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ABSTRACT

In this thesis, we propose two failure detection and identification (FDI) approaches based

on the multiple-model estimation algorithm to monitor the health of vehicles, specifically

aircraft applications. They detect and identify failing components of the vehicle, and the

system variations. The dynamics of the vehicle are modeled as a stochastic hybrid system

with uncertainty-unknown model structure or parameters. FDI performance is evaluated

for each approach. We demonstrate the reliability, validity of these approaches by applying

them to simulate aircraft machinery experiencing component failures or structural varia­

tions. The approaches that we surveyed are: (i) Multiple-Hypothesis Kalman Filter, and

(ii) Interacting Multiple-Model (IMM) Estimator. By coupling the fault detection and iden­

tification (FDI) scheme with the reconfigurable controller design scheme, a fault-tolerant

control system based on the multiple-model estimation algorithm is defined.
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Chapter 1

Introduction

Modem engineering systems are becoming more and more sophisticated. Re­

liability, availability, and automatic supervision of technical processes and their control

systems are important consideration in overall system design and operation. An integral

element of a highly reliable, fault-tolerant control system (FTCS) is a coutrol system that

includes an efficient fault detection and identification (FDI) scheme that can fast and reli­

ably detect and isolate the sensor failures, actuator failures, and system component failures,

and compensate and remedy the failures and proguosis the system to move from unsched­

uled maintenance to scheduled mainteuance.

A failure is defined to be any deviation of a system from its normal or intended

behavior, diagnosis is the process of detecting an abnormality in the system behavior and

isolating the cause or the source of this abnormality. Hard failure (i.e. complete mechan­

ical breakdown) can be rapidly detected by on-line built-in-testing (BIT), and the more

subtle or "soft" drifting-type failures can only be detected by the use of more sophisti­

cated techniques, based on modem estimation/decision theory [1]. Many methods have

been developed for fault detection and identification of dynamics systems over the last two

decades [2, 3, 4, 5, 16, 17, 18], which can be categorized as: (i) confidence region over­

lap test, (ii) multiple-model based estimator, which can be categorized as noninteracting

multiple-model based estimator and interacting multiple-model based estimator.

The confidence region overlap test was developed in [4,5] to detect the fault in an

inertial navigation system that was represented by a comprised dynamical model. The fault
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decision criterion was based on the overlap test between two confidence region sheaths.

One confidence region was about the expected nominal trajectory using a state propagator,

while the other was using the Kalman filter state and covariance estimates. The overlap test

was shown to result in a statistic scalar test that was compared to a pre-specified decision

threshold in terms of the false alarming probability at any time instant to make failure/no

failure decision. A more promising two-confidence region (CR2) failure detection algo­

rithm was presented in [I]. Instead of iterating the set of the decision equations to calculate

the test statistics, a geometric solution was developed to derive the decision, which leaded

to lower computational burden and complexity of implementation.

Modem engineering systems are so sophisticated that systems subject to actuator,

sensor failures and structural changes cannot be modeled well by a single set of equations

of state that varies continuously. A more appropriate mathematical model for such a so­

phisticated system is the so-called stochastic hybrid system that consists ofa set ofpossible

system operation modes, which can be interpreted as the system mode set-O. For the hybrid

system, one of the most effective approaches for system health monitoring is based on the

use of multiple models, which is called multiple-model based estimator. Multiple-model

based estimator has been applied for the failure detection and identification for different

engineering applications with different names, such as multiple-hypothesis test detector,

and multiple-model adaptive estimator. Multiple-model based estimator involves the use of

a bank of filters running in parallel, each based on the different hypothesis representing the

underlying system behavior. Filters for corresponding failure modes are constructed, and

the innovations from the various filters are used to compute the probability that the system

is in that operation mode [3].

Multiple-hypothesis Kalman filter (MH-KF) is a noninteracting multiple-model

estimation scheme. Each filter model can be characterized by a discrete state O(t) from the

set of all possible system modes, 0 = {O" O2 , ••• , OM}' The multiple-hypothesis Kalman

filter runs a bank of parallel filters, each based on a particular hypothesis matching to a pos­

sible system operation mode, and the pictorial hypothesis testing algorithm is shown in Fig­

ure 1.1. The Kalman filters are provided the measurement and the input, and produce state

estimates and residuals. The residuals are used to compute conditional likelihood function

values of the various hypotheses that are modeled in the Kalman filters, conditioned on the
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history of the measurements received up to that time. Thus the failure/no failure decision

is made and the system operation mode is identified. The hypothesis testing algorithm can

also assign model-conditional probabilities to each of the hypotheses. Model-Conditional

probabilities indicate the relative correctness of the filter models, and can be used to form

a probability-weighted overall average state estimate (XMMAE)' The multiple-hypothesis

Kalman filter is applied for the FDI of "partial" and "total" sensor failures of DC motor.

Figure 1.1: Noninteracting multiple-model estimation algorithm

As stated in [17], the multiple-model based FDI approaches are quite effective

in handling problems with an unknown structure or parameters but without structnral or

parametric changes. In general, the system structure or parameter does change as compo­

nent or subsystem failures. A lot of work has been done to compensate the weakness and

to improve the performance of multiple-model based approaches, such as bounded condi­

tional probabilities [10], removal of f3 dominance effect, Kalman filterretuning, probability

smoothing, and increased residual propagation [13, 14].

By introducing the interaction between single-model-based filters into the FDI

scheme, the interacting multiple-model (IMM) estimator in Figure 1.2 is a notable progress

in the multiple-model estimation. It explicitly emulates the abrupt changes of the system by

switching from one model to another in a probabilistic manner. The finite-state-machine

technique is employed to represent the switching among varions modes. The transition

between the different models can be described as a first-order Markov process and is char­

acterized by the transition probability matrix. IMM also consists of a bank of single-model­

based filters running in parallel at each cycle. The initial state estimates at the beginning

of each cycle for each filter are the mixture of all most recent estimates from the single-
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Figure 1.2: Interacting multiple-model estimation algoritlun

model-based filters. It is the mixing that enables the IMM to effectively take into account

the history of the mode without the exponential growth in computation and storage [9]. On

the other hand, the posterior probabilities for each mode is calculated as the indicators of the

mode in effect and mode transition at each decision time. Its main advantage over previous

noninteracting multiple-model based FDI techniques is its reliability and quick detection

and identification of simultaneous failures of sensors, actuators, and system component. In

[16], IMM algorithm was used for the detection and identification of sensor and actuator

failures in spacecraft autonomy. During this research, the effectiveness and superiority of

interacting multiple-model estimation algorithm are demonstrated by the FDI performance

of "partial" and "total" sensor failures of DC motor, and by the FDI performance of a

longitudinal vertical takeoff and landing (VTOL) aircraft model.

The failures of sensors, actuators and system component will alter the charac­

teristics of the system, such as stability, observability and controllability. It is necessary

to apply the control laws to recover the system performance to the maximum extent, and

meet the closed-loop design specification, such as dynamical response and steady-state

performance. Based on the FDI results, it is applicable to design a fault-tolerant control to

maintain the overall system stability and acceptable performance. In general, fault-tolerant

control systems can be classified as passive and active. An active fault-tolerant control sys­

tem compensates for faults either by selecting a precomputed control law or by synthesizing

5



a new control strategy on-line. The FDI schemes are used to detect and identify the failures

and to activate control reconfiguration mechanisms. Typically, an active TICS consists of

three parts: a reconfigurable controller, an FDI schemes and a control law reconfiguration

mechanism. Key issues is how to design: (1) a robust reconfigurable controller, (2) an FDI

scheme with high sensitivity to failures and robustness to model uncertainties and external

disturbances, and (3) a reconfiguration mechanism which can organize the reconfigurable

controller in such a way that the prefault system performance can be recovered to the max­

imum extent.

