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ABSTRACT 

The perfonnance of the Hawaiian type (K341) of b· leucocephala 

(Lam.) de Wit was compared with that of a Salvador type (KB) in field 

experiments at North Kohala, Hawaii (130 m elevation, Typic Ustropepts). 

In a second experiment, leucaena (KB) was intercropped with corn (H610) 

to study their relative yields and the nitrogen contribution of 

leucaena to intercropped corn. 

Spacing, cutting regimes and climatic factors significantly 

affected the morphological development and yield of both varieties. 

•Growth rate and yields were higher during periods of ·high solar 

radiation and night temperature values. The early flowering habits of 

K341 coupled with more lateral branching resulted in a shrubby type of 

growth; while the apically dominant KB assumed a single-shoot type of 

growth. The flowering of K341 was enhanced at the lower planting 

densities. The faster rate of growth of KB contributed to its more 

rapid increased interception of sunlight than K341 as both approached 

the cutting stages. At harvest, the light inte~ception was about 

identical at 96 percent. 

The total annual dry matter yields were 17.8 t/ha for K341 and 

15.2 t/ha for KB. These yields consisted of 12.0 tons of forage 

fraction (leaves+ succulent stems) for K341 (513 kg N/ha/yr) and 9.9 

tons of forage fraction for KB (429 kg N/ha/yr). The remainder was 

hard stem. Yields decreased with frequent cutting and wider plant 

spacing. However, the percent forage fraction was higher -under more 

frequent cutting and wider plant spacing. Therefore, dense planting 

(15 cm x 50 cm) and cutting at approximately 1 m height at harvest 
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were desirable management practices considering the forage yield, the 

percentage forage fraction, and the average cutting frequency (3-month 

interval). 

Nitrogen and mimosine contents of the forage fraction and stem 

on a dry weight basis were similar in all treatments. Forage fraction 

contained 4.30 percent nitrogen and 6.6 percent mimosine. The stems 

contained 1.5% N and 0.92% mimosine. Crude protein in the forage 

fraction and stem was comprised of about 24 percent and 10 percent 

mimosine, respectively. 

Based on forage fraction, K341 produced nearly 600 kg N/ha/yr 

while K8 produced about 500 kg N/ha/yr. The differences in the N 

yields among treatments were due to differences in dry matter yields. 

Unlike tillering grasses, leucaena was not able to compensate for 

the wider spacing by producing more stems. Therefore, optimum density 

at planting was critical in leucaena for maximum yield production. 

Stem diameter was similar for both varieties at harvest (8.2 mm 

overall average). Delayed cutting and wider plant spacing resulted in 

larger stem diameters. 

Forage production of leucaena was about 1/2 - 2/3 that of alfalfa. 

Weed control was more of a problem with leucaena than with alfalfa. 

However, leucaena production involved easier agronomic management than 

alfalfa because of less frequent harvests, greater harvest flexibility, 

freedom from disease infestations and longevity of stand. 

When leucaena was intercropped with corn, it made excellent 

growth, with yields on a unit area basis comparable to the monocropping 

experiment. The amount of leucaena plant material produced and added 

to the corn increased with delayed cutting, with double rows of leucaena 
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and to a small degree, with decreased corn plant density. Percent 

nitrogen in the leucaena plant material decreased with delayed cutting 

because of the increased proportion of stem compared to forage fraction. 

The amount of leucaena-N applied to each corn crop varied from about 

60 to 180 kg/ha. 

In the first corn crop, the yields of corn grain and stover were 

not influenced by the application of either urea or leucaena forage. 

This was due to residual soil nitrogen from a previous sorghtllll experi­

ment and to the limited quantities of leucaena added to the soil. The 

grain yields of corn intercropped with a single row of leucaena cut at 

seedling (3.40 t/ha) or tasseling (3.56 t/ha) stage were comparable 

to the grain yields of the check plot (3.45 t/ha). 

The nitrogen content of the ear leaf samples of intercropped corn 

ranged from 2.3 - 2.7% with no differences due to treatments. This 

was similar to the ear leaf samples from the check plots which ranged 

from 2.42 - 2.9% nitrogen. 

In the second crop of corn, there was a significant response to 

both urea and leucaena forage application. Yields of corn seedlings, 

grain and stover in the corn-leucaena intercrop were generally higher 

than in the check. Corn seedlings yielded from 2.70 4.36 g/plant 

with leucaena-N compared to 1.48 - 1.86 g/plant in the check treatment. 

'The grain yields of corn intercropped with leucaena averaged 2.39 t/ha -
' r' 

23 percent higher than the check. Grain yields were higher when 

leucaena was cut at the early stage of corn than at later stages of 

growth because in the former, the nitrogen could not be effectively 

utilized by the corn. 
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Yields of corn grain and stover from corn intercropped with double 

rows of leucaena were lower than corn from single leucaena row treat­

ments on a field area basis, but double-leucaena-row treatments 

yielded higher on a corn area basis. Higher grain and stover production 

were obtained with close corn spacing (15 cm) than wide spacing (30 or 

45 cm). The effects of various treatments on the Ncontents of the 

plant samples were similar to their effects on grain yields. 

Nitrogen content of the seedlings, leaf and whole plant samples 

increased with increasing rates of urea and leucaena forage application. 

In the urea-N treatments, plant spacing had a limited influence on the 

N content of the seedlings; a greater. influence was observed at the 

later stage of plant growth. In the corn-leucaena intercrop, the 

nitrogen content of the corn plant tissue increased consistently under 

lower planting density. The nitrogen contribution of leucaena forage 

were estimated on the basis of: (1) the level of N nutrition in the 

corn plant tissue samples, (2) the weight of corn seedlings, and (3) 

grain yields. The equivalent urea-N levels in the intercropped corn 

were as follows: corn plant tissue samples, 9 - 28 kg N/ha; weight of 

seedlings, 32 - 58 kg N/ha; and grain yield, 0 - 12 kg N/ha. The 

efficiency of leucaena in supplying nitrogen to corn was about 38 

~-
percent of that of urea, based on the grain yield. 

Corn spacing accounted for most of the variation in yield in the 

leucaena treatments (r2 = 82%), but there was an improvement in the 

coefficient of determination when leucaena-N data were added to the 

spacing data (R2 = 88%). 

The total fresh forage production in corn-leucaena intercrop and 

in corn alone fertilized with 75 kg N/ha from urea was comparable, at 
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24 t/ha. This yield was twice the fresh forage yield of corn under 

zero nitrogen plot. 

Percent crude protein and crude protein yield of the forage were 

significantly higher in the corn-leucaena mixed forage compared to 

corn forage without leucaena. Percent crude protein of the corn­

leucaena ranged from 15.9 to 21.98% while under zero nitrogen and 75 kg 

N/ha treatments, the maximum percent crude protein concentrations were 

9.90% and 12.07%, respectively. Crude protein yield in the corn­

leucaena treatment was 1.44 t/ha, twice the yield under 75 kg N/ha and 

three times the yield under zero nitrogen plot. 

Leucaena contributed significantly t~ reducing the nitrogen 

requirement of the intercropped corn. In addition to nitrogen, leucaena 

forage undoubtedly contributed other nutrients to corn. Forage nutrient 

values increased considerably when leucaena was mixed with the corn. 
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MANAGEMENT OF Leucaena leucocephala (Lam.) de Wit 
FOR MAXIMUM YIELD AND NITROGEN CONTRIB1JrION 

TO INTERCROPPED CORN 

CHAPTER I. INTRODUCTION 

The shortage and ever increasing prices of food connnodities have 

put greater pressure on research organizations to launch research 

programs aimed at improving the efficiency of farm inputs used for 

food production. However, increased crop production is limited by 

several factors including the high cost and short supply of industrial 

fertilizer, particularly the widely used nitrogen. In animal produc­

tion, the increase in costs of sea products as sources of protein in 

animal feed has resulted in increased demand for plant protein. 

Legumes hold great potential as sources of high-protein food and 

feed, and have thus received considerable attention from research 

organizations. They are also beneficial in various systems of crop 

and soil management because of their ability to fix significant amounts 

of nitrogen. 

Leucaena leucocephala (Lam.) de Wit is a tropical legume which 

has spread over a wide range of topography and climatic conditions in 

the tropics. Large areas of leucaena are cut on a regular basis for 

fuel. If the non-woody portions are returned to the soil, considerable 

quantities of nitrogen are added to the system. Utilization of the 

nitrogen fixed by leucaena by means of multiple cropping or inter­

cropping has a potential value for food crop systems. However, the 

productivity of leucaena under intensive management is not well 

defined. Knowledge about its agronomic management can therefore 

contribute to our understanding of how to exploit this productive 

legume in food production systems. 



CF.APTER II. REVIEW OF LITERATURE 

Leucaena leucocephala (Lam.) de Wit: Description, 
Use and Culture 

Botanical and varietal description. Since 1842, Leucaena leucocephala 

(Lam.) de Wit was known as Leucaena glauca (L.) Benth. However, in 

1961 its name was changed to Leucaena leucocephala (Lam.) de Wit 

(de Wit, 1961 and Everist, 1963). Recently, Gillis and Stearn (1974) 

stated that the correct name was Leucaena latisiliqua (L.) Gillis. 

However, de Wit (1975) reiterated that the correct name is Leucaena 

leucocephala (Lam.) de Wit, and taxonomists at the Arnold Arboretum 

1at Harvard University agreed that probably de Wit is correct. 

Matthews (1914); Lyman, Rotar and Bown (1967); and Oakes and Skov 

(1967) outlined the agronomic features of leucaena. In 1972, Brewbaker, 

Plucknett and Gonzalez classified the cultivars of leucaena in the 

Hawaii collection into general types, the "Hawaiian" type and the 

"Salvador" type. The Hawaiian type is an aggressive weedy shrub 

that grows up to 30 feet. It is highly branched and flowers abundantly. 

The Salvador type is arboreal, growing up to 50 feet tall in 6 years. 

It has bigger seeds, pods, flowers, leaves, leaflets, trunks and 

branches than the Hawaiian type. Salvador type tends to flower only 

once a year, in the spring, whereas Hawaiian type flowers whenever 

moisture permits (Brewbaker, 1975). 

This member of the Mimosaceae family has its origin in Central 

America and has spread and naturalized widely in the tropics. This 

1 
Personal connnunication from Dr. Edward E. Terrell, USDA, Beltsville, 
Maryland, January 9, 1976. 
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legume is known in different countries by various local names. It is 

known in the Philippines as ipil-ipil, Santa Elena, agho, datels and 

comcompitis (Matthews, 1914). In Hawaii, it is called haole koa or 

koa haole (Henke and Morita, 1954), while in Mauritius it is called 

acacia. In India, it is known as wild tamarind and koo babool 

[Narayanan and Sivagnanam, 1962; Deb Roy, Pathak and Patel (unpublished 

paper)]. Mullenax (1963) reported that in Bahamas Islands, Indonesia 

and Australia, it is called jumbay, lamtoro and cow bush, respectively. 

In Fiji, it is known as vaivai (Patridge and Ranacou, 1973). "Leucaena" 

will be adopted as the cormnon name for Leucaena leucocephala (Lam.) 

de Wit in the discussion. 

Extensive literature review on description, culture and utilization 

of this legume was published by Oakes (1968). Gray (1968) and Hill 

(1971a) made research reviews concerning its use as a pasture species. 

A brief general review on leucaena was also made by Purseglove (1974). 

Economic importance. Leucaena has multiple uses. The plant serves 

as a wind break, as a shade tree for coffee and cacao and for erosion 

control (Dijkrnan, 1950). Its hard trunk, which grows to an average 

basal diameter of 22 cm and twigs make excellent firewood and are good 

sources of charcoal (Matthews, 1914; Takahashi and Ripperton, 1949; 

Brown, 1954; Brewbaker, 1975). Matured stems with their hard red core 

are used for construction and fence posts. 

Commercially, mature seeds are made into fancy bracelets, necklaces 

and draperies. The large flowers of the Salvador type produce large 

pods and seeds that average 8,000 per pound, versus 12,000 per pound 

of the Hawaiian type, and might be attractive to seed lei makers 

(Brewbaker, 1975). 
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The young shoots, leaves and pods have been u~ed fo! human and 

animal food (Takahashi and Ripperton, 1949; Farinas, 1951; Sen, 1956; 

Anslow, 1957; Hutton and Gray, 1959; Kinch and Ripperton, 1962). In 

1972, Brewbaker, Plucknett and Gonzalez reported that leucaena 

apparently constituted a significant protein supplement to the human 

diet in several areas of Southeast Asia and Central America. 

Moreover, its seeds contain a relatively large amount of galacto­

mannans, a highly viscous gum which can be useful as an effective 

thickening agent or emulsion stabilizer at low concentration (Morimoto 

and Unrau, 1962) • 

:Matthews (1914) and Narayanan and Sivagnanam (1962) showed that 

leucaena can help improve the physical condition and fertility of the 

soil by plowing the leaves and twigs into the soil. 

Leucaena is widely used primarily for pasture (Lyman, Rotar and 

Bown, 1967). However, it is not very suitable for hay making as the 

leaves are quickly shed once the stems are cut (Cooksley, 1974). Its 

value as animal feed is sometimes reduced due to the high level of 

mimosine (1 to 7 percent) in the leaves. Henke and Morita (1954), 

Jones (1973a), and Partridge and Ranacou (1974) reported favorable 

results on feeding leucaena to cows. Hegarty and Court (1972 and 1973) 

also reported no symptoms of mimosine toxicity to dairy cows fed with 

leucaena. There was no trace of mimosine in the blood of cows. They 

suggested that this and other evidence indicated that practically all 

the mimosine ingested was being degraded to 3,4 dihydroxy pyridine in 

the rumen. This metabolite of mimosine was detected in most of the 

biological fluids from these cows. In the Bahamas, ruminants fed 

almost entirely with leucaena did not show symptoms of ill effects 
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{Mullenax, 1963). On the other hand, unfavorable biological effects 

of feeding leucaena to animals were pointed out in many papers. Stobbs 

and Fraser (1971) observed that Jersey cows grazing on leucaena 

produced tainted milk. Alopecia, growth inhibition, cataracts, 

decreased fertility and mortality were shown to occur in animals fed 

mainly with leucaena (Hegarty, Schinckel and Court, 1964; Joshi, 1968; 

Labadan, et al., 1969; Wayman, Iwanaga and Hugh, 1970; Hatcock, 

Labadan and Mateo, 1975). However, Cooksley (1974) showed that ruminants 

were able to detoxify mimosine far more readily than monogastric animals 

such as pigs and horses. Furthermore, Cooksley noted that mimosine 

content in the plant varied throughout the year and the growing young 

leaves contained the highest levels. The side effects from mimosine 

can be reduced or eliminated by careful management, and the overall 

benefits of the plant outweigh its disadvantages. These undesirable 

effects to animals were attributed to the presence of the biologically 

active amino acid, mimosine. However, Hathcock and Labadan (1975) 

contended that in addition to mimosine, leucaena contains one or more 

toxic substances which account for a significant proportion of its 

total toxicity to chicken embryo. 

Environmental adaptation. Leucaena is tolerant to a wide range of 

climatic and soil conditions. In Hawaii, it thrives in naturalized 

stands from sea level up to 300 meters in areas receiving 60 to 160 cm 

annual rainfall. Planted stands grow up to nearly 1500 meters under 

400 cm annual rainfall (Takahashi and Ripperton, 1949). In Indonesia, 

naturalized stands thrive up to 400 meters (Dijkman, 1950). 

Leucaena resists drought and high temperature by entering a 

dormant stage in which only a few leaves at the apical tip of the 
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plant remain (Kinch and Ripperton, 1962). Undoubtedly, its deep and 

fast growing taproot and xerophytic leaf movement also contribute to 

its drought tolerance (Dijkman, 1950; Oakes and Skov, 1967). 

Leucaena is the only tropical legume that has shown the ability 

to survive and produce on the heavy clay soil in the low rainfall 

section of the Burnett region in Queensland (Cooksley, 1974). 

One feature common to all reports on leucaena is its ability to 

flourish on soils with alkaline pH and to grow on rocky soils with 

little topsoil. In a list of 23 legumes used in tropical pastures, 

Hutton (1970) cited leucaena as one of the three legumes that might 

respond to lime. The other two legumes were white clover and lucerne. 

Under continuous function design experiments in Hawaii (Fox, 1973), 

dry matter yields of leucaena were highly correlated (r = 0.98) with 

2
increased soil pH (pH 5 to 7). 

Dormancy and seed germination. Genetic and environmental factors 

influence the germination of seeds. The microenvironmental factors 

surrounding the seeds are critical for germination. A genetic factor 

influencing the dormancy behavior of leucaena seeds is associated with 

the thick, tough, wa'KY layered seed coat that is impermeable to water. 

Studies on the germination of leucaena seeds conducted in soil 

flats in the greenhouse showed that maximum germination of seeds under 

optimum condition may vary from one to four years. The seeds can be 

kept viable at ordinary storage conditions for as long as 10 years 

(Akamine, 1952). 

2Personal communication from Dr. Robert L. Fox, University of 
Hawaii, College of Tropical Agriculture, April 6, 1976. 
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Ninety percent seed gennination was obtained by mechanical 

and sulfuric acid scarification. Soaking the seeds for 10 minutes in 

water kept at 70°c gave a gennination of 70 percent. The untreated 

seeds gave only about 10 to 15 percent gennination (Akamine, 1942). 

Venkataratnam (1948) obtained similar results with hot water treatment. 

Takahashi and Ripperton (1949) recommended acid treatment of seeds. 

However, Gray (1962) suggested seed immersion in hot water at 80°C for 

2 minutes. He found that treated seeds which were dried and stored 

retained full viability for 15 months. 

Seed inoculation with Rhizobium. Trinick (1965) found that in Papua­

New Guinea, where other legumes grew and nodulated vigorously without 

inoculation, leucaena responded to inoculation. This suggested that 

leucaena was very specific in its Rhizobium requirement. He obtained 

nodulation of leucaena only with rhizobia from tropical legumes which 

were fast growing, acid producing and which had similar cultural 

characteristics to the leucaena root-nodule bacteria. Galli (1958) 

and Cooksley (1974) observed the high Rhizobium strain specificity of 

leucaena, Further study by Trinick (1968) showed that 1· leucocephala, 

Mimosa invisa, Mimosa pudica, Acacia farnesiana and Sesbania .~.EE· have 

the properties of a cross inoculation group of plants. 

