schemmel and 

Friedlander 2017), and larval surgeonfishes (e.g. Acanthurus triostegus) are known to leave the 

pelagic stage and enter very shallow water in Hawai’i, often in tide pools where they grow to 

juvenile size in these shallow-water refugia (Randall 1961).  

 

In addition, ontogenetic patterns of habitat use by herbivores should be considered in network 

design.  Depth has a strong correlation to fish assemblages in the main Hawaiian Islands 

(Friedlander et al. 2007) and herbivore biomass has been observed to be highest at the relatively 

shallow depth range of 4.3 – 7.2 m (Friedlander and Parrish 1998).  Furthermore, Kane (2018) 

reports that herbivorous fishes in west Hawai‘i are not abundant below 30 m, suggesting priority 

should be given to nearshore waters 1 - 30 m deep.  However, in various life stages, herbivorous 
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fish have been observed to move between shallow and deep reef habitats (Ortiz and Tissot 2008; 

Ortiz and Tissot 2012), highlighting the need for areas of both deep aggregate coral habitat and 

shallow nearshore habitat (such as rubble and turf-rich boulders) to be included within HMAs.  

Connectivity  

To accommodate larval connectivity in the sizing and spacing of herbivore management areas, 

barriers to gene flow across the MHI must be considered.  Coral reefs in Hawai‘i, as is common 

in the Indo-Pacific reefs, are relatively isolated and commonly self-seeding (Halford and Caley 

2009).  Multispecies dispersal barriers have been documented within the MHI between island 

groups corresponding to major ocean channels (Toonen et al. 2011).  Within islands, studies of 

existing MPAs in Hawai‘i indicate the potential for management areas to support not only 

protected reef areas but successfully seed neighboring unprotected reefs as well (Christie et al. 

2010; Stamoulis and Friedlander 2013).  Christie et al. (2010) found that the distance of 

Zebrasoma flavescens larval dispersal ranged between 15 and 184 km along the coast of West 

Hawai‘i.  Lastly, coral reef community structure in Hawai‘i is primarily driven by wave exposure 

(Dollar 1982) with sheltered areas maintaining larger fish populations (Friedlander and Parrish 

1998).  These characteristics emphasize the need for stratification between and within islands to 

achieve evenness in larval dispersal across the network.  Therefore, we suggest that herbivore 

management areas should be replicated within major shores (e.g. north, east, south, and west) on 

each major island, and spaced appropriately to the geography and biophysical attributes of the 

nearshore region (e.g. prevailing currents, wave forcing) to ensure connectivity among HMAs 

and fished areas. 

 

In addition to larval connectivity, adult movements should be considered throughout the 

network.  However spatial use patterns are variable as some herbivores in Hawai‘i are site -

associated most of the time, while others take periodic forays for specific activities.  For 

example, Zebrasoma flavescens use shallow (3-6 m deep) during the day (Williams et al. 2009) 

then make considerable crepuscular migrations to deeper waters up to 600 m away from foraging 

to spawning and sheltering sites (Claisse et al. 2011).  Similarly, parrotfishes, especially large 

individuals, also take forays at crepuscular hours and rely heavily on the availability of nocturnal 

holes for shelter (Meyer et al. 2010; Howard et al. 2013).  These intermittent movements should 

be captured in the size of HMAs, extending to the full depth range (1 – 30 m) and ensuring 



51 
 

multiple areas per coastline. 

 

Movements of adult and juvenile herbivorous fishes, which range from resident to long-ranging 

species, should also bear on the size of individual herbivore management areas (Table 3.2).  

Multiple species of small-bodied surgeonfishes and parrotfishes are resident in a small (0.14 

km2) marine reserve in Kāne'ohe Bay, O‘ahu (Meyer and Holland 2005; Bierwagen et al. 2017; 

Stamoulis et al. 2017).  The bluespine unicornfish (Naso unicornis), a medium-sized herbivorous 

fish, demonstrated daily movement patterns in Hawai‘i less than 1 km (Meyer and Holland 

2005).  Large-bodied adult herbivorous fishes often have larger home ranges (Holland et al. 

1993) and seek refuge commensurate with their body size (Friedlander and Parrish 1998). For 

instance, (Howard et al. 2013) found persistent mean adult fish home range sizes for large-

bodied parrotfish to range between 834 and 2,279 m2 depending on depth.  Chubs (Kyphosus 

spp.) are unique in that they have much larger home ranges than many other reef fishes (Eristhee 

2001; Pillans et al. 2017), with some even observed to make trans-island movements over 300 

km in Hawaiian waters (Sakihara et al. 2015).   

 

Table 3.2. Recommended minimum MPA size for herbivorous fishes in Hawai‘i, based on Green et al. 

(2015), (Weeks et al. 2017).  * median distance based on 11 fish species, 5 herbivore species) ** linear 

distance based on Green et al. 2015. 

Family 
Common name 

(Hawaiian name) 

Observed 

home range 

size in Hawai‘i 

Recommended 

minimum 

MPA size** 

References for 

Hawai‘i home 

ranges 

Acanthuridae (surgonfishes) 

Acanthurus blochii 
Ringtail surgeonfish 

(pualu)  
0.5 km* 1 km Meyer et al. 2010 

Naso literatus 

Orangespine 

unicornfish 

(umaumalei) 

0.5 km* 1 km Meyer et al. 2010 

Naso unicornis 
Bluespine unicornfish 

(kala) 
300 m, 600 m 1 km 

Meyer and Holland 

2005, Bierwagen et 

al. 2017 

Zebrasoma flavescens Yellow tang (lau'īpala) 0.6 km 2 km Claisse et al. 2011 

Kyphosidae (chubs) 

Kyphosus vaigiensis Lowfin chub (nenue)  311 km 600 km Sakihara 2015 
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Labridae (parrotfishes) 

Chlorurus 

perspicillatus 

 Spectacled parrotfish 

(uhu 'ahu'ula) 
0.5 km* 1 km Meyer et al. 2010 

Chlorurus sordidus 
 Bullethead parrotfish 

(uhu) 
0.5 km* 1 km Meyer et al. 2010 

Scarus psittacus 
 Palenose parrotfish 

(uhu) 
0.5 km*, 80 m 1 km 

Meyer et al. 2010, 

Annandale 2014 

Scarus rubroviolaceus 
 Redlip parrotfish (uhu 

pālukaluka) 

0.5 km*,  100 

m, occasional 

forays up to 

400 m, 160 m 

1 km 

Meyer et al. 2010, 

Howard 2013, 

Annandale 2014 

 

Green et al. (2015) recommend that no take MPAs should cover at least twice the length of 

coastline that focal species adults and juveniles require.  To accommodate the full range of 

movements of herbivorous fishes in Hawai‘i, each HMA should be sized to accommodate large-

bodied parrotfish movements, covering no less than 2 km of the coastline.  Large distances 

traveled by chub species can be accommodated through placement of multiple HMAs per 

coastline. 

Climate Considerations 

Given changing climatic conditions, it will be important to protect ecological communities 

relative to their past or future response to climate change.  The network should encompass 

protecting reefs that have either withstood bleaching in the past or are more likely to withstand 

bleaching in the future (i.e. climate refugia), areas currently at high risk of regime change or 

shift, and a distribution of areas that spreads the risk to address uncertainty regarding how 

conditions may change. 