In general, the existing active fault-tolerant control system design methods can be

categorized based on the following approaches: linear quadratic regulator (LQR); eigen­

structure assignment (EA); multiple models; adaptive control; pseudo inverse; and neU­

ral network. Among these methods, lots of research have been done on the multiple­

model-based reconfigurable control. The approach developed in [10], known as multiple­

model adaptive estimator/multiple-model adaptive control (MMAElMMAC), uses LQR

techniques to design the reconfigurable controllers and adaptively synthesize each of the

controllers by use of maximum a posteriori probability (MAP). In this approach, the sys­

tem under the presumed failure modes is represented by a set of models, and a bank of

Kalman filters is used to estimate the states of the system based on the presumed failure

modes. Innovation sequence of each Kalman filter is used to calculate the posterior prob­

ability, which can be interpreted as the failure/no failure indicator, and the overall system

state estimates and the control inputs are the probability-weighted average of the signals

from each model. However, the MMAElMMAC is basically the non-interacting multiple­

model estimation scheme. There is no interaction among Kalman filters. We already know

the merits of the interacting multiple model estimation technique, it is very straightfor­

ward to extend the non-interacting MMAEIMMAC to interacting multiple-model adaptive

estimator/multiple-model adaptive control. We can extend the proposed IMM-based FDI

approach to the design of an integrated FDI and reconfigurable control. The IMM estima­

tor is utilized to provide the FDI information, as well as the overall state estimates. The

reconfiguration mechanism is based on the information from the mode posterior probabil­

ity in the IMM algorithm. Since the stability and dynamic performance of the closed-loop

system can be described by its eigenstructure, i.e., eigenvalues/eigenvectors, recovery of
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the dynamic performance of the system subject to failures can be achieved via assigning

the eigenstructure of the reconfigured system as close to that of the nominal system as pos­

sible. In this paper, LQR is used to design the control law for the nominal system, and EA

is for the reconfignrable control laws of the impaired system. In addition, to achieve zero

steady-state tracking even in the presence offaults, a set offeedforward control laws is also

designed using an input weighting technique [11]. Figure 1.3 depicts the structure of the

integrated IMM-based FDI and reconfigurable control.

Fignre 1.3: General structure of IMM-based FDI and reconfigurable control scheme

The remaining part of this paper is organized as follows: A description of a

stochastic hybrid system and modeling of multiple failnres are presented in the chapter

2. The FDI algorithm description and reconfigurable controller design scheme are in chap­

ter 3. The performance evaluation of proposed FOI schemes and IMM-based fault-tolerant

control system are presented and discussed in chapter 4. Finally, discussions and future

work are given in chapter 5.
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Chapter 2

System model

2.1 Multiple-model representation

The multiple-model estimation approach assumes that the actual system is ade­

quately represented by a linear perturbation stochastic state model, with an uncertain (fail­

ure status) parameter vector affecting the matrices defining the strncture of the model or

depicting the statistics of the measurement or processing noises. Further the parameters are

assumed to take on only discrete values to map the corresponding system models, and each

system model is in certain probability drawn from a set of models designed to represent the

all possible system behavior patterns. Then a Kalman filter is designed for each choice of

system model, Le., parameter value, which results in a bank of separate "elemental" filters.

The stochastic hybrid systems are described as:

x(k + 1) = A(k,O(k»x(k) + B(k,O(k»u(k) + w(k)

z(k + 1) = H(k + 1, O(k + l))x(k + 1) + v(k + 1)

(2.1.1)

(2.1.2)

where x E iRn is the base state vector; z E iRq is the (mode-dependent) measurement vector;

u E iRm is the control input vector; w E iRn and v E iRq are processing and measurement

noises. O(k) represents the current active system mode, and the set of all possible system

modes is 0 = (01 , O2 , •.. , OM).

The noulinear system (2.1.1) is known as a "jump linear system": It is linear

given the system mode; however, the system may jump from one mode to another at a
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random time. It can be observed from the system outputs that are in general noisy and

mode-dependent. Therefore, the mode information is imbedded (i.e. not directly mea­

sured) in measurement sequences. It is applicable to filter the measurement sequence to

determine which system mode is active, and thus get the health information of the system.

According to the relationships among the Kalman filters and the methods of Kalman filter

reinitialization, multiple-model estimator can be categorized as: noninteracting multiple­

model; interacting multiple-model.

2.1.1 Basic Kalman filter equation

A LTI discrete-time system state space model associated with a particular hy­

pothesized mode with the subscript j, i.e., the system mode is 8j .

System dynamics

Sensor equation

where

Xj(k + 1) = Ajxj(k) +Eju(k) + wj(k)

z(k) = Hjxj(k) + vj(k)

(2.1.3)

(2.1.4)

(2.1.5)

x j is the state vector,

Aj is the state transition matrix,

Ej is the control input matrix,

u is the known input,

Wj is an additive white Gaussian processing noise with zero mean and covariance

as:

E [wj(m)wJ(n)] = QjOmn

z is the measurement vector,

Hj is the measurement matrix,

Vj is an additive white Gaussian measurement noise with zero mean and covari-

ance as:

(2.1.6)

The measurement noise sequence Vj and processing noise sequence Wj are independent of

each other.
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The Kalman filter algorithm uses the above LTI model to define time propagation

and measurement update equations of the Kalman Filter slate estimates and state estimation

covariance matrix. The Kalman Filter state estimate propagation equation is:

where

Xj(k + 11k)

zj(k + 11k)

AjXj(klk) + Bju(k)

Hjxj(k + 11k)

(2.1.7)

(2.1.8)

Xj(k + 11k) is the slate estimate before the measurement z(k + 1) is available,

Zj (k + 11 k) is the estimate of the measurement before it becomes available, and

the state estimate covariance matrix propagation equation

(2.1.9)

and when the measurement z(k + 1) is available, the slate estimates are updated as;

(2.1.10)

where the Kalman filter gain is

(2.1.11)

The Kalman filter residual vector is defined as

(2.1.12)

which is the difference between the measurements and the Kalman filter estimates. The

residual vector can be assumed to be a set of independent zero-mean Gaussian random

variable with covariance as:

(2.1.13)

Finally, the Kalman filter state estimate covariance matrix is updated using

(2.1.I4)
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2.1.2 Noninteracting multiple-model estimator

Noninteracting mnltiple-model estimation approach defines a bank of Kalman

filters running in parallel to represent all possible system modes. Each single-mode-based

filter uses its own previous slate estimates and filter covariance as the initial conditions at

the current cycle, (2.1.15). There are no any interactions with each other.

xJ(kJk)

p](klk)

Xj(klk)

Pj(klk)

(2.1.15)

(2.1.16)

where xJ(klk), PJ(klk) are the initial conditions for j'h Kalman filter at time k + 1, and

Xj(klk), Pj(klk) are the state estimates and filter covariance of j'h Kalman filter at the k'h

step.

Based upon the observed characteristics of the residuals Tj(k) from each Kalman

filter, the model-conditional probabilities are recursively evaluated, given the measurement

history. This model-conditional probability can be an indicator of system slatus, compared

with the prespecified threshold value. Since the Kalman filter residual is a white Gaussian

sequence of zero mean and covariance as (2.1.13), we can get the modeJ-conditional prob­

ability density function of the measurement, z(k), at time k for the j'h hypothesis model,

conditioned on the measurement history up to time k - 1, Z(k -1) = {z(l), . .. , z(k -I)}

!z(k)l&,Z(H) (zIBj , Z(k - 1» = f3exp{.} j = 1, ... ,M

where

1

{.}

We can define the conditional probability for a particular hypothesis model as:

pj(k) = Pr(B = OjJZ(k - 1»)

In [15], the conditional probability of j'h hypothesis model is updated as:

.(k) _ !z(klIBj,Z(k-l)pj(k - 1)
PJ - M

L::id !z(klIBi,Z(k-llPi(k - 1)

11
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Here we use the prior couditional probabilities, Pj (k - 1) to compute the con­

ditional probabilities on the measurement at time k. For fault detection and identification

problem, we can also use the conditional probabilities of the hypothesis models to detect

the abnormality of the system.

pj(k) = m}'"'p;(k) = {
>PT

<PT

=> OJ : mode j occurred

=> 0, : nominal mode occurred

The conditional probabilities are used to compute the overall state estimates and covariance

as:

LXj(k)pj(k)
j

L[Pj(k) + xj(k)xj(k)T]pj(k)
j

(2.1.22)

(2.1.23)

where xj(k) and Fj(k) are the j'h Kalman Filter state estimates and filter covariance, and

Xj(k) = XMMAE(k) - xj(k)

The noninteracting multiple-model algorithm is a recursive estimator:

(2.1.24)

• model-conditional reinitialization, each single-mode-based filter uses its own previ­

ous state estimates and filter covariance as the initial conditions at the current cycle

• model-conditional filtering

• model-conditional probability update based on the model-conditional prior probabil­

ity and likelihood functions

• estimate combination, which yields overall state estimates and covariance

2.1.3 Interacting multiple-model estimator

The stochastic hybrid system (2.1.1) can be consider as a linear system with

Markovian coefficients

x(k + 1) = A(O(k))x(k) + B(O(k))u(k) + w(k)

12
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with observations

z(k) = C(e(k))x(k) + v(k) (2.1.26)

where e(k) is assumed to be a finite state Markov chain taking values in the discrete set e

= (ej , e2, ... , eM), i.e., the system mode sequence is an indirectly observable (or hidden)

Markov chain [9].