In Australia, Norris (1965 and 1973) found that Rhizobium strains 

isolated from leucaena were consistently of a fast-growing, acid 

producing type. He considered this as an evidence that leucaena was 

adapted primarily to alkaline soil and suggested the use of lime­

pelleting of seed or application of lime on soils. Similarly, Wu 

(1964) observed increased yields and nitrogen contents of leucaena by 

liming and inoculation of effective rhizobia. 
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Weed control. Critical periods of weed control in . cultivated leucaena 

fall into two phases: (1) weed control during the initial seedling 

growth and (2) weed control in the early regrowth of the ratoon crop. 

Although studies on weed control have been limited, results indicated 

that either herbicide or handweeding considerably increased the yield 

of leucaena (Kinch and Ripperton, 1962; Hill, 1970). In pot trials 

in which one leucaena seed was sown with 1 to 8 Eleusine indica seeds 

per pot, dry weight of leucaena was only 18 to 27 percent of the 

control (Jones, 1970). 

Studies on the response of seedlings of pasture species including 
......,--1,:'""' 

leucaena to pre-emergence and post emergence herbicide application 

showed that leucaena is resistant to the toxic effects of .a wide 

range of herbicides (Nicholls, Plucknett and Burrill, 1973). However, 

Jones (1973b) found that some herbicides, notably karbutilate and 

atrazine had adverse effects on plant n1.m1bers and growth of leucaena. 

Factors influencing persistence, yield and quality of forage. Studies 

by Takahashi and Ripperton (1949) on the period of establishment 

indicated that neither the persistency nor the overall yield was 

affected by the length of period of establishment. However, the 

shorter period of establishment was recormnended because of the ease of 

harvesting of the crop and the better quality of forage obtainable 

from younger crops. 

In addition, Takahashi and Ripperton found that lower cutting 

levels produced higher yields. There was a progressive decrease in 

yield as the height of cutting was increased. Best forage yield was 

usually obtained when the plants were harvested at 120 to 150 cm tall 
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or approximately 4 months old and a few of the more advanced plants 

were in the full-bloom stage. When cut every two months, leucaena was 

entirely vegetative. When cut at 3 months interval it was at bud or 

early bloom stage. At 4 months cutting interval, leucaena was at 

early podding stage. 

Yield of dry matter, Yield trials on leucaena cultivars have been 

conducted in various countries. In Sanford, Queensland, the mean 

forage dry matter yield of Peru, El Salvador and Guatemala strains was 

2.0 t/ha/harvest with 28 percent protein. The average forage dry 

matter yield of Hawaiian strain was 374 kg/ha/harvest containing 30 

percent protein. It showed that the Salvador strains yielded five 

times more of forage than the Hawaiian strain. There was no significant 

difference between strains with respect to proportion of leaf fraction 

which ranged from 69 to 84 percent by weight (Hutton and Bonner, 1960). 

Hutton and Bonner concluded that the dry matter and protein production 

at Sanford was better than that of good crops of irrigated lucerne in 

Southern Queensland and was comparable with the yield from high quality 

clover, rye grass pasture in New Zealand. 

Studies by Oakes and Skov (1967) in the Virgin Islands showed 

that dry matter yield of Salvador type was about 50 percent higher 

than Hawaiian type. The average yield of four strains of Salvador 

type was 15.8 t/ha/yr of dry matter. The average dry matter yield of 

four strains of Hawaiian type was 10.6 t/ha/yr. 

Under a six-week grazing cycle of leucaena over a nine-month 

period in New Guinea, Peru strain produced an estimated yield of 12.0 

t/ha of dry matter. Yield responded markedly to increased rainfall 

(Hill, 1971c). 

.. 
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Yield trials of six strains of leucaena in Fiji showed K8, a 

Salvador type, as the highest yielder, producing 21.5 t/ha/yr of total 

dry matter when harvested 4 to 5 times a year (Partridge and Ranacou, 

1973). The ratio of leaf to fine branches by dry weight was approximate­

ly 65:35 with no significant differences between strains. 

In Hawaii, Takahashi and Ripperton (1949) conducted experiments 

on the kinds of planting materials and period of cutting l~ucaena. 

Using the naturalized Hawaiian cultivar, the best green whole forage 

yield was obtained from plantings which were cut at two months interval. 

The yield was 56.1 t/ha/yr which was equivalent to 14.0 t/ha/yr of 

dry forage based on an assumed 25 percent moisture. 

In recent advanced yield trials in Hawaii, Brewbaker, Plucknett 

and Gonzalez (1972) showed that Salvador types yielded two and one 

half times as much forage as the Hawaiian types. Superior varieties 

of Salvador type were K8, K28 and K67 which gave average dry forage 

yields of 30.0 t/ha/y~. Hawaiian type produced an average dry forage 

yield of 12.3 t/ha/yr. 

Protein and mimosine contents. Kinch and Ripperton (1962) reported 

the protein content of leucaena whole forage as 22 percent (3.52% N) 

and 30.2 percent (4.83% N) for the leafy fraction. Other studies by 

Anslow (1957); Chou and Rose (1965); Upadhyay, Rekeb and Pathak (1974) 

showed the protein contents of dehydrated leaves to be 24.56 percent 
. ·¥··· 

(3.93% N), 23.38 (3.74% N), and 21.45 percent (3.43% N), respectively. 

There was a small variation between crude protein levels at 

different harvesting dates but no seasonal pattern was apparent. 

Partridge and Ranacou (1973) found 33 percent (5.28% N) crude protein 
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in the leaves and 13 percent (2.08% N) in the fine branches. Studies 

by Singh and Mudgal (1967) showed that the crude protein content of 

leucaena varied from 18.90 percent (3.02% N) to 24.57 percent (4.41% N). 

This variation was considered to be possibly due to climatic or edaphic 

factors or stage of maturity of the plants at harvest. 

Studies were made by Takahashi and Ripperton (1949) on the effects 

of cutting intervals on the protein content of the leaves, stems and 

whole forage of ieucaena. Cuttings were done at 2, 3, and 4 months 

intervals. Their results showed that the protein contents of the 

leaves, stems and whole forage increased considerably as the cutting 

intervals were shortened. The percentage of protein in the leaves was 

about 3 times that of the stems. 

Oakes and Skov (1967) found 15.4 percent (2.46% N) protein in the 

dry matter of Salvador strain and 15.7 percent (2.51% N) in Hawaiian 

strain, a negligible difference. 

Leucaena contains the amino acid mimosine, s[-N-(3-hydorxypyridone 

4)]- cr -aminopropionic acid, in the free form. This compound is 

believed to limit the nutritional usefulness of the plant (Bickel and 

Wibaut, 1946; Matsumoto, Smith and Sherman, 1951). Lin and Ling 

(1961) made a detailed study on the chemical and physical properties 

of mimosine. 

Mimosine occurs in highest concentration in the young actively 

growing leaf. A typical analysis of the Peru cultivar gave the 

following mimosine contents on a dry weight basis: vegetative apical 

shoots, 6.8 percent; first leaf, 3.2 percent; fifth leaf, 1.4 percent, 

and tenth leaf, 0.9 percent (Hegarty and Court, 1972). This finding 



12 

closely agreed with the conclusion of Takahashi and Ripperton (1949) 

and Gonzalez (1966). Kinch and Ripperton (1962) obtained mimosine 

contents of 3.56 percent for dehydrated whole forage, 4.56 percent 

for leafy fractions and 0.95 percent for stems. In later studies by 

Brewbaker and Hylin (1965), 72 strains of the genus leucaena showed 

mimosine concentration which ranged from two to five ·percent. Brewbaker, 

Plucknett and Gonzalez (1972) showed that the mimosine content of 

Salvador type was comparable to that of Hawaiian type. They obtained 

4.32 percent for KS (Salvador type) and 4.42 percent for K65 (Hawaiian 

type). Their studies indicated that the mimosine content was concentrated 

in the leafy portion of the plant. 

Environmental factors influence the mimosine content ·of the plant. 

Cooksley (1974) reported that mimosine content in the plant varies 

throughout the year. 

Studies have been conducted to minimize the undesirable effects 

of mimosine in leucaena-fed animals. Addition of ferrous sulfate in 

a mixed ration containing ground leucaena was effective in reducing 

the toxic effects of mimosine (Wayman, Iwanaga and Hugh, 1970). Heating 

the forage to~ 70°c in the presence of moisture from 24 to 72 hours 

was also effective in reducing the amount of mimosine in leucaena 

leaves (Matsumoto, Smith and Sherman, 1951; Ross and Springhall, 1963). 

To get a permanent solution to the mimosine problem in leucaena, 

cytological and biochemical studies in the genus leucaena were initiated 

in Hawaii in relation to the breeding of low mimosine and high yielding 

types of~- leucocephala (Lam.) de Wit (Gonzalez, Brewbaker and Hamil, 

1967). 
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An advanced bred line (Guatemala x Peru) developed in Australia 

has consistently outyielded the connnercial Peru cultivar. A back­

crossing program is in progress between this high yielding line and 

selections from another Leucaena species, which is low in mimosine 

(Hutton, 1973). 

Status of research work on leucaena. Agronomic research on leucaena 

has been sporadic, In spite of its wide geographical distribution and 

widely accepted potential as productive source of nutritive forage, 

there are very few available references concerning the agronomic 

management of leucaena. 

However, the literature concerning the use of leucaena forage for 

poultry and livestock feed and biochemical studies on mimosine is 

extensive. 

The use of leucaena forage is mainly for animal feed. There is 

no available literature concerning extensive use of leucaena as 

source of nitrogen for the production of food and feed crops. Under 

the present condition of limited inorganic commercial nitrogen supply 

in most of the developing countries, the use of leucaena for low­

productive-input-agriculture seems promising. 

Intercropping Legume and Non-legume Crops 

Intercropping as a type of intensive cropping. Intercropping is the 

growing of two or more crops simultaneously in alternate rows. This 

basic definition of intercropping is not being followed literally 

because the arrangement of the crops in the intercropping system 

depends more on the objectives of intensive cropping. Intercropping 
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is practiced primarily to increase land productivity through efficient 

utilization of space, soil fertility, soil moisture, solar radiation 

and other environmental growth factors. Also, intercropping of legumes 

and grasses is practiced so that grasses can take advantage of nitrogen 

that can be provided by legume N-fixation. There are also a number 

of other objectives which may be important bases for intercropping 

systems, such as distribution of risk, reduced insect damage, et~. 

depending on the situation. 

Observations on intercropping leucaena with pasture grasses. Guinea 

grass and green panic grass are the two grasses most connnonly grown 

with leucaena. Guinea grass has regrowth characteristics comparable 

with the regrowth cycle of leucaena (Lyman, Rotar and Bown, 1967). 

The system of interplanting leucaena and guinea grass in rows is 

regarded as one of the best combinations for the moderately dry 

lowland pasture of Hawaii, and has been in use in Hawaii for many years 

(Takahashi, 1956). 

The growth of a pure stand of nadi blue grass (Dicanthium caricosum) 

under grazing in Fiji was compared with the same grass growing between 

the rows of leucaena. The study revealed that nadi blue grass was 

thicker in the latter after several periods of grazing. Partridge and 

Ranacou (1974) concluded that nitrogen supplied by the legumes was 

one of the reasons for the thicker growth of grass in the leucaena 

mixture. 

General observations on intercropping leguminous and non-leguminous 

crops. Intercropping a non-legume with a legume crop has been a 

traditional practice of farmers in sub-tropical and tropical countries. 
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However, it has often been observed that the yields of both crops are 

reduced when intercropped, compared with yields when they are grown 

alone, although the combined yield may be higher than either crop 

grown separately (Dalal, 1974). Studies of intercropping of castor 

beans with soybean or groundnuts, corn or sorghum with groundnuts 

resulted in lower yields of each crop; however, the total yields of 

the two intercrops were higher than the yield of each crop in single 

cropping (Evans, 1960; Evans and Sreedharan, 1962). Agboola and Fayemi 

(1971) observed that the yield of legumes was usually more depressed 

in mixed cropping than that of non-legumes. Decreases in yields 

of legumes and non-legumes grown together can be minimized by selecting 

crops of widely different growth habits. Enyi (1973) reported that 

intercropping corn with either beans or cowpeas had more adverse effect 

than pigeon peas on grain yield of corn. He attributed this to the 

fact that high rates of nutrient absorption by the two legumes 

coincided with uptake by the corn, whereas in pigeon peas the greatest 

nutrient demand occurred after the corn was harvested. Similar observa-

tions on corn-pigeon peas intercropping were noted by Dalal (1974). 

By way of contrast, Kurtz, Appleman and Bray (1946) observed in 

corn-clover experiment that when no nitrogen was applied, the corn 

growing in association with the red clover showed advanced symptoms of 

nitrogen deficiency, bore small ears and gave low yield. Evidently 

the two crops were competing strongly for limited supplies of water or 

nutrients during the same time period. 

Experiments on interplanting of corn with nine different tropical 

legumes in the rain forest zone of the western state of Nigeria at 

Ibadan indicated that Phaseolus lunatus and Mucuna utilis lowered corn 
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yield. These legtnnes were fast growing and climbed over the corn 

plants. Calopogonitnn mucunoides, Vigna sinensis and Phaseolus aureus 

had much less effect on corn and were themselves tolerant to corn 

shade. In this experiment, high yields of corn were maintained during 

the four growing seasons in both the fertilized control plots and 

those interplanted with different legtnnes without fertilizer, whereas 

the yield of corn in plots with neither legume nor fertilizer was 

reduced to half of the yield of the first corn crop (Agboola and 

Fayemi, 1971). 

Syarifuddin, Effendy, Ismael and McIntosh (1974) found that in 

intercropping vegetable legumes with corn, the yield of legtnnes 

decreased. However, the high yield of corn compensated for reduction 

in yields of legumes. 

Transfer of legume fixed-N to associated non-legume crops. In Finland, 

Virtanen and Hausen (1937) conducted extensive experiments that 

provided proof that leguninous plants were able to excrete nitrogen 

into the substrate in which they were growing and the nitrogen may be 

used by non-leguminous plants in association. Similar results were 

observed by Walker, Orchiston and Adams (1954). They added that under 

the same growing conditions, legumes appeared to transfer to grasses 

half of the N fixed in a form readily absorbed by grasses. 

Wilson and Wyss (1937) observed on mixed crops of peas and barley 

under controlled light intensity that 30 to 40 percent of the nitrogen 

fixed by peas was excreted to the companion crop of barley. On peas 

and potato combination, 3 to 13 percent of the N fixed by peas was 

transferred to potatoes. They did not observe N excretion in soybeans 
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under ordinary growing conditions. However, with drastic shading and 

low temperature, soybean transferred 35 to 60 percent of the N fixed 

to the companion crop of barley. Some experiments however were not 

successful in showing that leguninous plants were able to excrete 

nitrogen into the substrate (Ludwig and Allison, 1937; Nowotnowna, 

1937). 

Wilson and Wyss (1937) offered the following explanations of the 

discrepancies among studies of excretion of N fixed by legumes. 

(1) If the environment was unfavorable for photosynthesis, 

fixation of nitrogen by legumes was poor and little or no excretion 

occurred. 

(2) If the environment was highly favorable for photosynthesis, 

carbohydrate formation in the plants proceeded rapidly, and the 

nitrogen fixed was readily converted into relatively inert forms, 

e.g. protein in new tissue. 

(3) Under certain environmental conditions, carbohydrate 

synthesis in the legume was sufficiently high and insured a fairly 

rapid rate of fixation, but it was not high enough to use all the 

nitrogen fixed in the formation of new tissues. Under these circun­

stances N compounds accumulate in the nodules, and if there were 

intimate contacts with the roots of other species or with highly 

adsorptive surfaces, part of the excess N was excreted. The net 

effect of the excretion was to maintain a carbohydrate nitrogen balance 

in the plant. 

Whitney and Kanehiro (1967) observed in the study of the pathways 

of nitrogen transfer in some tropical forage legume grass association 

that small quantities of amino acids, ammonia and nitrate were 
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released from legume root systems following severe defoliation. 

Analyses of solutions in which plucked leaves had been shaken showed 

that very little N could be leached from intact legume leaves. 

Whitney (1976, "in press") suggested that the major pathway of N 

transfer under grazing would probably be through the trampling of 

legume leaves by grazing animals and subsequent recycling of leaf-N. 

Whitney (1970) conducted an experiment on cutting frequency and 

height on the N economy of~. intortum mixtures with pangola or 

kikuyu grass. Intensive cutting reduced N fixation rates and cutting 

interval was more important than height of cut. Significant transfer 

of N to the grass occurred only under the most lenient cutting regime 

where about 19 percent of the N fixed was apparently recovered in the 

grass fraction. 

It seems reasonable to conclude that significant transfer of 

nitrogen from a legume to an associated crop will occur by excretion 

only when the legwne is vigorously photosynthizing, but is restricted 

in its growth due to cool temperature or other causes. Nitrogen is 

also lost from legumes when they are severely defoliated. However, 

most nitrogen transfer is probably due to bacterial decomposition of 

legume tissue - roots, nodules and aerial parts. 



CHAFI'ER III. GENERAL MATERIALS AND METHODS 

Site and Location 

The experiments were conducted at the Kohala Feed and Forage 

Research experimental field of the Hawaii Agricultural Experiment 

Station at Rawi, Hawaii (Appendix Figure I). In previous years the 

field had been planted to irrigated sugarcane. The experimental site 

is located at approximately 20°14 1 N latitude and 155°52 
1
W longitude 

at about 130 m elevation. The Rawi soil series is a member of the 

fine, halloysitic, isohyperthermic family of the Typic Ustropepts 

(formerly low humic latosols). The soil is a well-drained silty 

clay, nearly level to moderately sloping (Sato, et al., 1973). Appendix 

Tables I and II show the general description of the soil profile and 

the chemical and physical properties of Rawi soil series (Gardiner, 

1967). 

Climate 

Solar radiation, temperature, rainfall and pan evaporation data 

were obtained from the Kohala Sugar Company main observatory at Rawi, 

about one kilometer from the experimental plot. Appendix Figure II 

shows the monthly rainfall and pan evaporacion during the conduct of 

the experiments. Two pronounced rainfall distributions were recorded; 

dry from April to September and wet from October to March. The 

average precipitation during the dry period was 5.6 cm/month while 

pan evaporation was 22.9 cm/month causing a monthly deficit of 17.3 cm 

(4.3 cm/week). During these six months, the crop was irrigated with 

about 5 cm of water a week. From October to March, the monthly 

precipitation of 18.0 cm was about equal to the 18.9 cm of monthly 
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pan evaporation. However, precipitation exceeded pan evaporation in 

January and February. 

The seasonal fluctuations of solar radiation and temperature 

followed a similar trend (Appendix Figure III). This trend was 

inversely related to rainfall distribution, The average light intensity 

during the months of April t~ October was 554 ly/day. From November 

to March the light intensity was 435 ly/day. 

