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ABSTRACT 

Evidence suggests that birds, specifically certain nectar-eating species of 

Drepanididae, are necessary for proper pollination, outcrossing, and high levels 

of seed set in Metrosideros collina on the island of Hawaii. Selection pressures 

acting upon the honeycreeper-M. collina association in the Keauhou Ranch forests 

on Mauna Loa fluctuate through the year. At the peak of the M. collina blooming 

season in late spring, nectar is relatively abundant to the honeycreepers, which 

means that the most important pollinators are potentially limiting to ~· collina. 

Resultant intraspecific competition has selected for high rates of nectar secretion 

to attract pollinators; a ceiling in the population has been placed on these rates 

by the fact that seed set declines at very high flow rates, apparently because of 

decreased outcrossing due to pollinator sedentariness in such trees. At other 

times of the year when M. collina flowers are less abundant, a surplus of pollina­

tors occurs, which results in high levels of seed set but in competition for food 

among the nectar-eaters. Loxops virens, and also Himatione sanguinea to a lesser 

extent, can turn to insectivory under these circumstances and therefore need not 

possess a highly specialized and efficient nectar-foraging strategy, but the more 

nectar-dependent Vestiaria sanguinea establishes interspecifically:defended 

territories in M. collina and visits flowers on its territory in a timed sequence. 

An hierarchy of interspecific aggression seems to be aligned among the three 

honeycreeper species in order of degree of nectar dependency. 

- i -



TABLE OF CONTENTS 

ABSTRACT • 

INTRODUCTION 

MATERIALS AND METHODS 

RESULTS AND DISCUSSION • 

!!· collina 

The birds 

CONCLUSION • 

ACKNOWLEDGMENTS 

NOTE • 

LITERATURE CITED 

- ii-

.. 

Page 

i 

1 

2 

3 

3 

6 

7 

8 

8 

9 



INTRODUCTION 

Ecologists have recently recognized the interface between the pollination 

ecology of plants and the energetics of the foraging strategies of their animal 

pollinators. Heinrich and Raven's (1972) classical article consolidated much of 

the descriptive knowledge about pollination, and posed hypotheses to account for 

the observed data. Their principle thesis assumed that pollinators are sometimes 

limiting to plants so that outcrossing species compete for pollinators. This 

selects for rich rewards in nectar or pollen to attract pollinators. However, 

Heinrich and Raven continue, there is a counter~selection pressure that puts an 

upper limit to the richness of the reward. If the reward is too rich, the poten­

tial pollinator will be able to obtain all its requirements from a single plant, 

thus not effecting outcrossing. Thus, a plant must provide a rich enough reward to 

attract potential pollinators, but a poor enough one to prevent satiation and 

encourage them to leave after feeding. The result should be that outcrossing 

plants with specific types of pollinators should evolve an amount of reward finely 

tuned to the energetics of its major pollinator. Below that amount, successful 

reproduction (i.e., setting of viable seeds) should decline because of lack of 

attractiveness relative to other plants; above that amount, seed set also should 

decline because the plant is too attractive. 

This is a simple and attractive hypothesis, but its basic assumption conflicts 

with the zoologists' frequent assumption for many animal groups, that food limits 

animal populations. If, for example, nectar is limiting to animals dependent on 

that nectar, this means that potential pollinators are relatively abundant and 

there should be little selection pressure for the kind of fine tuning Heinrich and 

Raven (1972) propose. On the contrary, limited nectar would lead to competition 

among the pollinators, which will select for efficiency of foraging strategies, but 

allow a great deal of variability in the energetic efficiency of pollination stra­

tegies of the plants. In fact, food limitation has been strongly implicated in the 

biologies of some nectar-dependent animals, most notably, the hummingbirds (see 

discussion in Stiles 1973). Nectar-eaters can increase their foraging efficiencies 

basically in two ways which result from the fact that nectar is a continually 

renewing resource and thus flowers must be allowed time between visits to accumulate 

nectar if a visit is to be energetically rewarding. Ideally, the nectar-eater needs 

to know where its blossoms are and to control how frequently they are visited. The 

best way to do this is to exclude other nectar-eaters and then forage on the flowers 

in a timed pattern. Such exclusion is called "feeding territoriality" (e.g. see 
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definition in Wolf 1970) and is highly obvious in nectar-eating hummingbirds. 

Another way to exert some control over flower visitation is to forage in a flock. 

Seed-eating finches do this in desert habitats (Cody 1971): the flock acts as if 

it has a memory and does not revisit an area which has been recently foraged. 

The Metrosideros collina-honeycreeper association offered a system suitable 

for testing Heinrich and Raven's (1972) hypothesis and also the above ideas on 

foraging efficiency. 