 

In Hawai‘i, there is a lack of long-term information on the effect of bleaching events as the 2014 

and 2015 events were unprecedented in their extreme and widespread effects.  Because of this, 

refugia should be based on biophysical drivers that were observed to correlate with areas either 

resisting or quickly recovering from the bleaching events.  Based on mortality and recovery data 

synthesized through the Hawai‘i Coral Bleaching Collaborative, areas with high weekly 

temperature variability were found to better resist and immediately recover from high 
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temperature stress.  The network should include the upper quantile of values (top 25%) of these 

areas to capture potential climate refugia.   

 

In addition to refugia, areas with the greatest need for bleaching recovery following the 

consecutive bleaching events must be addressed.  To maximize recovery potential of coral 

communities in Hawai‘i, the network should prioritized to Maui, Moloka‘i, Lana‘i, and west 

Hawai‘i, areas of the state that saw the highest bleaching stress (NOAA Coral Reef Watch 2018).  

The network should include a portion of nearshore areas within these islands that reached > 8 

DHW during the event, which is the level at which widespread bleaching and substantial 

mortality is expected to occur.   

 

Future climate risk should also be mitigated by evenly spreading herbivore management areas 

both across and within island units (Salm et al. 2006, Green et al. 2007).  Given the recent and 

unique mass bleaching events in the MHI, the network should be structured to accommodate 

evolutionary processes and natural variation that may aid in long-term preservation of habitat 

and species.  Differences in exposure between the 2014 and 2015 bleaching events suggest future 

exposure will also be variable across the entire archipelago.  Modeling suggests annual severe 

bleaching starting between 2030 and 2040 in the MHI, with variable effects across islands (van 

Hooidonk et al. 2016).  To spread the climate risk, the design should include multiple herbivore 

management areas around each island.  Stratifying and replicating herbivore management areas 

within the network will support the natural process of adaptation to climate change and lessen 

the possibility of major ecological impacts to the entire network from individual disturbances.    

Local Threats 

Nutrient input has been shown to increase algal biomass, trigger invasive blooms, and result in 

reef decline in Hawaiian waters (Smith et al. 1981), particularly when combined with decreased 

herbivory (Smith et al. 2001).  Areas with high sedimentation can suppress herbivory on coral 

reefs (Bellwood and Fulton 2008) and increased sediment loads may result in more persistent 

algal coverage (Goatley and Bellwood 2013; Goatley et al. 2016). In Hawai‘i, sources of land-

based pollution of particular concern include sedimentation from erosion (both natural and 

human-induced), nutrient flux from on-site sewage disposal systems, agriculture and golf-course 

runoff, and urban runoff from impervious surfaces (Lecky 2016; Wedding et al. 2018).  Effects 
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of land-based pollution on coral health vary spatially with leeward, sheltered reefs having a 

stronger relationship to watershed health compared to windward, exposed coastlines with 

enhanced mixing (Rodgers et al. 2012).  Therefore, where possible, it will be important to avoid 

placing HMAs in areas strongly affected by land-based pollution.  In addition, the network 

should be implemented to complement land-based management strategies to support reef 

resilience. In Hawai‘i, the Division of Forestry and Wildlife has identified priority watershed 

areas covering forests on each island (Sustainable Hawai‘i Initiative 2018).  HMAs should be 

paired with these watershed restoration areas to align priorities between management bodies.  

Discussion 

We offer these ecological principles to guide the designation of a network of new herbivore 

management areas, especially across the main Hawaiian Islands.  However local social, 

economic, and governance contexts must also be considered.  In Hawai‘i, herbivorous fishes are 

a valued nearshore food resource, critical to both commercial and noncommercial fisheries.  

Nearshore fisheries in Hawai‘i consist of diverse groups of people using a wide array of gears 

and targeting a diverse group of species (Smith 1993; Friedlander and Parrish 1997).  The 

estimated nearshore, noncommercial, reef-associated fisheries in the MHI is >1,000 tons per 

year, while the commercial reef fish catch is estimated to be ~185,000 kg per year (McCoy et al. 

2018).  Herbivores comprise a large component of the non-commercial catch, approximately 

500,000 kg per year (Williams and Ma 2013).  Mapping this effort across the state revealed 

variability in gear type and activity level, emphasizing that the closure or restriction of certain 

areas may have a disproportionate social and economic effect depending on placement (McCoy 

et al. 2018; Wedding et al. 2018).  While maintaining the network’s ability to achieve its 

ecological objectives, it will be essential to place new areas strategically to reduce their impact to 

areas valued by herbivore fishers.  

 

Community co-management is relevant in the Hawai‘i context and could contribute to the 

success of newly-implemented herbivore management areas.  In 2016, the first Community-

Based Subsistence Fisheries Area (CBSFA) was established at Hāʻena, Kaua‘i.  Since then, 

several communities currently pursuing CBSFA designation and many others are participating in 

grassroots, community-based stewardship.  This community interest could be leveraged to 
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appropriately place HMAs along coastlines where they would be welcomed and supported, 

rather than those where they may be misaligned with the community’s interests (Friedlander et 

al. 2013; Ayers and Kittinger 2014; Friedlander et al. 2014).  However such community co-

management areas, like most managed areas in Hawai‘i, are likely to be small (current average 

size of a Marine Life Conservation District is 0.40 km2, Fisheries Management Area is 1.08 

km2), and previous studies have found that current small MPAs are ecologically ineffective in 

Hawai‘i (Friedlander et al. 2007).  Therefore, it will be important that smaller MPAs are 

integrated into a larger network to mitigate social costs (Russ and Alcala 2003; Aburto-Oropeza 

et al. 2011).  Thus we recommend pursuing both an ecologically and socially connected network 

of herbivore management areas appropriately sized in areas of high community involvement and 

support. 

 

Based on general guidance for designing networks of no-take MPAs, we have developed 12 

ecological principles for designing networks of herbivore management areas as a reef resilience-

building tool.  Design principles fall into five major categories regarding protecting habitats and 

ecologically critical areas, incorporating connectivity, and addressing climate change and local 

threats.    

 

We then describe how these design principles could be applied in Hawai‘i by addressing several 

site-specific ecological qualities that should be considered when implementing herbivore 

management areas.  These include providing guidance on specific areas to be included in the 

network, as well as guidance on the location, size and spacing of HMAs throughout the MHIs.  

These design principles can be used to analyze relevant spatial data to design a network of 

herbivore management areas for the MHI. 

