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ABSTRACT 
 

This paper develops multivariate methods for analyzing (1) effects of socioeconomic variables 
on the total fertility rate and its components and (2) effects of socioeconomic variables on the 
trend in the total fertility rate and its components. For the multivariate methods to be applicable, 
the total fertility rate must be calculated from parity progression ratios (PPRs), pertaining in this 
paper to transitions from birth to first marriage, first marriage to first birth, first birth to second 
birth, and so on. The components of the TFR include PPRs, the total marital fertility rate 
(TMFR), and the TFR itself as measures of the quantum of fertility, and mean and median ages 
at first marriage and mean and median closed birth intervals by birth order as measures of the 
tempo or timing of fertility. The multivariate methods are applicable to both period measures and 
cohort measures of these quantities. The methods are illustrated by application to data from the 
1993, 1998, and 2003 Demographic and Health Surveys (DHS) in the Philippines. 
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This paper develops multivariate methods for estimating effects of socioeconomic predictor 
variables on the total fertility rate (TFR) and on the trend in the TFR. The methods utilize 
individual-level survey data and are applicable to both period measures and cohort measures of 
the TFR. The analysis of effects of socioeconomic variables on the trend in the TFR requires two 
or more surveys of the same population at different times. 
 
 The TFR is usually defined as the number of births that a woman would have by age 50 if, 
hypothetically, she lived through her reproductive years experiencing the age-specific fertility 
rates (ASFRs) that prevailed in the population in the particular calendar year. The TFR so 
defined is calculated by summing ASFRs (births per woman per year at each age) between the 
ages of 15 and 50. For the multivariate methods in this paper to be applicable, however, the TFR 
must be calculated from parity progression ratios (PPRs). A woman’s parity is defined in the 
usual way as the number of children she has ever borne, but with parity zero subdivided into two 
states: never-married with no children and ever-married with no children. Parity progression 
ratios (PPRs) are the fractions of women who progress from their own birth to first marriage, 
from first marriage to first birth, from first birth to second birth, and so on. The PPRs so obtained 
are aggregated to a TFR and a total marital fertility rate (TMFR). TFR, TMFR, and PPRs are 
measures of the quantum of fertility. The multivariate methods are also applicable to measures of 
the tempo or timing of first marriage and births, as measured by mean and median ages at first 
marriage and mean and median closed birth intervals by birth order.  
 
 We focus on the TFR calculated from PPRs (TFRppr) instead of the TFR calculated from 
ASFRs (TFRasfr) for several reasons: The first is that a multivariate method for analyzing factors 
affecting TFRasfr calculated from individual data has already been developed and applied by 
Schoumaker (2004), who used Poisson regression for this purpose. The second reason is that, 
from an explanatory point of view, age-specific fertility rates are not ideal measures of the 
components of the total fertility rate. A woman’s decision about whether to have a next birth 
does not depend primarily on her age. More important considerations are her marital status, time 
elapsed since marriage if she is married but does not yet have any children, time elapsed since 
her last birth if she already has children, and the number of children that she already has. The 
TFR calculated from PPRs  takes all these considerations into account. Henceforth in this paper, 
“TFR” and “TMFR” refer to the total fertility rate and the total marital fertility rate calculated 
from PPRs, whether for periods or cohorts. We use a multivariate discrete-time survival model—
the complementary log-log (CLL) model—to model parity progression. Because the CLL model 
was originally developed for application to cohort data, its application here to period data, 
yielding a multivariate analysis of the period TFR and its components, is the most innovative 
aspect of the paper. 
 
 By way of illustration, the methods are applied to both period and cohort data from three 
demographic and health surveys (DHS) undertaken in the Philippines in 1993, 1998, and 2003. 
Period measures are estimated for the 5-year period before each survey, and cohort measures are 
based on the earlier reproductive experience of women age 40–49 at the time of each survey. A 
ten-year age cohort is used instead of a five-year age cohort (such as women age 40–44 or 45–
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49) in order to base the cohort analysis on a larger number of cases. Because the surveys are five 
years apart, the ten-year cohorts overlap from one survey to the next.  
 
 In the Philippines surveys, some regions were over-sampled, so weights must be used to 
restore representativeness. The over-sampled regions were more rural than average, so that, in 
effect, the surveys over-sampled rural. The design of the three surveys is described in more detail 
in the basic survey reports, which include questionnaires and more detailed information about 
sampling procedures (Philippines National Statistics Office and Macro International 1994; 
Philippines National Statistics Office, Philippines Department of Health, and Macro International 
1999; Philippines National Statistics Office and ORC Macro 2004). 
 
PARITY PROGRESSION-BASED MEASURES OF THE TFR AND ITS 
COMPONENTS
 
We define the following notation for PPRs and the parity transitions to which they refer: 
 
 pB PPR for transition from a woman’s own birth to her first marriage (B–M) 
 pM PPR for transition from first marriage to first birth (M–1) 
 p1 PPR for transition from first to second birth (1–2) 
 p2 PPR for transition from second to third birth (2–3) 
 . 
 . 
 . 
 P8 PPR for transition from eighth to ninth birth (8–9) 
 P9+ PPR for transition from ninth or higher-order birth to next higher-order birth (9+ 

to 10+) 
 
The choice of a cutoff for the open-ended parity category depends on the overall level of fertility 
and the size of the sample, which together determine the parity at which one starts to run out of 
higher-order births in the sample survey. In this section, for purposes of explaining methodology, 
we assume a cutoff at 9+. 
  
 PPRs are calculated from life tables. In general, the life table method is appropriate when 
the input data indicate time elapsed between a starting event and a terminating event. The generic 
term for a terminating event is “failure,” and we use this term throughout this paper. In the case 
of pB, the starting event is a woman’s own birth and the terminating event, or “failure”, is her 
first marriage if a first marriage occurs. In the case of pM, p1, …, p9+, the starting event is either a 
first marriage or a birth of a particular order, “failure” is a next birth, and time elapsed since the 
starting event is referred to as duration in parity. Consistent with demographic usage, we refer to 
a birth-to-first-marriage life table also as a nuptiality table. 
 
 Because the number of first marriages that occur before age 10 or after age 40 is very 
small in the Philippines, we start our nuptiality tables at age 10 (instead of birth) and end them at 
age 40. We continue to refer to this transition, however, as birth to first marriage (B–M). Time in 
the nuptiality table ranges from 0 years (corresponding to age 10) to 30 years (corresponding to 
age 40). In the case of subsequent parity transitions pM, p1, ..., p9+, the number of births that 
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occur after 10 years of duration in parity is negligible, so we terminate life tables for these 
transitions at 10 years. Time in these life tables therefore ranges from 0 to 10 years. 
 
 A PPR is calculated from a life table by subtracting the proportion “surviving” at the end 
of the life table from one, yielding the proportion who “fail” by the end of the life table. 
 
 From the life table for each parity transition, we can also compute a mean failure time 
and a median failure time. In the case of the nuptiality table, the mean and median failure times 
(when added to 10, the age at the start of the nuptiality table) are measures of mean and median 
ages at first marriage. In the case of the life tables for higher-order parity transitions, the mean 
and median failure times (in years) are measures of mean and median closed birth intervals. The 
medians so calculated are true medians, based on all failures that occur over the course of the life 
table. Because of the problem of age truncation at time of survey in the case of cohort estimates, 
DHS survey reports define medians differently, as the duration in parity by which half of the 
starting cohort experience failure.  

 
 Once PPRs have been calculated using the life table method, TFR is calculated  from the 
PPRs as 
 
 TFR = pB pM + pB pM p1 + pB pM p1 p2 + pB pM p1 p2 p3 + pB pM p1 p2 p3 p4
    + pB pM p1 p2 p3 p4 p5 + pB pM p1 p2 p3 p4 p5 p6 + pB pM p1 p2 p3 p4 p5 p6 p7
                          + pB pM p1 p2 p3 p4 p5 p6 p7 p8 + pB pM p1 p2 p3 p4 p5 p6 p7 p8 p9+ /(1 – p9+) (1) 
 
The term pB pM is the expected number of first births, the term pB pM p1 is the expected number of 
second births, and so on. As explained by Feeney (1986), the term p9+ /(1 – p9+) is obtained by 
assuming that p9 and all higher-order PPRs equal p9+ and pulling out a geometric series. (Recall 
that if r is a positive number less than one, the geometric series r + r2 + r3 + ... =  r/(1 – r).)  
 
 The formula for TMFR is the same as the formula for TFR in equation (1), except that pB 
is set equal to one. 
 
 In populations where a substantial proportion of births occur outside of marriage, an 
alternative approach would be to combine the first two parity transitions, B–M and M–1, into a 
single parity transition, 0–1,with p0 defined as the fraction of women who progress from their 
own birth to a first birth. In our illustrative application to the Philippines, a substantial fraction of 
births occur in non-formalized unions. The three DHS surveys for the Philippines treat the first 
non-formalized union as a first marriage, however, and we also take this approach. We therefore 
retain the B–M and M–1 transitions in our analysis of these surveys. 
 
 Despite treating non-formalized unions in the same way as formalized marriages, there 
are still some births reported by ever-married women as having occurred before first marriage 
(i.e., before first formalized marriage or first non-formalized union), and there are also some 
births reported by never-married women, from whom birth histories were also collected. We 
refer to these births simply as premarital births. In the analysis, we do not exclude women who 
had a premarital birth. Instead, we treat all such women as newly married at the time of their first 
birth, by coding or re-coding date of first marriage back to the date of first premarital birth. This 
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coding and re-coding introduce small biases in the estimates of mean age at first marriage and 
mean closed birth interval for the M–1 transition (only 6–8 percent of births were coded or re-
coded in this way), but very little or no bias in the estimates of PPRs, median age at first 
marriage, median closed birth intervals, TFR, and TMFR.  
 
MULTIVARIATE METHODOLOGY 
 
Choosing a multivariate survival model 
 
Because PPRs are derived from life tables, they can be modeled in a multivariate way using a 
multivariate survival model. It is useful to think of such a model as a multivariate life table from 
which PPRs and mean and median failure times can be calculated. Because TFR and TMFR can 
be calculated from the multivariate PPRs, TFR and TMFR can also be modeled in a multivariate 
way. 
 
 A number of multivariate survival models are available. We need a model that handles 
time-varying predictor variables and time-varying effects of predictor variables. Residence, for 
example, is properly specified as a time-varying predictor variable if some women move from a 
rural area to an urban area as they move through the life table. The effect of residence is also 
properly specified as time-varying if, as is usually the case, the effect of urban, relative to rural, 
is to lower the risk of first marriage at the younger reproductive ages and raise it at the older 
reproductive ages as a result of greater postponement of marriage in urban areas. If the effect of 
residence varies with time in this way, a proportional hazards model is not appropriate, because 
in a proportional hazards model the effect of urban, relative to rural, on the risk of first marriage 
is constrained to be constant over time in the life table. 
 
 Effects are time-varying not only for progression to first marriage but also for 
progression to higher-order parities. This is so not only because births may be postponed, but 
also because birth intervals (except for the interval between first marriage and first birth) tend 
not to change much as fertility falls (Pathak et al. 1998). This implies that the effect of residence 
on birth intervals can be small while its effect on PPRs is large. This is impossible to model with 
a proportional hazards model of parity progression. For example, in a proportional hazards 
model, if the probability of failure by the end of the life table is lower for urban than for rural, 
mean and median failure times must be higher for urban than for rural. 
 
 We also need a survival model that can handle left-censoring as well as right-censoring 
so that we can fit the model to period data. That is, we need to be able to censor not only the part 
of an individual’s exposure that occurs after the period (right-censoring) but also the part that 
occurs before the period (left-censoring).  
 
 For our purposes, the survival model, when fitted to data, must also yield a baseline 
hazard function, so that we can estimate not only the effects of predictor variables on the risk of 
failure (as measured by the coefficients of the predictor variables) but also the model-predicted 
risk of failure itself (i.e., the hazard function on the left side of the model equation) for specified 
values of the predictor variables. Only then can we calculate predicted values of life table 
parameters such as PPRs and mean and median failure times for specified values of the 
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predictors. This point will become clearer in the following paragraphs, which show the model 
equations. 
 
 One possible candidate for our multivariate survival model is the Cox model (Cox 1972). 
This model is usually stated in the form of a continuous-time proportional hazards model, 
although the model can also handle, up to a point, both time-varying predictors and time-varying 
effects of predictors, in which case the model is no longer proportional. Cox’s continuous-time 
proportional hazards model is specified as 
 
 hi(t) = h0(t) exp[b1 xi1 + ... + bk xik] (2) 
 
where i denotes the ith individual, t denotes continuous time in the life table, xj (j = 1, 2, ..., k) is a 
set of k predictor variables (also called covariates),  bj (j = 1, 2, ..., k) is the set of coefficients of 
those predictors, hi(t) denotes the hazard rate for the ith individual at time t, and h0(t) is the 
baseline hazard function defined when all predictors have a value of zero. The continuous-time 
hazard rate hi(t) is defined as the individual’s probability per unit time of experiencing failure in 
an infinitesimally small time interval centered on time t. A continuous-time hazard rate therefore 
has the dimensions of failures per person per unit time. 
 