Average monthly night temperature was computed according to the 

formula of Went (1957): viz 

Night T = Min. T +\(Max. T - Min. T) 

The average night temperature varied from 8,9C to 22.4C, with the 

lowest temperature observed during the months of January, February 

and March and the highest in August, September and October, 

Cultural Practices 

Previous crop and soil fertility treatment. Prior to the leucaena 

experiment, a sorghum irrigation experiment was conducted in this 

field in 1973. The experiment was fertilized with (in kg/ha) N-100, 

P-220, K-220, Mg-55, Cu-11, B-11, Zn-11, and Mn-22, and limed with 

Caco3 at 2000 kg/ha, 

All sorghum residues were removed from the field. The field was 

plowed, rotovated and soil samples were taken to plow depth. Soil 

analyses showed the following: pH 5.5 (water), 39 ppm P (Modified 

Truog), and exchangeable cations of 180 ppm K, 1240 ppm Ca, and 330 

ppm Mg. 
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Seed treatment of leucaena. Dormancy of the seeds -was broken by 

soaking them in water at 80°c for two minutes, and then air drying 

them. The seeds were inoculated with "Nitragin" Rhizobium inoculant 

before planting. 

Weed control. Weeds were controlled during the establishment arid 

early regrowth periods by applying paraquat herbicide in a directed 

spray. 

Irrigation. Irrigation was done every 1 to 2 weeks with overhead 

sprinklers which delivered 1.5 cm water/hr. Irrigation was scheduled 

according to the amount of weekly precipitation (Appendix Figure II) 

and soil conditions. 

Analysis of Plant Tissue Samples 

Drying and grir.ding. Samples of forage and stem fractions of leucaena 

and plant and leaf samples of corn were dried in a forced-draft oven 

0at 65 C. After the samples were dried, they were ground in a Wiley 

mill with a 0.4 mm sieve. Ground samples were stored in plastic bags 

for nitrogen and mimosine analyses. 

Nitrogen and mimosine analyses. Total nitrogen in the plant samples 

was determined by the semi-micro Kjeldahl method (Yoshida, Forno and 

Cock, 1971). Analysis of mimosine was done following the colorimetric 

method of Matsumoto and Sherman (1951). 



CHAPTER IV. YIELD AND GROWTH CHARACTERISTICS OF 
LEUCAENA AS INFLUENCED BY VARIETY, I!'-l"TRA-ROW 

PIANT SPACING MID CUTTING REGIMES 

For intensive production of leucaena, it is important to understand 

the growth behavior of varietal types, and the optimum plant population 

that will result in minimum negative intraspecies plant competition 

and maximum yield production. 

This experiment was conducted (1) to compare the growth behavior 

and yield potential of two distinct varietal types of leucaena and 

(2) to determine the plant spacing and height of plant at harvest 

for maximum crop production. 

Materials and Methods 

The experiment was conducted from March 27, 1974 to August ·11, 

1975. The same fertilizer treatments used for the sorghmn experiment 

were reapplied prior to establishing the leucaena experiment, except 

that nitrogen was omitted. Fertilizer was not applied on the regrowth 

crops of leucaena. A general view of the field experiment is shown 

in Appendix Figure IV. 

Two cultivars of leucaena, K341 and K8 (PI 263695) were used. 

K341 is a Hawaiian type naturalized in Hawi and designated as "Kohala." 

K8 is a high yielding Salvador type, originating from Mexico (Brewbaker, 

Plucknett and Gonzalez, 1972). K8 is also known as "Hawaiian Giant" 

(Brewbaker, 1975). 

Plots were arranged in a factorial split plot design with leucaena 

cultivars as main plots, cutting regimes as sub plots, and intra-row 

plant spacing as sub-sub plots. The experiment was replicated four 

times (Appendix Figure V). Cutting regimes involved harvesting when 
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plants reached average heights of (1) 55 cm, (2) 105 cm, and (3) 155 cm 

(Appendix Figure VI). Plants were cut at 2.5 - 5.0 cm above the 

ground surface (Appendix Figure VII). 

Intra-row plant spacings were (1) 15 cm, (2) 30 cm, and (3) 45 cm 

corresponding to populations of about 133,000, 66,000, and 45,000 

hills per hectare, respectively. Sub-sub plots consisted of 4 rows, 

50 cm apart and 5 m long. Harvest data were obtained from the middle 

4 m of the two inner rows. 

Inoculated seeds were planted using hand corn planters at the 

~ .., "1- • ,' ' .... rate of two to three seeds per hill. Growth development was observed. 

Routine weed control and irrigation were carried out as needed. 

When the desired plant height was attained, all plants in the 

treatment were cut, bundled, and innnediately separated into forage 

and stem fractions (Appendix Figure VIII). The forage fraction 

consisted of the leaves plus the green, soft portion of the stems, 

while the stems were mainly the hard-brownish section of the stems. 

Measurements were also taken during one or more growth periods of: 

(1) weekly increase in plant height, (2) stem diameter at harvest 

( >5 mm), (3) number of stems ( >5 mm) at harvest, (4) percent light 

interception, (5) percent flowering at harvest, and (6) nitrogen and 

mimosine contents. 

Plant height was measured from ground level to the tip of the 

growing bud of four randomly selected plants. Stem diameter was 

measured in the middle portion of the brown stem. Stems with distinct 

flower buds were counted. Percent light interception was calculated 

as the amount of light at ground level inside the plot yield area 
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as a fraction of that measured above the crop canopy. Measurement 

was done at about ten o'clock in the morning. 

Results and Discussion 

Seedling establislnnent and regrowth cycle. The pattern and rate of 

growth of the plant and regrowth crops were measured (Figure 1). The 

plant crops of leucaena seemed to have three readily identifiable 

phases of growth. They were (1) the seedling establishment phase (A), 

(2) the lag vegetative phase (B), and (3) the active vegetative phase 

for K8 anG/or active vegetative-reproductive phase for K341 (C). The 

seedling establislnnent phase lasted for about five weeks after planting. 

Management of water, weed control and fertilization were particularly 

critical during the seedling establislnnent phase. During this period, 

K341 and K8 both grew at about 0.30 cm/day. The lag vegetative phase 

covered the next three to four-week period. The rate of growth of K8 

became distinctly faster than K341. During this phase K8 produced a 

few apically dominant stems which rapidly increased in height. K341 

increased in height less rapidly, but had a bushier habit (Figure 2). 

The average rate of growth of K341 and K8 was 0.80 cm/day. The active 

vegetative phase (for K8) or the active vegetative-reproductive phase 

(for K341) was the stage of accelerated linear growth. K8 increased 

in height at the rate of 3 cm/day, twice the rate of i<341. The early 

flowering habits of K341 plus more lateral branching seemed to 

contribute to its slower rate of increase in height compared to the 

apically dominant K8. As in Gonzalez's experiments (1966) K8 did not 

flower during the period of the experiment. 
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K341 

Figure 2. Two-month old KB and K341; note the 
more prominent elongating shoots of KB. 
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The growth pattern of the ratoon crops included a lag vegetative 

phase and an active vegetative or active vegetative-reproductive 

phase. When K8 and K341 were cut at 55 or 105 cm, their regrowth 

patterns were nearly identical, but when they were cut at 155 cm, 

K341 was slower to recover and resume growth than K8. The difference 

in the rate of regrowth between the two varieties after cutting at an 

attained height at 155 cm can possibly be related to their flowering 

habits. When K341 was allowed to grow to 155 cm height, the plants 

flowered heavily before cutting. The flowering plants would be 

expected to translocate more photosynthates and nutrients to the seeds 

with consequent deprivation of the roots. This would be similar to 

that described in soybean by deMooy, Pesek and Spaldon (1973). Further­

more, possible reduction in downward flow of photosynthates may restrict 

N fixation by nodule bacteria and uptake of the major nutrients at 

the stage when the plant needed appreciable quantities of N, P and K. 

Thus, when K341 was allowed to flower, the subsequent regrowth from 

harvested plants was slower, probably due to lower levels of carbo­

hydrates, proteins and nutrients in the basal stems and roots. 

Unlike alfalfa, leucaena does not produce vegetative buds at the 

base of the plant before cutting, and therefore is slow to recover 

after each cutting. 

Rate of increase in height in relation to climatic factors. Crops at 

plant height of 55 cm, 105 cm, and 155 cm were cut at an average of 

76, 100, and 126-day intervals for K341, and 65, 91, and 115-day 

intervals for K8. In general, K8 attained the desired height about 

10 days earlier than K341. 

The growth rate of leucaena at 55 cm height at cutting followed 
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the seasonal pattern of solar radiation and night temperature as 

shown in Figure 3. A faster rate of growth was observed when solar 

radiation and night temperature were higher. Similarly the rate 

of growth decreased when solar radiation and night temperature were 

low. The average rates of growth for K341 and K8 (cut at 55 cm) were 

0.73 and 0,87 cm/day, respectively. The growth peak for K341 occurred 

during September and October at 0.96 cm/day. However, K8 grew at the 

rate of 1.0 cm/day from May to the middle of November. The correla­

tion coefficient for the relationship between night temperature and 

growth rate were similar: r = 0.94 and r = 0.86 for K34l and K8 

respectively (Figure 4). The correlation between solar radiation and 

growth rate was lower for K341 (r = 0.66) than K8 (r = 0.98), It 

appeared that the growth rate of K341 was closely related to average 

night temperature, while the K8 growth rate was more closely related 

to solar radiation levels. The relationship between solar radiation 

and night temperature values and growth pattern at the 105 and 155 cm 

cutting heights were similar to 55 cm height. 

Liiht interception and vegetative development. Light interception 

measurement were based on the amounts of blue and red sunlight passing 

through the crop canopies. Figure 5 shows percent light intercepted 

by the plant crops of KS and K341 as they approached the cutting 

stage. Ten weeks after planting, K8 intercepted 35 percent more sun­

light than K341. The difference in the amount of light intercepted 

by the two varieties decreased as plant growth progressed, e.g., 

20 percent on the 11th week and 10 percent on the 12th week. Light 

interception at cutting time was nearly identical, 96.6 percent for 
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K341 and 96.3 percent for K8. There were no significant differences 

in the amount of light intercepted by the various intra-row spacing 

treatments. During the experiment, the average light interception 

at harvest for 55, 105, and 155 cm height of cutting was 94.8, 96.4, 

and 98.2 percent, respectively (Table 5). 

Higher light interception of K8 at the vegetativ·e growth stage 

showed that it has the ability to more rapidly produce photosynthetic 

surface area than K341. This characteristic of KS is related to its 

rapid upright growth. K341 exhibits less dominant upright growth 

and a tendency to produce more lateral branches (Figure 6). The 

ability of a cultivar to grow rapidly, both upright and laterally, is 

an important plant attribute for efficient utilization of ·sunlight. 

This allows the plant to effectively compete with weeds and to reduce 

surface soil evaporation and soil erosion. 

Dry matter yields. Plant height was used as a criterion for cutting 

leucaena. This basis of cutting resulted in differences in harvesting 

frequency and in the total number of growth periods among height 

treatments and between the two varieties of leucaena. For more realistic 

comparisons of yields, data were expressed on the basis of yield per 

year • . 

Averaging overall treatments, the total dry matter yields were 

17.8 t/ha/yr for K341 and 15.2 t/ha/yr for KS. These yields consisted 

of 12.0 tons of the forage fraction (FF) and 5.8 tons of the stem 

fraction (SF) for K341, and 9.9 tons of FF and 5.3 tons of SF for 

K8 (Table 1). 
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Figure 6. Comparison of the leaf density on the stems of KS and K341. 
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Table 1. The effects of plant height at cutting and intra-row 
spacing on dry matter yields and percent forage fraction 

of K341 and K8. Avg of four replications. 

Avg height Avg Intra­ Annual DM Yield Forage/ 
at cutting cutting ·row Forage Stern Total total 

interval+ spacing fraction fraction yield yield 

cm days cm 

Variety K341 (Kohala) 

55 76 15 
30 
45 
Mean 

105 100 15 
30. 

' 45 
Mean 

155 126 15 
30 
45 
Mean 

Variety Mean 

Variety K8 (Hawaiian Giant) 

55 65 15 
30 
45 
Mean 

105 91 15 
30 
45 
Mean 

155 115 15 
30 
45 
Mean 

Variety Mean 

15.3 
13.7 
11. 7 
13. 5 

19.6 
17.8 
17.1 
18.2 

22.2 
24.1 
18.8 
21. 7 

17.8 

12.1 
9.9 
8.8 

10.3 

17.1 
15.0 
14.6 
15.6 

21.3 
19.4 
18.9 
19. 9 

15.2 

% 

80 
80 
82 
81 

66 
69 
70 
68 

59 
58 
62 
60 

70 

76 
79 
77 
77 

67 
68 
69 
68 

55 
59 
58 
57 

67 

12.2 
10.8 
9.5 

10.8 

12.9 
12.3 
12.0 
12.4 

13.0 
14.0 
11. 5 
12.8 

12.0 

9.2 
7.7 
6.8 
7.9 

11.5 
10.2 
10 .1 
10.6 

11. 7 
11.3 
10.8 
11.3 

9.9 

3.1 
2.9 
2.2 
2.7 

6.7 
5.5 
5.1 
5.8 

9.2 
10 .1 
7.3 
8.9 

5.8 

2.9 
2.2 
2.0 
2.4 

5.6 
4.8 
4.5 
5.0 

9.6 
8.1 
8.1 
8.6 

5.3 

+All treatments were harvested over a 455-502 day period 
(4-7 total cuts) 
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These findings did not agree with the previous reports that 

"Salvador types" of leucaena yielded higher than the "Hawaiian types." 

Apparently, K8 was not well adapted to the intensive management 

practiced in this experiment since yields were significantly lower 

than the 30 t/ha/yr reported by Brewbaker, Plucknett and Gonzalez 

(1972) under different management. 

The yield under more frequent cutting was lower than under less 

frequent cutting. However, total dry matter yields under less 

frequent cutting contained a lower percentages of forage. The data 

seemed to indicate that planting at 15 cm apart and cutting when the 

plants reached about 1 m height resulted in yields nearly as great 

as when the plants were cut at a later stage. At this stage, stem 

content was not excessive, but was somewhat higher than in plants 

cut at 55 cm attained height. However, the increased steminess may 

be compensated by the benefits derived in cutting less frequently. 

The lower DM yields at more frequent cutting than at less 

frequent cutting seemed to be related to the vegetative phases of 

growth. More frequent cuttings per year resulted in more periods 

of the lag vegetative phase, thus the rate of DH yield production 

per unit time was decreased. According to Whiteman and Lulham 

(1970), a severe check in growth such as close cutting resulted in 

mobilization of sugars and amino acids from the roots to support the 

development of new leaves. As a result, root growth and N fixation 

are reduced, further limiting the growth of legumes under frequent 

cutting. 

Yields of both varieties were also significantly reduced as 

planting density was reduced by increasing intra-row plant spacing 
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(Figure 7 and Table 2). 

Most of the increase in the total yield of dry matter under 

infrequent cutting was comprised of the stem fraction. As height at 

cutting was increased from 55 to 155 cm, the annual yield of forage 

fraction increased by 28 percent; however, the annual yield of stem 

fraction increased by 240 percent. This was apparently due at least 

in part to shading of lower leaves by the taller plants, resulting in 

considerable leaf shedding from the lower portions of the plants. 

This is also shown in the percentage of forage fraction in leucaena 

cut at different attained heights; 79, 68, and 59% for 55, 105, and 

155 cm height,respectively (Table 2). 

Under certain agricultural management, less frequent harvest may 

be advantageous in terms of saving expenses in harvesting and pro­

cessing operations. For forage production, a variety of leucaena 

that will produce high total dry matter yields with low percentage of 

stem even under infrequent cutting will be desirable. 

As plant spacing increased, yields of both forage and stem 

fractions decreased. However, percent forage fraction increased as 

spacing increased, apparently due to improved light transmission to 

the lower portion of the plants resulting in minimum leaf shedding 

especially under less frequent cutting. 

Percentage nitrogen and nitrogen yield of dry matter. The nitrogen 

content of forage fraction averaged 4.27% for K341 and 4.31% for K8. 

Nitrogen content of the stems averaged 1.52% and 1.43%, respectively. 

Overall nitrogen percentages were not influenced by variety, plant 

spacing or cutting interval except that stems declined in N content 
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Table 2. Analysis of treatment effects of variety, height at cutting, and 
plant density on production of dry matter and nitrogen content 

of leucaena under intensive management 

Treatment Annual DM :Yield Percent Percent nitrogen Annual nitrogen iield 
variables Forage Stem forage Forage Stem Forage Stem 

fraction fraction fraction fraction fraction fraction fraction 

t/ha % kg/ha 

Variety 

K341 
KB 

12.0 a 
9.9 b 

5.8 a 
5.3 b 

70 a 
67 b 

t~. 2 7 a 
4. 31 a 

1. 52 a 
1.43 a 

513 a 
429 b 

84 
72 

a 
a 

Height at cutting 

55 cm 
105 cm 
155 cm 

9.35 C 

11.50 b 
12.05 a 

2.55 C 

5.40 b 
8.75 a 

79 a 
68 b 
59 C 

4.39 
4.18 
4.30 

a 
a 
a 

1.62 
1.48 
1.32 

a 
a 
a 

410 C 

482 b 
521 a 

40 C 

79 b 
115 a 

Intra-row spacing 

15 
30 
45 

cm 
cm 
cm 

11. 75 a 
11.05 b 
10.12 C 

6.18 a 
5.60 b 
4.87 C 

67 
69 
70 

C 

b 
a 

4.32 a 
4.24 a 
4.30 a 

1.49 
1.49 
1.45 

a 
a 
a 

507 a 
467 b 
439 C 

88 a 
79 b 
67 C 

Means in the same column of pair or triplet followed by the same letter are not 
significantly different at the 5% level (Bayes LSD). 

w 
(X) 
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as harvesting interval increased (Tables 2 and 3). 

The fact that the percentage of nitrogen in the forage fraction 

remained constant under a wide range of harvesting periods could be 

very advantageous since it would allow flexibility in harvesting 

without sacrificing the nutrient value of the forage. 

On the average, K.341 produced nearly 600 kg N/ha/yr while K8 

produced about 500 kg N/ha/yr based on the forage fraction (Tables 2 

and 3). In the best treatments, the total nitrogen yields (stem+ 

forage) were 715 kg N/ha for K.341 and 625 kg N/ha for KS. The forage 

fraction averaged about 85 percent of the total nitrogen yields in 

both varieties, In general, as in the case of Dm yields, N yield per 

year increased with height at cutting and decreased with increasing 

width of intra-row spacing, 

The differences noted in N yields among treatments were primarily 

due to differences in dry matter yields. 