Assume that the actual system is a discrete-time process, and then the Markov

chain is a discrete-time-discrete-state (DSDT) Markov chain according to a transition prob­

ability matrix HT :

HT =
1f2M

where

and

(2.1.27)

(2.1.28)L7fij = 1, i = 1,2, ... ,M
j

The transition probability matrix HT is a design parameter.

The interaction among the Kalman filters can be described as the conditional

probabilities mixing and evolution [9], depicted in Figure 1.2:

p[e(k)IZ(k)] mixmg p[e(k + 1)IZ(k)]

P[x(k)le(k), Z(k)] mixing P[x(k)lO(k + 1), Z(k)]
. ,

P[x(k)Je(k + 1), Z(k)] evolutzon P[x(k + 1)le(k + 1), Z(k)]

p[e(k + 1)IZ(k)] Baye; p[e(k + 1)IZ(k + I)J

P[x(k + 1)le(k + I), Z(k)] Baye; P[x(k + 1)le(k + 1), Z(k + 1)]

For simplification, we define

(2.1.29)

(2.1.30)

(2.1.31)

(2.1.32)

(2.1.33)

j.!j(k+ 11k)

j.!j(k + 1)

p[e(k + 1) = ejIZ(k)]

p[e(k + 1) = ejlZ(k + I)J

13
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The predicted mode probability (2.1.29) on the condition of Z(k):

pj(k + 11k) = P[O(k + 1) = OjIZ(k)J = L 7r'jp,(k) (2.1.36)

which represents the prior probability for sySlem mode OJ.

In order to derive the representation of (2.1.30), we first introduce the following

equation on the basis of the total probability:

P[x(k)IO(k+l) = OJ, Z(k)] = LP[x(k)IO(k) = 0i, Z(k)]P[O(k) = OiIO(k+l) = OJ, Z(k)]

(2.1.37)

where

P[O(k) = OilO(k + 1) = j, Z(k)] = p~%~(~~k) (2.1.38)

The derivation of (2.1.31), (2.1.33) is directly from the iteration of Kalman fil­

ler. The residual sequence (2.1.12) is a zero mean Gaussian while noise sequence with

covariance (2.1.13), and statistical hypothesis testiug theory indicated that a good choice

of likelihood fuuction for failure detection would be in the form of conditional probability

density, thus the likelihood functiou of j'h Kalman filler at time k+ I is:

1
L j = exp(JdetI27rlTJI

Thus (2.1.32) is the mode probability update:

(2.1.39)

(2.1.40)f.1j(k + 1) = P[O(k + 1) = OjlZ(k + 1)) = Pj(~: llkl~~~
L,P, +1 ,

On the basis of (2.1.30), the reinitialization of j'h Kalman filter can be described as:

x~(klk) = E(x(k)lO(k + 1) = OJ, Z(k))

= L xi(k) 7rijPi(k)
i pj(k+llk)

P.?(klk) = cov[xJ(klk)J

= L 7rijPi(k)(Pi(klk) + i?j(klk)i?j(kIW)
i pj(k + 11k)

where cav[.] stands for covariance and

14
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From above equations, j'h filter at time k+ 1 has x~(klk) and PJ(klk) as its initial condition.

This leads to the IMM estimator. The single-model-based filters clearly interact with each

other.

For the output purpose, the overall state estimate and estimation error covariance

are computed according to

where

x(k + 1)

P(k + 1)

L xj(k + l)pj(k + 1)
j

L[Pi(k + 1) + xj(k + l)xj(k + Inpj(k + 1)
j

Xj(k+ 1) = x(k+ 1) -xj(k+ 1)

(2.1.46)

(2.1.47)

(2.1.48)

Summatily, the IMM algorithm is a recursive estimator. In each cycle it consists

of four major steps:

• model-conditional reinitialization (interacting or mixing of the estimates), in which

the initial condition to the filter matched to a certain mode is obtained by mixing the

estimates of all filters at the previous cycle;

• model-conditional filtering, based on the time update and measurement update of

Kalman filter estimate

• model-conditional probability update, based on the model-conditional likelihood func­

tions, and during this step, the system health decision (detecting the failure and iden­

tifying the failure mode) is determined by comparing the model-conditional posterior

probability with the prespecified threshold

• estimate combination, which yields the overall state estimate as the probabilistically

weighted sum of the updated state estimates of all filters. The probability of a mode

being in effect plays a key role for determining the weights in the combination of

state estimates and estimation error covariance.
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2.2 System failure modes

In this research, system failure modes are focused on the A, B and C variations

because they are the most cornmon failure scenarios in the complex system. When we

design the Kalman filter bank, we assumed that the Kalman filter model and the true model

are of the same dimension and that the dynamics noise strength Q, measurement noise

strength R are equivalent.

In the failure detection and identification of the aircraft flight control system, the

actuator failure can be modelled as:

x(k + 1) = Ax(k) + (B + fl.B)u(k) + w(k)

where fl.B represents the fault-induced changes in actuators.

The system component failure can be represented as:

x(k + 1) = (A + fl.A)x(k) + Bu(k) +w(k)

For the sensor failure, we have two situations:

(2.2.1)

(2.2.2)

• Partial sensor failure Partial sensor failure can be modelled by increasing the mea·

surement noise covariance matrix R

• Total sensor failure For the total sensor failure, a similar idea can be followed as

(2.2.1), the failures can be modelled by annihilating the appropriate row of the mea­

surement matrix Has:

z(k) = (H + fl.H)x(k) + v(k) (2.2.3)

Here we consider combination of the partial and total sensor failures, and simul­

taneous failures of the different sensors for DC motor FDI, and the combination of total

sensor failure, actuator failure, and system component failure for VTOL aircraft model.

These situations require that failure detection and identification algorithm to be more re­

sponsive and robust.
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Chapter 3

Fault-tolerant control system design

For many applications, it is highly desirable to develop an aircraft /light control

system with reconfigurable capabilities, which is able to detect and identify failures of sen­

sors and lor actuators, even the system impairment, and then to recover the performance of

the impaired system to the maximum extent. In general, an efficient FfCS consists of two

parts: failure detection and identification scheme; reconfigurable control scheme. In this

chapter, two main FDI scheme are developed on the basis of the algorithm in chapter 2:

multiple-hypothesis Kalman filter; interacting multiple-model estimator. Linear quadratic

regulator approach is used for reconfigurable feedback control law desigu of nominal sys­

tem, while the eigenstructure assignment technique is for the impaired system.

3.1 Multiple-hypothesis Kalman filter based FDI scheme

The configuration of the multi-hypothesis Kalman filter failure detection method

is shown in Figure 1.1. System observations are directly input into the bank of Kalman

filters running in parallel. The number of Kalman filters depends on the number of modes

that the system is expected to experience. Failure detection starts by monitoring the white

Gaussian distributed residuals of each Kalman filter. The likelihood function value of each

filter's residuals is calculated to determine the most probable mode-normal or failure­

that has occurred given measurements. Essentially, the N most recent residual signals are

examined to determine whether they differ siguificantly from the statistical description of

their values that assumes no failures. The number N is a design parameter. A "sliding
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window" of the N most recent samples, with N on the order of 5 to 20, would be used.

The log-likelihood function value is calculated as [6]

i

LN = -0.5 L [r(j)T1J-2r (j) + log 1172 1]
j=i-N+l

(3.1.1)

Using (3.1.1), we calculate the likelihood value for each hypothesis model, and pick the

maximum one which will represent the most possible operation status of the system. As

we will see in chapter 4, there exists time delay for failure detection, and the delay depends

on the size of the "sliding window". On the other hand, as stated in chapter 2, we can

calculate the mode-conditional probability, and compare it with the prespecified threshold

value to make failure/no failure decision.

The algorithm of multiple-hypothesis Kalman filter can be summarized as Table

3.1

3.2 Interacting multiple-model estimator FDI algorithm

As described in chapter 2, the model-conditional probability is calculated, and

can provide an indication of mode in effect at any time. It is natural to use it as an indication

of a failure. By comparing with the threshold, the failure decision can be made at time k:

(k) (k)
{

> f1T --t OJ : mode j occurred
ItJ = maxlti =

i < itT --t 0, : nominal mode occurred

Note that above failure decision rule provides not only the result of the failure detection but

also the information of the type (sensor or actuator, system component), location (which

sensor or actuator), size (total failure or partial failure with the fault magnitude) and fault

occurrence time, that is, simultaneous detection and diagnosis. Taking into account the his­

tory of the modes enables the IMM algorithm to yield the best state estimation of the system

subject to failures. Unlike the multiple-hypothesis Kalman filter, a "sliding window" is not

necessary here to calculate likelihood function, which means that IMM algorithm can de­

tect and identify failures almost in real-time.