 The Cox proportional hazards model is often stated alternatively in log-linear form as 
 
 log hi(t) = at+ b1 xi1 + ... + bk xik (3) 
 
where at = log h0(t). As always in statistical models, logarithms are to the base e. 
 
 In equation (2), the exponential term is constant over time t in the life table, and that is 
what makes the model proportional. (Recall the definition of proportionality: two variables X and 
Y are proportional if Y = kX for all values of X and Y, where k is the constant of proportionality. 
In equation (2), variation in hi(t) and h0(t) refers to variation over time t in the life table, and the 
exponential term, which does not vary over time, is the constant of proportionality.) The constant 
term in equation (2) is specified as an exponential function because the multiplicative effect of 
the predictors must be a positive number, and the function exp(x) � ex is defined and positive for 
all values of x and ranges over all positive real numbers. (Other functions, such as 3x, could also 
be used, but ex has mathematical properties that make it easier to work with.) In the exponential 
term in equation (2), not only the coefficients of the predictors but also the predictors themselves 
are time-invariant. Only then is the model proportional.  
 
 The continuous-time Cox model is fitted by the method of partial likelihood. The baseline 
hazard function h0(t) cancels out and does not appear in the likelihood function—hence the word 
“partial.” Because of this, the partial likelihood method yields estimates of the coefficients of the 
predictors but not an estimate of the baseline hazard function h0(t) (equivalently, the term at in 
equation (3)). The output from the partial likelihood procedure is inputted into a second 
maximum likelihood procedure to obtain the baseline hazard function h0(t) (Allison 1995, p. 
165). This second procedure does not work, however, when one or more predictor variables or 
their effects are time-varying (as in our application), in which case the Cox model does not yield 
a baseline hazard function. Because we need the baseline hazard function in order to calculate 
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predicted values of the hazard function for specified values of the predictors (the necessity of this 
baseline hazard function is evident from equations (2) and (3)), the Cox model is not suitable for 
our purposes. A multivariate survival model that is suitable is the complementary log-log (CLL) 
model, which we consider next. 
 
The complementary log-log (CLL) model 
 
Basic form of the model 
 
The CLL model is a discrete-time survival model. The general form of the model is 
 
 log[�log(1�Pit)] = at + b1 xi1 + ... + bk xik (4) 
 
where i denotes the ith observation, t is a counter variable denoting the tth life table time interval 
(t = 1, 2, ...), Pit is the discrete probability of failure during the tth life table time interval, at is a 
function of t (usually an unspecified function, in the sense of not having a particular functional 
form), and predictors and coefficients are as defined in the Cox model in equations (2) and (3). 
Equation (4) can be written more compactly as 
 
 log[�log(1�Pit)] = at + bx (5) 
 
where b is a vector of coefficients, x is a vector of predictor variables, and bx is the dot product 
of b and x. The model is fitted by the method of maximum likelihood (Prentice and Gloeckler 
1978), not partial likelihood, and therefore yields estimates of at as well as the coefficient vector 
b. 
 

In equations (4) and (5), the life table time intervals may be of variable length. If, 
however, the intervals are uniformly one time unit in length (as is assumed henceforth in this 
paper), then t–1 can be interpreted as exact time at the start of the interval to which Pt pertains. 
We can then re-label P1 as P0 and, more generally, Pt as Pt-1. The re-labeled Pt function, for t = 0, 
1, …,  will be used later when life table calculations are discussed in more detail. For now, we 
will stay with the original definition of Pt, defined for t = 1, 2, …. 
 
 Pt is often called the discrete hazard, but it should be noted that Pt is defined quite 
differently from the continuous-time hazard h(t) in the Cox model. In the Cox model, h(t) is 
defined as the probability of failure per unit time, evaluated at time t, whereas Pt is defined as the 
probability that failure will occur in the tth discrete time interval, whatever its length. If the 
interval is one time unit in length, the value of Pt and the average value of h(t) over the interval 
will usually be close to each other but not quite identical. If the interval is more than one time 
unit in length, Pt and the average value of h(t) over the interval can be very different. 
 
 If one solves equation (5) for Pt, one obtains an alternative form of the CLL model, 
 
 Pt = 1 � exp[�exp(at + bx)] (6) 
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The right side of equation (6) specifies the functional form for the discrete hazard Pt, and this 
functional form of Pt is called the link function—in this case the CLL link function. Other link 
functions, such as the logit link function, are also possible. In this regard, it may be noted that the 
first part of the derivation of the log-likelihood function for a discrete-time survival model uses 
Pt without specifying the functional form of Pt. The second part of the derivation specifies the 
link function. Because of this, computer programs for estimating discrete-time survival models 
also require specification of the link function (Allison 1982; 1995, ch. 7).  
 
 Although it is not obvious, the CLL model is derived from the Cox proportional hazards 
model and therefore is itself a proportional hazards model. We consider a simplified derivation 
of the CLL model in equation (5) from the Cox model, pertaining to the case of one-year life 
table time intervals. The derivation begins with log[�log(1�Pt)] and makes the substitutions 
Pt = [S(t�1)�S(t)]/S(t�1) and S(t) = [S0(t)]exp(bx), where Pt denotes the probability of failure 
between exact times t�1 and t conditional on survival to time t�1, S(t) denotes the unconditional 
probability of surviving to exact time t, and S0(t) denotes the value of S(t) when all of the 
predictor variables equal zero. After these two substitutions and some algebraic manipulation, 
one obtains 
 
 log[�log(1�Pt)] = log[�log(1�P0,t)] + bx (7) 
 
where P0,t denotes the baseline Pt function defined when all predictors equal zero. Equation (7) is 
then the same as equation (5), in which at = log[�log(1�P0,t)].  
 

In the above derivation, the substitution of [S0(t)]exp(bx) for S(t) is what makes equation (5) 
a proportional hazards model, because the relationship S(t) = [S0(t)]exp(bx) is valid only for a 
proportional hazards model (Retherford and Choe 1993, pp. 194�195). As will be explained 
shortly, however, it is possible to “trick” the CLL model in equation (5) to handle non-
proportionality in the form of time-varying predictor variables or time-varying effects of 
predictor variables. 
 
 As already mentioned, a major advantage of a discrete-time survival model, such as the 
CLL model, over the continuous-time Cox model is that the CLL model, when fitted to data, 
yields a baseline hazard function (the P0,t function in equation (7)). This is so even when the 
CLL model is tricked to include time-varying predictors and time-varying effects of predictors. 
The CLL model yields this additional information because the terms at (actually the terms from 
which the values of at are calculated, as explained below) in equation (5) remain in the log-
likelihood equations and can therefore be estimated. 
 
 The CLL model is superior to the discrete-time logit model, inasmuch as coefficients of 
predictors in the CLL model, but not in the discrete-time logit model, have the same relative-risk 
interpretation as coefficients of predictors in the continuous-time Cox model, namely that a one-
unit increase in a predictor variable multiplies the underlying continuous-time hazard hi(t) by 
exp(b), where b is the coefficient of the predictor and exp(b) is the relative risk (Allison 1995, ch. 
7). This is so because the CLL model, but not the discrete-time logit model, is derived from the 
continuous-time Cox model. (Due to differences in how the continuous-time Cox model and the 
discrete-time CLL model are formulated and estimated, however, these two models, when 
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specified with the same predictor variables and applied to the same data, generally yield 
estimates of the coefficient vector b that are close to each other but not quite identical.)  
 
Expanded data set of person-year observations for each parity transition 
 
A discrete-time survival model, such as the CLL model, is fitted not to the original “person 
sample” but instead to an “expanded sample” of person-year observations created from the 
original person observations. In our analysis, these persons are women. More specifically, each 
woman’s survival history (beginning with the starting parity for the parity transition under 
consideration) is broken down into a set of discrete time segments, which in our analysis are 
person-years, up to the year of failure or censoring. Person-years after the year of failure are 
excluded, as are person-years before the year of the starting event. Thus, in the expanded sample, 
“year” in a person-year observation refers to life table time t. This means that, in the case of the 
B�M transition, as many as 30 person-year observations are created from a single person 
observation, and that, in the case of higher-order transitions, as many as 10 person-year 
observations are created from a single person observation.  
 

Variables attached to the original woman record are carried over to the person-year 
records created from the woman record. Additional variables assigned to the person-year records 
are YEAR (life table time t = 1, 2, …), a variable that we call CALTIME indicating the calendar 
year in which the person-year observation is located (e.g., 1999), and the dummy variable 
FAILURE indicating whether failure occurred during that person-year of exposure (1 if yes, 0 if 
no).1 The value of YEAR for a particular person-year observation is calculated as the difference 
between CALTIME and the calendar year in which the woman reached the starting parity (which 
in the case of the B�M transition is the calendar year in which the person reached age 10). The 
values of the variables for each person-year observation are the input data for fitting the CLL 
model.  The input datum for the dependent variable is the value of FAILURE (1 if yes, 0 if no) 
rather than a value of Pt, which is unobservable. The other variables attached to each person-year 
observation, such as residence and education, are potential predictor variables. (See Allison 1995, 
ch. 7, for details on how to create the person-year data set.)  
 
 For each of the three Philippines surveys, a separate expanded data set of person-year 
observations is created for each parity transition in the period analysis and for each parity 
transition in the cohort analysis.2 
 
 Because the CLL model is applied to a person-year data set, it easily handles censoring—
both right-censoring and left-censoring. Censoring normally means “lost to observation,” but one 
can also treat an observation as censored even when it is not, if doing so furthers the aims of 
analysis. In our analysis of period data, right-censoring pertains to that part of an individual’s 
exposure to risk of failure that occurs after the calendar time period of interest, and left-censoring 
pertains to that part of an individual’s exposure that occurs before the calendar time period. The 
                                                           

1 In our application to Philippine DHS data, calendar years refer to years before the survey. Our labeling 
convention for years before the survey is illustrated by the 1993 survey: The year before this survey falls partly in 
1993 and partly in 1992; but it falls mostly in 1992 and is therefore labeled 1992. 
 

2 Multiple births are included in the analysis. The birth order of each birth within a set of multiple births is 
arbitrarily specified. Birth intervals between multiple births are coded as zero. 
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CLL model’s way of handling censoring is quite simple: In a period analysis, the expanded data 
set includes only those person-year observations located within the period of interest. In a cohort 
analysis, the expanded data set includes only those person-year observations created from 
women in the cohort of interest.  
 
 The censoring criteria are illustrated diagrammatically in Figures 1 and 2 for the period 
and cohort cases of progression from 10th birthday to first marriage. Whether the analysis is a 
period analysis or a cohort analysis depends entirely on whether the expanded data set 
corresponds to person-year observations located within a rectangle or a diagonal cohort corridor 
in the Lexis diagram, as shown in the two figures. If the shaded area is a rectangle, life table time 
should be thought of as extending vertically in the diagram, and if the shaded area is a cohort 
corridor, life table time should be thought of as extending diagonally. The mathematics of the 
procedure for fitting a CLL model to the data is the same in either case.  

 
 As already mentioned, the methodology is applicable to parity transitions B–M, M–1, 1–
2, 2–3, 3–4, 4–5, 5–6, …, up to some open-ended parity interval. The creation of the expanded 
data set for the open parity interval requires further explanation, and for purposes of explanation 
we consider again the example of the transition from 9+ to 10+. The approach is to create 
separate expanded data sets for transitions 9–10, 10–11, ..., up to the transition from k�1 to k, 
where k is the highest parity attained by any woman in the survey. These separate expanded data 
sets are pooled to form the expanded data set for the transition 9+ to 10+. A woman can 
contribute person-year observations to more than one of the individual data sets that are pooled. 
For example, a woman who was parity 11 at the time of the survey contributes person-year 
observations to the expanded data sets for the transitions 9–10, 10–11, and 11–12.  Pooling 
requires that the set of predictor variables attached to person-year observations in each of the 
pooled data sets for transitions 9–10, 10–11, ..., and k�1 to k be the same and have the same 
variable names. In our application to Philippines data, the maximum value of k considered is 15. 
Higher-order transitions have a negligible impact on the TFR and are ignored.  
 
 In the expanded data sets for the B–M transition, marriages occurring after age 40 are 
ignored. In the expanded data set for the M–1 transition, however, first marriages after age 40 
(up to a maximum of 49) are included in the set of starting events. In the expanded data sets for 
the M–1 and higher-order transitions, all next births at durations 0–9, regardless of woman’s age, 
are included in the set of terminal events. In the expanded data sets for the 1–2 and higher-order 
transitions, all births of the specified order, regardless of woman’s age or duration in parity, are 
included in the set of starting events. 
 
 As discussed in more detail later, 96 expanded data sets are created for the analysis, some 
of which are pooled to form the data set for the open-ended parity transition.  
 