Plant characters at harvest. Characters of K8 and K.341 as influenced 

by various management variables are presented in Tables 4 and 5. The 

number of stems counted per hectare was not significantly affected 

by variety or height at cutting. However, in general, the number of 

stems per hectare was positively correlated with plant spacing. It 

can be seen that unlike most tillering plants, leucaena was not able 

to compensate for wide spacing by producing more stems. As a result, 

the selection of the optimum spacing or planting density is very 

important in maximizing dry matter yield and percent forage fraction, 

Furthermore, with increase in attained height at cutting, stem 

diameter increased significantly. The average stem diameters for 
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Avg height Avg Intra­
at cutting cutting row 

interval spacing 

Table 3. The effects of plant height at cutting and intra-row 
spacing on the percent nitrogen and nitrogen yield of 

K.341 and K8. Avg of four replications. 

Percent nitrogen Annual N Yie ld 
Forage Stern Forage Stem 

fraction fraction fraction fraction 

----%--- -- kg/ha 

547 49 
485 46 
417 34 
483 43 

532 102 
488 89 
498 76 
506 . 89 

563 131 
581 134 
509 96 
551 120 

513 84 

388 46 
329 36 
392 33 
336 38 

507 76 
439 66 
430 62 
459 68 

505 121 
481 105 
488 102 
491 110 

429 72 

cm 

Variety K341 

55 

! : 

105 

155 

days 

(Kohala) 

76 

100 

126 

cm 

15 
30 
45 
Mean 

15 
30 
45 
Mean 

15 
30 
45 
Mean 

4.52 
4.46 
4.40 
4.46 

4.13 
3.97 
4. 17 
4.09 

4.37 
4.20 
4.19 
4.25 

4.27 

4.26 
4.31 
4.34 
4.31 

4.35 
4.26 
4.21 
4.27 

4.30 
4.26 
4.52 
4.36 

4.31 

1.63 
1.63 
1.59 
1. 62 

1.54 
1.60 
1. 50 
1.55 

1.45 
1.37 
1.36 
1.39 

1.52 

1.60 
1. 61 
1.63 
1.61 

1.45 
1.42 
1.36 
1.41 

1.27 
1.28 
1.25 
1.26 

1.43 

Variety Mean 

Variety K8 (Hawaiian Giant) 

55 65 15 
30 
45 
Mean 

105 91 15 
30 
45 
Mean 

155 115 15 
30 
45 
Mean 

Variety Mean 
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Table 4. The effects of plant height at cutting and intra-row 
spacing on stem count, stem diameter, flowering and light 
interception of K.341 and KS. Avg of four replications. 

Avg height Avg Intra- Stem Stem Flowering Light 
at cutting cutting row count diameter stems interception 

interval spacing per ha 

cm days cm thousand/ha nnn % 

Variety K.341 (Kohala) 

55 76 15 362 6.3 6 97.2 
30 258 7.1 19 94.1 
45 193 7.4 39 94.1 
Mean 271 6.9 21 95.1 

105 100 15 355 7.5 16 96.4 
30 234 8.6 42 96.8 
45 180 9.7 48 96.6 
Mean 256 8.6 35 96.6 

155 126 15 390 8.2 4 98.7 
30 278 9.4 15 98.4 
45 167 11.4 41 96. 9 
Mean 278 9.7 20 98.0 

Variety Mean 268 8.4 25 96.6 

Variety K8 (Hawaiian Giant) 

55 65 15 338 5.4 0 93.5 
30 247 5.9 0 94.9 
45 194 6.4 0 94.7 
Mean 260 5.9 94.4 

105 91 15 314 7.4 0 97.4 
30 206 8.1 0 96.2 
45 183 8.9 0 94.8 
Mean 234 8.1 96.1 

155 115 15 305 9.2 0 99.0 
30 198 9.8 0 98.8 
45 147 10. 9 0 97.6 
Mean 217 10.0 98.5 

Variety Mean 237 8.0 96.3 
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Table 5. Analysis of treatment effects of variety, height at 
cutting, and plant density on the characteristics of leucaena 

at harvest when grown under intensive management. 

Treatment Stern Stem Light Percent rnirnosine 
variables count diameter interception Forage Stern 

fraction fraction 

thousand/ha mm % 

Variety 

1<341 
K8 

268 a 
237 a 

8.4 a 
8.0 a 

96.6 a 
96.3 a 

6.39 
6.93 

a 
a 

0.85 
0.99 

a 
a 

Height at cutting 

55 cm 
105 cm 
155 cm 

266 a 
245 a 
247 a 

6.4 C 

8.4 b 
9.9 a 

94. 8 a 
96.4 a 
98.2 a 

6.46 
6. 92 
6.60 

a 
a 
a 

O. 98 
0.93 
0.85 

a 
a 
a 

Intra-row spacing 

15 
30 
45 

cm 
cm 
cm 

344 a 
237 b 
177 C 

7.3 C 

8.2 b 
9.1 a 

97.0 a 
96.5 a 
95.8 a 

6.75 
6.47 
6.76 

a 
a 
a 

0.97 
0.93 
0.85 

a 
a 
a 

Means in the same column of pair or triplet followed by the same letter 
are not significantly different at the 5% level (Bayes LSD). 
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55, 105, and 155 cm height at cutting were 6.4, 8.4, and 9.9 mm, 

respectively. Similarly, wider plant spacing resulted in bigger stem 

diameter. Stem diameters at 15, 30, and 45 cm intra-row spacings 

were 7.3, 8.2, and 9.1 mm, respectively. There was no difference 

in stem diameter between varieties (average stem diameter= 8.2 nun). 

K341 flowered earlier while K8 tended to remain vegetative. 

Under the system of intensive management, K8 did not produce flowers. 

Flowering of K341 was greatly influenced by plant spacing, with the 

most flowering occurring at the wider spacings. 

There was no significant difference between the mimosine levels 

in the forage or stem fractions of K341 and K8. Height at cutting 

and intra-row spacing also appeared to have no influence on percent 

mimosine. Mimosine in the forage fraction was approximately seven 

times the level found in the stems. On the average, the crude 

protein(% N x 6.25) in the forage fraction consisted of about 24% 

mimosine whereas stem crude protein was comprised of only 10% mimosine. 

Correlations among the parameters observed (Table 6). The yields of 

forage fraction (both dry matter and nitrogen) increased proportionally 

with increased yield of stem fraction (r = 0.71). As pointed out 

earlier, N yields were a function of DM yields (r = 0.96). There was 

no relationship between nitrogen contents of the forage fraction and 

stem. As expected, percentage forage fraction was negatively 

correlated with stem yield (r = 0.95) and stem diameter (r = 0.72). 

Stem counts were not related to stem yields, but there was a 

negative relationship between the stem count and stem diameter 

(r = -0.46). 



Table 6. Correlation matrix among parameters observed in K341 and K8. 

Variables 
Forage fraction Stem fraction 

Variables 1 2 3 4 5 6 7 9 10 

Forage fraction 

1. Annual yield 
2. % fora ge fraction 
3. % nitrogen 
4. % mimosine 
5. Annual N yield 

"Id(
-.54 
-.03 
-.17 

• 96"/rl( 

-.08 
-.11 
-.51"/d( 

.48** 

.20 

Stem fraction 

6. Annual yield 
7. % nitrogen 
8. % mimosine 
9. Annual N yield 

10. Stem diameter 
11. Stem count 

• 71** 
.04 
.13 
• 76"1(•/( 

•46*"( 
• 38 

- • 95'1(* 
.21 
.12 

-.92-lri( 
-. 72~'(* 

-.04 
-.01 
-.14 
-.09 
-.10 
-.04 

.47** 

.21 

.68** 

.04 

• n"(* 
.46~·~ 
•35*"( 

-.17 

•9a·k* 
,68** 
.14 

.47** 
-.11 
-.16 
-.10 

.65** 

.20 -.46*°* 

**significant at 1% level of probability 
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Nitrogen and mimosine levels in the forage fraction were poorly 

correlated with levels of these constituents in the associated 

stems, but levels of nitrogen and mimosine were slightly correlated 

with each other (r = 0.47). Similarly, Gonzalez (1966) observed 

significant relationship between nitrogen and mimosine levels in the 

total dry matter (r = 0.89). 

The lack of any relationship between mimosine contents and the 

yields of both the forage fraction and stems agreed with the findings 

and conclusion of Gonzalez (1966). 

Seasonal effects on DM yield, growth duration and percent forage 

fraction. High yields of forage fraction were obtained during the 

period of high solar radiation and high night temperature (Figure 8). 

Variety K341 cut at 55 cm height yielded 40 kg/ha/day of forage 

fraction during July to October when sola.r radiation and night 

temperature were high (average night temperature of 22.2 C and 

average solar radiation of 550 ly/day). However, the average DM 

yield of forage fraction under the same cutting height was 27 kg/ha/day 

during November to June when the average night temperature was 19.6 C 

and average solar radiation was 461 ly/day. The trend was the same 

with other cutting regimes for both KS and K341. 

The regrowth periods were longer during the months of lower 

solar radiation and night temperature values, especially under less 

frequent cutting. For example, the regrowth of KS required only 85 

days to reach 155 cm height during August to October but needed 153 

days to reach 155 cm height during October to March. 

The correlation values between solar radiation and yields of 
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forage fraction of K8 and K341 exceeded r = 0.90 (Figure 9). The 

correlation values between night temperatures and yields of forage 

fraction were lower with r = 0.68 (K8) and r = 0.81 (K341). This 

information seemed to show that yield of forage fraction is more 

closely related to solar radiation levels than to night temperatures. 

However, night temperature was reasonably well correlated with K341 

forage fraction yields (r = 0.81). 

Solar radiation and night temperature values appeared to have 

insignificant influences on the percentage of forage fractiono Levels 

of solar radiation and temperature also appeared to have no consistent 

effect on the percentage of nitrogen in the forage fraction (Figure 10). 

Nitrogen yields thus primarily reflected the DM yields shown in 

Figure 8. 

Comparative performance of leucaena and alfalfa. Dry matter yield of 

alfalfa (Mesa-Sirsa and Hayden varieties) at the nearby experimental 

plots in Kohala averaged 83 kg/ha/day during the months of favorable 

weather (high solar radiation and temperature) and 68 kg/ha/day on the 

year round basis. During these periods, alfalfa was harvested every 

28 days. 3 These yields of alfalfa were comparable to the yields 

obtained from the other Islands in the State of Hawaii (Goodell and 

Plucknett, 1972). In comparison, the average yield of forage fraction 

of leucaena was 28 38 kg/ha/day for K341 and 19 - 32 kg/ha/day for 

K8 on the year round cropping basis. 

It should be noted that leucaena was harvested from 2 to 4 months 

interval while alfalfa was harvested every month. Alfalfa had to be 

3Personal communication from Dr. John R. Thompson, University of 
Hawaii, College of Tropical Agriculture, April 7, 1976. 
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cut before the basal growth buds became too tall to avoid damage 

during the cutting operation. The necessity of cutting alfalfa 

frequently and at a critical growth period each time added to 

increased costs and lack of flex ibility in alfalfa management. 

Although, the absence of early basal growth in leucaena prior to 

cutting resulted in its slower growth recovery, it allowed less 

frequent and more flexible harvesting. 

Present and previous results of experiments on leucaena. Results 

presented in this paper indicated that K341, a F.awaiian type, yielded 

higher than KS, a Salvador type. However, earlier studies showed 

that the Salvador types yielded higher than the Hawaiian types. 

Apparently, KS in this study did not reach its yield potential since 

yields were significantly lower than in the earlier studies under 

different management (Oakes and Skov, 1967; Brewbaker, Plucknett and 

Gonzalez, 1972). However, the yield of K341 in this study was 

higher than the yields of the Hawaiian types in studies by Hutton 

and Bonner (1960), and Oakes and Skov (1967). The yield of K341 

was comparable to that of K63 in the study of Brewbaker, Plucknett 

and Gonzalez (1972). 

The difference in yield findings may have been influenced by 

the management factors done in this study. Therefore, explicit 

yield comparison of the leucaena cultivars should include the 

definition of the agronomic practices used, Some of the following 

agronomic management practices, when applied in various combinations 

to the Salvador and Hawaiian types will result in varied yield 

responses: (1) planting density, (2) row arrangement of the varietal 
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types, (3) intensity of cutting, (4) weed control, · (5) irrigation, 

and (6) fertilization. In addition, climatic factors affect the 

response of the varietal types to the management employed. Strains 

within varietal types differ also in yield response (Brewbaker, 

Plucknett and Gonzalez, 1972), 

In this study, the seeds of the Hawaiian type (K'.341) used were 

collected from the Parker Ranch at North Kabala, Hawaii. K.341 may 

have been selected under grazing pressure on deep soils, Whereas, 

the Hawaiian type_ (K63) used by Brewbaker, Plucknett and Gonzalez 

(1972) were selected from dry hillsides where selection pressure 

would have been survival under droughty conditions. 

Sunnnary and Conclusions 

The growth behavior, yield and other agronomic characters of 

K.341 and K8 varieties of leucaena were studied under three plant 

spacings (15, 30, and 45 cm) and three heights of plant at cutting 

(55, 105, and 155 cm). 

The plant crops of both leucaena varieties showed three phases 

of growth: (1) the seedling establishment phase, (2) the lag 

vegetative phase, and (3) the active vegetative phase for K8 or 

active-vegetative-reproductive phase for K.341. The ratoon crops 

followed the same growth phases except that the seedling establishment 

phase was absent. The seedling establishment and the lag vegetative 

phases of growth were critical periods for weed control. The early 

flowering habits of K.341 particularly at wider spacings, coupled 

with more lateral branching apparently contributed to its slower 

rate of increase in height compared to the apically dominant K8. As 
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a result of this, K341 was harvested about 10 days · later than K8. 

K8 intercepted sunlight more rapidly than K341 as both approached 

the cutting stages. By the time leucaena reached 55 cm height, light 

interception was approximately 95% in both cultivars, with very 

little increase thereafter. The amount of sunlight intercepted under 

various plant spacings were similar. The average light interception 

increased with increased plant height at cutting. At harvest, the 

light interception for the two varieties was about the same at 96 

percent. 

The rate of increase in the amount of sunlight intercepted at 

the vegetative growth stage is related to the rate of production of 

the photosynthetic surface area (lateral and upright growth). In 

addition to the efficient utilization of sunlight, a variety that 

grows rapidly competes with weeds and helps reduce soil evaporation 

and soil erosion more effectively than the slow growing variety. 

Based on average of all treatments, the total dry matter yield 

of K341 (17.8 t/ha/yr) was higher than K8 (15.2 t/ha/yr). These 

yields consisted of 12.0 tons of forage fraction for K341 and 9.9 

tons forage fraction for K8. The rest of the yield was stem fraction. 

The yields under more frequent cutting were lower but contained 

higher percentages of forage fraction than under less frequent 

cutting. As planting density increased, total yields also increased 

. but percent forage fraction decreased. Planting at 15 cm x 50 cm 

spacing (133,000 plants per hectare) and cutting at plant height of 

about 1 m resulted in yields nearly as great as when the plant was 

cut at a later stage, and provided a forage much lower in stem 

fraction. Therefore, dense planting and cutting at approximately 1 m 
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height at harvest were desirable management practices considering 

the forage yield, the percentage forage fraction and the average 

cutting frequency (3-month interval). 

High yields of forage fraction and faster growth rate were 

obtained during the periods of high solar radiation and night 

temperature. Correlation values showed that the yield of forage 

fraction was primarily a function of solar radiation while growth 

rate was more influenced by night temperature. Night temperature 

and solar radiation had no clear cut relationship with the percentage 

.,, of forage fraction or nitrogen and mimosine contents of dry matter' 

yields. 

Overall nitrogen and mimosine percentages were not influenced by 

any of the experimental variables except that stems declined in N 

content as cutting interval increased, Forage fraction consisted of 

4.3 percent nitrogen and 6.7 percent mimosine, while the stem 

contained 1.5 percent nitrogen and 0.92 percent mimosine. Crude 

protein in the forage fraction and stem consisted of about 24% and 

10% mimosine, respectively. Since nitrogen and mimosine contents of 

the forage fraction were not influenced by the climatic factors 

and the experimental variables tested, it seemed that leucaena 

adopted to a wide range of growth conditions without a significant 

change in the nutrient values of the forage. 

Based on the forage fraction, K341 produced nearly 600 kg N/ha/yr 

while K8 produced about 500 kg N/ha/yr, The forage fraction con­

tributed an average of 85 percent of the total nitrogen yield, Nitrogen 

yield increased with height at cutting and decreased with increasing 

width of intra-row spacing. The differences in the N yields among 
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treatments were due to differences in dry matter yields.

f::fif~?~ Variety and height at cutting did not influence the ntnnber of 

stems per hectare, but increased with close plant spacing. Unlike 

tillering grasses, leucaena was not able to compensate for wider 

spacing by producing more stems. Therefore, optimum density at . 

planting was critical in leucaena for maximtnn yield production. 

There was no difference in stem diameter at harvest between 

varieties (8.2 nun). Less frequent cutting and low plant populations 

however, did result in larger stems. 

Forage production of leucaena was aboutl/2- 2/3 that of alfalfa 

grown in small plots at the same location. Also weed control was 

more of a problem with leucaena than alfalfa due to restricted 

competition during the relatively long lag vegetative phase of 

growth. However, this was offset somewhat by the easier agronomic 

management of leucaena because of less frequent harvests, greater 

harvest flexibility, freedom from disease infestations and longevity 

of stand. 
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CHAPTER V. YIELD OF LEUCAENA AND 'ITS . NITROGEN 
CONTRIBUTION TO INTERCROPPED CORN 

Grasses in association with legumes may benefit from the nitrogen 

fixed by the legume through root excretion, sloughing of root nodules, 

and decomposition of legume roots and leaves. The quantity of 

nitrogen fixed by legumes varies widely from only a few kilograms to 

700 kg/ha/yr (Allison, 1965; Date, 1973). The amount of N fixed is 

determined by many factors, such as plant species, density of plant 

stand, weed competition, climatic conditions, effectiveness of the 

bacterial strain, soil pH and nutrient status, and the amount of 

nitrogen available in the soil (Allison, 1965). 

In New Zealand, the amount of nitrogen fixed by red and white 

clovers/rye pasture under very good growth conditions was 600 - 700 

kg N/ha/yr (Melville and Sears, 1953). In Hawaii Desmodium E_EE. and 

Centrosema pubescens grown alone or together with grasses fixed 

47 - 407 kg N/ha/yr depending on legume species and grass combination 

(Whitney, Kanehiro and Sherman, 1967; Whitney and Green, 1969). 