The following Table 3.2 summarizes the interacting multiple-model FDI scheme.
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Table 3.1: One cycle of multiple-hypothesis Kalman filter based FDI scheme

I. Model-conditional filter reinitialization (for j = I, ... , M):
x~(klk) = xj(klk). Pf(klk) = Pj(klk)

2. Model-conditioual filter updating:
time update (from k to k + 1):

xj(k + 11k) = Ajx(klk) + Bju(k)
Pj(k + 11k) = AjPj(klk)AJ + Qj

Kalman filter gain:
Kj(k + 1) = Pj(k + 1Ik)HJiHjPj(k + 1Ik)HJ + Rjj-l

Kalman filter measurement residual:
Tj(k + 1) = z(k + 1) - Hjxj(k + 11k)

residual covariance:
o-;(k + 1) = HjPj(k + 1Ik)HJ + Rj

measurements update:
xj(k + 11k + 1) = x(k + 11k) + Kj(k + l)Tj(k + 1)
Pj(k + 11k + 1) = Pj(k + 11k) - Kj(k + l)Hj Pj (k + 11k)

3. Model-conditional probability update:
likelihood function:

L (k + 1) - 1 exp( 'J(k+I)"i
2
;k+1)'j(k+l»)

j - v'12rraJck+l)!
mode probability update:

pj(k + 1) = t:~::~li~!k)
fault decision:

"sliding window" method:
Lj.N(k + 1) = ~~';!k_N+2IogLj(m)
OJ is the most possible system mode, j = aTg maxi Li.N(k + 1)

conditional probability method:
ifpj(k+ 1) =max;pi(k+1) > PT => OJ
ifpj(k + 1) = max,Pi(k + 1) < PT => 01

4. Combination of state and covariance estimate:
overall state estimate:

XMMAE(k + 1) = ~jxj(k + l)pj(k + 1)
overall covariance estimate:

PMMAE(k + 1) = ~j[Pj(k + 1) + xj(k + l)xj(k + WJ
where xj(k + 1) = XMMAE(k + 1) - xj(k + 1)
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Table 3.2: One cycle of interacting multiple-model based FDI scheme

l.Model-conditional filter reinitialization (for j - I, ... , M):
prior mode probability:

I"j(k + 11k) = 2:i 7Cijl"i(k)
mixing state estimate:

xO(klk) = ". x,(k)n'jP;(k)
J L.n ,uj(k+llk)

mixing covariance:
PO(klk) = 2:. n';~i(k)(Pi(klk)+;;?,(klk)x?i(klk)T)

) • ~;(k+Jlk)

where x?j(klk) = x?(klk) - Xj(klk)
2. Model-conditional filter updating:

time update (from k to k + 1):
xj(k + 11k) = Ajx(klk) + Bju(k)
Pj(k + 11k) = AjPj(klk)AJ + Qj

Kalman filter gain:
Kj(k + 1) = Pj(k + llk)IfJ[HjPj(k + llk)HJ + Rj]-l

Kalman filter measurement residual:
Tj(k+ 1) = z(k+ 1) - Hjxj(k+ 11k)

residual covariance:
a}(k + 1) = HjPj(k + llk)HJ + Rj

measurements update:
xj(k + 11k + 1) = x(k + 11k) + Kj(k + I)Tj(k + 1)
Pj(k + 11k + 1) = Pj(k + 11k) - Kj(k + I)Hj Pj (k + 11k)

3. Model-conditional probability update:
likelihood function:

1 rfCk+l)Uj2(2k+l)rj(k+l»)
Lj(k + 1) = JI2nuJ(k+J)\ exp(

mode probability update:
.(k + 1) - ~i(k+llk)Li(k+l)

1") - 2:, ~,(k+Jlk)L,(k+l)
fault decision:

if I"j(k + 1) = maxi I",(k + 1) > I"T =} OJ
if I"j(k + 1) = max, I"i(k + 1) < I"T =} 01

4. Combination of state and covariance estimate:
overall state estimate:

x(k + 1) = 2:j xj(k + 1)l"j(k + 1)
overall covariance estimate:

P(k + 1) = 2:j[Pj (k + 1) + xj(k + l)xj(k + I)T]
where xj(k + 1) = x(k + 1) - xj(k + 1)
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3.3 Reconfigurable controller design

In order to detect and identify failures of the sensors, actuators, and system com­

ponents, the system must be asymptotically stable. Faster state convergence rate is, the bet­

ter failure detection and identification performance we will get. In [12], lots of researches

have been done on using LQR to design the optimal control to stabilize the system dynamic

performance. EA method is used to recover the dynamic performance of impaired systems

to the maximum extent. The reason for the choice of EA for impaired systems is that when

the performance specifications are given in terms of system eigenstructure, the eigenstruc­

ture can be achieved exactly for the stability and desired dynamic performance. The extent

of performance recovery highly depends on the number of actuators and measurements

available. In general, the LQR-based control design will guarantee the closed-loop system

stability and certain degree of robustness. For the above reason, the EA is used for the de­

sign of reconfigurable controller while LQR is for the design of the nominal controller. To

achieve steady-state tracking, reconfigurable feedforward controllers are also synthesized

using input weighting approach. The DC motor system and VOTL aircraft control system

are both multiple inputs and multiple outputs (MIMO) system.

The main results of eigenstructure assignment by state feedback and output feed­

back are given in the following theorems [7].

Theorem 1 For a dynamic system described in (2.1. J)with a full state feedback given by

u(k) = Kx(k) +Gr(k)

there exists a matrix gain K E iRmxn such that

I. n self-conjugate eigenvalues can be assigned arbitrarily

(3.3.1)

2. r entries in each corresponding eigenvector ofa total ofn eigenvectors can be arbi­

trarily selected

3. the achievable eigenvectors must lie in the subspace spanned by {(.\;1 - A)-l B, i =
1, ... ,n}
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where Ai is the itk closed-loop eigenvalues of the closed-loop system, G E Rmxm is

the input weighting matrix of the closed-loop system, and r( k) is the external input

to the closed-loop system.

In situations where only the output feedback is available, the results of eigen­

structure assignment can be stated as:

Theorem 2 For a dynamic system described in (2.1.1) with an outputfeedback given by

u(k) = KZ(k) + Gr(k)

there exists a matrix gain K E Rmxq such that

1. max(m, q) self-conjugate eigenvalues can be assigned arbitrarily

(3.3.2)

2. max(m, q) eigenvectors can be partially assigned with min(m, q) entries in each

vector arbitrarily chosen

3. the achievable eigenvectors must lie in the subspace spanned by {(AJ - A)-1 B, i =

1, ... ,max(m,q)}

where Ai is the it" closed-loop eigenvalues of the closed-loop system, G E Rmxm is

the input weighting matrix of the closed-loop system, and r(k) is the external input

to the closed-loop system.

As stated in chapter 2, multiple-hypothesis Kalman filter and interacting multiple­

model estimator can provide the overall probability-weighted state estimates, which makes

it possible to apply the eigenstructure assignment by state feedback for the impaired system

to maintain the overall system stability, and then to recover the performance as much of

nominal system as possible.

3.3.1 Dynamic performance recovery-feedback controller design

Assignment of achievable eigenstructure For the nominal system with the

state feedback K designed by LQR method:

x(k + 1) = Ax(k) + Bu(k)
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z(k + 1)

u(k)

Hx(k + 1)

Kx(k)

(3.3.4)

(3.3.5)

and the eigenstructure of closed-loop system is:

(A+BK)vi = '\,Vi i = 1, ... ,n (3.3.6)

Suppose that the dynamics of the system have uudergone some changes due to

faults in one or combination of system components, actuators, and sensors, and thus the

system state-space description has vary from (A, B, H, K) to (Aj, Bf ,Hf ,K f ), where "i"
stands for failure. The system has become:

x(k + 1)

z(k + 1)

u(k)

Afx(k) + Bfu(k)

Hfx(k + 1)

Kfx(k)

(3.3.7)

(3.3.8)

(3.3.9)

with eigenstructure described as:

(Af + BfKf)v{ = ,\(v{ i = 1, ... ,n (3.3.10)

As we know, eigenvalues determine the decay/growth rate of the system dynamic

response, and the associated eigenvectors detennine the shape of the response. The re­

configured system can capture as much of the eigenstructure information characterizing

the nominal closed-loop system as possible on the basis of the new feedback gain matrix

Kf . Without loss of generality, we assume that the nominal closed-loop eigenvalues are

arranged in decreasing order with respect to their real parts, that is R('\d ;::: R(,\2) 2:

... 2: R('\n). It has been shown that all n closed-loop eigenvalues can be assigned with at

most r entries of anyone eigenvector. In order to maintain the performance of the nom­

inal closed-loop system, a new feedback gain matrix Kf should be designed so that the

closed-loop eigenvalues of the impaired system are the same as those of the nominal sys­

tem. On the other hand, the associated eigenvectors of the reconfignred system have to be

as close to the corresponding Ones of the nominal closed-loop system as possible. The aim

of reconfigurable control system design is translated into:

(3.3.11)
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and

min Ji(v{) = min[llvi - v{11 2
] i = 1, ... ,n (3.3.12)

By rewriting (3.3.6), (3.3.10), the reconfigured system eigenvectors and nominal system

eigenvectors will satisfy:

Vi = (A;I - AtlBKvi i = 1, ... ,n

(3.3.13)

(3.3.14)

Note that the eigenvector of nominal system, Vi, is the desired eigenvector of v{
with the feedback gain matrix K f . The above inverse (A{ I - AI)-1 and (A;I - A)-I ex­

ist under the assumption that the closed-loop eigenvalues do not belong to the set of the

open-loop eigenvalues, and the eigenvectors, v{ and Vi must be in the subspaces spanned

by the columns of (A{I - Af )-1Bf and by the columns of (Ail - A)-IB respectively.