 

The next step in planning for a network of herbivore management areas across the MHI is to use 

the design principles and Hawai‘i-specific considerations to conduct a systematic spatial 

planning analysis.  This is currently underway as part of the state’s Marine 3030 – an effort to 

achieve “30% effective management in Hawai‘i’s nearshore marine waters by 2030” 

(Sustainable Hawai‘i Initiative 2018).  One objectives of this initiative is to increase reef 

resilience through improved spatial management.  These design principles could be applied to 
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prioritize specific nearshore areas to protect herbivorous fishes, promote recovery from coral 

bleaching, and build ecological resilience.  Once potential locations have been identified for 

establishing new HMAs using this analytical approach, additional planning will be required to 

ensure adequate size and spacing of proposed areas.  Final placement and design of HMAs in 

Hawai‘i will be determined through collaborative planning with stakeholders and the public 

rulemaking process.   
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CHAPTER 4.  PRIORITIZING REEF RESILIENCE THROUGH SPATIAL PLANNING 

FOLLOWING A MASS CORAL BLEACHING EVENT 

 

Submitted As: Anne Chung, Lisa Wedding, Amber Meadows, Mary Donovan, Jamison Gove, 

Cynthia Hunter.  2018.  Prioritizing Reef Resilience through Spatial Planning following a Mass Coral 

Bleaching Event.  Submitted to: Coral Reefs. 

Abstract 

Following the 2014-2017 global bleaching event, managers are seeking local interventions to 

promote resilience beyond monitoring coral decline.  Here, we applied a spatial approach to map 

and prioritize areas to increase coral reef resilience for the recent and future climate events based 

on habitat, fisheries, and climate features.  Specifically, Marxan was used to identify the most 

effective areas for herbivore management in Hawai‘i following consecutive mass bleaching 

events in 2014 and 2015. We found distinct resilience hotspots along the west coast of Hawai‘i 

Island and around the islands of Moloka‘i, Lana‘i, Maui, and Kahao‘olawe.  We further analyzed 

the top 25% of planning units contained in these hotspots and found that a subset of habitat 

types, current biomass of herbivore functional groups, and temperature variability were 

significantly different from surrounding areas and thus contain potential resilience drivers. 

Additionally, the top quartile of reef resilience areas had a 14% overlap with existing Marine 

Managed Areas (MMAs); however, they had only a 1% overlap with areas that currently provide 

full protection of herbivores, indicating that these results can be used to design additional 

Herbivore Management Areas (HMAs).  This resilience-based approach can serve as an example 

for coral reef management in Hawai‘i, on other Pacific Islands, and beyond, in developing 

practical strategies that build on existing tools and prioritized areas. 

Introduction 

Coral reefs worldwide are experiencing more frequent and severe mass bleaching events 

(Berkelmans et al. 2004; Hughes, Kerry, et al. 2017), which are predicted to become annual 

occurrences in some locales within the next ten years (van Hooidonk et al. 2016a). Further, it is 

estimated that over 20% of the world’s coral reefs have died due to bleaching in the last 20 years 

(Hoegh-Guldberg and Bruno 2010) owing to the mass global bleaching events in 1998, 2010, 

and 2014-17 (Heron et al. 2016; Hughes et al. 2018).  In Hawai‘i, coral reefs were exposed to 
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extremely high temperatures in back-to-back bleaching events in 2014 and 2015.  This event was 

the most severe coral bleaching event to date with a maximum of 16 Degree Heating Weeks 

(DHW) observed in west Hawai‘i, double the level at which one would expect widespread coral 

bleaching and mortality (NOAA Coral Reef Watch 2015).  Coral mortality following the event 

was extensive: on average 50% of corals died at monitoring sites in west Hawai‘i (Kramer et al. 

2016) (Figure 4.1).  Managers in Hawai‘i and around the world are now searching for local-scale 

interventions that may build long-term resilience to bleaching events as well as promote recovery 

from the latest global event (Great Barrier Reef Marine Park Authority 2017; Rosinski et al. 

2017). 

 

Figure 4.1.  Coral mortality along the west coast of Hawai‘i Island following consecutive 
bleaching events in 2014 and 2015.  An average of 50% coral loss was observed in this region 
and now local managers are eager to go beyond monitoring decline to developing strategies to 

build long-term resilience. (Photo credit: DAR) 
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When an ecological disturbance, such as the recent global bleaching event, occurs on reefs, it can 

result in regime shifts (e.g., coral to macroalgae dominated systems).  Regime shifts can be 

permanent or temporary, depending on the resilience of the system. Resilience refers to the 

ability of coral reefs to “absorb or withstand perturbations and other stressors such that the 

system remains within the same regime, maintaining its structure and functions,” and includes 

recovery from past events and resistance to future events (Holling 1973; Walker et al. 2004).  

Without local management intervention to bolster reef resilience, recurrent coral bleaching 

events will increase the risk of tipping points – the point at which recovery will be considerably 

more difficult, if not impossible (Ateweberhan et al. 2013; Graham et al. 2013; Selkoe et al. 

2015; Ove Hoegh-Guldberg et al. 2017).   

 

Globally, there has been a shift towards resilience-based management for coral reefs, which 

presents a process to identify management levers that will reduce coral reef vulnerability to 

climate impacts, including bleaching events (Graham et al. 2013; Anthony et al. 2015).  

Underpinning the resilience-based management concept is promoting processes, including 

herbivory, that build both resistance to and recovery from bleaching events (Graham et al. 2013; 

Hixon 2015; Hughes, Barnes, et al. 2017). In addition to herbivore management, examples of 

other reef resilience strategies can include management of land-based stressors, generally 

reducing fishing pressure through no-take areas, and coral transplantation efforts (McClanahan 

2012, Aswani et al. 2015).  Strategically designing networks of Marine Managed Areas (MMAs) 

and increasing herbivorous fish abundance are two dominant strategies that have been 

recommended to prevent phase shifts and build resilience (McLeod et al. 2009; Graham et al. 

2013; Green et al. 2014).  Leveraging the ecological roles of multiple herbivore functional 

groups (e.g. browsers, grazers, and scrapers) by ensuring functional diversity within protected 

areas is recommended to maximize recovery processes (Nyström et al. 2000; Bellwood et al. 

2004; Nyström 2006; Green and Bellwood 2009).  Current strategies to promote recovery 

following bleaching events are limited and focus on a narrow segment of options. Thus, there is 

an urgent need to explore a wider breadth of management options for bleaching recovery and 

long-term resilience (Aswani et al. 2015; Comte and Pendleton 2018). 
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Here, we apply the concept of resilience-based management for the development of practical 

management actions in Hawai‘i after consecutive mass bleaching events. In this analysis, we 

designed a spatial planning approach to manage herbivory--the establishment of Herbivore 

Management Areas (HMAs), where the take of herbivorous fishes and invertebrates (e.g., sea 

urchins) is prohibited, while other extractive and non-extractive uses are allowed (McClanahan 

et al. 2012; Mumby et al. 2014; Bozec et al. 2016).  Our overall goal was to identify specific 

areas around two regions in the main Hawaiian Islands that were severely impacted by the 2014-

2017 global bleaching event where HMAs would have the greatest possibility of contributing to 

long-term resilience.  Also, we investigated the habitat, fisheries, and climate features within the 

areas that were prioritized in our Marxan analysis and compared selected areas with existing 

MMAs.  This resilience-based management approach can serve as an example for bleaching 

mitigation and resilience-based management for other regions affected by the global event. 