Dummy variable specification of life table time

In our illustrative application to the Philippines data, life table time is modeled in two different 
ways: (1) a dummy variable specification and (2) a quadratic specification involving terms in t 
and t2, where t is once again the counter variable t = 1, 2, …. We consider the dummy variable 
specification first. 
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Figure 1: Lexis diagram illustrating censoring when setting up the 
expanded data set for calculating a multivariate period life table for 
progression from 10th birthday to first marriage, pertaining to the 5-
year period preceding the 2003 survey

Notes: The shaded area, which is 5 years wide and 30 years high, represents the 
relevant period of exposure to the risk of first marriage. 45-degree lines are life-lines for 
particular individuals. Imagine that each life-line is divided into one-year segments, 
corresponding to person-years in the expanded data set. Person-years falling outside 
the shaded area are censored (or treated as censored) and not included in the 
expanded data set. Within the shaded area, the expanded data set includes only those 
person-years that occur up to the time of first marriage or censoring by reaching the 
survey date while still in the never-married state. If a first marriage occurs in a particular 
person-year within the shaded area, that person-year is also included in the expanded 
data set.
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Figure 2: Lexis diagram illustrating censoring when setting up the 
expanded data set for calculating a multivariate cohort life table for 
progression from 10th birthday to first marriage, based on the 2003 
survey

Notes: Within the shaded area, the expanded data set includes only those person-years up 
to the time of marriage or censoring by reaching age 40 while still in the never-married state. 
If a first marriage occurs in a particular person-year within the shaded area, that person-year 
is also included in the expanded data set.



 15

 
The dependent variable Pt on the left side of equation (5) (or either of the equivalent 

equations (4) and (7)) is a function of t rather than a single value of P. Because of this, we can 
think of the model in equation (5) as representing a set of equations, one for each value of t. 
Equation (5) can thus be viewed as a multi-equation model. The units of analysis to which this 
multi-equation model pertains are persons (i.e., women who are at risk of either a first marriage 
or a next birth). 
 
 The model that is actually estimated, however, is a single-equation model that has the 
same form as equation (5), except that Pt is replaced by P, and the term at is replaced by an 
intercept and a set of dummy variables representing life table time intervals. This single-equation 
model is fitted to the expanded sample of  person-year observations created from the original 
person observations. After the single-equation model is fitted, values of at are calculated from 
the estimates of the intercept and the coefficients of the dummy variables representing life table 
time intervals, thereby allowing the single-equation model to be rewritten in its original multi-
equation form in equation (5). 
 
 By way of illustration, let us consider the single-equation model for progression to first 
marriage, in which there are 30 life table time intervals (t = 1, 2, ..., 30). Using the dummy 
variable specification of life table time, the single-equation model is 
 
 log[�log(1�P)] = a30 + c1T1 + c2T2 + ... + c29T29 + bx (8) 
 
where T1, T2, ..., T29 are dummy variables representing the first 29 life table time intervals (the 
30th interval, for which t = 30, being the reference category), a30 is the intercept, and c1, c2, ..., c29 
are coefficients to be fitted to the data (i.e., to the expanded data set of person-year observations). 
Equation (8) specifies P rather than Pt, because inclusion of the subscript t would indicate one 
equation for each value of t instead of a single equation. In equation (8), time interval 1 is 
specified by T1 = 1 and T2 = T3 = ... = T29 = 0. Time interval 2 is specified by T1 = 0, T2 = 1, and 
T3 = ... = T29 = 0. And so on up to time interval 30 (the last interval), which is specified by T1 = 
T2 = ... = T30 = 0. Model fitting yields estimates of a30, c1, …, c29, and the coefficient vector b. 
 
 In equation (8), the intercept of the fitted model (which is the predicted value of log[–
log(1–P30)] when all predictors—including the dummy variables T1, T2, ..., T29 —are set to zero) 
is the same as a30 in equation (5) when t is set to 30, corresponding to the last time interval. The 
predicted value of a29 = log[–log(1–P29)], with all the xj and T1, ..., T28 set to zero and T29 set to 
one, is a30+c29. More generally, at = a30+ct for t = 1, 2, ..., 29. In this way, the single-equation 
model in equation (8), after being fitted to the expanded data set of person-year observations, can 
be rewritten in the same form as equation (5), which pertains to persons rather than person-year 
observations, with one equation for each value of t.  
 
 The dummy variable specification of life table time interval allows maximum flexibility 
in the way that at can vary over time. For this reason, the dummy variable specification of life 
table time interval in equation (8) is referred to as the unrestricted specification (unrestricted in 
the sense that at is not constrained to any particular functional form) (Allison 1995, ch. 7). 
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 It might seem that, when the model in equation (8) is fitted to the data, standard errors of 
coefficients should be adjusted to take into account that the person-year observations created 
from a person record are not independent observations but instead are clustered. It has been 
shown, however, that adjustments for clustering are unnecessary for discrete-time survival 
models (including not only the CLL model but also the discrete-time logit model). The reason is 
that the log-likelihood function for the multi-equation model in equation (5), based on persons, 
and the log-likelihood function for the single-equation model in equation (8), based on person-
year observations, are identical. Because of this, the models in equations (5) and (8) are 
equivalent, yielding identical estimates of coefficients, standard errors, and baseline hazard 
function when fitted to persons (in the case of equation (5)) or person-years created from those 
persons (in the case of equation (8)) (Allison 1982). 
 
Quadratic specification of life table time 
 
A potential problem with the unrestricted specification of life table time is that the computing 
algorithm for fitting the CLL model will not converge if there are any empty intervals (i.e., 
intervals in which there are no person-year observations) (Allison 1995, ch. 7). Non-convergence 
often arises at the higher parity transitions, where the expanded samples of person-year 
observations are smaller. In such cases the problem of non-convergence can be circumvented by 
using a quadratic specification of life table time; i.e., by replacing the dummy variables T1, T2, ..., 
T29 with t and t2, as follows: 
 
 log[�log(1�P)] = a + c t + d t2 + bx  (9) 
 
In our example of progression to first marriage, allowable values of t are t = 1, 2, …, 30. This 
model is also fitted by procedures described by Allison (1995, ch. 7). 
 
 The non-convergence problem is the main reason why we specify life table time in years 
rather than months. Aggregation to years reduces the likelihood of no person-year observations 
in a life table time interval.  
 
 Non-convergence can also occur because of no person-year observations in at least one 
category of a socioeconomic predictor variable such as education. For example, few women with 
high education are found at the higher parities, in which case the high-education category for a 
particular parity transition may be empty. In this case a possible solution would be to combine 
some of the education categories at higher levels of education.  
 

Non-convergence also occurs when one or more of the four cells in the 2x2 cross-
classification of the dichotomous dependent variable FAILURE against a dichotomous predictor 
variable is empty. This cause of non-convergence is the most important reason for specifying life 
table time in years rather than months, as is evident from the following example: In the person-
month data set for the 2�3 transition, there are no failures (next births) in the second month 
following the second birth; i.e., the cell in the cross-tabulation corresponding to FAILURE = 1 
and T2 = 1 is empty. 
 



 17

 In the Philippines application, when we ran the CLL model with a dummy-variable 
specification of life table time without any socioeconomic predictors, we found 8+ to be the 
highest parity cutoff we could use for the open parity interval without running into convergence 
problems at least some of the time. We also had to use an 8+ cutoff when residence was the only 
socioeconomic predictor in the model. We had to use a 7+ cutoff when education was the only 
socioeconomic predictor in the model and when both residence and education were in the model. 
By contrast, when we used a quadratic specification of life table time, higher cutoffs were 
usually possible and were used. 
 
Time-varying predictors 
 
The CLL model easily handles time-varying predictor variables. In this context, “time-varying” 
refers to variation over life table time t (not calendar time). One simply assigns, where 
appropriate, different values of the predictor to different person-year observations created from a 
particular person observation. Although the value of a predictor can vary from one person-year 
to the next for a person, the CLL models in equations (8) and (9) assume only that the value of 
the predictor does not vary within a person-year. In other words, in the expanded sample of 
person-year observations, predictors are not time-varying, because the value of the predictor that 
is assigned to a person-year observation pertains to a particular value of t and therefore does not 
vary over time. In effect, the expansion of the person sample into a person-year sample converts 
time-varying predictors into time-invariant predictors. 
 
 Our illustrative application to Philippines DHS data includes only urban/rural residence 
and education as predictors. Both predictors are defined at the time of survey but not at earlier 
times, so in neither case can these predictors be treated as time-varying predictors. We are forced 
to treat them as time-invariant predictors. For example, if a woman was age 45 and urban at the 
time of survey, we are forced to assume (incorrectly in many cases) that she was also urban at all 
earlier ages, so that each person-year observation created from her person record is coded as 
urban.  
 
 In the Philippines analysis, residence is defined as a categorical variable with two 
categories: urban and rural. Education is defined as a categorical variable with three categories: 
less than secondary, some or completed secondary, and more than secondary. Henceforth we 
refer to these three education categories as low, medium, and high. Residence is specified by a 
dummy variable U, which is 1 if urban and 0 if rural. Education is represented by two dummy 
variables, M and H, where M = 1 if medium education and 0 otherwise, and H = 1 if high 
education and 0 otherwise. It follows that (M, H) = (0, 0) for low education, (1, 0) for medium 
education, and (0, 1) for high education. 
 
 Even though U, M, and H are time-invariant predictors, interval-specific mean values of 
U, M, and H vary over time in the life table. (By “interval” here is meant life table time interval, 
indexed by the variable t.) In the period analysis, this is so because the group of women who 
reach a particular age during the period is not the same as the group of women who reach some 
other age during the period (although the two groups may overlap to some extent). For example, 
during the 5-year period immediately preceding any one of our three surveys, the women who 
had a 20th birthday during the period and the women who had a 35th birthday during the period 
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are two completely different groups of women. In the case of the Philippines, these two groups 
differ substantially in population composition by residence and education, because the younger 
women tend to be more urban and more educated than the older women. In this regard, it should 
be noted that interval-specific mean values of the predictors for a particular time period, 
representing population composition, are calculated from the person-year observations in the 
expanded sample, not from the original woman records. 
 
 Even in the cohort analysis, interval-specific mean values of U, M, and H vary over time 
in the life table, because the expanded sample of person-year observations leaves room for 
“frailty” to operate. “Frailty” pertains to the effects of unobserved heterogeneity in the risk of 
failure in each life table time interval. Unobserved heterogeneity means that person-year 
observations at higher risk of failure are weeded out faster over the course of the life table. For 
example, in a life table for progression from third to fourth birth, rural persons have higher 
interval-specific risks of failure (fourth birth) than urban persons and are therefore weeded out 
faster than urban persons. This means that, in the expanded cohort data set for analyzing 
progression to fourth birth, interval-specific mean values of U tend to increase as life table time t 
increases. Similarly, interval-specific mean values of H tend to increase as life table time t 
increases.  
 
Dummy variable specification of time-varying effects 
 
The CLL model can also incorporate time-varying effects of predictors. Time-varying effects can 
be modeled in several ways. We consider first a dummy variable specification. 
 

Suppose that, in our example of progression to first marriage, the predictor is urban/rural 
residence, specified by the dummy variable U. If the effect of urban/rural residence is not time-
varying, the effect of residence on log[–log(1–Pt)] is simply the coefficient of U, which we 
denote by b, which is constant over time in the life table. This is so regardless of whether U itself 
is time-varying. The effect of residence can be re-specified as time-varying by interacting U with 
the dummy variables representing life table time interval, resulting in an additional set of 
predictor variables that we can denote as W1 = U T1, W2 = U T2, ..., W29 = U T29.   
 
 The effect of education is specified as time-varying in a similar fashion. Both M and H 
must be interacted with the dummy variables T1, T2, ..., T29. The specification of this interaction 
requires the creation of the new variables X1 = MT1, X2 = MT2, ..., X29 = MT29 with coefficients u1, 
u2, ..., u29, and Y1 = HT1, Y2 = HT2, ..., Y29 = HT29 with coefficients v1, v2, ..., v29. 
 
 With the effects of residence and education specified in this way, the model in equation 
(5) becomes 
 
 log[�log(1�Pt)] = at + bU + d1W1 + ... +d29W29 + fM + u1X1 + ... + u29X29

  + gH + v1Y1 + ... + v29Y29 (10) 
 
 In equation (10), the terms containing U can be written as bU+d1W1+d2W2+...+d29W29 = 
bU+d1UT1+d2UT2+...+d29UT29 = U(b+d1T1+d2T2+...+d29T29). It follows that the effect of a one-
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unit change in U is b+d1 for the 1st time interval, b+d2 for the 2nd time interval, ..., b+d29 for the 
29th time interval, and b for the 30th time interval. Thus, as long as d1, d2, ..., d29 are not all zero, 
the effect of urban/rural residence on log[–log(1–Pt)] (and hence on Pt itself) is time-varying. 
Similarly, the effect of a change from low to medium education is f+u1 for the 1st time interval, 
f+u2 for the 2nd time interval, ..., f+u29 for the 29th time interval, and f for the 30th time interval; 
the effect of a change from low to high education is g+v1 for the 1st time interval, g+v2 for the 2nd 
time interval, ..., g+v29 for the 29th time interval, and g for the 30th time interval; and the effect of 
a change from medium to high education is the difference between the low-to-high effects and 
the low-to-medium effects. 
 