These subspaces are of the dimensions which are equal to the rank of Bf and the rank of

B respectively which are equal to the number of independent control variables. Therefore,

the number of control variables available determines how large (dimension) the subspace is

in which achievable eigenvectors must reside. The orientation of the reconfigured system

subspace is determined by the open-loop parameters described by Af , Bf and the desired

closed-loop eigenvalue A{, and the orientation of the nominal system subspace is by the

open-loop parameters-A, B and the closed-loop eigenvalue Ai. In general, due to the vari­

ations in system dynamics, v{ does not lie in the same subspace as Vi. Instead of exactly

recovering the v{, a "best possible" choice for v{ is made. The best possible eigenvec­

tor, ViA' can be interpreted as the projection of desired eigenvector Vi onto the subspace

spanned by the columns of (A[I - Af )-1 Bias in Figure 3.1. Analytically, we compute VIA
by defining

(3.3.15)

and a new vector Wi can be defined as:

(3.3.16)

Thus, (3.3.13) can be rewritten as:

(3.3.17)
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subspace spanned by columns of

f -I
(Aj/-Aj ) 8 j

v,

v·
"

Figure 3.1: Geometric interpretation of Vi, ViA

To find the best possible eigenvector ViA is equivalent to find the vector Wi as a

solution of least-square minimization problem (3.3.12), which can be rewritten as:

min Ji ( Wi) = min(Vi - EiWifWi(Vi - EiWi) (3.3.18)

where ''T'' stands for the transpose, and Wi E Rnxn is a symmetric positive definite weight­

ing matrix. The choice of the elements of Wi is pretty much problem dependent. In general,

the larger the j'h diagonal element in Wi, the closer the j'h element in v{ to the correspond­

ing elements in Vi. The solution of (3.3.18) is

(3.3.19)

(3.3.20)

By computing (3.3.11), (3.3.15), (3.3.19), we can get the achievable eigenstruc­

tnres of the reconfigured system. The next step is to find the reconfigurable control gain

matrix on the basis of the achievable eigenstructures.

Computation of reconfigurable control gain matrix The impaired system

state-space equation (3.3.7) can be rewritten as

x(k + 1)

z(k+ 1)

(Af + BfKf )x(k)

Hfx(k + 1)
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In order to simplify the procedure in calculating the feedback gain matrix Kf, we

consider the state-transformation defined by

and select the transformation matrix

x=Tx (3.3.23)

(3.3.24)

where S E Rnx(n-m) is any matrix such that rank(T) = n. Note that the choice of S is not

unique. In this research, S is chosen as the nul1(Bf ) such that

o

(+)
(3.3.25)

(3.3.26)

written as

By applying the above linear transformation, system equation (3.3.21) can be

x(k +1)

z(k + 1)

(Af + 13fKfT)X(k)

Hfx(k T 1)

(3.3.27)

(3.3.28)

where Af = T-l AfT, 13f = T-1B, and Ht = HtT. and the corresponding eigenvectors

under this linear transformation are related by

(3.3.29)

Each pair of achievable eigenvalues/eigenvector of the transformed system satis-

fies

(3.3.30)

By defining

At = ( ~11 ~12 )

A2l A22

-t (~)Vi
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where All E Rmxm, ,1'22 E R(n-m)x(n-m), 1. E RmxI, and T, E R(n-m)x'. In view of

(3.3.25) and the above definitions, we can rewrite (3.3.30) as

(
f - - )(-) ( )\ I mxm - All -A12 Ii _ I mxI K T-f

- f - - - f v,
-A21 '\ I(n-m)x(n-m) - A22 Ii 0

From (3.3.33), we can get

By defining

(3.3.34) becomes
- -f f-(A, + KfT) v, = \1, i = r, ... ,n

We can express (3.3.36) in a compact form

where

(3.3.33)

(3.3.34)

(3.3.35)

(3.3.36)

(3.3.37)

V

F

(3.3.38)

(3.3.39)

If the achievable eigenvalues are all real, then the corresponding eigenvectors are

real too, thus V and F are real, and the feed back gain matrix is

(3.3.40)

However, when there is at least one pair of complex-conjugate eigenvalues/eigenvectors,

both V and F are complex matrices. To alleviate the need for complex arithmetic, the

following procedure is needed to transform them to real matrices.

Without loss of generality, we assume that A{ = (AD' and v{ = (v~)', and all

remaining eigenvalues/eigenvectors are real. Defining

-f -R ·-1 (3.3.41)v, = v, + JV,

f- ff + jf[ (3.3.42)A,iI

27



where vf and vi denote the real and imaginary parts of the eigenvector v{ respectively, and

if and f[ are the real and imaginary parts of A{ j;. We rewrite (3.3.37) as

... AUn)
(3.3.43)

Mnltiplying both sides of (3.3.43) with the nonsingular transformation matrix

(

0.5 -0.5j 0]

A = O.~ 0.5~ ~

(3.3.43) becomes as

(3.3.44)

(Ad KfT) (vf vi .. , v~)

(A] +KfT)V

where

V=(vf v{
F (if if

( I']R '[ f - )I] ... >.t.In
F

(3.3.45)

(3.3.46)

(3.3.47)

(3.3.48)

Thus the feedback gain matrix for the complex eigenvalues can be computed as

The generalization to the case of more complex conjugate pairs is straightforward.

(3.3.49)

3.3.2 Steady-state performance-recovery feedforward controller de­

sign

The dynamic performance of reconfigured system can be maintained to the max­

imum extent by exactly recovering the eigenvalues and achieving the best possible corre­

sponding eigenvectors. It is very important to take into account the steady-state perfor­

mance. This can be accomplished by a set of designed feedforward control gain matrices,

Gj , j = 1, ... , M. matching the corresponding system status. These feedforward gain

matrices can be calculated using a property of z-transforrn.
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For the system (3.3.7) with external input r(k) weighted by feedforward gain

matrix Gf, the state feedback law is

x(k + 1)

z(k + 1)

(Af + BfKf)x(k) + Gfr(k)

Hfx(k + 1)

(3.3.50)

(3.3.51)

The steady-state output of the stable closed-loop nominal system subject to a unit

step input can be calculated using the final value theorem in z-transform

z(00) = q~ H,(zI - A - BK)-IB}G = q~ H,Vdiag{ z ~ ,\}V-I}G (3.3.52)

where K represents the nominal system state feedback control gain,. H, is the matrix such

that the system output z(k) = H,x(k) tracks the reference input r(k). {.\, i = I, ... , n}

and V = (VI V2 ... Vn ) are the closed-loop eigenvalues, and eigenvector matrix.

Similarly, the steady-state output of the reconfigured system subject to a unit step

input is

z(oo) = {limH,(zI - Af - BfKf)-1Bf }Gf = {limH,Vf diag{~ }Vf-I}Gfz_l z-+l Z - Ai
(3.3.53)

where Kf represents the reconfigured system state feedback control gain. H, is the matrix

such that the system output z(k) = H,x(k) tracks the reference input r(k). p.{, i =

1, ... , n} and V = (v{ v£ v~ ) are the closed-loop eigenvalues and eigenvector

matrix. By defining

w q~ H,V diag{ z ~ Ai }V-I}G (3.3.54)

q, {lim H,Vf diag{_l-f }Vf-I} (3.3.55)
z--+l z - _-\

In view of above definition, the problem of maintaining the steady-state output

performance with respect to unit step external input is to determine the appropriate Gf to

minimize J (Gf)

(3.3.56)

The optimal solution is given by [8]

(3.3.57)

where q,+ = (q,Tq,)-Iq,T. It should be noted that the feedforward control gain Gf is

dependent on the feedback control gain matrix K f.