Previous experiments in this series (Chapter IV) showed that K341 

and K8 cultivars of leucaena produced up to 581 and 507 kg N/ha/yr 

respectively in the forage fraction - which would be expected 

to decompose readily in soil. 

It has been suggested in extensive literature reviews (Henzell 

and Norris, 1962; Allison, 1965; Whitehead, 1970) that the average 

N fixation by legumes was about 100 - 200 kg N/ha/yr. 

Although forage legumes have been thoroughly studied as high­

nitrogen animal feeds, very little work has been done on tropical 

forage legumes as sources of nitrogen for food crop production. 
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An experiment was therefore conducted to study the yield and 

nitrogen response of corn to fertilization with leucaena compared to 

fertilization with urea-nitrogen, and to better define the effects of 

various agronomic variables on the yields of corn and leucaena grown 

as intercrops. 

Materials and Methods 

An experiment was conducted from April 26, 1974 to June 5, 1975 

at the Kohala site previously described (Chapter IV). KS variety of 

leucaena was used because of its faster and more upright growth 

habit; and H610 single cross field corn hybrid was used because of 

its uniform growth and outstanding grain yields in Hawaii (Brewbaker 

and Ayres, 1973). 

Leucaena and corn were arranged in superimposed split-split 

plot design in order to acconnnodate the effects of the intercrop 

management systems. Corn was planted between one single row or two 

paired rows of leucaena. Plots were replicated four times (Appendix 

Figure IX). Main plots were the times of cutting leucaena: (1) 

cutting at 1~-2 months old corn, (2) cutting at early flowering 

stage of corn, and (3) cutting at the late dough stage of corn. Sub­

plots consisted of the number of rows of leucaena per row of corn: 

one row or two rows per row of corn. Sub-sub plots were corn hill 

spacings within corn rows: 30, 50, and 70 cm per hill, equivalent to 

33,333; 20,000, and 14,285 plants/ha (field area basis), respectively 

in the single-leucaena-row plots. The corresponding populations of 

corn planted between double rows of leucaena were 22,222; 13,333, 

and 9,523 plants/ha. 
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Sub-plots were 12 m long and consisted of single leucaena rows 

alternating with single corn rows with SO cm spacing between corn 

and leucaena rows or two leucaena rows alternating with one corn row 

(all at 50 cm spacing between rows). Within each sub-plot, sub-sub­

plots were corn rows (and associated leucaena rows) 4 m long, Yields 

of leucaena and corn were based on the middle 3 m of ·row in each 

sub-sub-plot, e.g.: 

Single leucaena 
arrangement 

row Double leucaena 
arrangement 

row 

LCLCLCL LLCLLCLL50cm 

I 
3m 

I 
50 cm 

50cm L = Leucaena 

C =Corn 

Area harvested 

Plots of unfertilized corn and corn fertilized with urea served 

as checks and positive controls and were randomly located in each 

replication. Main plots were fertilizer treatments (O, 75, and 150 

kg N/ha) and sub-plots were corn hill spacings (30, 50, and 70 cm). 

Each main plot consisted of 3 rows, 12 m long and 1 m apart. Planting 
.-_-.... 

and harvesting of corn and cutting of leucaena were staggered by 

replication to distribute the labor requirement of the experiments. 

Leucaena was planted on April 26, 1974 well before planting the 

intercropped corn so as to prevent excessive competition during the 

seedling establishment phase of the leucaena. After three months of 
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growth, the leucaena was harvested, chopped and the forage applied 

to the area of the adjoining corn row. Fertilizer was applied to 

provide (in kg/ha) P-60, K-100, B-10, Mn-20, Cu-10, and the area was 

limes with Caco3 at 2000 kg/ha. The leucaena forage and fertilizer 

were tilled into the soil to 7 cm depth with a rotary tiller (Appendix 

Figure X). Corn was planted at the rate of 2 seeds per hill on the 

same day leucaena was incorporated. One corn plant per hill was 

later sampled at 1~ to 2 months of age for N analysis. Also at 1\ 

to 2 months after planting the corn, the leucaena in one sub-treatment 

was again cut and the forage applied to the base of the corn plants 

in the adjoining row without tillering (Appendix Figures XI and XII). 

A second sub-treatment consisted of leucaena forage cut and applied 

· to adjoining corn plants when the corn plants reached 'the tasseling 

stage, and a third sub-treatment consisted of leucaena cut and 

applied onto the corn row when the corn was at the late dough stage 

(Appendix Figure XIII). 

Urea was applied to the nitrogen-fertilized corn treatments to 

provide one-half the required amount at planting time and the =ernainder 

at 1\ to 2 months after planting. 

Atrazine (on an active basis) was applied at 1.68 kg/ha before 

weeds and corn emerged and before the leucaena growth buds sprouted. 

In addition, paraquat was applied as directed spray at the rate of 1.5 

kg/ha of active chemical. 

The first crop of corn was planted from July 25 to August 6, 1974 

and was harvested from November 12 to December 11, 1974. Six weeks 

after the corn was harvested all of the leucaena treatments were cut 
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and the forage applied to the adjoining corn rows. Corn was again 

planted (December 23, 1974 to January 21, 1975) and a second cycle of 

corn-leucaena intercropping and side-dressing was carried out exactly 

as before. Harvesting of the second crop of corn was done from 

April 29, 1975 to June 2, 1975. One month after harvesting the corn, 

the plot was prepared as explained earlier for the third cycle of 

corn-leucaena intercropping. Corn hills were arranged 10 cm away 

from leucaena rows to allow early root contacts between the two crops. 

Unfortunately, corn growth was very uneven. This may be partly 

attributed to the early growth competition betwen the two crops. In 

addition, shredding of the leaves of corn seedlings was observed 

following windy days due to severe physical contact between the corn 

leaves and leucaena stems. Data from the third planting of corn were 

thus not included in this paper. 

Results and Discussion 

The leucaena intercropped with corn made excellent growth; 

comparable to that obtained in the monocropping experiment (Chapter IV). 

A high level of residual nitrogen from a previous experiment was 

present in the soil as indicated by the vigorous growth of the check 

treatment during the first crop of corn. However this effect was 

minimal during the second corn crop. As mentioned earlier, a third 

corn planting was made, but abandoned due to extreme variability 

associated with a different planting arrangement. 

Growth of corn: cutting sequence and yield of leucaena. Figure 11 shows 

dry matter yield and cutting sequence of leucaena in relation to the 
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growth stages of intercropped corn. The growth period of corn was 

shorter in the July planting (110 days) than the December planting 

(130 days). The seedling stage of corn was about 20 days longer in the 

second corn crop than in the first corn crop. The length of the growth 

periods following the seedling stage seemed to be similar in the two 

crops. The difference in the growth period between the first and 

second crop of corn was mainly due to the seedling stage. 

Duration of regrowth and sequence of cutting leucaena followed 

the growth periods of various vegetative and reproductive stages of 

corn. In the first crop of corn, the second cutting of leucaena at 

the seedling, tasseling and late dough stages of corn were done at 

40, 61 and 92 days following the first cut (time of planting corn). 

The corresponding regrowth periods of leucaena during the second corn 

crop at various stages of corn was about 20 days longer than cut-1 to 

cut-2. 

There was no significant difference between the amount of forage 

topdressed to the first and second corn crops at comparable stages of 

growth (e.g. 0.79 and 0.74 t/ha for cut-2 and cut-4 at the seedling 

stage of corn). 

The rate of growth of corn and leucaena in the intercrop was slow 

during the season of low temperature and solar radiation just as it was 

when leucaena was grown as a monocrop (Chapter IV) . 

Dry matter production of leucaena with intercropped corn. The first 

crop of corn was fertilized by applying forage from the 1st and 2nd 

leucaena cuttings and the second crop of corn received the leucaena 

forage from the 3rd and 4th cuttings (Table 7). The amount of leucaena 
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Table 7. Dry matter yields of leucaena harvested and applied to corn 
in relation to rows of leucaena per row of corn and stage 

of cutting leucaena. Avg of four replications. 

Leucaena DM applied to corn 
Leucaena First corn cro! Second corn crop 
treatments cut-lT cut-2 cut-3-f cut-4f 

t/ha 

Cut at seedling stage of corn 
Single row of leucaena 1. 93 0.79 1. 72 0.74 
Double row of leucaena 2.10 1.21 3.19 1.09 

Cut at tasseling stage 
Single row 2.23 1.46 1.28 1.54 
Double row 2.24 2 .12 2.43 2.38 

Cut at late dough stage~... 
Single row 1. 93 3.54 0.55 3.43 
Double row 2.35 5.14 0.69 4.37 

*Leucaena from 2nd cut or 4th cut applied at late dough stage of corn 
did not benefit the concurrent corn crop 

trncorporated into corn row at planting 

+Topdressed over corn row 
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forage produced and added to the corn increased with delayed cutting, 

with the double rows of leucaena and, to a limited extent, with 

decreased corn plant density. 

The total dry matter (DM) production of the 1st cut of leucaena 

(plant crop) averaged 2.03 and 2.23 t/ha at single and double rows of 

leucaena, respectively. These yields were equivalent to an average 

total dry matter production of 23 kg/ha/day. The total DM production 

from subsequent cuttings varied mainly with the growth period of 

leucaena. For example, leucaena cut at the late dough stage of the 

corn crop (92 days) yielded 4 times as much as leucaena cut at the 1.5-

month stage (40 days). When the leucaena was cut at the 1.5-month 

stage or at the tasseling stage, the subsequent regrowth of leucaena 

was retarded partly due to increased competition by the corn. Shading 

of young leucaena regrowth may have resulted in lower rates of photo­

synthesis, depletion of reserve substrate from the roots and basal 

stems, and reduced N fixation by the root nodules. 

The total DM yields per unit field area of leucaena regrowth were 

about 50 percent higher in the double rows than in the single row 

planting of leucaena. Generally, DM yields of leucaena increased as 

the corn plant densities decreased. However, the magnitude of the 

corn density effect on the yield of leucaena was small compared to the 

effects of ntllilber of rows of leucaena and leucaena regrowth period. 

Nitrogen content and nitrogen production of leucaena. Percent N of 

the total leucaena DM (stem plus forage fraction) decreased with delayed 

harvest (Table 8). Decreased percent N was mainly the result of an 

increase in the proportion of the stem fraction over the forage fraction 
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Table 8. Percent nitrogen of leucaena dry matter applied to 
corn as influenced by rows of leucaena per row of corn 

and stage of cutting leucaena. 

Percent nitrogen of leucaena 
Leucaena First corn crop Second corn crop 

:' ·t' treatments cut-1 cut-2 cut-3 cut-4 

% 

Cut at seedling stage of corn 
Single row of leucaena 
Double row of leucaena 

3.49 
3.40 

4.05 
3.97 

3.68 
3.07 

4.37 
4.48 

Cut at tasseling stage 
Single row 
Double row 

3.41 
3.39 

4.09 
3.87 

3.68 
3.38 

3.93 
4.18 

Cut at late dough stage 
Single row 
Double row 

3.40 
3.45 

2.92 
2.80 

4.06 
4.09 

4.29 
4.33 
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(Chapter IV). Forage harvested early contained up to 4.48 percent N . 

(DM basis) while the later harvests contained as little as 2.80 percent 

nitrogen, Corn spacing and number of rows of leucaena did not 

;Significantly influence percentage Nin the forage. 

The amount of nitrogen in the leucaena forage applied to the first 

and second crops of corn varied from 92 to 261 kg/ha and from 82 to 

247 kg/ha, respectively (Tables 10 and 14). However, the leucaena 

forage applied to the corn at the late dough stage would not be effec­

tive for that crop. Excluding this, the leucaena N applied to the 

first corn crop varied from 55 - 170 kg/ha and 63 - 183 kg/ha for the 

second corn crop. The larger amounts of nitrogen were associated with 

leucaena cut at the later stages. Double rows produced significantly 

higher amounts of N than single rows, The differences in N yields 

primarily reflected differences in the amount of DM produced rather 

than in the percent Nin the dry matter, 

First Corn Crop 

Corn yields: grain and stover, Grain yield was computed on the field 

area, the corn area, and per plant bases, Yield on a field area was 

based on corn planted on rows 1 or 1\-meter apart intercropped between 

single or double rows of leucaena, The yield of corn on a corn area 

basis excluded the land area occupied by leucaena. Yields on the corn 

area and per plant bases were computed to compare more accurately the 

effects of various levels of leucaena forage application on the yields 

of corn (e.g. single Y.2. double rows of leucaena). 

There was no response in yield of corn grain and stover from the 

application of either urea or leucaena forage (Tables 9, 10 and 11). 
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Table 9. The effects of urea-N and plant spacings on the grain 
and stover yields of corn (H610). First crop of corn, 

.,_ 
Nitrogen Corn Dry matter yieldA 

levels spacing Grain Stover 

kg/ha cm t/ha 

0 30 4.17 3. 72 
50 3.58 3.11 
70 2.60 2.28 

75 30 5.28 4.65 
50 4.56 3.67 
70 2.98 2.10 

150 30 4.61 4.01 
50 4.22 3.04 
70 2.83 2.46 

N-fertilizer effectst 

Nitrogen levels 
0 3.45 a 3.03 a 

75 4.27 a 3.47 a 
150 3.88 a 3.17 a 

Spacing effectst 

Plant spacing 
30 4.69 a 4.13 a 
50 4.12 b 3.27 b 
70 2.80 C 2,28 C 

*Grain yields avg of four replications; stover yields avg of two 
replications. 

tMeans in the same column followed by the same letter are not 
significantly different at 5% level (Bayes LSD). 



Table 10, The effects of intercropped leucaena on the grain and stover 
yields of corn (H610) planted at three spacings, First crop of corn, 

Leucaena Corn Leucaena-N Field area basis 
Dry matter yield 

Corn area Easis Per :eiant 
treatments spacing applied t Grain Stover Grain Grain 

cm kg/ha t/ha g/plant 

Applied planting time and seedling stage 

1 row 30 92 4.44 3.64 8.88 133 
50 100 3.64 3. 18 7.28 182 
70 112 2.38 2.50 4.76 178 
Mean 101 3.48 3.11 6.97 164 

2 rows 30 116 3.11 2.99 9.33 140 
50 116 2.29 2.15 6.87 172 
70 122 1. 75 1. 82 5.25 197 
Mean 118 2.38 2.32 7. 15 170 

AQplied planting time and tasseling stage 

1 row 30 123 4.39 4.50 8.78 132 
50 146 3.76 3.67 7.52 188 
70 135 2.52 2.17 5.04 189 
Mean 135 3.56 3.45 7011 170 

2 rows 30 170 2.80 2.62 8.40 127 
50 147 2.63 2.25 7, 89 198 
70 151 1. 53 1. 58 4.59 172 
Mean 156 2.32 2 .15 6.96 166 

C1\ 
-..J 



Table 10. (Continued) The effects of intercropped leucaena on the grain and stover 
yields of corn (H610) planted at three spacings. First crop of corn. 

Dry matter yield 
Leucaena Corn Leucaena-N Field area basis Corn area basis Per plant 
treatments spacing appliedt Grain Stover Grain Grain 

cm kg/ha t/ha g/plant 

Applied planting time (and late dough stage) 

1 row 30 76 3.98 3.02 7. 96 120 
50 55 2.33 2. 8/+ 4.66 117 
70 73 2.35 2.21 4.70 176 
Mean 68 2.89 2.69 5. 77 138 

2 rows 30 74 2. 77 2.38 8,31 125 
50 77 2.11 1.97 6.33 158 
70 96 1. 51 1.38 4.53 170 
Mean 82 2.13 1. 91 6.39 170 

tN contained in leucaena incorporated at planting ti.me (cut-1) plus leucaena topdressed 
at the seedling or tasseling stage (cut-2). Leucaena topdressed at late dough stage is 
excluded (no contribution to concurrent corn). 

"' 00 
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Table 11. Analysis of treatment effects (time of cutting, 
number of rows of leucaena, and corn spacing) on the grain 

and stover yields of corn (H610). First crop of corn. 

Dry matter yield-field area basist
Treatments 

Grain Stover 

Main effects 
Time of cutting leucaena 

Seedling stage 
Tasseling stage 
Late dough stage 

Leucaena rows 
Single row 
Double row 

Corn spacing 
30 cm 
50 cm 
70 cm 

Within leucaena cutting treatments 
Seedling stage · 
30 cm 
50 cm 
70 cm 

Tasseling stage 
30 cm 
SO cm 
70 cm 

Late dough stage 
30 cm 
50 cm 
70 cm 

Within leucaena row treatments 
Single row 
30 cm 
50 cm 
70 cm 

Double row 
30 cm 
SO cm 
70 cm 

2.93 a 
2.94 a 
2.51 a 

3.20 a 
2.28 b 

3.47 a 
2.79 b 
2.01 C 

3.42 a 
2. 96 a 
2.06 a 

3.60 a 
3.20 a 
2.02 a 

3.38 a 
2.22 a 
1.93 a 

4.04 a 
3.24 a 
2.41 a 

2.89 a 
2.34 a 
1.60 a 

2. 71 a 
2.80 a 
2.30 a 

3.08 a 
2.13 b 

3.19 a 
2.68 a 
1.94 b 

3.31 a 
2.67 b 
2.16 C 

3.S6 a 
2. 96 b 
1.88 C 

2.70 a 
2.41 b 
1.80 C 

3. 72 a 
3.23 b 
2.30 C 

2.66 a 
2.12 b 
l.S9 C 

tMeans in the same column pair or triplet followed by the same letter 
are not significantly different at the S% level (Bayes LSD). 
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It seemed that there was a sufficient amount of residual N from a 

previous sorghtnn experiment to mask the effects of the various N 

treatments. In addition, the short history of leucaena cropping did not 

permit the application of large quantities of leucaena forage. There 

was a significant effect of corn spacing on corn yields with close 

spacing resulting in higher yields. The average grain yields of corn 

over all urea-N-levels were 4.69, 4.12, and 2.80 t/ha for 30, SO, and 

70 cm spacing, respectively. A similar trend was observed on the 

yields of corn stover. 

The grain yields of corn intercropped with single row of leucaena 

per corn row cut at seedling (3.48 t/ha) or tasseling (3.56 t/ha) 

stage were comparable to the grain yields of the check plots (3.45 t/ha). 

The yield of corn under double rows of leucaena per corn row and under 

late cutting of leucaena was lower than the check. This can be 

attributed to the effects of computing the yield on a field area basis. 

When yields of corn grain intercropped with two rows of leucaena was 

computed on a corn-area and per plant bases however, they were nearly 

identical to the corn intercropped with single row of leucaena (Table 

10). The lack of corn yield depression (on a corn-area basis) even by 

double rows of intercropped leucaena indicated that the competition 

between the two crops was minimal under conditions of adequate nitrogen. 