 When time-varying effects are incorporated into the CLL model in this way, it is the 
effect of residence—now represented by not only the coefficient of U but also the coefficients of 
W1, W2, ..., W29 in the expression b+d1T1+d2T2+...+d29T29—that is time-varying, not the 
coefficients themselves, which are time-invariant. The same point applies to the effect of 
education and the coefficients of the education-related variables. Again, because of the dummy-
variable specification of the life table time interval variable, this approach to time-varying effects 
achieves maximum flexibility in the way that time-varying effects are modeled. For this reason, 
this approach to modeling time-varying effects is also referred to as unrestricted. 
 
 At first blush, equation (10) is still a proportional hazards model. This is so because the 
computer does not see the time variation when it fits the model. It sees only person-year 
observations that are time-invariant, predictors that are time-invariant, and coefficients to be 
fitted that are time-invariant. Time variation is hidden in the definitions of sample observations 
(person-years) and in the definitions of the variables W1, W2, ..., W29; X1, X2, ..., X29; and Y1, Y2, ..., 
Y29. In this way, we “trick” a model designed for time-invariant predictors and time-invariant 
effects into including time-varying predictors and time-varying effects. This means, among other 
things, that the model with time-varying predictors and time-varying effects is fitted in exactly 
the same way as the model with time-invariant predictors and time-invariant effects. (A 
somewhat similar situation arises in ordinary multiple regression when we trick a model that is 
linear in X into becoming nonlinear by introducing a new predictor variable Z = X2.) 
 
Quadratic specification of time-varying effects 
 
A problem with the dummy variable specification of time-varying effects of predictor variables 
is that, as mentioned earlier, the algorithm for fitting the CLL model will not converge unless 
each of the four cells in the cross-classification of the dichotomous dependent variable 
FAILURE against each dichotomous predictor variable contains at least one person-year 
observation. This problem arises in the case of the dummy variables W1, W2, ..., W29, X1, X2, ..., 
X29, Y1, Y2, ..., Y29. For example, consider the variable Y29 = MT29 in the multivariate nuptiality 
analysis. This variable is 1 if the person-year observation has medium education and is age 39 
(10 plus 29), and 0 otherwise. In the cross-classification of FAILURE against Y29, it could easily 
be the case that there are no person-year observations in the cell for which FAILURE = Y29 = 1, 
because all persons with medium education who are going to get married may already have 
gotten married before age 39. A possible solution to this problem is to combine time intervals 
until the cross-classification has at least one person-year observation in each of the four cells, but 
this gets messy. A second, preferable solution is to use an alternative specification of time-
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varying effects that not only avoids this problem and but also requires many fewer predictor 
variables. 
 
 Again we use progression to first marriage as an example, this time with residence as the 
sole predictor and its effect modeled as time-varying. Instead of interacting U with the 29 
dummy variables representing life table time intervals in order to model time-varying effects, we 
interact U with life table time t (the counter-variable analogue of the 29 dummy variables 
representing discrete life table time intervals) by creating the variables Z1 = Ut and Z2 = Ut2, and 
we add these variables to each person-year record. If we want to use a linear specification of the 
time-varying effect, we include the variable Z1 in the set of predictors in the CLL model. If we 
want to use a quadratic specification, we include both Z1 and Z2.  
 
 Suppose that we use the quadratic specification, and suppose that the fitted coefficients of 
Z1 and Z2 are c and d. The  right side of the model equation then includes the terms bU+cZ1+dZ2 
= bU +cUt+dUt2 = U(b+ct+dt2). The expression (b+ct+dt2) is now the “coefficient” of U, and 
this “coefficient,” representing the effect of U, is a function of t and is therefore time-varying. At 
any given value of t, the effect of a one-unit change in U is to increase log[–log(1–Pt)] by 
b+ct+dt2 units. Equivalently, the effect is to multiply the underlying continuous-time hazard h(t) 
by exp(b+ct+dt2). Similar reasoning applies to the time-varying effects of M and H. Using the 
Philippines data, we experimented with the linear and quadratic specifications and found that the 
quadratic specification was always significantly better than the linear specification.  
 
 We therefore opted for the quadratic specification. The multi-equation model in equation 
(5) (based on persons) for progression to first marriage can then be written as  
 
 log[�log(1�Pt)] = at + U(b+ct+dt2) + M(f+gt+ht2) + H(j+kt+mt2) (11) 
 
and the equivalent single-equation model in equation (8) (based on person-years) can be written 
as  
 
 log[�log(1�P)] = a30 + c1T1 + c2T2 + ... + c29T29 + U(b+ct+dt2) + M(f+gt+ht2)

                                            + H(j+kt+mt2) (12) 
 
(In the model that the computer sees and fits, however, the term U(b+ct+dt2) appears as bU + 
cZ1 + dZ2, where Z1 = Ut and Z2 = Ut2. The terms M(f+gt+ht2) and H(j+kt+mt2) also appear in 
analogously altered form.)  
 

Note that life table time is specified in two different ways in the same model in equation 
(12) — both as 29 dummy variables T1, T2, ..., T29 and as a counter variable t. This works 
because t and t2 are hidden in the interaction variables, which in the case of residence are Z1 and 
Z2.  
 
 In the previous section that used dummy variable specifications of time-varying effects, 
we needed 90 coefficients to model the time-varying effects of residence and education (30 for 
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residence and 60 for education). In the alternative approach using a quadratic specification, we 
need only 9 coefficients (3 for residence and 6 for education). 
 
 Equations (11) and (12) are our preferred models for analyzing progression to first 
marriage in the three Philippines DHS surveys. In cases where non-convergence was a problem, 
however, we were sometimes able to use the following equation in place of equation (12): 
 
 log[�log(1�P)] = a30 + c1t + c2t2 + U(b+ct+dt2) + M(f+gt+ht2)

                                            + H(j+kt+mt2) (13) 
  
 Equation (13) illustrates two meanings of “quadratic specification”. The first refers to the 
specification of life table time intervals, and the second refers to the specification of time-
varying effects of predictor variables.  
 
Weights 

The three Philippines DHS survey samples for 1993, 1998, and 2003 are weighted samples. In 
each survey, sample weights are normalized so that the weighted number of cases is identical to 
the unweighted number of cases in the full DHS data set. In other words, the weights sum to the 
total survey sample size.  
 
 In our analysis, when the expanded data sets are created, the original weight for a woman 
carries over to the person-year observations created for that woman; i.e., the same weight is 
attached both to the original woman record and to each person-year record created from the 
original woman record. Each time a CLL model is fitted to an expanded data set (recall that we 
have 96 such data sets), however, it is important that the weights attached to the person-year 
records are re-normalized so that the re-normalized weights sum to the number of unweighted 
person-year observations in the particular expanded data set.  
 
 When calculating re-normalized weights for person-year observations in the expanded 
data set for a particular parity transition, we use the following notation pertaining to the 
particular expanded data set: 
 
N   The number of unweighted person-year observations in the data set 
wi   The original weight attached to the ith person-year observation in the data set 
W   The sum of the wi over the person-year observations in the data set 
wi* Re-normalized weight for the ith person-year observation in the data set 
 
We would like the weighted data set to sum to N (i.e., the re-normalized weights should sum to 
N). Re-normalized weights are accordingly calculated as 
 
 wi* = wi( N/W) (14) 
 
When the wi* are summed over person-year observations in the data set, the result is W(N/W) = 
N, as desired.  
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 In the case of the data set for the open parity interval, for example 9+ to 10+, the re-
normalization of weights is done in the following way. One first creates the expanded data 
subsets for parity transitions 9–10, 10–11, ..., 14–15. One then pools these data subsets. Finally, 
one re-normalizes the weights in this pooled data set using equation (14). For the merge to be 
done properly, all variables carried over into the merged data set must have the same names in 
each and every data subset.  
 
Calculating predicted values of the Pt function and derived life table from the 
fitted CLL model 
 
Let us return to the example of progression to first marriage. Once we have fitted values of the 
terms at and the various coefficients in equation (11), we can predict values of log[–log(1–Pt)] on 
the left side of the equation for specified values of U, M, H, and t. For each value of t, we can 
then solve for the value of Pt, which is assumed to be the same for all persons with the specified 
values of the predictors. If there are 30 time intervals, as in the case of our nuptiality tables, there 
are 30 such equations, which are solved for 30 values of Pt for t = 1, 2, ..., 30. These 30 values of 
Pt constitute the discrete-time hazard function for women with the specified values of the 
socioeconomic predictors. 
 
 A baseline hazard function P0,t is obtained by setting all predictors (i.e., all 
socioeconomic predictors) equal to zero in the fitted model in equation (11). Equation (11) then 
reduces to 
 
 log[�log(1�P0,t)] = at (15) 
 
where the subscript 0 in P0,t denotes the baseline value of Pt with all predictors in equation (11) 
set to zero. Equation (15) represents 30 separate equations, one for each value of t. Each equation 
can be solved for Pt, yielding 
 
 P0,t = 1 � exp[�exp(at)] (16) 
 
From equations (15) and (16) it is evident that the function at is a simple mathematical 
transformation of the baseline P0,t function, and vice versa. 

In the more general case, for arbitrary values of the predictors, 
 
 Pt = 1 � exp[�exp(at + bx)] (17) 
 
 The Pt function (evaluated with all predictors set either to zero or to other specified 
values of the predictors) determines an entire life table. In presenting calculation formulae for the 
life table measures of interest, we use the re-labeled Pt function, mentioned earlier, defined for t 
= 0, 1, 2, … instead of t = 1, 2, 3, …). In the example of a life table for progression to first 
marriage, t ranges from 0 to 29, and t is interpreted as exact time at the start of the life table time 
interval ranging from exactly t to exactly t+1. 
 



 23

 Given predicted values of Pt calculated from a fitted CLL model, values of the 
survivorship function S(t) at exact time t are calculated sequentially as 
 
 S(0) = 1    
 S(t+1) = S(t) (1�Pt),  t = 0, 1, ..., 29  (18) 
 
The unconditional probability of failure between t and t+1 is calculated as  
 
 ft  = S(t) Pt   (19) 
 
The unconditional probability of failure by time t is calculated as 
 
 F(t) = 1�S(t)  (20) 
 
The parity progression ratio is calculated (in the case of progression to first marriage) as 
 
 PPR = F(30)  (21) 
 
The mean age at failure is calculated as  
 
 Mean failure time = � [ft/F(30)](t + 0.5)  (22) 
 
where the summation ranges from t = 0 to t = 29. The median failure time is calculated as 
 
 Median failure time = t, such that F(t)/F(30) = 0.5  (23) 
 
The mean and median failure times, when added to age 10 (woman’s age at the start of the 
nuptiality table), are mean and median ages at first marriage. 

Pt functions and life tables for progression from first marriage to first birth, first birth to 
second birth, second birth to third birth, and so on, defined at specified values of the predictor 
variables, are calculated in a similar manner, except that life tables have 10 one-year time 
intervals instead of 30 one-year time intervals.  
 
 Using equation (1), TFR for specified values of the predictor variables is then calculated 
from the PPRs for specified values of the predictor variables. TMFR is similarly calculated, with 
pB set to one in equation (1).  
 
Calculating unadjusted and adjusted values of the Pt function and derived life 
tables from the fitted CLL model 
 
By “unadjusted” we mean “without controls”, and by “adjusted” we mean “with controls”.  
 
 To obtain unadjusted values of the Pt function and derived life table for each category of 
a predictor such as urban/rural residence, we run the CLL model with residence as the sole 
socioeconomic predictor variable with time-varying effects, with a quadratic specification of the 
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time variation. (In the case of progression to first marriage, for example, the model equation is 
the same as equation (12) or (13) above, but with the education terms deleted.) Once the model is 
fitted, we use it to calculate two life tables, one for urban and one for rural, by alternatively 
setting U to 1 and 0 in the model equations.  From these two life tables we calculate urban and 
rural values of the PPR and mean and median failure times. We refer to the life tables for urban 
and rural as unadjusted life tables, and to the values of the PPR and mean and median failure 
times calculated from these urban and rural life tables as unadjusted values.  
 
 To obtain adjusted estimates of the Pt function and derived life tables for urban and rural, 
we run the model again, this time with not only residence but also all the other predictors 
included in the model. (In our Philippines example, the only other predictor is education, but for 
the moment we shall speak in terms of the more general case of more than two socioeconomic 
predictors.) The other predictor variables serve as controls. The procedure is the same as in the 
unadjusted case, except that we hold the control variables constant at their interval-specific mean 
values when varying residence from urban to rural. By “interval” is meant life table time interval. 
For example, in the analysis of progression to first marriage, where the model can be thought of 
as comprising 30 equations (one for each value of t), 30 separate means of M and 30 separate 
means of H, representing education, are used as controls when using equation (11) to compute 
adjusted values of the Pt function and derived life tables for urban and rural. These interval-
specific means (one mean value of M and one mean value of H for each value of t) are calculated 
from the expanded data set (using the re-normalized weights) to which the CLL model for a 
particular parity transition is fitted.  
 
 We refer to the two life tables for urban and rural calculated in this way as adjusted life 
tables—adjusted in the sense that the other socioeconomic predictors are controlled by holding 
them constant at their interval-specific mean values when residence is varied from urban to rural 
(i.e., when U is varied from 1 to 0)—and to the values of the PPR and mean and median ages at 
marriage calculated from these adjusted urban and rural life tables as adjusted values. 
 