MATERIALS AND METHODS 

Our study area was on the Keauhou Ranch, Kau District, Hawaii, between 1200 and 

1900 m elevation. Metrosideros collina polymorpha (Myrtaceae) is a major native 

component of the forested slopes of Mauna Loa (Porter 1973, Mueller-Dombois and 

Fosberg 1974). The flower looks like a typically bird-pollinated flower, with 

bright red color and long exerted style and stamens (Grant and Grant 1968). The 

chances seemed good that it would be an obligate outcrosser with birds as the pri­

mary pollinators, and as such would be a good subject for testing Heinrich and 

Raven's (1972) ideas. We had to provide four tests: 

1. Determine if M. collina does require outcrossing; 

2. Determine if it is mainly bird pollinated; 

3. if so, determine that its nectar reward is commensurate with the energy 

demands of the birds; and 

4. determine if highest seed set does actually occur at some optimal nectar 

flow rate or amount of flowering. 

Of 76 trees worked on for nectar secretion and/or seed set, 6 were known to be 

orange-flowered and 3 were yellow-flowered. Most of the remaining 67 were red­

flowered, but color of flower was unknown in some trees used only for seed set. To 

answer the questions about outcrossing and who is the main pollinator, we 

performed bagging experiments both high and low in the trees. High inflorescences 

were reached either via a 10 m extensible ladder or by assistants using telephone 

pole climbing equipment and a sling for support while working. Maximum height 

reached in this manner was 15 m. We chose blossoms in the bud stage, counted the 

buds in an inflorescence and marked the inflorescence with a green numbered band. 

Then we bagged the buds either with a fine-mesh net to exclude all pollinators and 

determine selfing, or with chickenwire cages to exclude birds but allow in insects, 

the other possible major pollinator group. We left control buds open to both birds 
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and insects. Comparison of controls with chickenwire-bagged buds provided infor­

mation on the relative amounts of pollination by birds and insects. We returned 

several months after bagging and counted the number of mature seed capsules in the 

marked inflorescences to compare with the original number of buds, which gave the 

percent seed set on a capsule basis. Techniques are described in more detail in 

Carpenter and MacMillen (1973). 

We netted birds with mist nets hung from telescoping poles extensible to 10 m. 

We measured the relative amounts of M. collina pollen on the heads of recently 

captured birds by pressing the feathers with a 2 x 3 em piece of Scotch tape and 

applying the tape to a microscope slide (technique communicated to MacMillen by 

Carolyn Corn). The pollen could be accurately identified microscopically and cate­

gorized into absent, light, or heavy. Comparing the loads on different species of 

honeycreepers helped determine which species was or were the main pollinators among 

the birds. We concentrated our work on the Amakihi (Loxops virens), Apapane 

(Himatione sanguinea). and Iiwi (Vestiaria coccinea)--all members of the Drepani­

didae. 

The energy provided by M. collina nectar was determined by excluding all 

nectar-feeders from open blossoms and at known intervals sampling nectar volumet­

rically and by concentration to get absolute amount of sugar secreted per flower 

per hour and translating this into calories (techniques in Carpenter and MacMillen 

1973). 

RESULTS AND DISCUSSION 

M. collina 

There was little selfing in the red flowers--17% (N=25, S.D.=l5). However, 

selfing was high in the yellow flowers--53% (N=3, S.D.=20). This was statistically 

significant (two-tailed t-test) with p < .001. The results with the yellow flow­

ers are important since they show that selfing ~ occur within the bags without 

pollinating agents, but does not occur in the red-flowered trees. We noticed that 

pollen accumulates within the nylon bags and is spread around the florets of an 

inflorescence perhaps by rubbing action of the leaves, twigs, and the bag itself. 

Thus, the red-flowered trees apparently not only require pollinators, but they also 

must be outcrossed if they are to set seed at levels comparable to the selfing 

seed set in the yellow trees. 
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Yellow-flowered trees were omitted from the remaining analysis. Flowers open 

to birds as well as to insects set significantly more than flowers open only to 

insects (one-tailed paired t-test, N=22, p < .005}; on the average, they set 2.7 

times more. 

The distribution of M. collina pollen loads on the three bird species were as 

follows: 

Amakihi (N=27} 

Apapane (N=39} 

Iiwi (N=l4} 

absent 

4% 

0% 

0% 

light 

85% 

13% 

29% 

heavy 

11% 

87% 

71% 

The Apapane and Iiwi are therefore the most capable of pollinating M. collina. The 

Iiwi seems to carry slightly lighter pollen loads than the Apapane, perhaps because 

its longer bill results in less effective contact with the anthers. 