Nitrogen analyses of the corn plant. Fertilization of the first crop 

of corn with urea did not result in higher levels of Nin the leaf 

or whole plant samples at the late dough stage (green forage chop) 

(Table 12). This was undoubtedly due to the large amounts of residual 

fertilizer N available to the plants. Corn intercropped with leucaena 
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Table 12. The effects of urea-N and plant spacings on the 
percentage nitrogen of leaf samples at tasseling and whole 

plants at the late dough stage. First crop of corn. 

Nitrogen Corn Percent nitrogen 
levels spacing Leaf samples''' Whole plants o':k 

kg/ha cm % 

' . 
0 30 

50 
70 

2.43 
2.88 
2.89 

1.44 
1.42 
1.47 

75 30 
50 
70 

2.88 
3.17 
3.16 

1.49 
1.36 
1.52 

150 30 
50 
70 

2.88 
3.06 
3.14 

1.49 
1.49 
1.52 

N-fertilizer effectst 

Nitrogen levels 
0 

75 
150 

2.73 
3.07 
3.03 

a 
a 
a 

1.44 a 
1.46 a 
1.50 a 

Spacing effectst 
Plant spacing 

30 2.73 b 1.47 a 
50 3.03 a 1.42 a 
70 3.06 a 1.50 a 

*Avg of four replications 

**Avg of two replications 

tMeans in the same column followed by the same letter are not 
significantly different at the 5% level (Bayes LSD). 
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had lower average levels of Nin the leaves (2.48%) and green forage 

(1.32%) th.an corn in the check plot (2.73% of leaf N and 1.44% forage 

N). The ear leaf samples of corn in leucaena were all in the range of 

2.3 - 2.7% N with no difference due to treatment. This was slightly 

lower than the critical N level (2.7 to 2.9%) for corn ear leaf at 

tasseling that will result in 95% yield (Viets, et al., 1954; Dumenil, 

1961; Daiger and Fox, 1971). However, the leaf N values were all 

higher th.an 2.28% defined by Viets, et al. (1954) as the critical Nin 

the second leaf below the main ear before visual symptoms of N deficiency 

were observed. Percent Nin whole plants at late dough stage also was 

not influenced by leucaena treatments and ranged from 1.2 to 1.5% 

nitrogen. 

In the check and leucaena-N fertilized plots, close plant spacing 

resulted in lower percent Nin the leaves but did not affect Nin the 

green forage. Removal of corn samples for forage analysis from the 

margins of the yield plots may have minimized any effect of corn 

spacing on the percentage of Nin the green forage. 

Second Crop of Corn 

Corn yields: seedling, grain and stover. In the second crop of corn, 

there was a significant response to N fertilization. Yield response 

of seedlings and grain to N fertilization were greater than the stover 

response. Yields of seedlings and grain from plots fertilized with 

150 kg N were 2.5 and 2.1 times the yield of the controls, respectively, 

while the stover yields increased to only 1.6 times the yields of the 

control (Table 13). Apparently, photosynthates and reserve carbohydrates 

in the stover were translocated into the grain at the later stage of 
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Table 13. The effects of urea-N and plant spacings on the 
grain, stover and seedling yields of corn (H610). 

Second crop of corn . 

Nitrogen Corn 
levels spacing 

kg/ha cm 

0 30 
50 
70 

75 30 
50 
70 

150 30 
50 
70 

N-fertilizer effects t 

Nitrogen levels 
0 

75 
150 

Spacing effectst 

Plant spacing 
30 
50 
70 

..,.. 
Seedling" 

g/plant 

1.58 
1.48 
1.86 

3.62 
3.44 
3.12 

4.12 
4.20 
4.16 

1.64 C 

3.40 b 
4.16 a 

3.10 a 
3.04 a 
3.04 a 

Dry matter yield 
Grain;\· 

t/ha 

2. 12 
2.12 
1.54 

5.35 
3.66 
2.40 

5. 72 
3.67 
2.90 

1. 93 b 
3.80 a 
4.09 a 

4.39 a 
3.15 b 
2.28 C 

Stover;,;t-

2.26 
1. 95 
1.59 

3.46 
2.55 
2.09 

4.26 
2.61 
2.50 

1.94 C 

2.70 b 
3.12 a 

3.33 a 
2.37 b 
2.06 b 

*Avg of four replications 

**Avg of 1· ·two rep 1.cat1.ons 

tMeans in the same column within treatments followed by the same 
letter are not significantly different at the 5% level (Bayes LSD). 
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plant growth. At the seedling stage, yields per plant were not 

significantly different under various spacings. Grain yield per 

hectare was significantly higher at closer plant spacing, but yield 

per plant was higher at wider spacing. Similarly, stover yield per 

hectare increased with closer plant spacing. 

Yields of corn seedlings, grain and stover in the second corn­

leucaena intercrop were generally higher than in the check (Tables 

13, 14, and 15). The yield of corn seedlings ranged from 2.70 - 4.36 

g/plant, compared to 1.48 - 1.86 g/plant in the check treatment. Corn 

seedlings thus benefited from the nitrogen supplied by leucaena forage 

applied earlier. Seedlings from plots supplied with urea ranged from 

3.12 g/plant (at 40 kg N/ha, basal) to 4.20 g/plant (at 75 kg N/ha 

basal). 

The grain yields of corn intercropped with leucaena averaged 2.39 

t/ha - 23 percent higher than the check. Grain yields were higher 

when leucaena was cut at the early stage of corn. The average yield 

of corn was 2.58, 2.45 and 2.15 t/ha when leucaena was cut at seedling 

stage, tasseling stage and late dough stage, respectively. The amounts 

of leucaena-N produced and applied to corn were higher for leucaena 

cut at the late dough stage, but, leucaena forage N applied at this 

stage was too late for the corn to utilize effectively. In addition, 

competition between leucaena and corn for light and perhaps other 

factors, seemed to limit the response of corn to added leucaena-N. 

It should be noted that there was a significant interaction between 

the time of cutting leucaena and corn spacing (Table 15). At the 

optimum corn spacing (30 cm) corn yields were significantly higher when 



Table 14. The effects of intercropped leucaena on the grain, stover and seedling 
yields of corn (H610) planted at three spacings. Second crop of corn. 

Dry matter yield 
Leucaena Corn LeucaenatN Field area basis Corn area basis Per Qlant 
treatments spacing applied Seedling')'( Grain~'( Stover'l'(* Grain Grain 

cm kg/ha 

Applied planting time and 

1 row 30 
50 
70 
Mean 

2 rows 30 
50 
70 
Mean . 

Applied planting time and 

1 row 30 
50 
70 
Mean 

2 rows 30 
50 
70 
Mean 

seedling stage 

100 2.70 
82 2.68 

105 3.18 
95 2.86 

140 3.58 
146 3.96 
150 4.28 
ll+6 3.94 

tasseling stage 

99 2. 72 
110 3.82 
111 L~, 12 
107 3.55 

174 4.04 
183 3.50 
180 4.36 
179 3.96 

g/plant 

3.74 
2.84 
2.33 
2.97 

3.13 
1. 98 
1.49 
2.20 

3.30 
2.07 
1.66 
2.34 

2.51 
1. 78 
1.45 
1. 91 

7.48 
5.68 
4.66 
6.61 

9.40 
5.94 
4.48 
6,61 

112 
142 
175 
143 

141 
149 
168 
153 

3.63 
2.49 
2.08 
2.73 

2.85 
2.19 
1.45 
2.16 

2.97 
2.04 
1. 93 
2.32 

2.84 
1. 90 
1. 30 
2.02 

7.26 
4.98 
4. 16 
5.47 

8.56 
6.58 
4.36 
6.50 

109 
124 
156 
130 

128 
164 
164 
152 

"'-J 
V, 



Table 14. (Continued) The effects of intercropped leucaena on the grain, stover and 
seedling yields of corn (H610) planted at three spacings. Second crop of corn. 

Dry matter yield 
Leucaena Corn Leucaena-N Field area basis Corn area basis Per plant 
treatments spacing applied-I" Seedling~'( Grain~'( Stover~'d( grain grain 

cm 

Applied planting time 

1 row 30 
50 
70 
Mean 

2 rows 30 
50 
70 
Mean 

kg/ha 

(and late dough stage)+ 

63 3.14 
81 3.52 
80 3.06 
75 3.24 

95 3.34 
90 4.20 

116 3.84 
100 3.79 

g/plant 

2.97 
2.12 
2.03 
2.37 

2.23 
2.01 
1. 66 
1. 97 

5.94 
4.24 
4.06 
4.75 

88 
106 
153 
116 

2.44 
1. 89 
1.48 
1. 94 

1. 75 
1. 56 
1.08 
1.46 

7.32 
5,68 
4.44 
5.81 

110 
142 
167 
140 

*Avg of four replications 

**Avg oftwo repl'1.cat·1.ons 

tN contained in leucaena incorporated at planting time (cut-3) plus leucaena topdressed at 
se.edling or tasseling stage (cut-4), Leucaena applied at late dough stage is excluded 
(no contribution to concurrent corn), 

*Leucaena-N computed based on ~ of cut-2 plus cut-3 
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Table 15. Dry matter yields of seedlings, grain and stover from 
second corn crop as influenced by leucaena cutting treatment, 

number of rows of leucaena and corn spacing. 

Dry matter yield-field area basis+
Treatments Seedlings°'! Grain'

0 

Stover-1"'<' 

Main effects 

Time of cutting leucaena 
Seedling stage 
Tasseling stage 
Late dough stage 

Leucaena rows 
"'' Single row 

Double row 

Corn spacing (cm) 
30 
50 
70 

Within leucaena cutting treatment 

Seedling stage 
30 cm 
50 cm 
70 cm 

Tasseling stage 
30 cm 
50 cm 
70 cm 

Late dough stage 
30 cm 
50 cm 
70 cm 

g/plant 

3.40 a 
3.76 a 
3.54 a 

3.22 b 
3.92 a 

3.26 b 
3.62 a 
3. 84 a 

3.14 a 
3.32 a 
3.74 a 

3.38 a 
3.66 a 
4.24 a 

3.24 a 
3.86 a 
3.52 a 

t/ha 

2.58 a 2.13 a 
2.45 a 2.17 a 
2.15 a 1. 71 a 

2.69 a 2. 21 a 
2.10 b 1.80 a 

3.12 a 2.60 a 
2.25 b 1. 89 b 
1.81 C 1.52 C 

3.43 a 2.90 a 
2.41 b 1.93 a 
1.91 C 1.56 a 

3.24 a 2,91 a 
2.34 b 1. 97 a 
1. 77 C 1.62 a 

2.70 a 1.99 a 
2.00 b 1. 78 a 
1. 76 b 1.37 a 

*Avg of four replications 

**Avg of 1· ·two rep 1cat1ons 

tMeans in the same colt.mm within treatments followed by the same 
letter are not significantly different at 5% level (Bayes LSD). 
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leucaena was cut at the seedling stage (3.43 t/ha) than when leucaena 

was cut at the late dough stage (2.70 t/ha). At the wider corn 

spacings, however, time of cutting leucaena had little influence on 

corn yield. 

As in the previous crop, the average yield of corn per unit of 

field area intercropped with one row of leucaena was higher than with 

two rows of leucaena per row of corn. However, on a linear row or 

per plant basis, corn intercropped with two rows of leucaena yielded 

12 percent more than corn intercropped with a single row of leucaena, 

Closer corn spacing also gave higher yield than did wider spacing on 

a field area or corn area basis. However, wider plant spacings resulted 

to higher grain yield per plant. 

The yield of corn stover in corn intercropped with leucaena 

followed the same trend as the grain yield under the same crop manage­

ment, except that there was no significant effect of the nl.llilber of 

rows of leucaena on the yield of stover. Also, the effects of time 

of cutting leucaena on the stover yield was independent of corn spacing 

effects. However the tests of significance for stover yields were not 

very sensitive because of the limited ntnnber of replications. 

Nitrogen analysis of corn plants, Nitrogen content of the seedlings 

and leaf samples increased significantly with increased urea-N 

application (Table 16). The significant effects of urea-N and spacing 

treatments on the nitrogen contents of the whole plant samples were 

not detected because of the limited number of replications, and samples 

were obtained from the border plants. Nevertheless, the increase in 

their N content followed the same trend as in the seedlings and leaf 
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Table 16. The effects of urea-N and plant spacing on the percentage 
nitrogen of seedlings, leaf samples at tasseling, and whole 

plants at the late dough stage. Second crop of corn. 

Nitrogen 
levels 

Corn 
spacing 

kg/ha cm 

0 30 
50 
70 

75 30 
so 
70 

150 30 
50 
70 

N-fertilizer effects t 

Nitrogen levels 
0 

75 
150 

Spacing effectst 
Plant spacing 
30 
so 
70 

Percent nitrogen...,_
Seedlings% Leaf samples" Whole plants ~·..J~ 

% 

3.04 
3.37 
3.19 

3.76 
3. 72 
3.74 

3.93 
4.05 
4.04 

3.20 b 
3.74 a 
4.01 a 

3.57 a 
3. 71 a 
3.65 a 

2.01 
2.28 
2.39 

3.04 
3.32 
3.36 

3.16 
3.44 
3.66 

2.23 b 
3.24 a 
3.42 a 

2.73 b 
3.01 a 
3.13 a 

1.50 
1.59 
1.62 

1. 72 
1. 96 
1.93 

1. 71 
1.85 
1.88 

1.57 a 
1.87 a 
1.81 a 

1.64 a 
1.80 a 
1.81 a 

*Avg of four replications 

**Avg of 1· ·two rep 1.cat1.ons 

tMeans in the same column within treatments followed by the 
same letter are not significantly different at 5% level 
(Bayes LSD). 
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samples. At the seedling stage, when N supply in the soil was not 

limiting, planting density had limited influence on the N content of 

the seedlings. The nitrogen content of the seedlings at 30 cm spacing 

differed from that at 70 cm spacing by only 0.08 percent. However, 

with increased plant growth and increased N uptake, planting density 

seemed to have a greater influence on the N level in the plant tissues 

(e.g. 30 cm spacing, 2.73% N; 70 cm spacing, 3.13% Non the leaf 

samples). 

In the leucaena-N plots (Table 17 and 18), plant spacing affected 

significantly the N content of the seedlings, leaf and whole plant 

samples. Nitrogen content of the plant tissues increased significantly 

with decreased plant density. Corn seedlings contained 3.45 percent N 

in single leucaena row and 3.77 percent Nin double leucaena row. The 

amount of leucaena-N added to corn at planting averaged 55 kg N/ha 

from single row and 88 kg N/ha from double leucaena rows (excluding 

the amount applied in the late dough stage treatment plot). The total 

amount of leucaena-N added to the corn plot averaged 100 kg N/ha and 

162 kg N/ha for the single and double rows of leucaena, respectively. 

A higher level of leucaena-N application in corn intercropped with 

double rows of leucaenea was indicated by the higher percentage of N 

in the leaf (2.89% N) and plant samples (1.69%) compared to the same 

type of plant samples (2.53% N and 1.57% N) of corn intercropped with 

single row of leucaena. 

In plots where topdressed leucaena was cut at the late dough stage 

of corn, the amount of leucaena-N applied to corn at planting averaged 

25 kg N/ha. Corn seedlings under this treatment contained a higher 
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Table 17. The effects of intercropped leucaena on the percentage 
nitrogen of corn seedlings, leaf samples at tasseling, 

and whole plant at the late dough stage planted at 
three spacings. Second crop of corn. 

Leucaena Corn Percent nitrogen 
treatment spacing Seedlings* Leaf samples* Whole plant** 

cm ---------%------------
Cut at seedling stage of 

1 row 30 
so 
70 
Mean 

2 rows 30 
so 
70 
Mean 

Cut at tasseling stage 

1 row 30 
so 
70 
Mean 

2 rows 30 
so 
70 
Mean 

Cut at late dough stage 

1 row 30 
so 
70 
Mean 

2 rows 30 
so 
70 
Mean 

corn 

3.30 2.37 1. 67 
3.58 2.68 1.42 
3.59 2.91 1. 72 
3.49 2.65 1.60 

3.64 2.75 1. 76 
3. 72 3.22 1.68 
3.96 3.44 1. 79 
3. 77 3.14 1. 74 

3.49 2.13 1. 70 
3.40 2.22 1.58 
3.79 2.61 1.66 
3.56 2.32 1.65 

3.90 2.50 1.64 
4.02 2. 72 1.89 
3.94 3.00 1. 80 
3.95 2.74 1. 78 

3.16 1.96 1.47 
3.43 2.39 1.45 
3.36 2.54 1.48 
3.32 2.63 1.47 

3.52 2.27 1.38 
3.53 2.66 1.56 
3. 72 2.84 1. 76 
3.59 2.59 1.57 

*Avg of four replications 

**Avg of two replications 
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Table 18. Analysis of treatment effects (time of cutting and number 
of rows of leucaena and corn spacing) on the percentage nitrogen 

of corn (H610). Second crop of corn. 

Percent nitrogenf 
Seedlings* Leaf samples7

~ Whole plant'"''"' Ireatments 

---------- %-----------

Main effects 

Time of cutting leucaena 
Seedling stage 3.63 a 2.89 a 1.67 a 
Tasseling stage 3.75 a 2.53 b 1. 71 a 
Late dough stage 3.45 b 2.61 b 1.52 a 

Leucaena rows 
Singe row 3.45 a 2.53 b 1.57 a 
Double row 3. 77 a 2.82 a 1.69 a 

Corn spacing (cm) 
30 3.50 b 2.33 C 1.60 b 
50 3.61 ab 2.64 b 1.59 b 
70 3. 72 a 2.89 a 1. 70 a 

*Avg of four replications 

** Avg of two replications 

tMeans in the same column within treatments followed by the same 
letter are not significantly different at the 5% level (Bayes LSD). 

·'·, 
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percentage nitrogen (3.45%) compared to control (3.20% N). The nitrogen 

contents of the leaf samples (2.61%) and plant sample (1.52%) where 

leucaena was cut at the late dough stage were lower than the same 

plant samples (2.89% N and 1.67% N) of corn plants where leucaena was 

cut at seedling stage. Cutting leucaena and topdressing at the late 

,dough stage of corn apparently was too late for the corn plant to 

effectively use the nitrogen released by leucaena. 

It should be noted that percentage nitrogen in corn decreased with 

the age of the corn tissues sampled. The overall percentage N of the 

seedlings, leaves (tasseling stage) and whole plant samples (late dough 

stage) were 3.61, 2.67, and 1.63 percent, respectively. 