 In both the period analysis and the cohort analysis, interval-specific means rather than the 
overall means of M and H must be used as control values when calculating adjusted Pt values 
and derived life tables for urban and rural. It is especially important to do this in the period 
analysis, because the use of overall means results in younger women being treated as less 
educated than they really are and older women being treated as more educated than they really 
are. In models with time-varying effects of education, this kind of distorting effect is amplified if 
the interval-specific mean of U, M, or H increases or decreases monotonically over time in the 
life table (as it typically does in the case of U and H), because the mean values of U, M, and H 
are weighted by a “coefficient” that contains terms in t and t2, as seen earlier in equation (11). 
We use interval-specific means throughout, in both the period analysis and the cohort analysis, 
when calculating adjusted values.  

 
 The above procedure for calculating unadjusted and adjusted values is then repeated, with 
another of the predictors considered as the principal predictor in place of residence. In the 
unadjusted case, a new model must be run each time another predictor is selected as the sole 
predictor variable in the model. In the adjusted case, however, a new model need not be run, 
because all the predictors are already in the model the first time around. One needs only to 
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change the way in which the predictor variables are set to particular values. In the adjusted case, 
when a predictor other than residence is chosen as the principal predictor variable, the set of 
control variables again includes all of the other predictors, so that this time residence is included 
in the set of control variables. One proceeds in this way until each and every predictor variable 
has been treated as the principal predictor variable. 
 
 Unadjusted and adjusted Pt functions and life tables for categories of each predictor 
variable are calculated in this way for each of the parity transitions from 10th birthday to first 
marriage, from first marriage to first birth, from first birth to second birth, and so on. For each 
parity transition, the unadjusted and adjusted life tables yield unadjusted and adjusted values of 
the PPR and mean and median failure times for each category of each predictor variable. The 
unadjusted and adjusted PPRs for the various parity transitions are then substituted into equation 
(1) to yield unadjusted and adjusted values of TFR and (with pB set to one) TMFR for each 
category of each predictor variable.  
 
 When adjusted PPRs are chained together to calculate an adjusted TFR or TMFR, the set 
of socioeconomic predictor variables must be the same in the CLL model for each PPR. The set 
of dummy variables representing life table time intervals can vary, however, as it does between 
the B�M transition, where there are 29 dummy variables representing 30 intervals (equation (12) 
or (13) above), and higher-order parity transitions, where there are 9 dummy variables 
representing 10 intervals. 
 

Further explanation is needed about how to handle time-varying effects of predictors 
when holding predictors constant at their interval-specific mean values when the predictor 
variables involve interactions, as in the case of Z1 =Ut and Z2 = Ut2. In this case, one does not 
take the means of Z1 and Z2 when holding predictors constant at their interval-specific mean 
values. Instead, in the expressions for Z1 =Ut and Z2 = Ut2, mean values are substituted for U 
but not for t or t2, which are left as they are. The same point refers to terms that interact M and H 
with t and t2. 
 
 This mode of presentation of regression results, in the form of unadjusted and adjusted 
values of the response variable, is sometimes referred to in the demographic literature as multiple 
classification analysis (MCA), which was originally developed for ordinary multiple regression 
(Andrews, Morgan, and Sonquist 1969). The same logic applies to other forms of regression as 
well, including the CLL regression models used here. In general, the MCA approach focuses on 
predicted values of the response variable (PPR, mean or median failure time, TFR, or TMFR, in 
the present instance) classified by categories of each predictor variable with other predictor 
variables held constant (usually at their mean values, and in the case of the CLL model, at their 
interval-specific mean values). The MCA mode of presenting results has the advantage of 
transforming rather complicated and voluminous regression results into simple bivariate tables 
that are readily understood not only by statisticians and demographers but also by policy makers 
and the intelligent layman. 
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Tests of statistical significance 
 
Ideally, model results should be accompanied by tables of estimated coefficients and their 
standard errors. But because the number of coefficients is large, and also because each 
coefficient by itself is difficult to interpret, we do not present coefficients. Instead, we have used 
the jackknife method to compute standard errors of the estimates of PPRs , TFR, TMFR, and 
mean and median failure times. These standard errors are then used for tests of statistical 
significance (see Appendix B).  
 
Consistency checks 

A number of consistency checks on the methodology, using Philippines data, are presented in 
Appendix A. 
 
Computer programs for fitting the CLL model 
 
We originally used PROC GENMOD in SAS to fit CLL models (Allison 1995, ch. 7). 
Subsequently we produced a second version of the programs, written in STATA. The current 
version of the programs for jackknife estimates of standard errors are written in SAS and have 
not yet been rewritten in STATA. The core computer programs, in both SAS and STATA, 
including documentation that is currently under preparation, will be placed in the public domain 
at a later date.  
 
THE PHILIPPINES DATA 
 
Table 1 shows the distribution of the original Philippines survey samples for 1993, 1998, and 
2003 by residence and education. Distributions are shown for women age 10–49 and women age 
40–49. Expanded samples of person-year observations for the period analysis and the cohort 
analysis, shown in Table 2, are created from the two groups of women in Table 1. The sample 
sizes in Table 2 indicate number of person-year observations in the data sets to which CLL 
models are fitted. For each of the three surveys, two separate data sets, one for the period 
analysis and one for the cohort analysis, are created for each of 16 parity transitions (B�M, M�1, 
1�2, …, 14�15), for a total of 96 data sets. When fitting CLL models for open parity intervals, 
some of these person-year data sets are combined, as explained earlier.  
 
MULTIVARIATE ANALYSIS OF EACH SURVEY CONSIDERED SEPARATELY 
 
As already noted, the CLL model can be run without any predictors except the variables 
representing life table time (either the dummy variable specification or the quadratic 
specification of life table time, as illustrated by equations (8) and (9) above). In this case one 
obtains, for each survey, a basic period life table and a basic cohort life table for each parity 
transition, pertaining to all persons regardless of their socioeconomic characteristics. PPRs, mean 
and median failure times, TFR, and TMFR are calculated from these basic life tables, as shown 
in Table 3. PPRs and mean and median failure times are shown only up to the 9–10 transition, 
but TFR and TMFR are calculated using a higher cutoff (in each case, as high as possible 
without running into non-convergence problems) and an open parity interval beyond the cutoff.  
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Table 1: Percent distribution of women by urban/rural residence and education: 1993, 1998, and 2003 
DHS surveys, Philippines 
         
Survey   Women age 10-49   Women age 40-49 
year Education Urban Rural Total  Urban Rural Total
         
1993 Low 17.9 26.8 44.7 21.5 34.0 55.5
 Medium 19.6 15.8 35.3 13.9 9.6 23.6
 High   13.6 6.4 20.0 14.9 6.0 20.9
 Total 51.1 48.9 100.0 50.4 49.7 100.0
                           (N =19586)                             (N =2741)
         
1998 Low 13.9 28.7 42.6 15.0 34.3 49.3
 Medium 17.8 17.8 35.6 13.6 12.6 26.2
 High   14.3 7.4 21.8 18.0 6.5 24.5
 Total 46.1 53.9 100.0 46.6 53.4 100.0
                          (N = 17857)                             (N =2693)
         
2003 Low 13.8 22.7 36.5 15.4 26.4 41.8
 Medium 22.1 17.9 39.9 18.2 13.4 31.6
 High   16.4 7.1 23.6 18.8 7.9 26.6
 Total 52.3 47.7 100.0 52.4 47.6 100.0
                              (N =17515)                             (N = 2884)
         
Note: "Low" education means less than secondary, "medium" means some or completed secondary, and 
"high" means more than secondary. The samples for which the distributions are shown include single 
women as well as ever-married women. Numbers in this table incorporate sample weights. The weighted 
N equals the unweighted N for each of the six samples in the table. 

         
In the case of the cohort estimates, the estimates of PPRs, mean and median failure times, TFR, 
and TMFR are virtually identical to those calculated from Kaplan-Meier life tables (see 
Appendix A for details). A similar comparison cannot be made for period estimates, however, 
because Kaplan-Meier life tables cannot be calculated from period data. 
 
 In the period analysis in Table 3, an unexpected finding is that pB rose and age at first 
marriage fell over the three surveys. By contrast, in the cohort analysis pB hardly changed, and 
age at first marriage rose slightly. The difference occurs because the cohort estimates of mean 
and median ages at first marriage pertain to marriages that occurred roughly two decades before 
survey interview when age at first marriage was slowly rising rather than falling.  
 
 In the period analysis, a falling mean age at first marriage causes a compression of 
marriages in calendar time (Bongaarts and Feeney 1998), thereby contributing to a temporary 
rise in the period estimate of pB. This “tempo effect” may be part of the reason for the rise in the 
period estimate of pB in Table 3. Supporting evidence for this tentative conclusion is that 
residence and education explain neither the upward trend in pB nor the downward trend in mean  
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Table 2: Expanded sample sizes: 1993, 1998, and 2003 DHS surveys, Philippines 
        
Parity               Period analysis                  Cohort analysis 
transition 1993 1998 2003 1993 1998 2003 
        
B-M 44205 39466 37096 35846 35654 38226 
M-1 3788 3846 4210 5627 5443 5945 
 1-2 7235 6838 7929 8107 8317 9581 
 2-3 7573 6964 7507 8888 9163 10426 
 3-4 7041 6526 6200 9304 9225 10333 
 4-5 5747 5134 4699 8411 7894 8555 
 5-6 4054 3697 3214 6491 6112 5817 
 6-7 2871 2678 2227 4636 4475 4155 
 7-8 2047 1815 1600 3493 3216 2794 
 8-9 1587 1154 1006 2504 1949 1788 
 9-10 987 845 601 1613 1356 1033 
 10-11 619 558 453 1043 809 676 
 11-12 336 317 242 510 418 341 
 12-13 211 149 91 304 193 147 
 13-14 79 71 37 118 97 60 
 14-15 25 45 26  41 47 40 

Notes: Expanded sample sizes are numbers of person-year observations. Each cell in the 
table corresponds to a separate data set, for which the sample size (number of person-year 
observations) is shown. There are 96 data sets. For each data set, weighted and 
unweighted sample sizes are the same. B-M denotes the transition from a woman's own 
birth to first marriage, and M-1 denotes the transition from first marriage to first birth. In the 
period analysis, periods are the five-year period before each survey. In the cohort analysis, 
cohorts are defined as women age 40-49 at the time of survey. 
 
and median age at first marriage, as will be seen in the multivariate analysis of trends in the next 
section.  
 
 Tempo effects are, however, only part of the story. Another, perhaps more important 
cause of not only the upward trend in pB but also the downward trend in age at first marriage is 
the rising prevalence of non-formalized unions. Mean age at first union (calculated directly from 
reported first unions occurring in the 5-year period before each survey) was about two years 
younger for non-formalized unions than for formalized marriages in all three surveys, while the 
proportion that non-formalized unions are of all unions increased over the three surveys. At ages 
15–19 this proportion was 35 percent in the 1993 survey, 36 percent in the 1998 survey, and 55 
percent in the 2003 survey; and at ages 20–24 it was 13 percent in the 1993 survey, 16 percent in 
the 1998 survey, and 25 percent in the 2003 survey. The biggest increases in the proportions at 
15–19 and 20–24 and the biggest decline in age at first marriage all occurred between the second 
and third surveys, a pattern that also suggests a causal effect of prevalence of non-formalized 
unions on mean and median ages at first marriage and pB. 
 