The concentration of M. collina nectar is extremely variable from tree to tree 

and from day to day, and therefore the presentation of such data in terms of calo­

ries produced per unit time is the only way to express secretion rates consistently. 

On the average, M. collina secreted 0.52 calories per floret per hour. This is 

comparable to the rates found in other bird-pollinated plant species, and is higher 

than those bee, fly, and ant pollinated flowers that have been measured (e.g. 

Hickman 1974; see Heinrich and Raven 1972, Percival 1965}. Thus, M. collina nectar 

production is commensurate with the higher energy demand of birds, and is evidence 

supporting Heinrich and Raven's ideas. 

It is puzzling that a plant apparently geared for bird-pollination has not 

evolved tubular corrolas to prevent nectar thievery by insects. Evolution of tubu­

lar corollas is within the genetic capacity of Myrtaceae because one taxonomic group 

within the family (Genus Darwinia} possesses them (Bryan Barlow, pers. comm.}. One 

possible explanation is that M. collina may exist in an unpredictable pollinator 

environment, which should select for maintenance of a relatively generalized polli­

nation strategy (see Levin 1968}. This would be true if honeycreeper populations 

experience large fluctuations over the years (given relatively constant flower 

availability} so that the plants cannot always depend upon them for pollination. 

Seed set in the chickenwire cages averaged 39%, or about double the amount of self­

ing, so insects alone can effect some pollination. Furthermore, even in times of 



- 5 -

bird availability, the amount of outcrossing effected by birds actually might be 

increased by the taking of nectar by insects, forcing the birds to include more 

trees in their foraging ranges. This kind of interaction has been found in red 

clover, in which seed set effected by long-tongued legitimate insect pollinators 

increases in the presence of short-tongued nectar thieves which pierce the corollas 

and do not effect outcrossing (cited in Heinrich and Raven 1972). 

The most critical test of Heinrich and Raven's (1972) hypothesis was to show 

that there is some optimal degree of nectar availability that results in greatest 

seed set, and that seed set declines when nectar is more or less available than 

the optimum. For this, we have two independent tests. 

First, Figure 1 shows the seed set values in 13 trees from which we also 

obtained nectar secretion rates. The regression of 11 of these trees yields a 

slope that is significantly different from 0 at the .02 level and a correlation 

significant at about .03. It shows that seed set is lower in trees with high nectar 

flows. The other two trees were the only ones available with low secretion rates, 

but these indicate that seed set falls off rapidly below a rate of 0.40 cals/floret/ 

hr. The optimum flow rate is about 0.45. This corresponds very well with the mean 

value of flow rate for our population sample of 38 trees (0.52). Thus, flow rates 

and seed set in individual trees support Heinrich and Raven's hypothesis. 

The other supportive evidence comes from differences in seed set at different 

flowering intensities. Apparently the peak of the 1974 blooming season occurred 

about in April, as one of our assistants reported that all of our experimental 
he~vy 

trees selected in January were in~loom. When we arrived in early July blooming 

percentages varied between 20 and 50%, depending on elevation, and continued to 

decline through August and September. Average seed set was significantly (one­

tailed t-test, p < .025) lower in the trees that bloomed in the peak period than 

later when fewer trees were blooming and the number of blossoms per tree were lower. 

Since there was no statistical difference in nectar flow rate in different seasons 

(.2 < p < .3), the difference in seed set was attributed to greater nectar avail­

ability in April because of large numbers of blossoms per tree. 

Thus, higher nectar availability--either due to high flow rates or to large 

numbers of blossoms within a tree results in lower seed set. We also have some 

evidence that at very low flow rates, seed set declines. There is ample evidence 

for this aspect of the hypothesis from other pollination studies (see Percival 

1965), but our data offer to our knowledge the first supportive evidence that selec­

tion pressures act to prevent plants from being too attractive as well as to make 

them attractive in the first place. This also supports, therefore, Heinrich and 

Raven's assumption that pollinators may be limiting to plants. 
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FIG. 1. Effect of nectar flow on seed set (N = 13 trees, r .61, p < .05). 
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The birds 

This however does not mean that nectar is not limiting to the birds, as the 

blooming percentages showed that nectar availability varies through time. In 

flowers commencing their bloom in July 1974, seed set was higher than in those in 

bloom in April 1974 because pollinators could not afford to limit their visits to 

one or a few trees during the sparser bloom in July. Thus, nectar was probably 

limiting to the birds then, although it probably had not been earlier during the 

peak of blooming. This was supported by the fact that very small amounts of nectar 

were left over in unbagged open flowers in summer of 1974, whereas nectar was often 

left over in large amounts during the summer of 1973, a much more intense bloom. 

