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Abstract

Recent technological advances, especially in
the field of machine learning, provide astonishing
progress on the road towards artificial general
intelligence.  However, tasks in current real-world
business applications cannot yet be solved by machines
alone. We, therefore, identify the need for developing
socio-technological ensembles of humans and machines.
Such systems possess the ability to accomplish complex
goals by combining human and artificial intelligence to
collectively achieve superior results and continuously
improve by learning from each other. Thus, the need for
structured design knowledge for those systems arises.
Following a taxonomy development method, this article
provides three main contributions: First, we present
a structured overview of interdisciplinary research on
the role of humans in the machine learning pipeline.
Second, we envision hybrid intelligence systems and
conceptualize the relevant dimensions for system design
for the first time. Finally, we offer useful guidance for
system developers during the implementation of such
applications.

1. Introduction

Recent technological advances especially in the field
of deep learning provide astonishing progress on the
road towards artificial general intelligence (AGI) [1, 2].
Artificial intelligence (Al) are progressively achieving
(super-) human level performance in various tasks
such as autonomous driving [3], cancer detection [4],
or playing complex games [5, 6]. Therefore, more
and more business applications that are based on Al
technologies arise. Both research and practice are
wondering when Al will be able to solve complex tasks
in real-world business applications apart from laboratory
settings in research. However, those advances provide
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a rather one-sided picture on Al, denying the fact that
although Al is capable to solve certain tasks with quite
impressive performance, AGI is far away from being
achieved. There are lots of problems that machines
can not yet solve alone [7], such as applying expertise
to decision making, planning, or creative tasks just to
name a few. In particular, machine learning systems
in the wild have major difficulties with being adaptive
to dynamic environments and self adjusting [8], lack
of what humans call common sense. This makes
them highly vulnerable for adversarial examples [9].
Moreover, AGI needs massive amounts of training data
compared to humans, who can learn from only few
examples [10], and fails to work with certain data types
(e.g. soft data). Nevertheless, a lack of control of the
learning process might lead to unintended consequences
(e.g. racism biases) and limit interpretability, which
is crucial for critical domains such as medicine [11].
Therefore, humans are still required at various positions
in the loop of the machine learning process. While
lot of work has been done in creating training sets
with human labelers, more recent research point towards
end user involvement [12] and teaching of such
machines [5], thus, combining humans and machines
in hybrid intelligence systems. The main idea of
hybrid intelligence systems is, thus, that socio-technical
ensembles and its human and Al parts can co-evolve
to improve over time. Therefore, the following
central questions are arise: Which and how should
certain design decisions be made for implementing such
systems? The purpose of this paper is to point towards
such hybrid intelligence systems. Thereby, we aim at
conceptualizing the idea of hybrid intelligence systems
and provide an initial taxonomy of design knowledge
for developing such socio-technical ensembles. By
following a taxonomy development method [13], we
reviewed various literature in interdisciplinary fields
and combine those findings with empirical examination
of practical business applications in the context of
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hybrid intelligence. The contribution of this paper
is threefold. First, we provide a structured overview
of interdisciplinary research on the role of humans in
the machine learning pipeline. Second, we offer an
initial conceptualization of the term hybrid intelligence
systems and relevant dimensions for system design.
Third, we intend to provide useful guidance for
system developers during the implementation of hybrid
intelligence systems in real-world applications. Towards
this end, we propose an initial taxonomy of hybrid
intelligence systems.

2. Related Work
2.1. Machine Learning and Al

The subfield of intelligence that relates to machines
is called artificial intelligence (AI). By this term
we mean systems that perform ”[] activities that
we associate with human thinking, activities such as
decision-making, problem solving, learning []” [14].
Although, various definitions exist for Al, this term
generally covers the idea of creating machines that can
accomplish complex goals. This includes facets such as
natural language processing, perceiving objects, storing
of knowledge and applying it for solving problems, and
machine learning to adapt to new circumstances and act
in its environment [15].

Artificial Intelligence

Machine Learning

Human-in-the-

Loop ML

Figure 1. Machine learning and Al.

A subset of techniques that is required to achieve Al
is machine learning (ML). Mitchell [16] defines this as:
“A computer program is said to learn from experience
E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

A popular approach that drives current progress in
both paradigms is deep learning [9]. Deep-learning
constitutes a representation-learning method that
includes multiple levels of representation, obtained
by combining simpler but non-linear models. Each
of those models transforms the representation of one
level (starting with the input data) into a representation
at more abstract level [17]. Deep learning is a special
machine learning technique.