Materials and Methods 

Planning Area and Stratification 

The main Hawaiian Islands comprise an isolated archipelago that stretches approximately 300 

miles from the island of Hawai‘i to Niihau.  Approximately one quarter of all Hawaiian marine 

species are endemic (Abbott 1999, Randall 2007, Briggs and Bowen 2012) and herbivorous 

fishes dominate the region’s reefs, comprising approximately 55% of the total fish biomass 

(Friedlander and DeMartini 2002).  Ecological patterns across the main Hawaiian Islands are 

structured by both biological and physical forcing factors (Dollar 1982; Friedlander et al. 2003; 

Storlazzi et al. 2005; Franklin et al. 2013).  Hard bottom benthic habitats in Hawai‘i are 

dominated by hard corals, turf algae, or macroalgae regimes (Jouffray et al. 2014). 

 

The planning areas for this analysis were Maui Nui and west Hawai‘i, which both experienced 

high levels of exposure to bleaching conditions and coral mortality during the 2014/15 bleaching 

events (NOAA Coral Reef Watch 2015, Kramer et al. 2016) (Figure 4.2).  This project explores 

the use of herbivore management which has been proven effective within the planning areas. For 

example, in the first six years of the Kahekili Herbivore Fisheries Management Area in west 

Maui, mean herbivorous fish biomass has increased (surgeonfish by 28% and parrotfish by 

139%) and coral cover has stabilized, demonstrating promise for additional HMAs in this region 
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(Williams et al. 2016).  Maui Nui and west Hawai‘i were selected because they represent two 

regions in the main Hawaiian Islands where herbivore protection could be prioritized and piloted 

to promote recovery from the past bleaching events as well as long-term climate resilience. 

 

 

Figure 4.2.  The planning area included the western shore of Hawai‘i Island and Maui Nui 

(islands of Moloka‘i, Lana‘i, Maui, and Kahao‘olawe).  These areas were selected because of 
their high exposure to temperature stress during the 2014/15 mass bleaching events across the 

main Hawaiian Islands.  The planning unit grid consisted of 0.65 km2 hexagons with 500 m sides 
(see map inset). 

 

The offshore extent of the planning area was 7.5 km from the coastline, in order to incorporate 

the furthest extent of existing MMA boundaries.  The planning area was divided into 

hexagonally shaped planning units with 500-meter sides, producing an area of 0.65 km2 per 

planning unit.  There were a total of 10,100 planning units included in the analysis, covering an 

area of 6,565 km2.  The planning area was also stratified by region, ensuring that results would 
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be relatively spread across the two regions and accounted for documented genetic breaks 

between island groups (Toonen et al. 2011). Maui Nui was left as a single stratification unit as 

the islands share a certain amount of genetic connectivity (Toonen et al. 2011). 

Data synthesis and preparation 

We conducted a Marxan analysis to identify priority hotspots for herbivore management. Marxan 

has guided numerous MPA network design projects, including the re-zoning of the Great Barrier 

Reef (Fernandes et al. 2005; Game et al. 2008) and re-design of protected areas along 

California’s coast (Klein et al. 2008; Gleason et al. 2013). The Marxan algorithm identifies units 

within a planning area that meet user-defined conservation targets for features in the 

environment, while minimizing the total cost (also a user-defined layer) and achieving a certain 

level of compactness across the results (Ball, Possingham, and Watts 2009) .  For this analysis, 

we used “Marxan with Probabilities,” known as MarProb, to incorporate impacts from local 

threats such as land-based sources of pollution and sedimentation into the network design 

(Tulloch et al. 2013).   

 

We first synthesized existing statewide data relevant to the ecological design principles for 

HMAs and Hawai‘i-specific considerations established by Chung et al. (2018), which 

investigated how habitat, life history, and other ecological considerations could be addressed in 

HMA design (Table 4.1).  Each conservation feature was then assigned a target, which was the 

percentage of that layer that should be represented in the resulting Marxan solutions.  Targets 

ranged from 5-100% based on the relative importance of the feature and its rarity within the 

planning area.  
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Table 4.1.  Data layers used in this analysis as they relate to HMA ecological design principles (Chung et al. 2018).  An “x” indicates 
the data layer fulfills the corresponding design principle.  An asterisk (*) indicates data layers created for this analysis.  

 

  Herbivore Management Area  

Ecological Design Principles 

  

Category Data layer 

Protect 

20-40% 
of each 

herbivor
e habitat 

type 

Protect 

habitat 
relevant 

to each 
functional 

group 

Protect 
areas 

with 
naturally 

high 
herbivor

e 
biomass 

Protect 

areas 
likely to 

have 
high 

herbivor
e 

fisheries 
recovery 

Include 
areas 

important 
for all 

life-
history 

stages 

Ensure 
larval 

connectivit
y 

Ensure 
network 

is large 
enough to 

sustain 
herbivore

s 

Scale size 

and 
spacing 

based on 
movemen

t patterns 

Include 

areas that 
have 

withstood 
ecological 

disturbance 

Include 

areas likely 
to 

withstand 
future 

disturbance 

Include 

areas at 
high risk 

of regime 
shifts 

Avoid 
areas 

with high 
levels of 

sediment 
and 

nutrients 

Marxan 

treatment 
Target 

Habitats 

Aggregate Reef x x   x 

 

Not addressed as individual data 

layers, could be addressed post -

analysis through final placement 

and design of HMAs. 

 

  

Not 

addressed 

as 

individua

l data 

layers, 

but was 

addressed 

through 

the 

selection 

of the 

planning 

area. 

 

Conservation 

Feature 

30% 

Aggregated 

Patch Reef 
x x   x    100% 

Individual Patch 

Reef 
x x   x    100% 

Spur and 

Groove 
x x   x    30% 

Rock/Boulder x x   x    15% 

Rubble x x       15% 

Sand x x       15% 

Scattered 

coral/rock 
x x       15% 

Pavement x x       5% 

Pavement with 

Sand Channels 
x x       5% 

Estuaries x x   x    30% 

Critical 

Areas 

 

Weekly 

Temperature 

Variability 

     x x  30% 

Coral Percent 

Cover* 
x x   x    5% 

Herbivore 

biomass: 

scrapers* 

  x      30% 
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Herbivore 
biomass: 

grazers* 

  x      30% 

Herbivore 

biomass: 

browsers* 

  x      30% 

Potential gain in 

fish biomass 
   x     30% 

Local 

Threats 

Sediment        x 

Probability 

of Impact  Avoided 

in 

analysis 

Effluent        x 

Agriculture and 

Golf Course 

runoff 

       x 

Impervious 

Surfaces 
       x 

Local 

Use 

Herbivorous 

fish catch by 

gear type 

      

   

      

Cost Layer 
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Layers for ten benthic habitat types that are relevant to herbivorous fish life history and daily 

movements were used as conservation features in the analysis (Costa and Kendall 2016). 

Estuaries were also included as they can serve as nursery habitat for multiple herbivorous fish 

species (Boehlert and Mundy 1988; Friedlander and Parrish 1997).   High temperature variability 

has been found to be a local driver of both bleaching resistance and recovery in the main 

Hawaiian Islands and elsewhere and so was also included as a conservation feature (Safaie et al. 