29



Table 3.3: Reconfigurable control signal generation scheme

ifllj(k)</lT j-l, ... ,n
u(k) = L~l /lj(k){Gjr(k) + Kjxj(k)}

otherwise
u(k) = Gjr(k) + KjxAk) j = argmaxi 11i(k)

3.3.3 Reconfigurable control signal generation

On the basis of computations of the model-conditional probabilities and the pre­

computed feedforward and feedback control gain matrices, the overall control signal into

the plant can be generated by two ways: one is based on a Bayesian scheme and the other

is by the maximum posterior probability (MAP) approach.

For the Bayesian approach, the control signal is obtained as the overall probability­

weighted control signals from all models, which can be calculated as

M

u(k) = I: /lj(k){Gjr(k) + Kjxj(k)}
j=l

(3.3.58)

The advantage of this approach is that it is able to reduce the effect of incorrect model

selection during the early stage of reconfignration.

In the MAP approach, the control signal is chosen from the model with the high­

est probability.

(3.3.59)

Clearly, it is advantageous to combine those two approaches. Ifthere is no failure,

the Bayesian approach is used. Once the failure has been detected and identified, the control

signal from the model with the highest probability will be used. The reconfigured control

signal generation rules is described in Table 3.3.
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Chapter 4

Simulation results

4.1 System state-space equation description

In this chapter, multiple-hypothesis Kalman filter based and IMM based FOI

schemes are applied for the failure detection and identification of DC motor and VTOL

aircraft model.

4.1.1 DC motor

Different measurable signals can be used to evaluate the response of the DC mo­

tor that is applied to control the motion of the aircraft flap. Measurable signals can be the

angular position and velocity of the motor shaft, voltage and current at the terminal of the

motors. For simplicity, we measure the angular position and velocity of the shaft, and the

sensors used are gyroscope and incremental encoder [19].

Gyroscope The gyroscope measurement can be modelled as:

Wg = W +b+vg (4.1.1)

where W is the true angular velocity of the shaft, vg is additive white Gaussian noise with

zero mean and certain covariance, and b is gyroscope bias drift term which is modeled as

random walk:
db
-=nb
dt
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where nb is assumed to be zero-mean Gaussian with known variance. The gyroscope mea­

surement is assumed to be available at the Kalman Filter update rate, Tg = 0.005 seconds.

Incremental Encoder The incremental encoder can be modeled as:

(4.1.3)

where eis the true angular position of the motor shaft and Ve is assumed to be zero-mean

Gaussian with known variance. The encoder measurement is updated at the rate, Te = 0.05

seconds.

Dc Motor Model The dynamics of a DC servo motor are described by the electri­

cal signals and the mechanical motion of the armature as follows:

L
dia R" K h

a- + uta = Va - e U
dt

Jij + biJ = K,ia

where the symbols are listed in Table 4.1.

Table 4.1: DC motor model parameters

Symbol Description
J Moment of inertia of motor and load
b Viscous damping of motor and load

La Inductance of the armature
Ra Resistance of the armature
Va Voltage across the terminal
K e Back EMF
K, Torque sensitivity
N Gear Raio

(4.1.4)

(4.1.5)

Integrated Model Combining (4.1.1), (4.1.2), (4.1.3), (4.1.4), and (4.1.5), a con­

tinuous state-space model can be formulated as

(4.1.6)
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Table 4.2: System Parameters description

Q _ fT, eA,(T-T)C Q r(f" A;rT')dr ~ C Q CTT. + (A,GcQcG;;+GcQcG;;A;)Ti
- JO c cUe e - c c c 9 2!

R= (~: & )T
T,

H=l (~
0 0 nt = tobs1 0

( 0 1 0 1) otherwise

e 0 0 0 0 1 0 0N

w 0 N 0
,u = (~),andA, =

0 b N2Kt 0
where x = ,Be =

-7
.Gc =

-J J

i 1 0 0 0 _& _& 0L. La L.

b 0 0 1 0 0 0 0
The corresponding output equation is

e

z(t) = (~
0 0

~)
W

+ (::)1 0 i

b

The discretization of (4.1.6) are described as

x(k + 1)

z(k + I)

Ax(k) + Bu(k) + w(k)

Hx(k+l)+v(k+ 1)

(4.1.7)

(4.1.8)

where system parameters are described in Table 4.2. The specifications of Gyroscope and

incremental encoder are listed in Table 4.3.

A simple diagram for the above state space representation is shown in Figure 4.1.
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Table 4.3: Gyroscope and incremental encoder specification

Processing noise covariances:

bias noise = 3.0462e-006 C<:2)

Measurement noise covariances:

gyro noise = 1.1517e-009(~); encoder noise = 3e-l0(rad)

Fignre 4.1: System model

4.1.2 VTOL aircraft model

The linear model for the aircraft can be described by

e.

itt)

z(t)

Acx(t) + Bcu(t) + w(t)

Ccx(t) + v(t)

(4.1.9)

(4.1.10)

where x = (Vh Vv q 0 f ,u = (Oc 01 f. The states and inputs are: horizontal

velocity Vh , vertical velocity Vv , pitch rate q, and pitch angle 0; collective pitch control

oc, and longitudinal cyclic pitch control 0/. The subscript "c" stands for continuous. The

model parameters are given as

-0.0366 0.0271 0.0188 -0.4555

0.0482 -1.01 0.0024 -4.0208
Ac =

0.1002 0.3681 -0.707 1.420

0.0 0.0 1.0 0.0

34



0.4422 0.1761 1 0 0 0

3.5446 -7.5922 0 1 0 0
Be = ,Cc=

-5.52 4.49 0 0 1 0

0.0 0.0 0 1 1 1

The discretization of (4.1.9) can be represented by

x(k + 1) Ax(k) + Bu(k) + w(k) (4.1.11)

z(k + 1) Hx(k+ 1) +v(k+ 1) (4.1.12)

where A = eA<T, B = U[ eA<Td7)Be , and H = Coo and the sampling period is T =
O.lseconds. Processing noise covariances and measurement noise covariances are given as

following: Q = diag{0.001 2 , 0.0012, 0.0012 , 0.0012}, R = diag{0.01 2 , 0.012 ,0.01 2, 0.012 }.

4.2 FDI performance evaluation of MH-KF and IMM al­

gorithms

4.2.1 DC motor case

Figure 4.2 depicts an example of the failure scenario used for FDI perfonnance

evaluation.

"
J1i I--.--o:.

" . "~ .-
-~onctIdorn<>la.

Figure 4.2: Time Sequence

The description of each possible operation mode of !he integrated DC motor is

explained in detail below.
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• HO Nominal operation - All systems are functioning properly. The nominal param­

eters used for the Kalman filter are representative of the actual system. Noise figures

of the gyroscopes and encoders are direct!y taken from the sensor specifications.

• HI Noisy Gyro 1 - All the systems except the gyroscope are functioning properly.

Partial failure of the gyroscope is simulated as the increase in the strength of the gyro­

scope measurement noise. The covariance of the noise of the gyroscope is increased

by 50 times larger than the nominal value.

• H2 Noisy Gyro 2 - Similar scenario as HI but the strength of the gyroscope measure­

ment noise is increased by 100 times larger than the nominal value.

• H3 Failed Gyro - All systems except the gyroscope are functioning properly. The

gyroscope completely fails during service (Hard failure). It is not participating in

measuring the response of the motor; it is only outputting signal composed of mea­

surement noise.

• H4 Noisy encoder - All the systems except incremental encoder are functioning prop­

erly. Partial failure of the incremental encoder is modeled by increasing the covari­

ance of the measurement noise of 100 times larger than the nominal value.

• H5 Failed Encoder - All the systems except the incremental encoder are functioning

properly. Hard failure of the encoder is being expected. The output signal of the

encoder is just the measurement noise.

Figure 4.3 depicts the sensor failures scenario. Because of the difference in the

sampling rates between the gyroscope and incremental encoder, two parallel M H - K P

sets are used: M H - K pI considers gyroscope failures, while M H - K pIl considers

incremental encoder failures. M H - K pI uses the models: HO nominal operation, HI

noisy gyro I, H2 noisy gyro 2, and H3 failed gyro. MH - KpIl uses the models: HO

nominal operation, H4 noisy encoder, and H5 failed encoder.