Finally, human-in-the-loop learning describes
machine learning approaches (both deep and other)

that use the human in some part of the pipeline.
Such approaches are in contrast to research on most
knowledge-base systems in IS that use rather static
knowledge repositories. We will focus on this in the
following chapter.

2.2. The Role of Humans-in-the-Loop of
Machine Learning

Although, the terms of AI and machine learning
give the impression that humans become to some extent
obsolete, the machine learning pipeline still requires lot
of human interaction such as for feature engineering,
parameter tuning, or training. While deep learning
has decreased the effort for manual feature engineering
and some automation approaches (e.g. AutoML [18])
support human experts in tuning models, the human
is still heavily in the loop for sense-making and
training. For instance, unsupervised learning requires
humans to make sense of clusters that are identified
as patterns in data to create knowledge [19]. More
obviously, human input is required to train models
in supervised machine learning approaches, especially
for creating training data, debug models, or train
algorithms such as in reinforcement learning [5]. This
is especially relevant when divergences of real-life and
machine learning problem formulations emerge. This
is for instance the case when static (offline) training
datasets are not perfectly representative of realist and
dynamic environments [20]. Moreover, human input
is crucial when models need to learn from human
preferences (e.g. recommender systems) and adapt to
users or when security concerns require both control and
interpretability of the learning process and the output
[11]. Therefore, more recent research has focused on
interactive forms of learning (e.g. [21, 12] and machine
teaching (e.g. [22]). Those approaches make active
use of human input (e.g. active learning [23]) and thus
learn from human intelligence. This allows machines to
learn tasks that they can not yet achieve alone [7], adapt
to environmental dynamics, and deal with unknown
situations [24].

2.3. Hybrid Intelligence

Rather then using the human just in certain parts
and time during the process of creating machine
learning models, applications that are able to deal
with real-world problems require a continuously
collaborating socio-technological ensemble integrating
humans and machines, which is contrast to previous
research on decision support and expert systems [21,
25].

Therefore, we argue that the most likely paradigm
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for the division of labor between humans and
machines in the next years, or probably decades, is
hybrid intelligence. This concept aims at using the
complementary strengths of human intelligence and
Al to behave more intelligently than each of the two
could be in separation (e.g. [7]). The basic rational
is to try to combine the complementary strengths of
heterogeneous intelligences (i.e., human and artificial
agents) into a socio-technological ensemble.  We
envision hybrid intelligence systems, which are defined
as systems that have the ability to accomplish complex
goals by combining human and artificial intelligence to
collectively achieve superior results than each of them
could have done in separation and continuously improve
by learning from each other.

Collectively:  means that tasks are performed
collectively. This means that the activities conducted by
each part are dependent, however, are not necessarily
always aligned to achieve a common goal (e.g. teaching
an Al adversarial tasks such as playing games).

Superior results: defines that the system achieves a
performance that none of the involved actors could have
achieved in a certain task without the other. The goal is,
therefore, to make the outcome (e.g. a prediction) both
more efficient and effective on the level of the whole
socio-technical system by achieving goals that could not
have been achieved before.

Continuous learning: describes that over time
this socio-technological system improves both as a
whole and each single component (i.e. humans and
machines) learn through experience from each other,
thus improving performance in a certain task. The
performance of such systems can be thus not only
measured by the superior outcome of the whole system
but also by the learning of the human and machine
agents that are parts of the socio-technical system.

The idea of hybrid intelligence systems is thus
that socio-technical ensembles and its human and Al
parts can co-evolve to improve over time. The central
questions are, therefore, which and how certain design
decisions should be made for implementing such hybrid
systems rather than focusing.

3. Methodology
3.1. Taxonomy Development Method

For developing our proposed taxonomy, we followed
the methodological procedures of Nickerson et al. [13].
In general, a taxonomy is defined as a “fundamental
mechanism for organizing knowledge” and the term
is considered as a synonym to “classification”
and “typology” [13]. The method follows an

iterative process consisting of the following steps: 1)
defining a meta-characteristic; 2) determining stopping
conditions; 3) selecting an empirical-to-conceptual or
conceptual-to-empirical approach; and 4) iteratively
following this approach, until the stopping conditions
are met (see Figure 3).

Figure 2. Taxonomy development method [13].