2018, T. Oliver, personal communication, 2018).  The upper quartile of values in this continuous 

layer was selected to include only areas with high variability.  We also included a layer that 

modeled which areas across the state would see the greatest increase in resource fish biomass, 

many of which were herbivorous fishes, if fishing effort was reduced (Stamoulis et al. 2018).  

 

In addition to existing data layers, we created several layers to include as conservation features 

specific to coral reef resilience concepts.  To do this we used a database of in-water benthic and 

fish monitoring data for the main Hawaiian Islands which contains observations from 1706 sites 

in West Hawai‘i and 3329 sites from Maui Nui collected between 2000 and 2017, synthesized 

and calibrated by Donovan (2017). Spatial predictions for fish and benthic variables were created 

using Boosted Regression Trees following methods of Stamoulis et al. (2016), who also 

developed a database of gridded predictors on terrain, habitat, oceanographic, and human 

influences. First, we created a predictive layer of coral cover and used the upper quartile to target 

areas with high coral percent cover.  We also created individual layers of biomass by herbivore 

functional group (e.g. grazers, browsers, and scrapers (as defined by Donovan (in review)) and 

again used the top quartile in the analysis.  First, we created a predictive layer of coral cover and 

used the upper quartile to target areas with high coral percent cover before the bleaching event.  

We also created individual layers of biomass by herbivore functional group (e.g. grazers, 

browsers, and scrapers (as defined by Donovan (in review)) and again used the top quartile in the 

analysis.   

 

Layers representing local threats were incorporated using the MarProb probabilities feature to 

avoid selecting areas with a high risk of impact from these threats. Sediment, effluent, 

agriculture and golf course runoff, and urban runoff from impervious surfaces were each 

integrated into the MarProb feature (Lecky 2016; Wedding et al. 2018).  Layers representing 
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non-commercial fishing catch by gear type were combined into a cost layer, allowing areas of 

high use, and thus high potential conflict, to be minimized in network solutions (McCoy et al. 

2018; Wedding et al. 2018).  We specifically used a subset of gear types that would be likely to 

target herbivorous fish catch (e.g. shore-based spear, boat-based spear, and shore-based net 

fishing). 

 

We integrated spatial data into Marxan by calculating the total area of each feature in each 

planning unit using the Tabulate Area tool in ArcGIS.  Data layers representing continuous data 

(e.g. herbivorous fish biomass and coral cover) were classified into quartiles before analysis, so 

that the top 25% of data values could be targeted in the Marxan solution.  Data layers 

representing local threats (e.g. sediment, effluent, urban runoff, and agriculture/golf course 

runoff) were normalized and combined into a probability of impact value for each planning unit 

within the planning area.  The cost layer was created by normalizing and summing the multiple 

layers representing non-commercial catch by the shore-based net and both shore and boat-based 

spear fishing.  In order to further prioritize planning units within shallow, nearshore waters most 

representative of the coral reef ecosystem, the cost layer was adjusted so that a higher cost value 

was given to areas deeper than the 50-meter depth contour. 

 

Data Analysis 

We then ran two analysis scenarios, one where no specific areas were locked in (known as an 

unrestrained scenario), to allow for the software to primarily consider conservation features and 

cost.  Alternatively, we ran a scenario where MMAs that offer full herbivore protection (no-take 

areas and current HMAs) were locked in, meaning the software automatically included them in 

the results and also used these planning units as a starting point to include additional areas.  For 

both scenarios, the Boundary Length Modifier (BLM), which affects size and compactness of the 

results, was calibrated to 0.1 to ensure a certain level of compactness, and the Probability 

Weighting Factor (PWF), which scales the relative importance of meeting all targets while 

minimizing the probability of impacts, was calibrated to 10,000.  We then ran Marxan 100 times 

for each scenario, with 10,000,000 iterations per run, producing 100 distinct results per scenario.   
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Selection frequency maps were created by displaying the percentage of time a particular area was 

selected for inclusion in the network out of 100 runs in Marxan.  From this output, we selected 

the upper quartile, highlighting planning units that were chosen ≥75 out of the 100 runs.   

 

Within this focused output, we calculated the average area (km2) of each conservation feature 

within each planning unit by using the Tabulate Area tool in ArcGIS.  We tested for significant 

differences between the average area of each feature both within the top 25% and in the 

remaining area using two-sample t-tests with unequal variances.  We also identified the subset of 

planning units that overlap with existing MMAs that offer full herbivore protection.  Lastly, we 

compared the unrestrained results with those locking in MMAs currently protecting herbivores 

by calculating the percent overlap of the two scenario planning units.   

Results 

Selection Frequency Outputs 

We used Marxan to identify resilience hotspots, i.e., areas that fulfilled the conservation feature 

targets that were set while also minimizing the cost of areas selected within Maui Nui and west 

Hawai‘i.  The results of the unrestrained Marxan scenario displayed several potential resilience 

hotspots within the planning area of Maui Nui and west Hawai‘i (Figure 4.3).  In Maui Nui, a 

large number of planning units within the top quartile of selection were located around Moloka‘i 

(58% of planning units), especially along the southeastern and north shores.  Approximately 21% 

of areas were selected around Maui, concentrated near the southern and eastern shores of the 

island.  Lana‘i had considerably less area selected, 0.5%, likely because of limited data 

availability.  Kahao‘olawe was not selected in the unrestrained scenario due to poor data 

availability for features in that area. In west Hawai‘i, hotspots were spread throughout the 

coastline with larger hotspots in the northern and southern ends of the coastline, totaling 20.5% 

of the top quartile selected area. 
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Figure 4.3.  Selection frequency map for the unrestrained Marxan scenario with no areas locked 
in, which identify areas around West Hawai‘i and Maui Nui where HMAs could be prioritized.  

 

Comparatively, locking in existing MMAs that offer full herbivore protection automatically 

included the Kahao‘olawe Island Reserve, some small areas around Maui including the Kahekili 

Herbivore Management Area, and a few areas in west Hawai‘i, notably the Kaʻūpūlehu no-take 

area (Figure 4.4).  These locked-in areas represent 5% of the total planning area.  
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Figure 4.4.  Selection frequency map for the Marxan scenario with MMAs that offer currently full 
herbivore protection (no-take and current HMAs) locked in. 

Top Quartile Results 

Selecting the top quartile of the unrestrained results, meaning planning units that were selected ≥ 

75 out of 100 Marxan runs, resulted in 191 selected planning units comprising a total area of 

124.15 km2 (~2% of the total planning area).  Out of those planning units, 39 of them (25.35 

km2) were located in west Hawai‘i while 152 of them (98.8 km2) were in Maui Nui.  We then 

compared the tabulated average area of each conservation feature within each planning unit for 

both the top quartile and the remaining planning area (Figure 4.5).  The average area for all 

conservation features (see Table 4.1) except for ‘rubble’ and ‘estuaries’ was significantly higher 

in the planning units within the top quartile (p ≤ 0.05).  All of the critical area conservation 

features had a significantly higher average area within the top quartile planning units when 

compared with the rest of the planning units (p ≤ 0.05). 
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Figure 4.5.  Comparison between the average area of each conservation feature within each planning unit 

in the top quartile (planning units that appeared in ≥75% of Marxan results)  (n = 191) and planning units 

in the remaining planning area (n = 9,909).  Asterisk (*) indicates significantly different values (p ≤ 0.05).  