 Table 3 also shows that both period and cohort estimates of pM hardly changed over the 
three surveys, and that p1 declined only modestly. Both period and cohort estimates of p2, p3, …,  
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Table 3: Period and cohort estimates of parity progression ratios, mean and median ages at first marriage 
(Am), mean and median closed birth intervals (CBI), TFR, and TMFR, derived from CLL models in which 
the only predictor variables are the variables representing life table time intervals: Based on Philippines 
DHS surveys for 1993, 1998, and 2003 
         
Parity transition Period analysis   Cohort analysis 
   Life table measure 1988-92 1993-97 1998-02  1993 1998 2003
     
B-M         
   PPR (pB) 0.87 0.89 0.92 0.94 0.93 0.95
   Mean Am 24.0 23.8 23.2 21.7 22.0 22.1
   Median Am 23.0 23.1 22.4 20.9 21.2 21.2
         
M-1         
   PPR (pM) 0.96 0.96 0.94 0.97 0.97 0.96
   Mean CBI 1.3 1.3 1.4 1.4 1.4 1.4
   Median CBI 1.0 1.0 1.0 1.0 1.1 1.0
         
 1-2         
   PPR (p1) 0.89 0.85 0.83 0.95 0.92 0.92
   Mean CBI 2.9 2.9 3.2 2.4 2.5 2.6
   Median CBI 2.3 2.4 2.6 2.0 2.0 2.1
         
 2-3         
   PPR (p2) 0.81 0.78 0.73 0.90 0.87 0.86
   Mean CBI 3.1 3.2 3.5 2.6 2.8 2.9
   Median CBI 2.6 2.6 2.9 2.3 2.3 2.4
         
 3-4         
   PPR (p3) 0.74 0.67 0.64 0.84 0.79 0.77
   Mean CBI 3.2 3.2 3.5 2.8 2.9 3.0
   Median CBI 2.6 2.6 2.8 2.4 2.5 2.5
         
 4-5         
   PPR (p4) 0.68 0.66 0.59 0.77 0.75 0.71
   Mean CBI 3.0 3.2 3.4 2.9 3.0 3.0
   Median CBI 2.6 2.8 3.0 2.4 2.6 2.6
         
 5-6         
   PPR (p5) 0.71 0.65 0.61 0.77 0.76 0.73
   Mean CBI 3.1 3.2 3.3 2.9 3.0 3.0
   Median CBI 2.7 2.7 2.8 2.5 2.6 2.6
         
 6-7         
   PPR (p6) 0.71 0.66 0.69 0.79 0.75 0.73
   Mean CBI 3.0 3.2 3.4 2.8 3.0 3.0
   Median CBI 2.6 2.7 2.8 2.4 2.6 2.5



 30

 

Table 3, continued: Period and cohort estimates of parity progression ratios, mean and median ages at 
first marriage (Am), mean and median closed birth intervals (CBI), TFR, and TMFR, derived from CLL 
models in which the only predictor variables are the variables representing life table time intervals: Based 
on Philippines DHS surveys for 1993, 1998, and 2003 
         
Parity transition Period analysis   Cohort analysis 
   Life table measure 1988-92 1993-97 1998-02 1993 1998 2003
         
 7-8         
   PPR (p7) 0.71 0.64 0.59 0.79 0.69 0.72
   Mean CBI 2.9 3.1 2.9 2.9 2.9 2.9
   Median CBI 2.5 2.6 2.6 2.5 2.5 2.6
         
 8-9         
   PPR (p8) 0.67 0.60 0.66 0.74 0.73 0.71
   Mean CBI 3.1 2.9 3.4 2.8 2.8 3.0
   Median CBI 2.7 2.8 2.8 2.4 2.5 2.6
         
 9-10         
   PPR (p9) 0.59 0.64 0.61 0.69 0.69 0.72
   Mean CBI 2.6 3.5 3.9 2.7 3.9 3.8
   Median CBI 2.6 2.6 2.5 2.4 2.5 2.5
         
TFR  3.59 3.23 2.99 5.15 4.47 4.39
TMFR   4.15 3.64 3.23  5.47 4.83 4.61

Notes: In the period analysis, the time periods are the 5-year period before each of the 1993, 1998, and 
2003 surveys. Separate CLL models are calculated for the 5-year period before each survey, using data 
from only that survey. In the cohort analysis, three cohorts are defined as women age 40-49 at the time of 
each of the three surveys. A separate CLL model is calculated for the cohort from each survey, using 
data from only that survey. The CLL models use a dummy variable specification of life table time up to the 
parity transition where non-convergence occurs, after which a quadratic specification is used, up to the 
cutoff, which is chosen as high as possible. Reading across the row labeled "TFR", the cutoffs are 12+, 
12+, 13+, 13+, 13+, 13+. Results for parity transitions higher than 9-10 are not shown, but TFR and 
TMFR are calculated using PPRs for transitions higher than 9-10, including the PPR for the open-parity 
interval. In this table and in all subsequent tables, births of order 16 and over are ignored. 
 
         
p8 declined more substantially. PPRs at higher-order transitions also declined in most cases, but 
less regularly. Birth intervals between first marriage and first birth are very short, reflecting the 
fact that many first births were conceived shortly before marriage. Our recoding of date of first 
marriage back to age at first birth in cases where the first birth was a premarital birth also 
contributes to the short intervals between first marriage and first birth, but not by very much 
because only 6–8 percent of births were recoded in this way. Mean and median closed birth 
intervals tended to increase over the three surveys, more so in the period case than in the cohort 
case. In the period case the increases again occurred mainly between the second and third 
surveys. Also  in this table, mean age at first marriage always exceeds median age at first 
marriage, and mean closed birth intervals always exceed median closed birth intervals; this 



 31

pattern occurs because distributions of failures tend to be skewed toward higher ages (in the case 
of first marriage) and higher durations in parity (in the case of next births).  
 
 The period TFRs in Table 3 are about half a child lower than published values of TFRasfr 
in the Philippines DHS reports. Differences between TFRppr and TFRasfr occur because of the 
different ways that these two measures are calculated. In theory, though rarely in practice, 
differences even larger than half a child are possible. This is illustrated by the following 
hypothetical example: Suppose that all never-married women suddenly decide to postpone 
marriage until the end of the following year, so that no first marriages occur in that year. Then 
pB = 0 in that year, and, as is evident from equation (1), TFRppr = 0. TFRasfr, on the other hand, is 
unaffected by the absence of first marriages, except for a relatively small number of births to 
women who would otherwise have both married and had a child in that year.  
 
 Tables 4–12 show unadjusted and adjusted estimates of PPRs, mean and median ages at 
marriage, mean and median closed birth intervals, TFR, and TMFR by residence and education 
for the three surveys. Each survey is analyzed independently. In the case of adjusted estimates, 
this means that control variables are held constant at interval-specific mean values specific to 
each survey. Thus In other words, control variables are held constant within surveys but not 
between surveys. 
 
 In each survey in Table 4, pertaining to progression to first marriage, unadjusted and 
adjusted estimates of pB tend to be higher for rural than for urban, and higher for those with less 
education. Unadjusted and adjusted estimates of mean and median ages at marriage tend to be 
lower for rural than for urban and lower for those with less education. Urban/rural differences in 
pB and mean and median ages at first marriage are affected little by the introduction of controls 
for education. By contrast, the differences by education in pB and mean and median ages at first 
marriage are affected more substantially by the introduction of controls for residence—but only 
in the case of the period estimates. Thus education does not explain the effects of residence, but 
residence does explain some of the effects of education.  
 
 Table 5, pertaining to the M–1 transition, shows little variability in pM or mean or median 
age at first marriage by residence and education. This is expected, because virtually all women 
who marry in the Philippines want to have at least one child and to have the first child soon after 
marriage. 
 
 The adjusted period estimates in Tables 6–12, pertaining to the transitions from first to 
second birth, second to third birth, …, sixth to seventh birth, and seventh or higher-order birth to 
next birth, show regular patterns by residence and education and over time. For each period and 
each cohort, PPRs tend to be higher and birth intervals shorter for rural than for urban, and PPRs 
tend to decrease and birth intervals to increase as education increases. At the higher parity 
transitions, birth intervals tend to be quite short for the relatively few women with high education. 
It seems likely that such women are highly selected for relatively short breastfeeding, which 
shortens the period of post-partum amenorrhea, and for lack of use of contraception. PPRs tend 
to be lower and birth intervals longer in the period analysis than in the cohort analysis, indicating 
a long-term trend toward lower PPRs and longer birth intervals. Adjustment of the estimates 
tends to reduce residence differentials and education differentials in PPRs and birth intervals.  
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p B ) 0.84 ** 0.83 ** 0.90 ** 0.92 ** 0.91 ** 0.94 *

   Mean A m 24.8 ** 24.7 ** 23.8 ** 22.3 ** 22.5 ** 22.6 **
   Median A m 23.8 ** 24.1 ** 23.1 ** 21.6 ** 21.7 ** 21.9 **

   Rural† PPR (p B ) 0.91 0.96 0.96 0.96 0.95 0.96
   Mean A m 22.8 22.6 22.1 21.0 21.3 21.4
   Median A m 21.8 21.9 21.1 20.2 20.5 20.5

Education
   Low† PPR (p B ) 0.93 0.91 0.97 0.96 0.95 0.96

   Mean A m 22.0 21.6 20.4 20.4 20.4 20.4
   Median A m 20.5 20.4 19.4 19.6 19.6 19.5

   Medium PPR (p B ) 0.88 * 0.89 0.94 0.94 0.93 0.97
   Mean A m 23.1 ** 23.2 ** 22.4 ** 21.8 ** 21.8 ** 21.7 **
   Median A m 22.1 ** 22.2 ** 21.5 ** 21.2 ** 21.0 ** 21.0 **

   High PPR (p B ) 0.80 ** 0.88 0.88 ** 0.90 ** 0.88 ** 0.91 **
   Mean A m 25.8 ** 25.6 ** 25.2 ** 25.1 ** 25.0 ** 25.2 **
   Median A m 25.4 ** 25.0 ** 24.6 ** 24.7 ** 24.4 ** 24.6 **

Residence
   Urban PPR (p B ) 0.83 ** 0.82 ** 0.89 ** 0.92 * 0.90 * 0.94

   Mean A m 24.9 ** 24.8 ** 24.1 ** 22.5 22.6 22.9
   Median A m 24.1 ** 24.2 ** 23.4 ** 21.8 21.9 22.1

   Rural† PPR (p B ) 0.89 0.95 0.95 0.95 0.94 0.95
   Mean A m 23.6 23.1 23.0 22.1 22.8 22.6
   Median A m 22.7 22.5 22.2 21.4 22.0 21.8

Education
   Low† PPR (p B ) 0.92 0.88 0.96 0.95 0.94 0.96

   Mean A m 22.4 22.0 20.8 20.5 20.3 20.5
   Median A m 20.8 20.7 19.6 19.6 19.6 19.5

   Medium PPR (p B ) 0.87 0.88 0.94 0.94 0.93 0.97
   Mean A m 23.2 * 23.3 ** 22.5 ** 21.8 ** 21.8 ** 21.7 **
   Median A m 22.2 ** 22.4 ** 21.5 ** 21.1 ** 21.0 ** 21.0 **

   High PPR (p B ) 0.81 ** 0.88 0.88 ** 0.91 ** 0.89 ** 0.91 **
   Mean A m 25.8 ** 25.6 ** 25.1 ** 25.0 ** 25.0 ** 25.1 **
   Median A m 25.4 ** 25.1 ** 24.6 ** 24.6 ** 24.4 ** 24.6 **

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.          All tests of statistical signficance are 2-tailed tests.

Table 4: Unadjusted and adjusted estimates of parity progression ratios and mean and median ages at 
first marriage (A m ) for progression from birth to first marriage (B-M): 1993, 1998, and 2003 DHS surveys, 
Philippines

Note: In this table and also in Tables 5-14, one or more asterisks after a quantity indicate that the quantity 
differs significantly from the corresponding quantity in the reference category.

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p M ) 0.96 0.96 0.94 0.97 0.97 0.96

Mean CBI 1.3 1.3 1.5 1.4 1.4 1.4
Median CBI 1.0 1.0 1.0 1.0 1.0 1.0

   Rural† PPR (p M ) 0.97 0.97 0.94 0.97 0.97 0.97
Mean CBI 1.3 1.4 1.4 1.4 1.4 1.4
Median CBI 1.0 1.0 1.1 1.1 1.1 1.0

Education
   Low† PPR (p M ) 0.97 0.96 0.93 0.97 0.97 0.96

Mean CBI 1.4 1.4 1.5 1.5 1.5 1.5
Median CBI 1.1 1.1 1.3 1.1 1.2 1.1

   Medium PPR (p M ) 0.97 0.96 0.95 0.96 0.98 0.97
Mean CBI 1.3 1.3 1.5 1.4 1.2 ** 1.3 *
Median CBI 1.0 1.0 1.1 * 1.1 0.9 ** 1.0 *

   High PPR (p M ) 0.95 0.96 0.92 0.96 0.97 0.96
Mean CBI 1.2 1.3 1.3 * 1.3 ** 1.4 1.3 **
Median CBI 0.9 0.9 ** 0.9 ** 0.9 * 1.0 ** 0.9 **

Residence
   Urban PPR (p M ) 0.96 0.96 0.93 0.97 0.97 0.96

Mean CBI 1.3 1.3 1.5 * 1.4 1.4 1.4
Median CBI 1.0 1.0 1.0 1.1 1.0 1.0

   Rural† PPR (p M ) 0.97 0.97 0.94 0.97 0.97 0.97
Mean CBI 1.3 1.4 1.3 1.4 1.4 1.4
Median CBI 1.0 1.0 1.0 1.0 1.1 1.0

Education
   Low† PPR (p M ) 0.97 0.96 0.93 0.97 0.97 0.96

Mean CBI 1.4 1.4 1.6 1.5 1.5 1.5
Median CBI 1.1 1.1 1.3 1.1 1.2 1.1

   Medium PPR (p M ) 0.97 0.96 0.95 0.96 0.98 0.97
Mean CBI 1.3 1.3 1.5 1.4 1.2 ** 1.3
Median CBI 1.0 1.0 1.1 * 1.1 0.9 ** 1.0 *

   High PPR (p M ) 0.95 0.96 0.92 0.96 0.96 0.96
Mean CBI 1.2 1.3 1.3 * 1.3 ** 1.4 1.3 **
Median CBI 0.9 0.9 * 0.9 ** 0.9 * 1.0 * 0.9 **

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.          All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 5: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from first marriage to first birth (M-1): 1993, 1998, and 2003 DHS 
surveys, Philippines