The process of the taxonomy development starts
with defining a set of meta-characteristic. This step
limits the odds of naive empiricism where a large
number of characteristics are defined in search for
random pattern, and reflects the expected application
of the taxonomy [13]. For this purpose, we define
those meta-characteristic as generic design dimensions
that are required for developing hybrid intelligence
systems. Based on our classification from literature, we
choose four dimensions: task characteristics, learning
paradigm, human-Al interaction, and Al-human
interaction. In the second step, we selected both
objective and subjective conditions to conclude the
iterative process. The following conditions, adapted
from Nickerson et al. [13], were selected:

We applied the following objective conditions: 1)
All papers from the sample of the literature review and
empirical cases are examined. 2) Then, at least one
object is classified under every characteristic of every
dimension. 3) While performing the last iteration, no
new dimension or characteristics are added. 4) We
treated every dimension as unique. 5) Lastly, every
characteristic is unique within its dimension.

The following subjective conditions
were  considered: conciseness, robustness,
comprehensiveness, extensibility, explanatory, and
information availability. We included no unnecessary
dimension or characteristic (conciseness), whereas
there are enough dimensions and characteristics
to differentiate (robustness). At this point, all
design decisions can be classified in the taxonomy
(comprehensiveness), while still allowing for new
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Table 1. Empirical evidence from business applications of hybrid intelligence systems.

Application Domain Reference
Teachable Machine Image Recognition [26]
Cindicator Asset Management [27]
vencortex Startup Financing [28]
Cobi Conference Sheduling [29]
Stitch Fix Fashion [30]
Alpha Go Games [31]
Custom Decision Service General [32]

TOTAL 7

dimensions and characteristics to be subsequently
added (extensible). Furthermore, the information is
valuable for guiding hybrid intelligence systems design
decisions (explanatory) and is typically available or
easily interpretable (information availability).

We conducted a total of three iterations so far. The
first iteration used a conceptual-to-empirical approach,
where we used extant theoretical knowledge from
literature in various fields such as computer science,
HCI, information systems, and neuro science to
guide the initial dimensions and characteristics of
the taxonomy. Based on the identified dimensions
of hybrid intelligence systems, we sampled seven
real-world applications that make use of human
and Al combinations. The second iteration used
the empirical-to conceptual approach focuses on
creating characteristics and dimensions based on the
identification of common characteristics from a sample
of Al applications in practice. The third iteration then
used the conceptual-to-empirical approach, based on
an extended literature review including newly identified
search termini.

3.2. Data Sources and Sample

Literature review: For conducting our literature
review, we followed the methodological procedures
of [33, 34]. The literature search was conducted
from April to June 2018. A prior informal literature
search revealed keywords for the database searches
resulting in the search string ("hybrid intelligence” OR
“human-in-the-loop” OR ”interactive machine learning”
OR ”machine teaching” OR “machine learning AND
crowdsourcing” OR “human supervision” OR “human
understandable machine learning” OR “human concept
learning”).  During this initial phase we decided
to exclude research on knowledge-base systems such
as expert systems or decision support systems in IS
[35, 25], as the studies either do not focus on the
continuous learning of the knowledge repository or do
not use machine learning techniques at all. Moreover,

the purpose of this study is to identify and classify
relevant (socio-) technical design knowledge for hybrid
intelligence systems, which is also not included in
those studies. The database search was constrained to
title, abstract, keywords and not limited to a certain
publication. Databases include AlSelL, IEEE Xplore,
ACM DL, AAAI DL, and arXiv to identify relevant
interdisciplinary literature from the fields of IS, HCI,
bio-informatics, and computer science. The search
resulted in a total of 2505 hits. Titles, abstracts
and keywords were screened for potential fit to the
purpose of our study. Screening was conducted by three
researchers independently and resulted in 85 articles that
were reviewed in detail so far. A backward and forward
search ensured the extensiveness of our results. Table 1
lists the number of search results after the review phases.

Empirical cases: To extend our findings
from literature and provide empirical evidence
(cf. Table 1) from recent (business) applications of
hybrid intelligence systems, we include an initial set
of seven empirical applications that was analyzed for
enhancing our taxonomy.

4. Taxonomy of Design Knowledge on
hybrid intelligence Systems

Our taxonomy of hybrid intelligence systems
is organized along the four meta-dimensions task
characteristics, learning  paradigm,  human-Al
interaction, and Al-human interaction.  Moreover,
we identified 16 sub-dimensions and a total of 50
categories for the proposed taxonomy. For organizing
the dimensions of the taxonomy we followed a
hierarchical approach following the sequence of the
design decisions that are necessary to develop such
systems.