Error bars represent standard error. 
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Overlap with existing MMAs 

Comparing the top quartile of the unrestrained scenario results to existing MMAs, there were 

two planning units (1%) that overlapped with the subset of existing MMAs currently fully 

protecting herbivores, which both fall within the Kahekili Herbivore Fisheries Management Area 

on Maui.  Additionally, there was a 14% overlap between the top quartile and the overall 

footprint of existing MMAs across the planning area.  Further, when we compared the 

unrestrained scenario to the locked in scenario, 97% of units selected in the unrestrained scenario 

were also selected when existing MMAs were locked in.  Conversely, 99% of planning units 

selected in the locked in scenario were also selected when the analysis was unrestrained.   

Discussion 

Mass coral bleaching events have spurred management action to build coral reef resilience on a 

local scale.  For example, creation of a Great Barrier Reef Blueprint for Resilience and the Coral 

Bleaching Recovery Plan in Hawai‘i have brought together researchers, managers, and those 

dependent on reefs to explore innovative interventions.  However, a current challenge is how to 

apply concepts of resilience-based management at a local scale in a practical and effective way.  

In this study, we targeted one recommended resilience-building action, establishing a network of 

HMAs, and explored how to spatially prioritize areas following the mass bleaching events in 

2014 and 2015 across Maui Nui and West Hawai‘i in the main Hawaiian Islands.  We found that 

the spatial prioritization tool, Marxan, helped to map multiple hotspots where HMAs would have 

the greatest effect based on local ecological conditions, while also balancing human use.  This 

approach can enable managers in Hawai‘i to effectively target and implement HMAs to promote 

coral resilience.  Additionally, this method could be expanded to managers in other islands and 

regions looking to integrate climate resilience considerations into their spatial planning following 

a mass coral bleaching event. 

Spatial Prioritization Approach 

We used Marxan to identify and spatially prioritize coral reef resilience hotspots within our 

planning area.  There have been several studies using a similar approach, integrating resilience 

concepts into a spatial prioritization by using a combination of habitat and climate features 

(Green et al. 2009; Magris et al. 2015; Parker et al. 2015; Davies et al. 2016).  However, this 

study uniquely used current herbivore biomass by functional group to hone in on specific 



80 
 

geographic areas and habitats critical to these resilience-building species.  These predictive 

layers, which were developed for this study based on in-water observations, demonstrated the 

wide variability of these groups across Maui Nui and West Hawai‘i.  Although previous studies 

have emphasized the importance of monitoring and managing multiple herbivore functional 

groups (Bellwood et al. 2004; Green and Bellwood 2009), our research represents a strategy to 

prioritize specific geographic areas where functional diversity is high.  

 

Additionally, there have been several approaches for integrating resilience concepts into 

conservation planning, which our study blended into a strategy that accounted for lack of 

certainty about future climate impacts.  First, a strategy has been to prioritize specific resilient 

habitat features (e.g. depth, habitat complexity) in the analysis (Parker et al. 2015; Davies et al. 

2016).  Alternatively, the potential for future exposure to climate impacts can be accounted for 

by stratifying the planning area, ensuring the final design accounts for risk spreading, replication, 

and representation post-analysis (Green et al. 2009; Green et al. 2014).  Lastly, Magris et al. 

(2015) developed multiple regimes based on past and future thermal refugia to configure 

potential MPAs in a resilient network.  In the current study, we learned that this approach is not 

practical for regions like the main Hawaiian Islands that have not experienced past bleaching at 

the scale of the 2014/15 event.  Also, we considered including data on future climate impacts. 

However, work by van Hooidonk et al. (2016), which projects severe coral bleaching to occur 

annually starting between 2035 – 2045 in the main Hawaiian Islands under a business as usual 

scenario (i.e. RCP8.5), showed that small differences exist (5 years) in the projected onset of 

annual severe bleaching across Maui Nui and West Hawai‘i. As such, we assumed spatial 

uniformity in future climate impacts across our planning area.  

 

Ultimately, we used a coral reef regime-type approach, using modeled layer of temperature 

variability, which was shown to be a strong driver of resistance and recovery during the 2014/15 

bleaching event in Hawai‘i as well as other coral reef regions (Safaie et al. 2018, T. Oliver, 

personal communication, 2018).  This allowed us to examine variability along individual 

coastlines within the planning area; however, it is limited by the fact that it is based on 

performance in one environmental disturbance.  Additional resilience concepts could be 

integrated in post-analysis including spreading HMAs evenly across the islands and ensuring 
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multiple replicates across each coastline.  This strategy may guide managers in other regions that 

may not have data related to patterns of climate impacts upon which to base spatial planning 

decisions. 

Analytical Limitations 

A Marxan-based approach has been used in numerous MPA design studies, yet there are several 

limitations to consider when interpreting these results. For instance, certain areas (e.g. the island 

of Kahao‘olawe) were not selected due to lack of habitat data in this area and this affected the 

resulting outputs.  However, since the Kahao‘olawe is a Marine Reserve, it was locked into the 

second scenario and was therefore included in the network.  Also, more refined data of drivers of 

coral resistance or recovery from bleaching events at a coastline scale (e.g. maps of presence of 

vulnerable taxa, high taxa or species diversity) would have added to the climate conservation 

features. 

 

Regarding the existing MMAs, we explored the footprint of the current network; however, this 

does not consider the performance or effectiveness of these areas.  Further, when we locked in 

areas into the Marxan analysis, the software builds on these areas first when suggesting other 

planning units.  Information related to compliance or management priority may have narrowed 

down off of which MMAs it is appropriate to build.  However, given that the portion of managed 

areas currently protecting herbivores is limited, most of the planning area was still open in the 

analysis. 

 

Another limitation was that several design principles related to ensuring adequate size and 

spacing for larval and adult fish connectivity could not be incorporated into the Marxan analysis 

but should rather be a component of post-analysis HMA design.  Marxan is a decision-support 

tool and thus ultimately the placement and arrangement of HMAs will call for collaborative 

design between reef managers, scientists, and ocean stakeholders.  This approach could facilitate 

this next step because it incorporated data on fisheries catch to minimize impact to herbivore 

fishing grounds from the beginning of the design process. 
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Overlap with Existing Marine Managed Areas in West Hawai‘i 

When we compared the top quartile of areas from the Marxan results to the footprint of existing 

MMAs, we found that existing marine managed areas with full herbivore protection do not 

overlap well with the benthic and fisheries features targeted in the analysis.  These priority reef 

resilience areas demonstrated some overlap with existing MMAs; however, they had only a 

minor overlap with MMAs that protect herbivores, indicating improvements could be made to 

better incorporate this critical ecological function. The fact that the top quartile had a fair amount 

of overlap with all types of existing MMAs in the planning area suggests that herbivore 

protections could be added to areas with current place-based rules or boundaries modified to 

include a great portion of the priority resilience areas. 