Nitrogen nutrition of intercropped corn in relation to urea-fertilized 

~· When the percentage of nitrogen in sampled corn seedlings, leaves 

and whole plants from the corn-leucaena intercrop were plotted against 

the nitrogen response curves of the same tissues sampled from the 

urea-N treatments, the equivalent amounts of fertilizer N required to 

equal the leucaena contribution could be estimated (Figure 12). The 

average values of spacing effects under various levels of N were used 

because their contribution to the N content of the samples were less 

than the effects of urea-N treatment. 

The level of N nutrition in corn seedlings, leaf samples and whole 

plants (avg overall spacings) in the corn-leucaena intercrop was 

equivalent to similar corn fertilized with urea at rates of 28 kg N/ha 

(seedlings), 16 kg N/ha (leaves) and 9.0 kg N/ha (whole plants). 

The weight of corn seedlings from the corn-leucaena intercrop 

grown at 30, 50, and 70 cm corn spacings was about 3.3, 3.6, and 3.8 
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g/plant. When plotted against the urea-N response curve of corn 

seedlings (Figure 13), the seedling weights were equivalent to similar 

seedlings fertilized with urea at rates of 32, 48, and 58 kg N/ha for 

seedlings spaced at 30, 50, and 70 cm, respectively. 

Grain yield of corn under three spacings within one or two rows 

of leucaena was plotted against the grain yield response curve of corn 

in similar spacings under various levels of urea-N (Figure 14). In 

terms of grain yield (field area basis), leucaena supplied approximately 

the equivalent of Oto 12 kg N/ha of urea-N; with the exception of 70 cm 

spacing of corn intercropped with one row of leucaena (50 kg N/ha). The 

yields of corn intercropped with two rows of leucaena were lower than 

in one row of leucaena due to lower corn population per unit of field 

area. 

In terms of nitrogen efficiency, urea-Nat 75 kg N/ha resulted in 

corn grain yield of 5.35 t/ha under 30 cm spacing (Table 13) or a yield 

increase of 3.23 t/ha over the control (2.12 t/ha) under similar 

spacing. This is equivalent to the grain yield production of 43.1 

kg/kg N applied. Under similar spacing, corn intercropped with single 

row of leucaena supplied with leucaena forage containing 100 kg N/ha 

yielded 3.74 t/ha of grain or grain yield increased 1.62 t/ha over the 

control. Grain yield production of corn in leucaena was 16. 2 kg/ha/kg 

of leucaena-N. Under this system of management, the efficiency of 

leucaena in supplying nitrogen to corn was about 38 percent of that of 

urea. This result was similar to the results of the experiments of 

Fribourg and Bartholomew (1956) where alfalfa supplied nitrogen to corn 

at the efficiency rate of 35 percent of that of annnonium nitrogen. 
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Figure 14, Grain yield of corn under three spacings within one 
and two rows of leucaena plotted against the grain yield 

response curve of corn under various levels of urea-N. 
Avg of yield of corn in leucaena cut at seedling and 
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The relationship of corn spacing and application of leucaena-N to 

corn grain yield. Step-wise regression analyses were done to determine 

the relationship of grain yield (Y) (corn area basis) with plant spacing 

(S) and amount of leucaena-N applied (N). In the first crop of corn 

the multiple correlation coefficient was highly significant for spacing 

and grain yield at rs= 0.904. The correlation coefficient for 

leucaena-N and grain yield was only 0.174. However, when leucaena-N 

data were added to the spacing data, the coefficient of determination 

increased from 82% to 88%. Although most of the variation in the 

yield of corn could be attributed to spacing, the addition of leucaena-N 

may have had a minor influence also. The regression equation was: 

Y = 5.02 + 0.0064 (N) - 0.0465 (S) 

The simple correlation coefficient for the relationship between 

spacing and grain yield for the second crop was highly significant at 

rs= 0.865. The correlation between leucaena-N and yield was again 

poor with rn = 0.166. The coefficient of determination associated with 

spacing was 75% and when the leucaena-N data were included, coefficient 

of determination increased to 84% for an increase of 9 percentage 

units. The regression equation was: 

Y = 4.32 + 0.0063 (N) - 0.0431 (S) 

Forage production of corn-leucaena intercrop. Table 19 shows the forage 

and crude protein yields in corn-1eucaena intercrop compared with corn 

alone during the second crop of corn and 4th cutting of leucaena. 

Fresh forage yield of corn was estimated from the total dry matter 
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Table 19. Dry matter, fresh forage, and crude protein yields of leucaena and corn 
harvested at the late dough stage. Second crop of corn, cut-4 of leucaena. 

Treatments Corn Fresh weight yield* Dry matter yieldt Crude protein (CP)yield:f: Percent CP of 
spacing Leucaena Corn Total Leucaena Corn Total Leucaena Corn Total dry matter 

cm 

Leucaena 
row 

1 30 7.51 19.30 26.81 3.22 5.20 8.42 0.87 0.47 1.34 15.91 
50 6.53 13.78 20.31 2,86 4.13 6.99 0.76 0.40 1.16 16.59 
70 9.80 13 .20 23.00 4.21 3.69 7.90 1.14 0.37 1.51 19.11 
Mean 7.94 15.42 23.37 3.43 4.34 7.77 0.92 0.41 1.33 17.20 

2 30 10.10 15.86 25. 96 4.33 4.19 8.52 1.17 0.40 1.57 18.45 
50 9.31 12.28 21.59 3.98 3.45 7.43 1.12 0.34 1.46 19.65 
70 11.20 9.62 20.82 4.81 2.56 7.37 1.34 0.28 1.62 21. 98 
Mean 10.20 12. 58 22.79 4.37 3.40 7. 77 1.21 0.34 1. 55 20.02 

N level 
(kg/ha) 

0 30 13. 78 13. 78 4.38 4.38 0.41 0.41 9.36 
50 13. 78 13. 78 4.07 4.07 0,40 0.40 9.82 
70 10.01 10.01 3.13 3.13 0.31 o. 31 9.90 
Mean 12.52 12.52 3.86 3.86 o. 37. 0.37 9.69 

75 30 34. 77 34. 77 8.81 8.81 0.94 0.94 10.66 
50 23.79 23.79 6.21 6.21 0.75 0.75 12.07 
70 15.60 15.60 4.49 4.49 0.54 0.54 12,02 
Mean 24. 72 24. 72 6.50 6.50 0.74 0.74 11.58 

% 

Leucaena: based on 70% moisture; corn: based on 60% moisture, whole plant green forage
calculated as dry grain yield x 6.5. 

tLeucaena: based on DM yield at cut-4, corn: based on total DM yield at maturity. CX> 
:f:Leucaena crude protein yield calculated as D11 yield x 6.25 x % N: corn crude protein I.O 

yield calculated as green forage at 15% moisture x 6.25 x % N. 
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yield. Corn for green forage was considered ready for harvest at the 

late dough stage when the moisture content was about 60 percent. The 

moisture content of the newly harvested leucaena fresh forage was about 

70 percent. 

At 70 cm corn spacing, leucaena yielded an average of 4.51 t/ha 

of dry matter, which was significantly higher than the yield of leucaena 

intercropped with corn planted at higher densities. The yield of 

leucaena at 30 cm corn spacing (avg 3.77 t DM/ha) was significantly 

higher than the yield at 50 cm corn spacing (avg 3.42 t DM/ha) . The 

lack of a consistent trend in the yield of leucaena in relation to the 

corn planting densities cannot 'be clearly explained from the information 

obtained. 

Leucaena yielded (fresh or dry forage per hectare) 28 percent 

higher under double-row than single-row planting. Intercropped corn 

yield was 27 percent (dry weight basis) and 22 percent (fresh weight 

basis) higher in single leucaena row than in double rows of leucaena. 

The total yields of corn and leucaena, however, were similar in both 

leucaena row treatments, 23 t/ha and 7.8 t/ha on fresh and dry weight 

bases, respectively. These yields were about twice the yield in the 

monocrop corn where urea-N was not applied, and about equal to the 

yield of corn when 75 kg N/ha was applied (25 t/ha fresh weight basis). 

On a dry weight basis, monocrop corn fertilized with 75 kg N/ha 

yielded lower (6.5 t/ha) than the total yield of corn-leucaena intercrop. 

Crude protein yield of leucaena in single-row planting (0.92 t/ha) 

was lower than with double-row planting (1.21 t/ha). The difference 

in the crude protein yield was mainly due to the difference in the total 

·, 
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dry matter yields. Crude protein yields of corn in the corn-leucaena 

intercrop and monocrop corn without urea-N were about equal (average 

0.37 t/ha). These yields were 45 percent lower than the protein 

yields of monocrop corn fertilized with urea at 75 kg N/ha. 

The combined crude protein yields of corn leucaena intercrop 

averaged four times higher (1.44 t/ha) than in the monocrop corn 

without urea-N (0.37 t/ha) and two times higher than corn fertilized 

with 75 kg N/ha. 

The total dry matter yields in corn-leucaena intercrop and monocrop 

corn consisted of an average of 1~ percent and 11 percent crude protein, 

respectively. 

Summary and Conclusions 

Leucaena and corn were intercropped to compare the yield and 

nitrogen response of corn to N supplied from leucaena and from urea. 

The effects of intercropping, including several agronomic variables, 

on the yield and nitrogen content of corn and leucaena wer~ also studied. 

The leucaena (variety KS) intercropped with corn (single cross 

hybrid H610) made excellent growth which was comparable to that obtained 

in the monocropping experiment. A high level of residual soil N from a 

previous sorghum experiment minimized the effects of urea and leucaena 

forage application to the first crop of corn. This effect was negligible 

during the second corn crop. A third corn planting was made but 

abandoned due to extreme variability associated with a different planting 

arrangement which caused heavy wind damage to the corn. 

The regrowth duration and the cutting sequence of leucaena 

followed the vegetative and reproductive stages of corn. The rate of 
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growth of corn and leucaena was slow during the season of low temperature 

and solar radiation. The effects of climatic factors were most 

pronounced during the seedling stage. The seedling stage of corn was 

about 20 days longer during the second corn crop than during the first 

corn crop. 

The amount of leucaena forage produced and added to the corn 

increased with delayed cutting, was greater with double rows than with 

single rows of leucaena, and was slightly enhanced at low corn plant 

densities. 

Percent nitrogen of the total leucaena DM decreased with delayed 

harvest due to the increase in the proportion of stem fraction to the 

forage fraction. Corn spacing anci number of rows of leucaena did not 

significantly influence percentage Nin the forage. 

The contribution of leucaena N to each corn crop varied from about 

60 to 180 kg/ha. 

First Corn Crop 

During the first corn crop, the application of either urea or 

leucaena forage did not affect the yield of corn grain and stover 

because of the presence of residual N from a previous sorghum experiment. 

In addition, the short history of leucaena cropping did not permit the 

application of large quantities of leucaena forage. Higher grain and 

stover yields were obtained with close spacing of the corn than with 

wider spacing. The grain yields of corn intercropped with single row 

of leucaena per corn row cut at seedling stage (3.48 t/ha) or tasseling 

(3.56 t/ha) stage were comparable to the grain yields of the check 

plots (3.45 t/ha). Yields of corn grain and stover from corn intercropped 

with double rows of leucaena were lower than in single rows on a field 
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area basis but higher on a corn area basis and per plant basis. 

Fertilization with urea did not affect the levels of Nin the 

leaf samples and whole plant samples at the late dough stage. The 

nitrogen content of the ear leaf samples of intercropped corn ranged 

from 2.3 - 2.7% with no differences due to treatments. Without N, 

nitrogen percent in ear leaf samples ranged from 2.4 - 2.9. Symptoms 

of nitrogen deficiency were not observed in any of the corn plants. 

Second Corn Crop 

Corn responded significantly to urea fertilizer, The yield 

response of both seedlings and grain to nitrogen was greater than the 

stover yield. Apparently, photosynthates and reserve carbohydrates in 

the stover were translocated into the grain at the later stage of 

plant growth. Corn seedlings yielded from 2.70 - 4.36 g/plant with 

leucaena-N; in the check treatment, they yielded from 1.48 - 1.86 g/plant. 

The grain yields of corn intercropped with leucaena averaged 2.39 t/ha 

which was 23 percent higher than the check. Grain yields were higher 

when leucaena was applied at the early stage of corn growth. 

The amounts of leucaena-N produced and applied to corn were higher 

when leucaena was cut at the late dough stage, but this was too late 

to be effectively utilized by the corn. At wider corn spacing, the 

time when the leucaena was cut had little influence on corn yield. 

The average yield of corn per unit of field area intercropped with 

one row of leucaena was higher than with two rows of leucaena per row 

of corn. On a corn area basis, however, corn intercropped with two 

rows of leucaena yielded more than corn intercropped with a single row 

of leucaena. The effects of various treatments on the N contents of 
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the plant samples were similar to their effects on grain yields. 

Nitrogen content of the seedlings, leaf and whole plant samples 

increased as amounts of urea and leucaena forage applied increased. 

Under urea-N treatments, where nitrogen was not limiting at the seed­

ling stage of corn, plant spacing had a limited influence on the N 

content of the seedlings. However, with increased growth of corn and N 

uptake, plant spacing or p'lanting density greatly influenced the N 

content of the corn plants. With intercropping of corn and leucaena, 

the nitrogen content of the corn plant tissue increased consistently 

with increased plant spacing. 

The equivalent amounts of urea-N required to equal the nitrogen 

contribution of leucaena forage were estimated based on: (1) the 

concentration of Nin the corn plant tissue samples, (2) the weight 

of corn seedlings, and (3) grain yields. The equivalent urea-Nin the 

intercropped corn were as follows: corn plant tissue samples, 9 - 28 

kg N/ha; weight of seedlings, 32 - 58 kg N/ha; and grain yield, 0 - 12 

kg N/ha. The efficiency of leucaena in supplying nitrogen to corn was 

about 38 percent of that of urea. This estimate was obtained by 

comparing the grain yield increase over the control (O nitrogen) of the 

following treatments; 75 kg N/ha from urea against 100 kg N/ha from 

leucaena with the corn spaced 30 cm between plants (33,333 plants/ha). 

The correlation between corn spacing and grain yield (r = -0.87) 

was greater than that of leucaena-N and grain yield (r = 0.17). The 

coefficient of determination associated with spacing was 75 percent 

and when leucaena-N data were added to the spacing data, the coefficient 

of determination increased to 84 percent. 
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Therefore, based on these findings, leucaena contributed 

significantly to the nitrogen requirements of the intercropped corn. 

Release of other nutrients from the leucaena forage to corn was not 

determined but its importance was not overlooked. 

The total fresh forage production in the second corn-leucaena 

intercrop (23 t/ha) was considerably higher than in corn alone 

without added urea-nitrogen (12 t/ha). The yield of fresh forage in 

the corn-leucaena intercrop was comparable to the yield of corn alone 

(25 t/ha) fertilized with 75 kg N/ha from urea. 

Crude protein yields were considerably higher in the corn-leucaena 

intercrop (1.44 t/ha) compared to corn alone (0.75 t/ha) fertilized 

with 75 kg N/ha of urea or without nitrogen (0.37 t/ha). 

Percent crude protein of the corn-leucaena forage ranged from 

15.91 to 21.98 percent. Percent crude protein of corn without N was 

9.36 to 9.90 percent and at 75 kg N/ha, 10.66 to 12.07 percent. 

Therefore, the value of intercropping leucaena and corn for forage 

production was associated with the ability of the corn to utilize some 

of the nitrogen fixed by leucaena. In addition, forage yield, crude 

protein yield and percentage crude protein increased significantly in 

the corn-leucaena mixture compared to the monocropping of corn . 

..... 
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Appendix Table I. General description of the soil profile of 
Hawi, latitude 20°14 

1 
07" N, longitude 155°52 1 48" Wand 

elevation of 130 meters (Gardiner, 1967). 

Soil depth General description of the soil
(cm) 

0-15 Dar.k brown (7. 5 YR 3/3, moist), dark brown (10 YR 
3/4, dry); clay; strong fine granular structure; 
soft (dry), friable (moist), sticky and plastic 
(wet); smooth clear boundary; abundant roots; 
fine and very fine pores; few rock fragments and 
a few black specks. 

15-38 Dark brown (7.5 YR 3/3, moist), dark brown (10 YR 
3/4, dry); clay; moderate, coarse blocky structure 
and moderate, fine subangular blocky structure; 
soft but ped hard (dry), friable (moist), sticky 
and plastic (wet); wavy clear boundary; abundant 
roots; fine to very fine pores; few black specks. 

38-66 Dark brown (7.5 YR 3/3, moist), dark .brown (10 YR 
3/4, dry); clay loam; weak, coarse prismatic 
structure; hard (dry), very firm (moist), sticky 
and plastic (wet), wavy gradual boundary; few 
roots confined to vertical abundant fine cracks; 
few rock fragments. 

66-83 Dark brown (7.5 YR 3/4, moist), dark brown (10 \'R 
3/4, dry); silty clay loam; weak, medium subangular 
blocky structure; hard (dry), firm (moist), sticky 
and plastic (wet); wavy gradual boundary; few 
roots, abundant fine to very fine pores; common 
rock fragments. 

83-122 Dark brown (7.5 YR 3/4, moist), dark brown (10 YR 
3/4, dry); silty clay loam; structureless; soft 
(dry), friable to firm (moist), slightly sticky 
and plastic (wet); wavy gradual boundary; very 
few roots; abundant fine to very fine pores; many 
rock fragments. 

122 + Dark brown (7.5 YR 3/4, moist), dark brown (10 YR 
3/4, dry); silt loam; weak, medium subangular 
blocky structure; soft (dry), friable (moist), 
slightly sticky and slightly plastic (wet); wavy 
gradual boundary; very few roots; abundant fine 
to very fine pores. 
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Appendix Table II. Exchangeable cations, free salt, pH and 
percent secondary minerals of Rawi soil (Gardiner, 1967). 

Soil Soil deEth {cm2 
Properties 0-15 15-38 38-66 66-84 84-122 122+ 

CEC (pH= 7) 30.4 25.0 25.9 34.9 45.4 39.5 
ca++-m.e./lOOg 16.3 9.6 11.2 17.4 25.1 19.1 
Mg++-m.e./lOOg 9.5 8.2 9.1 10.3 13.2 13. 9 
Na+m. e. / 100g 0.73 0. 91 1.2 3.7 6.1 7.9 
K1"m.e./100g 3.8 2.8 1. 7 1. 7 0.39 0.14 
Total bases m.e./lOOg 30.3 21.5 23.2 33.1 44.8 41.1 
% Base saturation 100 86 89 95 99 104 
Free salt 0.60 0.39 0.55 0.65 o. 71 1.1 
pH 6.8 6.6 6.8 7.3 7.7 7.5 
Kaolin (%) 54 58 59 58 46 so 
Quartz (%) 5.3 4.9 4.9 2.1 1.3 0.5 
Illite (%) 13.4 13.0 13.0 4.6 0.3 o.s 
Gibbsite (%) 2.6 2.2 2.2 1.4 0.5 0.3 

5~·~:.; ~· 

'~ ; ... r'... 
:~'" ";' 
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Appendix Table III. The effects of plant height at cutting, 
intra-row spacing on dry matter yields of K.341 

over a 16-month period. 