4.1. Task Characteristics

The goal of hybrid intelligence is to create
superior results through a collaboration between humans
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and machines. The central component that drives
design decisions for hybrid intelligence systems is the
task, that humans and machines solve collaboratively.
Task characteristics focus on how the task itself is
carried out [36]. In context of hybrid intelligence
systems, we identify the following four important tasks
characteristics.

Type of Task: The task to be solved is the first
dimension that has to be defined for developing hybrid
intelligence systems. In this context, we identified
four generic categories of tasks: recognition, prediction,
reasoning and action. First, recognition defines tasks
that recognize for instance objects [17], images [37],
or natural language [38]. On an application level such
tasks are used for autonomous driving (e.g. [3]) or
smart assistants such as Alexa, Siri or Duplex. Second,
prediction tasks aim at predicting future events based on
previous data such as stock prices or market dynamics
[39]. The third type of task, reasoning, focuses on
understanding data by for instance inductively building
(mental) models of a certain phenomenon and therefore
make it possible to solve complex problems with
small amount of data [10]. Finally, action tasks are
characterized as such that require an agent (human or
machine) to conduct a certain kind of action [40].

Goals: The two involved agents, the human and
the Al, may have a common “goal” like solving a
problem through the combination of the knowledge and
abilities of both. An example for such common goals
are recommender systems (e.g. Netflix [41]), which
learn a user’s decision model to offer suggestions. In
other contexts, the agents goals also be adversarial. For
instance, in settings where Als tzry to beat human in
games such as IBMs Watson in the game of Jeopardy!
[42]. In many other cases the goal of the human and the
Al may also be independent for example when humans
train image classifiers without being involved in the end
solution.

Shared Data Representation: The shared data
representation is what is the data that is shown to
both the human and the machine before executing
their tasks. The data can be represented in different
levels of granularity and abstraction to create a shared
understanding between humans and machines [22, 43].
Features describe phenomenas in different kinds of
dimensions like height and weight of a human being.
Instances are examples of a phenomena which are
specified by features. Concepts on the other hand are
multiple instances that belong to one common theme,
e.g. pictures of different humans. Schemas finally
illustrate relations between different concepts [44].

Timing in Machine Learning Pipeline: The last
sub-dimension describes the timing in the machine
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Figure 3. Taxonomy of hybrid intelligence design.

learning pipeline that focuses on hybrid intelligence.
For this dimension we identified three characteristics:
feature engineering, parameter tuning, and training.
First, feature engineering allows the integration of
domain knowledge in machine learning models. While
more recent advances make it possible to fully
automatically (i.e. machine only) learn features through
deep learning, human input can be combined for
creating and enlarging features such in the case of
artist identification on images and quality classification
of Wikipedia articles (e.g. [45]). Second, parameter
tuning is applied to optimize models. Here machine
learning experts typically use their deep understanding
of statistical models to tune hyper-parameters or select
models. Such human only parameter tuning can be
augmented with approaches such as AutoML [18] or
neural architecture search [46, 47] automate the design
of machine learning models,thus, making it much more
accessible for non-experts. Finally, human input is
crucial for training machine learning models in many
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domains. For instance large dataset such as ImageNet
or the lung cancer dataset LUNA16 rely on human
annotations. Moreover, recommender systems heavily
rely on input of human usage behavior to adapt to
specific preferences (e.g. [12]) and robotic applications
are trained by human examples [40].

4.2. Learning Paradigm

Augmentation: In general, hybrid intelligence
systems allow three different forms of augmentation:
human, machine, and hybrid augmentation.  The
augmentation of human intelligence is focused on
typically applications that enable humans to solve tasks
through the predictions of an algorithm such as in
financial forecasting or solving complex problems [48].
Contrary, most research in the field of machine learning
focuses on leveraging human input for training to
augment machines for solving tasks that they cannot yet
solve alone [7]. Finally, more recent work identified
the great potential for simultaneously augmenting both
at the same time through hybrid augmentation [49, 50]
or the example of Alpha Go that started by learning
from human game moves (i.e. machine augmentation)
and finally offered hybrid augmentation by inventing
creative moves that taught even mature players novel
strategies [6, 51].

Machine Learning Paradigm: The machine
learning paradigm that is applied in hybrid intelligence
systems can be categorized into four relevant subfields:
supervised,  unsupervised,  semi-supervised, and
reinforcement learning [52]. In supervised learning, the
goal is to learn a function that maps the input data x to a
certain output data y, given a labeled set of input-output
pairs. In unsupervised learning, such output y does
not exist and the learner tries to identify pattern in
the input data x [16]. Further forms of learning
such as reinforcement learning or semi-supervised
learning can be subsumed under those two paradigms.
Semi-supervised learning describes a combination of
both paradigms, which uses both a small set of labeled
and a large set of unlabeled data to solve a certain
task [53]. Finally, reinforcement learning. An agent
interacts with an environment thereby learning to solve
a problem through receiving rewards and punishment
for a certain action [5, 6].