 

Additionally, we found that the areas within the top quartile of Marxan results had almost 

complete overlap even when we locked in existing spatial protections.  This result emphasizes 

that these areas are critically important to consider for additional protection and suggests that, 

regardless of existing MMAs, these areas are an efficient arrangement of HMAs based on 

desired habitat types, functional groups, and other considerations.  We can also infer that 

inclusion of less common habitat types (e.g. spur and groove and patch reefs) reduces the 

flexibility of choosing between multiple areas along the same coastline and is driving the results 

towards the same locations where these habitats can be included. This also emphasizes the 

efficiency of the Marxan results given less common but important habitats in this region. 

 

Specific to a particular type of MMA, there were two resiliency hotspots along the West Hawai‘i 

coastline that overlap with the network of Fisheries Replenishment Areas (FRAs) at Puako-

Anaeho‘omalu and Miloli‘i FRAs.  FRAs were established with the specific purpose to manage a 

commercial aquarium trade in the region and is a significant feature of the West Hawai‘i 

management landscape.  These managed areas partially manage herbivores, as they restrict take 

to a small subset of fishes of interest to commercial aquarium collectors; however, the take of 

most herbivores and fishing is less restrictive in these areas.  They have been proven effective for 

the primary target species, yellow tang (Zebrasoma flavescens), where within the first eight years 

closed areas had five times higher density of juveniles and 48% higher density of adult fish than 

open areas (Williams et al. 2009).  The existing footprint of FRAs, which equates to roughly 
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30% of the coastline, represents a promising opportunity for effective future HMAs since their 

boundaries have been already legally established. 

Ecosystem-based Management Implications in West Hawai‘i 

The results of the Marxan analysis provide science to support management in West Hawai‘i and 

overlap with several regional management priorities including the NOAA Habitat Blueprint, the 

NOAA Sentinel Site Program, and the NOAA West Hawai‘i Integrated Ecosystem Assessment 

(IEA). These findings can be combined with additional place-based science to support reef 

resilience and management.  For example, the West Hawai‘i IEA provides a useful framework to 

inform science-based management decisions across multiple sectors and multiple scales in the 

West Hawai‘i region. The West Hawai‘i IEA uses a suite of indicators to track the status and 

trends of West Hawai‘i’s coral reef fish and benthic communities (Gove et al. 2016).  Several of 

these biological indicators would be directly linked to tracking the status of the HMAs, if 

implemented. These indicators convey information specific to detecting fishing effects, 

ecosystem structure and function and coral reef ecosystem resilience. This complimentary IEA 

effort could apply indicators such as herbivore biomass (total weight of herbivorous fishes per 

unit area), target fish biomass (e.g., large parrotfishes, like uhu, or redlip parrotfish, Scarus 

rubroviolaceus), macroalgal cover, and coral cover.  In the future, such IEA indicators can be 

applied to evaluate the performance of new HMAs in the region. 

 

A number of recent studies in the region also provide complementary information to our 

findings. For example, stake-holder engagement efforts lead by the West Hawai‘i IEA 

demonstrated that local community members perceived fishing as the strongest driver of coral 

reef decline in the region (Ingram et al. 2018). Additionally, an ecosystem modeling approach 

was applied to evaluate the efficacy of alternative fishery management strategies at Puakō, a 

community in West Hawai‘i. This work demonstrated that the implementation of herbivore 

management areas produced analogous results to the implementation of line fishing only areas, 

and both showed similar ecological benefits when compared with complete no take areas 

(Weijerman et al. 2018).  These two studies complement our findings in that they demonstrate 

that fishing pressure is an important concern to those living in this region and that there are 

several management approaches that may be taken to protect herbivores, including restricting 

gear (no net and spear), protecting herbivores completely through an HMA, or restricting all 
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fishing and creating a no-take area. Finally, managing for reef resilience must also move beyond 

just herbivore protection and include a wider array of integrated management strategies.  

Maynard et al. (2015) assessed the relative resilience of coral reefs within a northern portion of 

the West Hawai‘i coastline and found some of the areas that Marxan selected to have high 

relative resilience, namely the Kīholo and Puakō areas.  This further emphasizes the importance 

of these places to focus management efforts that build long-term resilience.   

Managing Coral Reefs Following a Mass Bleaching Event 

 

Coral reef managers are looking beyond simply monitoring and reporting on coral bleaching and 

mortality when a mass bleaching event occurs in their region.  Using a spatial planning approach, 

such as conducting a Marxan analysis, can guide managers on how to prioritize management 

within the affected areas while balancing the needs of local fishers.  The results present an option 

to apply a tool that managers are already using but with a new, climate-driven objective.  This 

provides a practical resilience-based strategy within the realm of fisheries management and 

suggests ways to maximize its chance for success through strategic placement and design. 

 

This case study offers specific examples of how local data can be used to identify distinct areas 

where resilience could be prioritized.  Our unique integration of herbivorous fish biomass data at 

the functional group level is an advancement in implementing resilience-based management.  It 

is predicted that mass bleaching will become an annual phenomenon in Hawai‘i as early as 2035 

(van Hooidonk et al. 2016).  This study can guide managers in Hawai‘i to implement 

interventions to build resilience before this fast approaching benchmark.  This approach can also 

serve as an example for other coral reef managers and coastal planners in the Pacific Islands and 

beyond affected by the 2014-2017 bleaching event and those yet to come.   
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CHAPTER 5. CONCLUSION 

Synthesis 

The goals of this study were to 1) better understand the intervention options available to coral 

reef managers and develop a way to prioritize resilience-based interventions, 2) focusing on a 

top-ranked intervention, tailor the intervention to be applied in the main Hawaiian Islands, and 3) 

investigate where resilience-based strategies could be implemented to provide the best chance of 

success.   

 

In Chapter 2, I conducted a systematic literature review to evaluate and rank twelve potential 

management interventions following a bleaching event.  This approach provides a transparent 

way of honing in on interventions that are based on evidence and which have been shown to be 

effective either in Hawai‘i or elsewhere.  Even though I found that ‘establishing a network of no-

take Marine Protected Areas” by far had the most papers and did rank highly, this review widens 

the spectrum of available tools including other highly ranked approaches including other types of 

spatial management and fisheries rules.  Although other studies present recommendations to 

build resilience (McLeod et al. 2009; Heller and Zavaleta 2009), this work takes the concept a 

step further by including site-specific weighting allowing for the options to be scored and 

ranked.  This feature may allow managers to filter through potential management options to 

those that have a specific connection to resilience, have evidence of being effective, and are 

appropriate for their coral reef jurisdiction. 