Period analysis Cohort analysis

UNADJUSTED ESTIMATES



 34

1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 1 ) 0.88 0.81 ** 0.81 ** 0.93 ** 0.89 ** 0.90 **

Mean CBI 3.0 * 3.1 * 3.2 2.3 2.6 ** 2.6 *
Median CBI 2.4 2.5 * 2.6 2.0 2.1 2.1

   Rural† PPR (p 1 ) 0.90 0.90 0.87 0.97 0.96 0.94
Mean CBI 2.7 2.8 3.1 2.4 2.3 2.5
Median CBI 2.3 2.3 2.5 2.0 2.0 2.0

Education
   Low† PPR (p 1 ) 0.92 0.91 0.88 0.96 0.94 0.94

Mean CBI 2.6 2.5 2.9 2.3 2.4 2.5
Median CBI 2.2 2.1 2.5 2.0 2.0 2.0

   Medium PPR (p 1 ) 0.92 0.85 * 0.84 0.96 0.93 0.92
Mean CBI 2.9 ** 3.0 ** 3.1 2.4 2.4 2.6
Median CBI 2.3 2.4 * 2.5 2.0 2.0 2.1 *

   High PPR (p 1 ) 0.83 ** 0.82 ** 0.80 ** 0.89 ** 0.87 ** 0.87 **
Mean CBI 3.1 ** 3.2 ** 3.4 ** 2.5 * 2.7 ** 2.8 **
Median CBI 2.4 * 2.6 ** 2.7 2.0 2.1 2.2 **

Residence
   Urban PPR (p 1 ) 0.88 0.82 ** 0.81 * 0.93 ** 0.89 ** 0.90 *

Mean CBI 2.9 3.0 3.2 2.3 2.5 * 2.6
Median CBI 2.3 2.5 2.6 2.0 2.1 2.1

   Rural† PPR (p 1 ) 0.89 0.90 0.86 0.96 0.95 0.93
Mean CBI 2.8 2.9 3.1 2.4 2.4 2.5
Median CBI 2.3 2.3 2.5 2.0 2.0 2.1

Education
   Low† PPR (p 1 ) 0.92 0.90 0.87 0.95 0.93 0.93

Mean CBI 2.6 2.6 3.0 2.3 2.4 2.5
Median CBI 2.2 2.2 2.5 2.0 2.0 2.0

   Medium PPR (p 1 ) 0.91 0.85 0.84 0.96 0.93 0.92
Mean CBI 2.9 ** 3.0 ** 3.1 2.4 2.4 2.6
Median CBI 2.3 2.4 2.5 2.0 2.0 2.1 *

   High PPR (p 1 ) 0.83 ** 0.82 ** 0.80 * 0.90 ** 0.88 * 0.88 **
Mean CBI 3.0 ** 3.2 ** 3.4 ** 2.5 * 2.6 * 2.8 **
Median CBI 2.4 * 2.6 ** 2.7 2.0 2.1 2.2 *

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.        All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 6: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from first birth to second birth (1-2): 1993, 1998, and 2003 DHS 
surveys, Philippines

Period analysis Cohort analysis

UNADJUSTED ESTIMATES
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 2 ) 0.78 ** 0.73 ** 0.68 ** 0.87 ** 0.81 ** 0.83 **

Mean CBI 3.1 3.4 * 3.6 2.7 2.8 3.0
Median CBI 2.6 2.6 2.9 2.3 2.4 2.4

   Rural† PPR (p 2 ) 0.85 0.83 0.79 0.94 0.92 0.89
Mean CBI 3.1 3.0 3.5 2.6 2.7 2.8
Median CBI 2.6 2.6 2.8 2.3 2.3 2.4

Education
   Low† PPR (p 2 ) 0.89 0.82 0.84 0.95 0.93 0.91

Mean CBI 2.9 2.9 3.3 2.5 2.6 2.7
Median CBI 2.5 2.5 2.7 2.3 2.3 2.3

   Medium PPR (p 2 ) 0.79 ** 0.81 0.72 ** 0.90 ** 0.86 ** 0.86 **
Mean CBI 3.0 3.0 3.3 2.7 * 2.8 2.9
Median CBI 2.6 2.6 2.7 2.3 2.4 2.4

   High PPR (p 2 ) 0.72 ** 0.72 ** 0.64 ** 0.80 ** 0.74 ** 0.78 **
Mean CBI 3.6 ** 3.8 ** 4.1 ** 2.9 ** 3.1 ** 3.3 **
Median CBI 2.8 * 2.9 ** 3.5 ** 2.4 2.5 * 2.6 **

Residence
   Urban PPR (p 2 ) 0.78 0.73 ** 0.69 * 0.88 ** 0.83 ** 0.84

Mean CBI 3.1 3.3 3.6 2.7 2.8 2.9
Median CBI 2.6 2.6 2.9 2.3 2.3 2.4

   Rural† PPR (p 2 ) 0.83 0.82 0.76 0.92 0.90 0.88
Mean CBI 3.1 3.1 3.5 2.7 2.7 2.9
Median CBI 2.7 2.6 2.9 2.3 2.3 2.4

Education
   Low† PPR (p 2 ) 0.88 0.80 0.83 0.94 0.92 0.91

Mean CBI 2.9 2.9 3.3 2.5 2.6 2.7
Median CBI 2.5 2.5 2.7 2.3 2.3 2.3

   Medium PPR (p 2 ) 0.79 ** 0.80 0.72 ** 0.89 ** 0.86 ** 0.86 **
Mean CBI 3.0 3.0 3.3 2.7 * 2.8 2.9
Median CBI 2.6 2.6 2.7 2.3 2.3 2.4

   High PPR (p 2 ) 0.73 ** 0.73 0.65 ** 0.81 ** 0.75 ** 0.78 **
Mean CBI 3.6 ** 3.8 ** 4.1 ** 2.9 ** 3.1 ** 3.3 **
Median CBI 2.8 ** 2.9 ** 3.5 ** 2.4 2.5 * 2.6 **

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.          All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 7: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from second birth to third birth (2-3): 1993, 1998, and 2003 DHS 
surveys, Philippines

Period analysis Cohort analysis

UNADJUSTED ESTIMATES
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 3 ) 0.71 ** 0.61 ** 0.59 ** 0.80 ** 0.72 ** 0.71 **

Mean CBI 3.3 3.3 3.5 2.9 3.0 3.2 *
Median CBI 2.7 2.6 2.8 2.5 2.5 2.6 *

   Rural† PPR (p 3 ) 0.78 0.73 0.70 0.87 0.85 0.84
Mean CBI 3.1 3.1 3.6 2.8 2.8 2.9
Median CBI 2.6 2.6 2.8 2.4 2.5 2.5

Education
   Low† PPR (p 3 ) 0.82 0.76 0.74 0.91 0.88 0.87

Mean CBI 3.1 3.1 3.5 2.7 2.7 2.8
Median CBI 2.6 2.6 2.8 2.4 2.4 2.4

   Medium PPR (p 3 ) 0.72 ** 0.67 * 0.64 ** 0.79 ** 0.76 ** 0.75 **
Mean CBI 3.3 3.0 3.5 3.0 ** 3.0 ** 3.1 **
Median CBI 2.6 2.5 2.8 2.6 ** 2.6 * 2.6 **

   High PPR (p 3 ) 0.64 ** 0.55 ** 0.53 ** 0.66 ** 0.61 ** 0.59 **
Mean CBI 3.4 3.6 3.7 3.2 ** 3.5 ** 3.3 **
Median CBI 2.7 2.8 2.8 2.6 ** 2.8 ** 2.7 **

Residence
   Urban PPR (p 3 ) 0.71 0.63 * 0.61 0.82 0.74 ** 0.72 **

Mean CBI 3.3 3.3 3.5 2.8 2.9 3.1
Median CBI 2.7 2.6 2.8 2.4 2.5 2.6

   Rural† PPR (p 3 ) 0.76 0.70 0.67 0.84 0.81 0.80
Mean CBI 3.1 3.2 3.6 2.9 3.0 2.9
Median CBI 2.6 2.6 2.8 2.5 2.5 2.5

Education
   Low† PPR (p 3 ) 0.81 0.74 0.73 0.91 0.87 0.86

Mean CBI 3.1 3.2 3.5 2.7 2.7 2.9
Median CBI 2.6 2.6 2.8 2.3 2.4 2.4

   Medium PPR (p 3 ) 0.72 ** 0.67 0.64 * 0.79 ** 0.76 ** 0.75 **
Mean CBI 3.3 3.0 3.5 3.0 ** 3.0 ** 3.1 *
Median CBI 2.6 2.5 2.8 2.6 ** 2.6 2.6 **

   High PPR (p 3 ) 0.65 ** 0.56 ** 0.54 ** 0.67 ** 0.63 ** 0.60 **
Mean CBI 3.4 3.6 3.8 3.3 ** 3.5 ** 3.3 *
Median CBI 2.7 2.8 2.9 2.7 ** 2.8 ** 2.7 *

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.          All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 8: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from third birth to fourth birth (3-4): 1993, 1998, and 2003 DHS 
surveys, Philippines

Period analysis Cohort analysis

UNADJUSTED ESTIMATES
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 4 ) 0.63 ** 0.61 * 0.52 ** 0.72 ** 0.70 ** 0.63 **

Mean CBI 3.2 3.4 3.5 3.0 * 3.2 * 3.1
Median CBI 2.7 2.9 2.9 2.5 2.6 2.6

   Rural† PPR (p 4 ) 0.73 0.70 0.66 0.82 0.80 0.79
Mean CBI 2.9 3.1 3.4 2.8 2.9 2.9
Median CBI 2.6 2.7 3.0 2.4 2.5 2.5

Education
   Low† PPR (p 4 ) 0.75 0.73 0.70 0.85 0.81 0.80

Mean CBI 3.0 3.0 3.3 2.8 3.0 2.9
Median CBI 2.6 2.6 2.9 2.4 2.6 2.5

   Medium PPR (p 4 ) 0.69 0.65 0.57 ** 0.69 ** 0.74 * 0.67 **
Mean CBI 3.1 3.5 ** 3.5 3.0 3.0 3.1
Median CBI 2.7 2.9 * 3.0 2.5 * 2.5 2.6

   High PPR (p 4 ) 0.47 ** 0.53 ** 0.42 ** 0.54 ** 0.57 ** 0.51 **
Mean CBI 3.2 3.3 3.4 3.2 3.1 3.3
Median CBI 2.5 2.8 2.8 2.6 2.5 2.7

Residence
   Urban PPR (p 4 ) 0.63 0.62 0.52 ** 0.73 * 0.70 ** 0.63 **

Mean CBI 3.2 3.4 3.5 2.9 3.2 * 3.1
Median CBI 2.7 2.9 2.9 2.4 2.6 2.6

   Rural† PPR (p 4 ) 0.69 0.68 0.63 0.79 0.78 0.76
Mean CBI 2.9 3.2 3.4 2.8 2.9 3.0
Median CBI 2.6 2.7 3.0 2.4 2.5 2.5

Education
   Low† PPR (p 4 ) 0.74 0.72 0.69 0.84 0.80 0.78

Mean CBI 3.0 3.0 3.3 2.8 3.1 2.9
Median CBI 2.6 2.7 2.9 2.4 2.6 2.5

   Medium PPR (p 4 ) 0.69 0.65 0.56 ** 0.70 ** 0.74 0.67 **
Mean CBI 3.1 3.5 * 3.5 3.0 3.0 3.1
Median CBI 2.7 2.9 * 3.0 2.5 2.5 2.6

   High PPR (p 4 ) 0.48 ** 0.54 ** 0.43 ** 0.55 ** 0.58 ** 0.53 **
Mean CBI 3.1 3.3 3.4 3.2 3.0 3.3
Median CBI 2.5 2.7 2.8 2.6 2.4 2.7

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.              All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 9: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals (CBI) for progression from fourth birth to fifth birth (4-5): 1993, 1998, and 2003 DHS surveys, 
Philippines

Period analysis Cohort analysis

UNADJUSTED ESTIMATES
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 5 ) 0.63 ** 0.57 ** 0.51 ** 0.70 ** 0.67 ** 0.67 **

Mean CBI 3.0 3.2 3.3 3.0 * 2.9 3.0
Median CBI 2.5 2.7 2.8 2.6 * 2.6 2.5

   Rural† PPR (p 5 ) 0.78 0.71 0.67 0.82 0.81 0.78
Mean CBI 3.1 3.2 3.4 2.8 3.0 3.0
Median CBI 2.8 2.7 2.9 2.5 2.5 2.6

Education
   Low† PPR (p 5 ) 0.77 0.73 0.71 0.83 0.80 0.80

Mean CBI 3.1 3.1 3.3 2.8 2.8 2.9
Median CBI 2.6 2.8 2.9 2.5 2.5 2.5

   Medium PPR (p 5 ) 0.68 * 0.58 ** 0.54 ** 0.70 ** 0.71 ** 0.68 **
Mean CBI 3.2 3.3 3.2 3.0 3.1 3.1
Median CBI 2.8 2.6 2.8 2.7 * 2.7 2.6