By choosing N = 20 as the "sliding window" size, the log-likelihood function

values of M H - K pI are shown in Figure 4.4, and the log-likelihood function values of

M H - K pIl are shown in Figure 4.5. The mode which will be declared for the current

36



.--
Figure 4.3: Failure sequence for DC motor

system operation mode is the corresponding filter with the maximum log-likelihood func­

tion value. In Figure 4.4, there is some incorrect fault identification in H2 period, and there

is detection delay at the mount of NTg for H3. In Figure 4.5, there are some incorrect fault

identification in H5 period, and detection delay for H5.
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Figure 4.4: Log-likelihood function values of M H - K F 1 with N = 20

The incorrect fault identification can be reduced by increasing the "sliding win­

dow" size. As shown in Figure 4.6, and Figure 4.7, the window size N is equal to 40, and
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Log-likelihood function value Far Enooder failure
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Figure 4.5: Log-likelihood function values of M H - K pII with N = 20

the incorrect fault identification occurrence is less than that of N = 20. Unfortunately, it

will introduce more detection delay.

In general, all the failure modes can be detected by the comparison of the log­

likelihood function value of each hypothesis under the certain fault tolerant. The detection

delay can be shortening if the shorter sliding window is used. However, a small window

size would increase the probability of incorrect fault identification.

As stated in chapter 3, we can compare the posterior or model-conditional proba­

bility of each system mode with the prespecified threshold PT to make failure/no failure de­

cision. Analysis of the mode-conditional probabilities for the M H - K pI and M H K pI!

clearly shows five failure periods in Figures 4.8 and 4.9. Posterior probabilities correspond­

ing to the different hypothesis (HO, HI, H2, H3, H4, and H5) indicate when the gyro or

incremental encoder is going to suffer the failures (represented by 0-1 and 1-0 switching).

Furthermore. failures are identified unambiguously and almost instantaneously.

Assume that the gyroscope failures sequence and encoder failures sequence are

first-order Markov chains with transition probability matrix Hg and He. Figure 4.10 and
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Figure 4.11 depict the state transition diagram.
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Fignre4.1O: State transition diagram for IMM - FDI!

The design strategies of transition probability matrix can be referred in [17]. Fig­

ure 4.12 and Figure 4.13 show the PDI simulation results using IMM-based PDI scheme.

Here two parallel I M M - F D I filters are used: I M M - F D I I considers gyroscope

failure modes, while IMM - FDIII looks at encoder failure modes. IMM - FDII

includes HO, HI, H2, and H3, IMM - FDIII includes HO, H4, and H5. By looking at the

41



Figure 4.11: State transition diagram for 1MM - F DIll

switching of the model-conditional probability for each system mode, we can determine

the system operation mode at any time, and detect the failnres in operation and identify

where the failure is.

For simulation results shown above, the shaft angular velocity and angular po­

sition estimation errors based on M H - K F and 1MM are compared in Figure 4.14. It

can be noticed that estimation errors from IMM-based FOI scheme are consistently much

less than that from M H - K F based FOI scheme, and even below the measurement noise

level. This just verifies that performance ofIMM algorithm is superior to that ofM H - K F

algorithm.

4.2.2 VTOL aircraft model case

The failure scenario ofVTOL aircraft model is assumed in Figure 4.15. Referring

to (4.1.7), we can calculate the eigenvalues of the open-loop system, A = diag{1.0276 +
0.0265i, 1.0276 - 0.0265i, 0.9770, 0.8142}. The unstable modes are oX = 1.0276±0.0265i.

It is necessary to apply the state feedback to stabilize the system dynamic response. Here,
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Figure 4.14: Estimation errors of Shaft angular velocity and angular position

LQR method is used to compute the feedback gain matrix K. Figure 4.16 depicts the

system dynamic response after applied the state feedback. The initial conditions and other

parameters are listed in Table 4.4.

I J
50 time (sec)

Figure 4.15: Failure scenario of VTOL aircraft model

The system possible modes are assumed to be HO - nominal model, HI - sensor

failure, H2 - system failure, and H3 - actuator failure. System state-space description for

each mode is referred as Table 4.5.

The "sliding window" size N is set to be equal to 10, and the log-likelihood

function value for each system mode is in Figure 4.17. There exists false alarming and
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Table 4.4: VTOL aircraft model design parameters

State and control weighting matrices:

QLQR = diag{l, 1, 1, 1} and R LQR = diag{l, 1}

State feedback gain matrix and feedforward control gain matrix:

K = ( 1.2551 0.2243 -1.2954 -1.9315) G = ( 1.3428
-0.2728 -1.2669 0.4872 1.1662' -0.2603

Initial condition and the external control input:

Xo = (25 5 1 0.8 f, and r = (1 1 f
Initial conditions for each Kalman filter:

X~ = (25 5 1 0.8 r

0.2573 )
-1.4540

Pj
O = diag{0.001 2 ,0.0012 ,0.0012 ,0.0012

}

Qj = diag{0.001 2 , 0.0012,0.0012,0.0012 }, and R j = diag{0.012
, 0.012 ,0.012 , 0.012}

The command tracking matrix H,:

o 00)
100

Table 4.5: System matrices for nominal and fault modes

MoOO; Aj Bj Hj

( 0.99~ 0.0026 0.0005 OO~g ) ( 0.0441 0.0170 ) U
0 0

DFault-free (j = 1) 0.0046 0.9041 -0.0199 -0.3819 0.3366 -0.7208 1 0
0.0097 0.0337 0.9389 0.1294 -0.5257 0.4192 0 1
0.0005 0.0018 0.0965 1.0071 -0.0276 0.0225 1 1

( Ogg~ 0,0026 0.0005 0.0459 ) ( 0.0441 0.0170 ) 0
0 0

DSensor fault (j = 2)
0.0046 0.9041 -0.0199 -0.3819 0.3366 -0.7208 1 0
0.0097 0,0337 0,9389 0.1294 -0.5257 0.4192 0 1
0.0005 0.0018 0.0965 1.0071 -0.0276 0.0225 1 1

( 0.99~ 0.0026 0.0005 0.0459 ) ( 0.0441 00170 ) U
0 0

DSystem fault 0 = 3)
0.0046 0.0 -0.0199 -0.3819 0.3366 -0.7208 1 0
0.0097 0.0337 0.9389 0.1294 -0.5257 0.4192 0 1
0.0005 0.0018 0.0965 1.0071 -0.0276 0.0225 1 1

( 0.9964 0.0026 0.0005 0.0459 ) ( 0.0441 0.0170 )

U
0 0

DActuator fault U = 4)
0.0046 0,9041 -0.0199 -0.3819 0.0 -0.7208 I 0
0.0097 0,0337 0.9389 0.1294 -0.5257 0.0 0 I
0.0005 0.0018 0.0965 1.0071 -0.0276 0.0112 I I
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Figure 4.16: System dynamic response with state feedback

delay for fault detection and identification; also it is not convinent to make the failure/no

failure decision by comparing log-likelihood function values.

The system mode sequence can be modeled as a four-state Markov chain with

transition probability matrix HT . The state transition can be illustrated as Figure 4.10.

By using IMM-based FDI scheme, the simulation results without applying reconfigurable

control system to the fault modes are shown in Figure 4.18. As we can see, IMM-based

FDI algorithm can detect and identify the fault modes unambiguously and almost instanta­

neously.

87/90 1/90 1/90 1/90

0.01 0.99 0 0
HT = (4.2.1)

0.01 0 0.99 0

0.01 0 0 0.99

4.3 Performance evaluation of FTCS for VTOL aircraft

model based on IMM

According to performance evaluation of two proposed FDI schemes, multiple­

hypothesis Kaman filter and interacting multiple-model estimator, we can conclude that

IMM-based FDI scheme can outperform the MH-KF-based FDI scheme on both state esti-
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Figure 4.18: IMM-based FDI simulation for VTOL aircraft system modes
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mation and failure detection and identification. Parameters in Table 4.4 are used to design

the Kalman filters and reconfigurable control system. In addition to the conventional per­

formance indices, such as false alarm (FA) and missed detection (MD), the following per­

formance indices are designed and used in performance evaluation: average percentages of

correct detection and identification (CDID), incorrect mode identification (lFlD), no mode

detection (NMD).

I) one CDID is counted if the model that is closet to the system mode (normal or fault

mode) in effect at a given time has a probability higher than the threshold f1r = 0.9

2) one IFID is counted if the model with a probability over f1T is not the one closet to

the fault mode in effect at a given time

3) one FA is counted if the model with a probability over f1T is not the normal mode

while the normal mode is in effect at the given time

4) one MD is counted if the normal model has the highest probability which exceeds

f1r while the system has a fault

5) one NMD is counted if no model has a probability greater than f1r

It is desirable to have higher CDID and lower FA, IFID, MD, and NMD.