 

In Chapter 3, I developed design principles for the top-ranked intervention from Chapter 2, 

‘establishing a network of Herbivore Management Areas.’  Although these principles build on 

previously-developed principles for no-take Marine Protected Areas (Green et al. 2014), this is 

the first guidance specifically for spatial herbivore management.  This chapter drew together 

findings of the unique habitats, critical areas, connectivity, life history, and movements of 

Hawai‘i’s herbivorous fishes through the lens of resilience-based management.  Additionally, 

previous spatial management in Hawai‘i has been piecemeal, with small, singular areas being 

established slowly over time.  These results would provide managers with the information to 

create a comprehensive and cohesive network of Herbivore Management Areas in the main 

Hawaiian Islands. 
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In Chapter 4, I used a spatial analysis approach to map priority areas where ecological and social 

features may lead to successful Herbivore Management Areas, applying the principles outlined 

in Chapter 3.  This work used the software program Marxan, which has been applied in the main 

Hawaiian Islands before to perform a gap analysis of existing Marine Managed Areas (Puniwai 

2005) and currently as a means to explore areas to expand the coverage of existing areas through 

the Marine 30x30 Initiative.  However, this application reflects the unique and focused question 

of how to increase or maintain herbivory as a resilience-building tool.  The results found a few 

areas of overlap with Fisheries Management Areas along the Kona coast.  Revising existing rules 

to add herbivore protections may be a realistic and politically viable way of integrating 

resilience-based management concepts into coral reef management in Hawai‘i.   

Limitations 

This research was based on the exposure to two consecutive bleaching events that were the most 

severe and widespread observed in the main Hawaiian Islands to date.  Hawai‘i has had 

relatively fewer bleaching events compared to other regions of the Pacific as well as the 

Caribbean, and so this research was limited without knowing patterns of bleaching.  Thus, this 

work and especially Chapter 4 incorporated general concepts of risk management including 

replication, representation, and stratification to increase the chance of success for future 

management interventions.   The use of Marxan prevented certain aspects of Marine Protected 

Area design from being included in this research.  Namely, currently, Marxan cannot incorporate 

concepts of genetic connectivity between areas within a network, which will become 

increasingly important to maintain diverse coral populations.   

 

The general approach of designing herbivore management areas, as in Chapter 3 and 4, assumes 

that there are both conservation goals that if met, will lead to success, that there must be a 

tradeoff with socioeconomic costs (i.e. loss of fishing opportunities), and that land-based 

pollution threats must be avoided.  First, the information available about how Hawaiian corals at 

a reef or coastline scale respond and recover from coral bleaching events is limited.  The 2014 

and 2015 bleaching events were unprecedented in the main Hawaiian Islands both in scale and 

severity.  Therefore, the selection of ecosystem features to target for protection and which to 



93 
 

avoid can only be chosen based on theory and preliminary recovery data from the bleaching 

event.  Future research should closely track the mid and long-term patterns of change in coastal 

areas affected by the mass bleaching event to further refine spatial optimization exercises.            

Future Directions 

Evaluating Management Interventions for Bleaching Recovery 

The systematic review approach used in Chapter 2 was specifically tailored to rank interventions 

in Hawai‘i.  Site-specific weighting allowed for interventions that have been proven effective 

locally to influence the resulting rankings.  Future research could further validate this approach 

by using the same method in a different location and comparing results.  This approach would be 

effective in areas with comprehensive bodies of literature, for example, the Great Barrier Reef or 

areas within the Caribbean.  Managers in other coral reef regions would similarly benefit from an 

evidence-based approach, which could add justification to their resilience-building strategies. 

Prioritizing Areas for Resilience-based Management 

A unique set of spatial data layers were synthesized to perform the Marxan analysis in Chapter 4.  

The analysis was prioritized to the Kona coast of Hawai‘i Island and Maui Nui due to their high 

mortality rates following the 2014 and 2015 bleaching events.  Future efforts could extend this 

analysis to the remaining islands, expanding the potential network of Herbivore Management 

Areas across the entirety of the main Hawaiian Islands.  Especially due to the little information 

that is known about regional differences in bleaching and mortality response, statewide maps 

would maximize future design options for Hawai‘i’s coral reef managers.  

Translating Resilience-based Management  

There have been two mass global bleaching events, in 1998 and 2013-2017, that affected most of 

the world’s coral reefs.  A comparison of how managers responded after these events shows a 

change in attitude and urgency in promoting local action to a changing climate.  Following the 

1998 event, actions such as coral transplantation and prohibiting public access to affected areas 

were not aligned with more commonly accepted resilience indicators (McLeod et al. 2009; 

McClanahan et al. 2012).  Seemingly, this event elevated awareness about coral bleaching as a 

threat to reefs but resilience-based management was not attainable as a practical strategy. 
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In contrast, following the most recent mass bleaching event, managers in Hawai‘i and Australia 

mobilized collaborative initiatives to find resilience-building solutions within their jurisdictions.  

In Hawai‘i, the Division of Aquatic Resources (DAR) surveyed over 100 scientists worldwide 

and locally to gather opinions on bleaching recovery strategies, which were included along with 

components of the research from Chapter 2 in the state’s Coral Bleaching Recovery Plan 

(Rosinski et al. 2017).  This plan brought researchers together, combining knowledge about 

corals, fish, and climate for an urgent cause.  It also led to the first combined database of coral 

bleaching and recovery data from a multitude of partners, known as the Coral Bleaching 

Collaborative. 

 

In 2017, I attended a multi-day workshop led by the Great Barrier Reef Marine Park Authority 

(GBRMPA), which resulted in the development of the Great Barrier Reef Blueprint for 

Resilience (Great Barrier Reef Marine Park Authority 2017).  This report outlines distinct 

strategies that will be pursued to improve resiliency across the region.  Similar to the Coral 

Bleaching Recovery Plan, the development of the blueprint brought together a spectrum of 

partners for a novel objective.  The results included a commitment to design a ‘resilience 

network’ of managed areas, focusing efforts on sites on the reef that are disproportionately 

important to resilience and stronger regulations on species with a key role in assisting reef 

recovery following disturbance.  Both the Hawai‘i and Australia examples demonstrate how 

coral reef managers are now acting in response to climate impacts and looking comprehensively 

across their tools and strategies to increase ecological resilience. 

 

On October 8, 2018, the Intergovernmental Panel on Climate Change (IPCC) released a report 

assessing the projected impacts at a global average warming of 1.5°C (IPCC 2018).  The report 

projects that coral reefs will decline by 70-90% at 1.5°C and by >99% at 2°C.  Local-scale 

projections forecast that Hawai‘i will experience annual severe bleaching events by 2035, 

conditions at which recovery will be limited (van Hooidonk et al. 2016).  Clearly, immense 

decreases in carbon emissions are ultimately needed in order to have more time in between major 

disturbances and a greater chance for reef recovery. 
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Regarding reef management on a local scale, the next decade will be a critical time to monitor if 

resilience-based strategies have had a positive impact against global stressors.  This study 

translated resilience-based management on a local scale by answering questions relating to the 

implementation of one potential approach (i.e. spatial herbivore management) and a case study 

of the main Hawaiian Islands.  It is my hope that this research will contribute to a change in the 

way we manage coral reefs.  During the study, I was encouraged by the willingness of managers 

to think critically about their current approaches as well as the cooperative and creative feeling 

of the participants in the workshops that I attended.  Many ideas were presented about how to 

operationalize resilience-based management using existing data and tools in new ways.  Finally, 

I observed that one positive outcome of the bleaching event was that it brought together ocean 

stakeholders facing a common issue.  I believe that if managers and their essential networks of 

partners can maintain the momentum stemming from this experience, it will accelerate 

innovation in coral reef science and policy that will rise up to the challenge of global climate 

change. 
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