DM )':ield 2er cutting 
Intra-row spacino 

Avg height Date of 15 cm 30 cm 45 cm 
at cutting cutting FFT Stem FFT Stem FFT Stem 

cm t/ha 

,. ....... ~~ ~ , 

55 22 Jun 74 
29 Aug 74 
25 Oct 74 

9 Jan 75 
4 Apr 75 

25 Jun 75 
Mean 

2.00 
3.44 
2.45 
2.15 
2.42 
2.70 
2.53 

0.50 
1.15 
0.76 
0.40 
0.45 
0.57 
0.64 

1.42 
2.98 
2.20 
1. 91 
2.30 
2.69 
2.25 

o. 31 
0.92 
0.61 
0.40 
0.48 
0.73 
0.58 

1.17 
2.57 
1. 95 
1. 76 
2.07 
2.33 
1. 97 

0.20 
0.68 
0.50 
0.39 
0.43 
0.51 
0.45 

105 15 Jul 74 
18 Oct 74 
27 Jan 75 
16 May 75 
11 Aug 75 

Mean 

3.62 
3. 77 
3.62 
3.51 
3.25 
3.55 

1. 95 
3.10 
1.34 
1.17 
1.67 
1.85 

2.97 
3.74 
3.29 
3.19 
3. 71 
3.38 

1.19 
2.64 
1.10 
1.05 
1.58 
1.51 

2.80 
3. 77 
3.23 
2.93 
3. 72 
3.29 

1.00 
2.47 
o. 92 
0.99 
1.67 
1.41 

155 22 Aug 
9 Dec 

22 Apr 
11 Aug 

74 
74 
75 
75 

Mean 

4.94 
4.08 
3.91 
5.01 
4.49 

4.67 
2.47 
2.14 
3.40 
3.17 

5.21 
4.37 
4.46 
5.14 
4.80 

4.06 
3.70 
2.31 
3.76 
3.46 

3.50 
3.51 
3.88 
4.86 
3.94 

2.47 
2.36 
1. 92 
3.22 
2.49 

tFF: Forage fraction 
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Appendix Table IV. The effects of plant height at cutting 
on dry n~tter yields and percent forage fraction of K341 
over a 16-month period, Avg of three intra-row spacings. 

Percent 
Avg height Date of DM yield Eer cutting forage . 
at cutting cutting FFf Stem fraction 

cm t/ha % 

55 22 June 74 1.53 0.34 82 
# " \ >. 

29 Aug 74 3.00 0.92 77 
25 Oct 74 2.20 0.62 78 

9 Jan 75 1. 94 0.40 83 
4 Apr 75 2.26 0.45 83 

25 Jun 75 2.57 0.60 81 
Mean 2.25 0.56 81 

105 15 Jul 74 3.13 1.38 69 
18 Oct 74 3. 76 2.74 58 
27 Jan 75 3.38 1.12 75 
16 May 75 3.21 1.07 75 
11 Aug 75 3.56 1.64 68 

Mean 3.41 1.59 68 

155 22 Aug 74 4.55 3.73 55 
9 Dec 74 4.02 2.84 59 

22 Apr 75 4.08 2.12 66 
11 Aug 75 5.00 3.46 59 

Mean 4.41 3.04 60 

tFF: Forage fraction 

l~~~~j;~'f;~~s 
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Appendix Table V. The effects of plant height at cutting 
and intra-row spacing on dry matter yields of K8 

over a 16-month period. 

Avg height 
at cutting 

Date of 
cutting 

15 
FFt 

DM :lield per cutting 
Intra-row spacing 

cm 30 cm 
Stem FF'f Stem 

45 
FFT 

cm 
Stem 

cm t/ha 

55 6 Jun 74 
29 Jul 74 
20 Sep 74 
14 Nov 74 
4 Feb 75 
2 May 75 

27 Jun 75 
Mean 

0.99 
2.29 
2.00 
1.51 
1.29 
1.63 
1. 88 
1.65 

0.35 
1.03 
1.00 
0.51 
0.19 
0.32 
0.30 
0.53 

0.62 
1.67 
1. 72 
1.41 
1.08 
1.37 
1. 81 
1.38 

0.16 
0.64 
o. 71 
0.45 
0.19 
0.24 
0.32 
0.39 

0.46 
1.39 
1.51 
1.09 
0.95 
1.33 
1. 80 
1.22 

0.12 
0.52 
0.66 
0.41 
0.23 
0.26 
0.35 
0.36 

105 1 Jul 74 
13 Sep 74 
13 Nov 74 
27 Mar 75 
25 Jun 75 

Mean 

2.75 
2.78 
2.04 
3.19 
3.64 
2.88 

1.64 
1. 90 
o. 71 
1.17 
1.25 
1.33 

2.05 
2.49 
1. 87 
2.75 
3.64 
2.56 

1.14 
1.67 
0.84 
1.08 
1.20 
1.19 

1.82 
2.51 
1.86 
2.86 
3.60 
2.53 

o. 96 
1.61 
0.81 
1.08 
1.17 
1.13 

155 22 Jul 74 
15 Oct 74 
17 Mar 75 
30 Jun 75 

Mean 

3.42 
3.61 
3.55 
4.16 
3.68 

3.45 
3.10 
3.17 
2.37 
3.02 

3.53 
3.33 
3.32 
4.16 
3.59 

2.97 
2.64 
2.55 
2.10 
2.56 

3.04 
3.39 
3.39 
3.84 
3.41 

2.83 
2.74 
2.37 
2.32 
2.56 

tFF: Forage fraction 

~ ; 
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Appendix Table VI. The effects of plant height at cutting 
and dry matter yields of KS over a 16-month period. 

Avg of three spacings. 

Percent 
Avg height Date of DM yield 2er cutting forage 
at cutting cutting FFf Stem fraction 

cm t/ha % 
1' J"'r<• 

55 6 Jun 74 0.69 0.21 77 
29 Jul 74 1. 78 0.73 71 
20 Sep 74 1. 74 0.79 69 
14 Nov 74 1.34 0.46 74 
4 Feb 75 1.11 0.20 85 
2 May 75 1.44 0.27 84 

27 Jun 75 1.83 0.32 85 
Mean 1.42 0.43 77 

105 1 Jul 74 2.21 1.25 64 
13 Sep 74 2.59 1. 72 60 
13 Nov 74 1.92 0.79 71 
27 Mar 75 2.93 1.11 72 
25 Jun 75 3.63 1.21 75 

Mean 2.66 1.22 68 

155 22 Jul 74 3.33 3.08 52 
15 Oct 74 3.44 2.83 55 
17 Mar 75 3.42 2.70 56-~ 30 Jun 75 4.05 2.26 64 

Mean 3.56 2.72 57 

tFF: Forage fraction 



Appendix Table VII. Analysis of variance of the annual dry matter and nitrogen yields (kg/ha), 
and percentage forage fraction of leucaena (variety x cutting x spacing, leucaena). 

Annual dry matter yield Percent AnnuaI nitrogen yieict 
Source of Forage Stem forage Forage Stem 
variation df fraction fraction fraction fraction fraction 

Mean squares 

Reps(R) 
Variety(V) 

3 
1 

10774865~"' 
76 797355"1'1""1'1" 

11954392"1',·k 
3941496'>'dc 

59.2* 
66. 1 ~'<' 

25250* 
128609'>'d, 

1521.,.'" 
2775* 

Error(a) 3 486760 60442 2.5 2465 95 

Cutting(C) 2 48220184"''"* 229296987** 
J. 

2522. 2" 77083** 32709** 
V X C 2 3336066* 598721 15.8 17626~"'* 351 
Error(b) 12 815539 1170150 5.8 1600 170 

Spacing(S) 2 16533144"'·* 10379420** 32. 8** 28041~"'* 2384** 
V x S 2 1244976 2186222"''""''" 8.3 1441 421** 
C X s 4 2480404* 876534"''" 1. 8 4469 163 
V x C X S 4 498299 1336837"''""''" 6.2 1619 153 
Error(c) 36 626510 254942 3.2 1744 63 

Total 71 

*significant at 5% level 

**s·1.gn1.·f·1.cant at 1% level 

I-' 

N 
0 
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Appendix Table VIII. Analysis of variance of the percentage nitrogen and mimosine, stem diameter 
(mm) and stem count (thousand/ha) of leucaena (variety x cutting x spacing, leucaena). 

Percent nitrogen Percent mimosine 
Source of Forage Stem Forage Stem Stem Stem 
variation df fraction fraction fraction fraction diameter count 

Mean squares 

Reps(R) 3 0.04 0.15 1.00 0,04 0.94 1723 
Variety(V) 1 0.04 0.14 5.21 0.30 2.80 17547 
Error(a) 3 0.10 0.50 2.79 0.15 0.40 2803 

Cutting(C) 
V x C 

2 
2 

0.20** 
0, 18idr 

1.01 
0.03 

1.50 
2. 60"'( 

0.10 
0.47** 

69.38** 
2.81** 

2709 
4407* 

Error(b) 12 0.03 0.28 0.60 0.04 0.23 1012 

Spacing(S) 2 0.05 0.23 0.99 0.08* 18.95** 171168** 
V x S 2 0.02 0.38 1.10 0.01 o. 92 3289* 
C X S 4 0.01 o. 16 0.93 0.04 1.05* 1223 
V x C x S L~ 0.07 0.44 1.42* 0.01 0,28 380 
Error(C) 36 0.03 0.25 0.39 0.02 0,34 728 

Total 71 

*significant at 5% level 

**Significant at 1% level 



Appendix Table IX. Analysis of variance of total dry matter yields (kg/ha) of leucaena 
at various cuttings, intercropped with the first and second crops of corn. 

Source of Total dry matter yields at Dry matter yields from the 
variation df indicated cutting combined harvest of leucaena 

Cut-1 Cut-2 Cut-3 Cut-4 (Cut-1 + Cut-2f + (Cut-3 + Cut-4)f 

Mean squares 

Rep(R) 
Harvest(H) 

3 
2 

2087097 
300019 

736943 
72 984 719-Jr* 

2626792"/r* 
20957053-Jdr 

5516360 
55183312'1:-k 

4391952 
76166860;'r* 

9574907 
8005480 

Error(a) 6 2143648 824171 233946 7991752 1749970 7999209 

Rows(Rn) 
H x Rn 

1 
2 

733260 
253066 

14315709;'dr 
2296277 

15245322"/r* 
2912469;'r* 

9146365"/r* 
589339"/r 

21528828** 
3826835 

47646695** 
1497169 

Error(b) 9 1113666 910997 278829 108528 1701739 439652 

Spacing(C) 
H x C 

2 
4 

244685 
156415 

1131824** 
1040308;'dr 

239520 
41965 

812890"/r* 
848294"/r"/r 

1947733 
1604616 

1455544** 
962834** 

Rn x C 2 24536 209818 10480 160461 272832 182437** 
H x Rn x C 4 341849 246172 128132 35986 834240 146360** 
Error(c) 36 481538 161090 902l~5 151076 943030 29210 

Total 71 

*significant at 5% level 

**significant at 1% level 

tLeucaena forage applied to the 1st crop of corn 

:t:Leucaena forage applied to the 2nd crop of corn 

~ 

.p-
0 
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Appendix Table X. Analysis of variance of percent nitrogen and nitrogen yields (kg/ha) 
of total dry matter of leucaena at various cuttings intercropped 

with the first and second crops of corn. 

Source of 

variation df 

Percent Nat 

indicated cutting 

N yield at 

indicated cutting 

N applied to corn crop 

from combined harvests 

of leucaena 

Cut-1 Cut-2 Cut-3 Cut-4 Cut-1 Cut-2 Cut-3 Cut-4 (Cut-l+Cut-2/ +(Cut-3+Cut-4)+ 

Mean squares 

Rep(R) 
Harvest(H) 

3 
2 

1. 27** 
0.01 

0.23 
10.23** 

3.18 
3.21 

0.83 
0.87 

2807 
300 

1046 
40793-/d( 

2026 
19315-/d( 

14244 
107554* 

5673 
li65881<* 

23893 
35653 

Error(a) 6 0.07 0.46 1.23 1.07 2755 1079 1297 21202 2527 16957 

Rows (Rn) 
H x Rn 

1 
2 

0.01 
0.03 

0.34 
0.03 

1. 55 
0.63 

0.33 
0.07 

399 
427 

12795-lc* 
1118 

10695*-l( 
15141<* 

202001(* 
1460** 

17829** 
2895 

60436** 
885 

Error(b) 9 0.12 · 0.22 0.34 0.16 1482 475 297 113 1441 462 

Spacing(C) 
H X C 

2 
4 

0.07 . 
0.01 

0.06 
0.10 

0.321<* 
o. 09*-l< 

0.06 
o. 12 

436 
241 

6s91'rlc 
622-Jdc 

258 
99 

1832-Jc-ll' 
1534ic-ll' 

1927 
1222 

3305** 
1631* 

Rn x C 2 0.00 0.07 0. 261(* 0.02 43 342* 23 192 591 1285 
H x Rn x C 4 0.01 0.17 0.19.,,d" 0.03 466 3031( 77 63 597 105 
Error (c) 36 0.06 0.04 0.02 0.13 783 93 114 319 1068 538 

Total 71 

*significant at 5% level 

**significant at 1% level 

tLeucaena forage yields applied to the 1st crop of corn ..... 

*Leucaena forage yields applied to the 2nd crop of corn 
V1 
0 
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Appendix Table XI. Analysis of variance of grain yields (kg/ha), seedling weights (g/plant) 
and percentage nitrogen of the first and second crops of corn intercropped with 

leucaena and fertilized with leucaena-N. 

First cro:e of corn Second cro:e of corn 
Dry matter yield Percent N Dry matter yield Percent N 

Source of Grain Stover Leaf Whole Grain Stoverf Seed- Seed- Leaf Whole 
variation df sam:eles :elant i· ling lings sam:eles :elantt 

Mean squares 

Rep(R) 3 1703572 6016660* 1. 24"'' 0.00 1275716 1078136 359** 11.23** 1.36* 0.09 
Harvest (H) 2 1469319 1698001 0.12 0.03 1159170 753538 20 0.56* 1.37* 0.13 
Error(a) 6 569504 740770 0.20 0.03 356306 746842 26 0.07 0.16 0.02 

Rows (Rn) 1 19125051** 16433645** 0.06 0.03 6295335** 1526872 219* 1. 79 2.ss** 0.14 
H x Rn 2 362649 527366 0.06 0.00 165079 31618 18 0.03 o.os o.oo 
Error(b) 9 345349 866977 0.08 0.01 397067 177330 29 0.08 0.03 0.08 

Spacing(C) 2 14921579-lc* 9448140** 0.41* 0.07 10724016** 3644069"':* so** 0.31* 1.88** 0.04* 
H X C 4 488773 385375*"'( 0.04 0.01 211990* 231888 13 0.02 0.04 0.03 
Rn x C 2 544908 290628** 0.00 0.01 75246 30332 3 0.01 0.01 o.os 
H x Rn x C 4 246354 341334 o.os 0.03 73619 76405 20 0.08 0.01 0.02 
Error(c) 36 284623 20649 0.09 0.02 77958 78453 9 0.06 0.02 0.01 

Total 71 

-Jc 
Significant at 5% level 

**s · ·1gn1f'1cant at 1% level 

t Two replications 

..... 
0\ 
0 



Appendix Table XII. Analysis of variance of grain yields (kg/ha), seedling weights (g/plant) 
and percentage nitrogen of the first and second crops of corn under various levels of urea-N. 

Analysis of 
variance df 

Rep(R) 3 
N level(N) 2 
Error(a) 6 

Spacing(C) 2 
N x C 4 
Error(b) 18 

Total 35 

First croe of corn Second croe of corn 
Dr:,: matter yield Percent N Dry matter yield Percent N 
Grain Stover Leaf Whole Grain Stover t Seed- Seed- Leaf 

sameles elantt ling lings sam:eles 

Mean squares 

1267747 3873891 1.oi'd( 0.02 743879 1508584 573~~ 3.8s** 0.42 
2032724 609993 0.40 0.01 16607796"'( 2166367* 501 2. 03"'(* 4. 96*":C 
2069980 1726539 0.09 0.00 1595397 283510 109 0.16 0.14 

11244037** 10222429** 0.41"'' 0.01 13573747** 2624942-lrlc 0.41 0.06 a.so** 
171663 456555 0.02 0.00 2072010** 260333 5 0.03 0.01 
321911 667864 0.03 0.01 139467 196997 3 0.05 0.04 

Whole 
:elantt 

0.05 
0.15 
0.03 

a.as 
0.00 
0,03 

*Significant at 5% level 

** Significant at 1% level 

tTwo replications 

..... 
...J 
0 
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Appendix Figure I. Map of Hawaii, location of the experiment 
was at Hawi ( t ) , on the northern side of the island 

(Clima tological Da ta, Hawaii and Pacific. U.S. 
Dept. of Commerce, Monthly Report). 
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Appendix Figure IV. General view of leucaena at various 
stages of growth in the variety, cutting intervals 

and intra-row spacing experiment. 
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Appendix Figure VI. K8 at three heights of cutting. 
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Appendix Figure VII. Stumps of leucaena after being cut 
four times at attained height of 155 cm during 

15 months of growth. 
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Appendix Figure VIII. Forage and stem fractions in K8 and K341. 
Flower bud in K.341 indicated by an arrow. 
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Appendix Figure IX. Partial view of corn-leucaena inter­
crop. A: 1 row of leucaena per row of corn; 

B: 2 rows of leucaena per row of corn; 
C: corn urea-N plot (75 kg N/ha). 

Appendix Figure X. Chopped leucaena and fertilizers 
(no N) tilled into the soil before planting corn; 

note stumps of recently-harvested leucaena. 
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.Append~x Figure XI. Corn-leucaena intercrop after 1.5 months 
of growth, just before leucaena was cut and topdressed to corn• 

.. ' 
,_/· ···"" 

Appendix Figure XII. Leucaena forage cut and topdressed to corn. 
Note leucaena stumps in foreground. 
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Appendix Figure XIII. Corn growth and leucaena regrowth. 
The leucaena had been previously cut and sidedressed 

to the corn at the 1.5 months stage of growth. 
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