Human Learning Paradigm: Humans have a
mental model of their environment, which gets updated
through events. This update is done by finding an
explanation for the event [50, 49, 10]. Human learning
can therefore can be achieved from experience and
comparison with previous experiences [54, 44] and from
description and explanations [55].

4.3. Human-AlI Interaction

Machine Teaching: defines how humans provide
input.  First, humans can demonstrate actions that
the machine learns to imitate [40]. Second, humans
can annotate data for training a model for instance
through crowdsourcing [56, 57]. We designate that as
a labeling. Third, human intelligence can be used to
actively identify a misspecification of the learner and
debug the model, which we define as troubleshooting
[58, 24]. Moreover, human teaching can take the form of
verification whereby humans verify or falsify machine
output [59].

Teaching Interaction: The input provided through
human teaching, can be both explicit and implicit.
While explicit teaching leverages active input of the
user such as for instance labeling tasks such as image
or text annotation [60], implicit teaching learns from
observing the actions of the user and thus adapts to their
demands. For instance, Microsoft uses contextual bandit
algorithms to suggest users certain content, using the
actions of the user as implicit teaching interaction.

Expertise Requirements: Hybrid intelligence
systems can have certain requirements for the expertise
of humans that provides input for systems. While
by now both most research and practical applications
focus on human input from an ML expert [61, 62,
63, 24], thus, requiring deep expertise in the field of
Al. Moreover, end users can provide the system with
input for product recommendations and e-commerce or
input from human non-experts accessed through crowd
work platforms [64, 58, 65]. More recent endeavors,
however, focus on the integration of domain experts
in hybrid intelligence architectures that leverage the
profound understanding of the semantics of a problem
domain to teach a machine, while not requiring any ML
expertise [22, 66, 67].

Amount of Human Input: The amount of human
input can vary between those of individual humans
and aggregated input from several humans. Individual
human input is for instance applied in recommender
systems for individualization or due to cost efficiency
reasons [60]. On the other hand, collective human
input combines the input of several individual humans
by leveraging mechanisms of human computation (e.g.
[68, 66, 67]). This approach allows to reduce errors
and biases of individual humans and the aggregation of
heterogeneous knowledge [45, 69, 65].

Aggregation: When human input is aggregated
from a collective of individual humans, different
aggregation mechanisms can be leveraged to maximize
the quality of teaching. First, unweighted methods
can be used that use averaging or majority voting to
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aggregate results (e.g. [60]). Additionally, aggregation
can be achieved by modeling the context of teaching
through algorithmic approach such as expectation
maximization, graphical models, entropy minimization,
or discriminative training. Therefore, the aggregation
can be human dependent focusing on the characteristics
of a the individual human [70, 71, 72], or human-task
dependent adjusting to the teaching task [73, 72, 74].

Incentives: Humans need to be incentivized to
provide input in hybrid intelligence systems. Incentives
can be monetary rewards such in the case of crowd work
on platforms (e.g. Amazon Mechanical Turk), intrinsic
rewards such as intellectual exchange in citizen science
[75], fun in games with a purpose [76] learning [77].
Another incentive for human input is customization,
which allows to increase individualized service quality
for users that provide a higher amount of input to the
learner [12, 78].

4.4. Al-Human Interaction

This sub-dimension describes the machine part of
the Interaction, the Al-human interaction. At first,
which query strategy the algorithm used to learn.
Second, we describe the feedback of the machine to
humans. Third, we carry out a short explanation
of interpretability to show the influence for hybrid
intelligence.

Query Strategy: Offline query strategies require the
human to finish her task completely before her actions
are applied as input to the Al (e.g. [79, 80]). Handling
a typical labeling task the human would first need to go
through all the data and label each instance. Afterwards
the labeled Data is fed to an machine learning algorithm
to train a model. In contrast, online query strategies
let the human complete subtasks whose are directly fed
to an algorithm, so that teaching and learning can be
executed almost simultaneously [64, 58, 72]. Another
possibility is the use of active learning query strategies
[81, 23]. In this case, the human is queried by the
machine when more input to give an accurate prediction
is required.