We expected therefore some selection to exist for efficiency of honeycreeper 

foraging strategies, and looked for feeding territoriality and/or flocking strate­

gies in the three species. 

Bill shapes are often considered indicative of the degree of specialization 

of a species (Darwin 1859). By this criterion, the Amakihi is more generalized 

than the Apapane, which in turn is more generalized than the Iiwi. The Amakihi 

showed no specialized foraging strategy for nectar--it did not defend feeding 

territories, nor did it forage within the trees in a flock. It spent much time 

hunting insects in non-blooming trees, but would take nectar when it could get it, 

which was primarily when it was not chased by the other two species. 

The Apapane spent relatively more time on flowers. It was not strictly 

territorial but would chase Amakihis from its immediate vicinity, eventually moving 

on to another area to forage. A single area was not defended, yet this is neces­

sary if aggression is to increase greatly nectar availability to the aggressor. 

Given the high rates of nectar flow in ~· collina, however, even this degree of 

aggression should increase nectar availability slightly to the Apapane. 

Apapane also did not forage in flocks. However, it tends to forage high in 

the trees in morning and late afternoon, using intermediate levels in the interim 

(see Carpenter and MacMillen 1973; we have more data of these kinds as yet not 

fully analyzed). Thus, it is in contact with untapped blossoms early in the morning 

after a night of accumulation, in midday, and then again in late afternoon when it 

is stocking up for a night's roosting. Thus, its pattern of foraging for nectar is 

more efficient and with a greater degree of control than it would be if it foraged 

randomly with respect to time and the location of blossoms and of other nectari­

vores. 
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The Iiwi was the only species that defended feeding territories. It excluded 

not only other Iiwis from its area but also Amakihis and Apapanes. We have con­

structed and tested a cost-benefit model of territoriality for the Iiwi (Carpenter 

and MacMillen, in review) that shows that these birds are intensely territorial, 

but only when it pays energetically. Furthermore, we have evidence that a terri­

torial Iiwi visits its flowers in a pattern, allowing for nectar replenishment: 

we watched a single branch of flowers on a territory and timed the owner's visits 

to that branch. The visits were spaced 31 min apart (S.D. = ± 5 min) for seven 

consecutive visits. 

The Iiwi's strategy is by far the most efficient for nectar gathering of the 

three species studied and enables the birds to obtain their energy from only one or 

two trees. We measured seed set on an Iiwi territory that was comprised of a 

single M. collina. With a t-test that compares a single specimen against the sample 

of seed set values the Iiwi tree set less capsules than the average (one-tailed 

test, p < .01). Thus, if the Iiwi were the only honeycreeper in the area, we would 

expect selection for lower nectar flow rates in M. collina to force the Iiwis to 

include several trees in their territories thus resulting in outcrossing. However, 

the Iiwi is the rarest of the three species (S. Conant, pers. comm.). The commonest 

species is the Apapane (S. Conant, pers. comm.), which, judging by pollen loads, is 

also the most important pollinator of M. collina. 

CONCLUSION 

During part of the blooming season nectar is abundant relative to the honey­

creeper population size--then seed set is low, and competition for pollinators 

selects for high nectar rewards--but not too high. During other parts of the 

blooming season nectar is limited relative to the numbers of honeycreepers, seed 

set is high, and the birds compete for the nectar. This in turn selects for 

efficiency of foraging strategy, the degree of which may depend upon the degree of 

nectar dependency of the honeycreeper species. Thus the Metrosideros collina­

honeycreeper association in Hawaii represents a finely tuned system, one in which 

the major producer member of the community regulates its energy reward, thereby 

reaping reproductive benefits, while concomitantly promoting energetic efficiency 

in and providing much of the energy needs for its pollinator-consumer. 
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NOTE 

Measurements on nectar flow in Sophora chrysophylla indicated low rates 

compared to ohia: 0.09 cal per flower per hour (N = 19 flowers). This possibly 

could be interpreted in terms of pollination 1) by insects, which have lower 

energy requirements, or 2) by 'I'iwi, which, when territorial, would effect only 

selfing if flow rates were higher. Sophora nectar had a low sucrose concentration 

(mean= 16.4%, S.D. = 1.2%, N = 3 flowers), which is more characteristic of bird 

flowers than of insect flowers (Percival 1965). 

Data on nectar flow and seed set as functions of elevation, size of tree, 

stage of flower, and flower color will be presented in a subsequent report, as will 

the details of methodology. A discussion comparing the generalized pollination 

strategy of ohia with strategies in mainland communities, and proposing ecological 

segregation in the major tree species in the Mauna Loa forests on the basis of 

pollination strategies and blooming seasons will also be presented later. 
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