4.3.1 Eigenstructure and reconfigurable control gain

The eigenvalues and eigenvectors of the closed-loop system in fault-free mode

and different fault modes are presented in Table 4.6 and Table 4.7, respectively. The recon­

figurable control gain matrices are shown in Table 4.8. It is clear that the eigenvalues of the

fault modes can be exactly recovered and the corresponding eigenvectors can be assigned

as close to those of the nominal system as possible. We can calculate the misalignment of

the eigenvectors in terms of distance and angles between them to see how quantitatively

close they are.

Assume that the failure scenario of VTOL aircraft model is shown as Figure 4.15,

and the system-mode sequence is a four-state Markov chain with state transition probabil­

ity Hr (4.2.1). The state response under reconfigurable control is illustrated in Figure 4.19
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Table 4.6: Eigenvalues for nominal and fault modes

Fault-free Sensor fault System fault Actuator fault

( 0.7501 ) (
0.7501

) ( 0.7501 ) ( 0.7501 )
Eigenvalues

0.9254 0.9254 0.9254 0,9254
0.8962 0.8962 0.8962 0.8962
0.7708 0.7708 0.7708 0.7708

Table 4.7: Eigenvectors of nominal and fault modes

Mcdes Eigenvectors Misalignment in distanceLangle(rad)

( -0.0122 -0.5995 -0.4420
022« ) (OLOrFault-free

-0.7584 0.0456 0.1164 -0.4785 OLO
0.6517 0.4910 0.6586 -0.7927 OLO

-0.0025 -0.6304 -0.5978 0.3039 OLO
( 0.0122 0.5995 0.4420 0.2244 )

CLorSensor fault
-0.7584 0.0456 0.1164 -0.4785 OLO

0.6517 0.4910 0.65S6 -0.7927 OLO
-0.0025 -0.6304 -0.5978 0.3039 OLO

( -0.0563 -0.5806 0.3870 0.0375 ) (
0.0447LO.0447rSystem fault

-0.7615 0.0195 -0.0639 -0.4204 O.0355LO.0355
0.6457 0.5002 -0.6814 -0.8471 1.9983L3.0605

-0.0029 -0.6421 0.6179 0.3230 O.2040LO.2044

( -0,0329 -0.4483 -0.3086 0.1271 ) (
O.0235LO.0235rActuator fault

-0.7589 0.0574 0.1253 -0.4846 O.1804LO.1806
0.6503 0.5225 0.6813 -0.8045 O.1460LO.1461
0.0085 -0.7230 -0.6518 0.3189 0.0994LO.0994

Table 4.8: Controller gains for fault-free and reconfigured systems

Mode, Feedback control gains Feedforward control gains

Fault-free
1.2551 0.2243 1.2954 1.9315 1.3428 0.2573

-0.2728 -1.2669 0.4872 1.1662 -0.2603 -1.4540

Sensor fault
1.2551 0.2243 1.2954 1.9315 1.3428 0.2573

-0.2728 -1.2669 0.4872 1.1662 -0.2603 -1.4540

System fault
1.2596 1.5712 1.4483 2.0145 1.3492 3.4449

-0.4584 0,7518 0.5173 1.3997 -0.4513 -2.5497

Actuator fault
2.2964 1.1254 1.6745 2.7788 2.4770 0,9808

-1.3557 -1.3126 1.0865 2.0253 -1.4450 -1.3224
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in the presence of sensor fault, system fault and actuator fault; as we can see, the sensor

fault has no any effect on the state dynamic response, while the system fault and actuator

failure do have. By applying IMM-based FTCS to the aircraft model, the mode probability

transition is illustrated in Figure 4.20. It can be observed that there are a few mis-switching

between the nominal mode and actuator fault mode, a few amount of detection delay for

each fault mode. Overall, the fault mode has been correctly diagnOSed. The quantitative

performance indices are given in Table 4.9. The results in Table 4.9 are the average of

50 Monte Carlo simulation runs. Compared the performance indices values of reconfig­

ured system with ideal values of the performance indices in Table 4.10, satisfactory FDI

performance has been obtained via IMM-based FDI scheme.
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Figure 4.19: State response under reconfigurable control

Since the controlled variables are horizontal velocity and vertical velocity, it is

necessary to see how the reconfigurable control system affect those two channels. The

effects of reconfigurable control system on horizontal velocity and vertical velocity are

illustrated in Figure 4.21, and Figure 4.22 respectively. Without reconfiguration, the output

response will blow up, this is not allowed in many aircraft control system.

50



~Ol \ i ' ,£J',J
o 10 15 ~ ~ ~ ~ ~ ~ ~

hl,tllill (]
o 5 10 15 ~ a 00 ~ ~ e ~

~°1,,1, .,I '1
D 5 10 ~ ~ a ~ M W G ~

fj.···········j.··· j j [ " yvr;·rl········,,······· ]
£ OJ .......•........•........•.......•.........•....... ··I ••••••• ) ••••• ~,······.·· ....•

o 5 10 15 ~ ~ 00 $ ~ e H
~

Figure 4.20: Mode transition probability under reconfigurable control

Table 4,9: Values of quantitative performance indices

Modes CDID IFID FA MD NMD

Fault-free 98.48% - 051% - 3.6%

Sensor fault 99.01% 0,99% - 0,99% 3.6%

System fault 99.01% 0.99% - 0% 3.6%

Actuator fault 92.18% 0.99% - 0% 3.6%

Table 4.10: Ideal values of quantitative performance indices

Modes CDID IFID FA MD NMD

Fault-free 100% - 0% - 0%

Sensor fault 100% 0% - 0% 0%

System fault 100% 0% - 0% 0%

Actuator fault 100% 0% - 0% 0%
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Figure 4.22: Output response Z2 under faults
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The above performance evaluations of two proposed FOI approaches and IMM­

based fault-tolerant control system have indicated that the multiple-hypothesis Kalman fil­

ter and interacting multiple-model estimator can detect and identify the failure correctly,

and IMM-based FOI and reconfigurable control scheme can deal with system component,

actuator and sensor failures effectively.
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Chapter 5

Conclusion

5.1 Discussions

For the multiple-model based approaches, multi-hypothesis Kalman filter and in­

teracting multiple model estimator, the actual system can be modeled as a stochastic hybrid

system sufficiently and accurately, in which the status of the system at any time is deter­

mined among a set of possible operation modes according to the decision algorithms, such

as Maximnm log-likelihood function (MLLF), Bayesian scheme, and Maximum a Pos­

terior Probability. The simulation presented in this thesis shows that the multiple-model

based FDI approaches can detect and identify the complicated failure scenario very well

under the certain fault tolerance. As we can see, the multi-hypothesis Kalman filter is very

sensitive to the sliding window size used to calculate the log-likelihood function value. The

way to choosing appropriate window size should be followed: the window size should be

kept greater than one to prevent failure declarations due to a single residual sample of large

magnitude, consistently large residuals indicate abnormalities, whereas individual realiza­

tions of large magnitude are to be expected, while it is inappropriate to use all the residuals

from the initial time to current time, since this would decrease the sensitivity to true failures

as time processed. Thus a "sliding window" of the N most recent samples, with N on the

order of 5 to 20, would be suggested. The most of the detection delay is introduced by

using the sliding window method. In order to avoid the shortcoming of MLLF, the model­

conditional probability (MCP) is suggested for decision algorithm. The simulation result
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shows that model-conditional probability algorithm outperforms MILE Neither MLFF nor

Mep considers the interaction among the Kalman filters. With the assumption that the sys­

tem modes can be modeled as a finite-state Markov chain, the interacting multiple-model

estimator can dramatically improve the FDI performance and provide much better state

estimation.

Linear quadratic regulator and eigenstructure assignment schemes are used to

design the reconfigurable controller for nominal and fault system modes respectively. The

IMM-based FDI scheme and reconfigurable controller design scheme are integrated to deal

with the VTOL aircraft model suffered from the system component, actuator, and sensor

failures. The simulation results and values of performance indices have shown the effec­

tiveness of the integrated FDI and reconfigurable control scheme.

5.2 Future work

In this research, the possible system modes are prespecified; however, it is very

crucial to design the set of possible system operation modes to match the real system oper­

ation status, especially for very complicated system and real-time FDI. In order to describe

the system operation as accurately as possible, the vehicle's dynamic response and subsys­

tem models need to be understood thoroughly, and it is applicable to couple the IMM-based

FDI with neural network as shown in Figure 5.1. The neural network is going to train the

system operation mode based on the input and output, and the new system mode informa­

tion is added into the IMM filter bank, feedback controller bank and feedforward controller

bank. Existing FDI algorithms will continually be intensively studied to improve the per­

formance, reduce the computational complexity and cost of implementation.
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Figure 5.1: General structure of IMM-based PDI and reconfigurable control scheme with
neural network
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