Machine Feedback: Those four categories describe
the feedback that humans receive from the machine.
First, humans can get direct suggestions from the
machine, which makes explicit recommendations to the
user on how to act. For instance recommender systems
such as Netflix or Spotify provide such suggestions
for users. Furthermore, systems can make suggestions
for describing images [58]. Predictions as machine
feedback can support humans e.g. to detect lies
[45], predict worker behaviors [72], or classify images.
Thereby, this form of feedback provides a probabilistic

value of a certain outcome (e.g.  probability of
some data x belonging to a certain class y). The
third form of machine feedback is clustering data.
Thereby, machines compare data points and put them
in an order for instance to prioritize items [82], or
organize data among identified pattern. Furthermore,
another possibility of machine feedback is optimization.
Machines enhance humans for instance in making more
consistent decisions by optimizing their strategy [83].

Interpretability: For AI-Human interaction in
hybrid intelligence systems interpretability is crucial
to prevent biases (e.g. racism), achieve reliability and
robustness, ensure causality of the learning, debugging
the learner if necessary and for creating trust especially
in the context of AI safety [11]. Interpretability in
hybrid intelligence systems can be achieved through
algorithm transparency, that allows to open the black
box of an algorithm itself, global model interpretability
that focuses on the general interpretability of a machine
learning model, and local prediction interpretability that
tries to make more complex models interpretable for a
single prediction [84, 11].

5. Discussion

Our proposed taxonomy for hybrid intelligence
systems extracts interdisciplinary knowledge on
human-in-the-loop mechanisms in ML and proposes
initial descriptive design knowledge for the development
of such systems that might guide developers. Our
findings reveal the manifold applications, mechanisms,
and benefits of hybrid systems that might probably
become of increasing interest in real-world applications
in the future. In particular, our taxonomy of design
knowledge offers insights on how to leverage the
advantages of combining human and machine
intelligence. For instance, this allows to integrate
deep domain insights into machine learning algorithms,
continuously adapt a learner to dynamic problems,
and enhance trust through interpretability and human
control. Vice versa, this approach offers the advantage
of improving humans in solving problems by offering
feedback on how the task was conducted or the
performance of a human during that task and machine
feedback to augment human intelligence. Moreover,
we assume that the design of such systems might allow
to move beyond sole efficiency of solving tasks to
combined socio-technical ensembles that can achieve
superior results that could no man or machine have
achieved so far. Promising fields for such systems are in
the field of medicine, science, innovation and creativity.
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6. Conclusion

Within this paper we propose a taxonomy for design
knowledge for hybrid intelligence systems, which
presents descriptive knowledge structured along the
four meta-dimensions task characteristics, learning
paradigm, human-Al interaction, and Al-human
interaction. Moreover, we identified 16 sub-dimensions
and a total of 50 categories for the proposed taxonomy.
By following a taxonomy development methodology
[13], we extracted interdisciplinary knowledge on
human-in-the-loop approaches in machine learning and
the interaction between human and Al. We extended
those findings with an examination of seven empirical
applications of hybrid intelligence systems.

Therefore, our contribution is threefold.  First,
the proposed taxonomy provides a structured
overview of interdisciplinary research on the role
of humans in the machine learning pipeline by
reviewing interdisciplinary research and extract
relevant knowledge for system design. Second, we
offer an initial conceptualization of the term hybrid
intelligence systems and relevant dimensions for
developing applications. Third, we intend to provide
useful guidance for system developers during the
implementation of hybrid intelligence systems in
real-world applications.

Obviously this paper is not without limitations
and provides a first step towards a comprehensive
taxonomy of design knowledge on hybrid intelligence
systems.  First, further research should extend the
scope of this research to more practical applications
in various domains. By now our empirical case
selection is slightly biased on decision problem
contexts.Second, as we proceed our research we
will further condensate the identified characteristics
by aggregating potentially overlapping dimensions in
subsequent iterations. Third, our results are overly
descriptive so far. As we proceed our research we will
therefore focus on providing prescriptive knowledge on
what characteristics to choose in a certain situation and
thereby propose more specific guidance for developers
of hybrid intelligence systems that combine human
and machine intelligence to achieve superior goals and
driving the future progress of Al For this purpose,
we will identify interdependencies between dimensions
and sub-dimensions and evaluate the usefulness of our
artifact for designing real-world applications. Finally,
further research might focus on integrating the overly
design oriented knowledge of this study with research
on knowledge-base systems in IS to discuss the findings
in the context of those class of systems.
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