   High PPR (p 5 ) 0.43 ** 0.53 ** 0.40 ** 0.47 ** 0.61 ** 0.49 **
Mean CBI 3.0 3.1 3.5 3.4 3.4 3.0
Median CBI 2.5 2.8 3.0 2.7 2.8 2.5

Residence
   Urban PPR (p 5 ) 0.63 ** 0.58 * 0.52 * 0.71 ** 0.69 ** 0.68 *

Mean CBI 3.0 3.1 3.3 3.0 2.9 2.9
Median CBI 2.5 * 2.7 2.8 2.6 2.5 2.5

   Rural† PPR (p 5 ) 0.75 0.68 0.64 0.79 0.80 0.75
Mean CBI 3.2 3.2 3.3 2.8 3.0 3.0
Median CBI 2.8 2.7 2.9 2.5 2.6 2.6

Education
   Low† PPR (p 5 ) 0.75 0.71 0.69 0.82 0.79 0.80

Mean CBI 3.1 3.1 3.3 2.8 2.8 2.9
Median CBI 2.6 2.8 2.8 2.5 2.5 2.5

   Medium PPR (p 5 ) 0.68 0.59 * 0.54 ** 0.71 ** 0.71 * 0.68 **
Mean CBI 3.2 3.3 3.2 3.0 3.1 * 3.1
Median CBI 2.8 2.6 2.8 2.7 * 2.7 2.6

   High PPR (p 5 ) 0.44 ** 0.55 * 0.42 ** 0.48 ** 0.63 ** 0.50 **
Mean CBI 3.0 3.2 3.5 3.3 3.4 3.0
Median CBI 2.5 2.8 3.0 2.7 2.8 2.5

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.            All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 10: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from fifth birth to sixth birth (5-6): 1993, 1998, and 2003 DHS surveys, 
Philippines

Period analysis Cohort analysis
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 6 ) 0.66 0.61 0.64 0.73 ** 0.66 ** 0.66 **

Mean CBI 3.0 3.3 3.0 * 2.8 3.0 3.1
Median CBI 2.5 2.9 2.6 2.5 2.6 2.7

   Rural† PPR (p 6 ) 0.75 0.69 0.73 0.83 0.80 0.77
Mean CBI 3.1 3.2 3.6 2.8 3.0 2.9
Median CBI 2.6 2.7 2.9 2.4 2.6 2.5

Education
   Low† PPR (p 6 ) 0.74 0.71 0.72 0.83 0.81 0.79

Mean CBI 3.0 3.2 3.3 2.8 3.0 2.8
Median CBI 2.6 2.8 2.8 2.4 2.6 2.5

   Medium PPR (p 6 ) 0.69 0.62 0.67 0.68 ** 0.66 ** 0.64 **
Mean CBI 3.2 3.3 3.6 2.9 3.1 3.2
Median CBI 2.6 2.8 2.9 2.7 * 2.6 2.7

   High PPR (p 6 ) 0.46 ** 0.43 ** 0.56 0.51 ** 0.47 ** 0.57 **
Mean CBI 2.7 2.7 3.3 2.2 ** 2.8 3.5
Median CBI 2.3 2.5 2.6 2.0 * 2.4 2.8

Residence
   Urban PPR (p 6 ) 0.67 0.62 0.64 0.73 * 0.67 * 0.67 *

Mean CBI 2.9 3.2 3.0 * 2.7 3.0 3.0
Median CBI 2.5 2.9 2.6 2.4 2.5 2.6

   Rural† PPR (p 6 ) 0.73 0.66 0.71 0.80 0.77 0.75
Mean CBI 3.0 3.1 3.7 2.7 3.0 3.0
Median CBI 2.6 2.6 2.9 2.4 2.6 2.5

Education
   Low† PPR (p 6 ) 0.74 0.70 0.70 0.82 0.80 0.78

Mean CBI 3.0 3.2 3.2 2.8 3.0 2.8
Median CBI 2.6 2.8 2.7 2.4 2.6 2.5

   Medium PPR (p 6 ) 0.70 0.62 0.66 0.69 ** 0.66 ** 0.64 **
Mean CBI 3.2 3.3 3.6 2.9 3.0 3.2
Median CBI 2.6 2.8 2.9 2.7 * 2.6 2.7

   High PPR (p 6 ) 0.47 ** 0.44 ** 0.56 0.53 ** 0.49 ** 0.58 *
Mean CBI 2.8 2.7 3.4 2.2 * 2.8 3.4
Median CBI 2.3 2.4 2.6 2.0 2.4 2.7

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.          All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 11: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from sixth to seventh birth (6-7): 1993, 1998, and 2003 DHS surveys, 
Philippines

Period analysis Cohort analysis
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR (p 7+ ) 0.65 0.47 ** 0.58 0.73 0.63 * 0.65 **

Mean CBI 3.0 2.9 3.2 2.9 2.7 3.0
Median CBI 2.5 2.5 2.7 2.4 2.4 2.5

   Rural† PPR (p 7+ ) 0.66 0.71 0.61 0.73 0.71 0.72
Mean CBI 2.9 3.0 3.0 2.8 2.8 2.9
Median CBI 2.5 2.5 2.5 2.5 2.5 2.5

Education
   Low† PPR (p 7+ ) 0.66 0.65 0.61 0.74 0.71 0.70

Mean CBI 2.9 2.9 2.9 2.8 2.7 2.8
Median CBI 2.6 2.5 2.5 2.4 2.4 2.5

   Medium PPR (p 7+ ) 0.64 0.54 0.61 0.69 0.66 0.69
Mean CBI 2.6 * 3.7 3.7 * 2.9 3.1 3.4 **
Median CBI 2.3 * 2.7 2.9 2.5 2.6 2.8 *

   High PPR (p 7+ ) 0.60 0.27 ** 0.58 0.67 0.40 ** 0.66
Mean CBI 4.3 2.6 2.3 3.6 2.5 2.6
Median CBI 3.5 2.3 2.1 2.7 2.0 2.4

Residence
   Urban PPR (p 7+ ) 0.65 0.53 0.57 0.73 0.64 0.65 **

Mean CBI 3.0 2.8 3.1 2.8 2.7 2.9
Median CBI 2.6 2.5 2.7 2.4 2.4 2.5

   Rural† PPR (p 7+ ) 0.65 0.62 0.60 0.73 0.70 0.72
Mean CBI 2.8 3.0 2.9 2.8 2.8 2.9
Median CBI 2.5 2.5 2.5 2.5 2.5 2.5

Education
   Low† PPR (p 7+ ) 0.66 0.64 0.61 0.74 0.70 0.70

Mean CBI 2.9 2.8 2.9 2.8 2.7 2.8
Median CBI 2.6 2.5 2.6 2.4 2.4 2.5

   Medium PPR (p 7+ ) 0.64 0.55 0.61 0.69 0.67 0.69
Mean CBI 2.6 * 3.7 3.7 * 2.9 3.1 3.4 **
Median CBI 2.3 * 2.7 2.8 2.5 2.6 2.8 *

   High PPR (p 7+ ) 0.59 0.28 ** 0.59 0.65 0.40 ** 0.67
Mean CBI 4.2 2.6 2.3 * 3.5 2.5 2.6
Median CBI 3.4 2.3 2.0 2.6 2.1 2.4

† Reference Category.          * 0.01 < p  � 0.05.          **p  � 0.01.         All tests of statistical signficance are 2-tailed tests.

ADJUSTED ESTIMATES

Table 12: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed 
birth intervals (CBI) for progression from seventh to eighth birth (7+-8+): 1993, 1998, and 2003 DHS 
surveys, Philippines

Period analysis Cohort analysis
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 Table 13 shows unadjusted and adjusted estimates of TFR and TMFR, calculated from 
unadjusted and adjusted PPRs, where the cutoff for the open parity interval is at as high a parity 
as possible. TFR and TMFR are always higher for rural than for urban, and always lower for 
women with more education. In each of the three surveys, as expected, adjustment trends to 
reduce residence differentials and education differentials in TFR and TMFR.  
 
 In Tables 4–12 the effects of residence and education on PPRs and mean and median 
failure times are not always statistically significant. But in Table 13, the effects of residence and 
education on TFR and TMFR are always statistically significant at the 1 percent level. 
 
MULTIVARIATE ANALYSIS OF TRENDS OVER THE THREE SURVEYS 
 
The first step in the multivariate analysis of trend in a PPR, mean or median failure time, TFR, or 
TMFR is to pool data from the three surveys. There are a number of ways in which the data 
could be pooled. For example, before pooling, one could re-normalize the weights from each 
survey to add to the average sample size over the three surveys, so that each survey is weighted 
equally when the three data sets are pooled. Alternatively, one could take population growth into 
account, so that later surveys are weighted more than earlier surveys if the population is growing, 
as it has been in the Philippines. In our illustrative application to the three Philippines surveys, 
sample sizes are roughly equal, and we do not incorporate these refinements. We simply merge 
person-year data sets, weighted as described earlier, over the three surveys. 
 
 In the case of period estimates, the merge involves collapsing the first three columns of 
Table 2 into one column, resulting in 16 pooled period data sets in place of the original 48 period 
data sets. The shaded area in the Lexis diagram in Figure 3, which again takes progression to 
first marriage as an example, indicates the person-year observations to be included in the pooled 
data sets for the B-M transition. Before merging the three period data sets, we create two new 
variables in each data set, PERIOD2 and PERIOD3, indicating the second and third five-year 
periods within the 15-calendar-year time period, with the first (earliest) five-year period as the 
reference category. Thus (PERIOD2, PERIOD3) = (0,0) for all person-year observations in the 
earliest five-year period, (1,0) for all person-year observations in the second five-year period, 
and (0,1) for all person-year observations in the third five-year period. The effects of PERIOD2 
and PERIOD 3 are modeled as time-varying, again with a quadratic specification of the time 
variation (same specification as that used for the time-varying effects of residence and education 
in equations (11) and (12)). 
  
 To calculate unadjusted period estimates of pB and mean and median ages at first 
marriage, based on the pooled data set, we estimate a CLL model for progression to first 
marriage that includes (in addition to the 29 dummy variables indicating the 30 life table time 
intervals) only PERIOD2 and PERIOD3 as predictor variables, with quadratic specifications of 
their time-varying effects. Unadjusted estimates of pB and mean and median ages at first 
marriage are then estimated for period 1, period 2, and period 3 by setting (PERIOD2, 
PERIOD3) alternatively to (0, 0), (1, 0), and (0, 1) in the fitted model in order to calculate the 
discrete hazard function and, from that, the life table for each of the three periods. Values of pB 
and mean and median ages at first marriage are then calculated from each of the three life tables. 
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1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban Unadjusted 3.11 ** 2.60 ** 2.58 ** 4.47 ** 3.66 ** 3.73 **

Adjusted 3.13 ** 2.61 ** 2.59 ** 4.57 ** 3.77 ** 3.77 **

   Rural† Unadjusted 4.22 4.05 3.57 5.94 5.46 5.21
Adjusted 3.86 3.80 3.30 5.41 4.98 4.73

Education
   Low† Unadjusted 4.64 3.99 3.89 6.22 5.59 5.46

Adjusted 4.48 3.67 3.69 6.08 5.32 5.21

   Medium Unadjusted 3.60 ** 3.18 ** 3.07 ** 4.54 ** 4.29 ** 4.25 **
Adjusted 3.60 ** 3.13 ** 3.04 ** 4.57 ** 4.31 ** 4.25 **

   High Unadjusted 2.42 ** 2.56 ** 2.28 ** 3.12 ** 2.87 ** 2.97 **
Adjusted 2.45 ** 2.60 ** 2.32 ** 3.18 ** 2.99 ** 3.05 **

Residence
   Urban Unadjusted 3.72 ** 3.13 ** 2.88 ** 4.84 ** 4.04 ** 3.97 **

Adjusted 3.79 ** 3.18 ** 2.90 ** 4.96 ** 4.19 ** 4.02 **

   Rural† Unadjusted 4.64 4.24 3.72 6.18 5.74 5.40
Adjusted 4.34 4.00 3.47 5.71 5.32 4.97

Education
   Low† Unadjusted 5.01 4.39 4.01 6.50 5.89 5.66

Adjusted 4.90 4.16 3.84 6.37 5.64 5.41

   Medium Unadjusted 4.10 ** 3.57 ** 3.25 ** 4.83 ** 4.59 ** 4.37 **
Adjusted 4.11 ** 3.56 ** 3.23 ** 4.85 ** 4.63 ** 4.37 **

   High Unadjusted 3.01 ** 2.91 ** 2.59 ** 3.46 ** 3.25 ** 3.27 **
Adjusted 3.04 ** 2.97 ** 2.63 ** 3.52 ** 3.36 ** 3.35 **

† Reference Category.          * 0.01 < p  � 0.05.       **p  � 0.01.     All tests of statistical signficance are 2-tailed tests.

Table 13: Unadjusted and adjusted values of the total fertility rate and the total marital fertility rate, 
calculated from unadjusted and adjusted parity progression ratios: 1993, 1998, and 2003 DHS surveys, 
Philippines

Note: TFRs and TMFRs in this table are calculated from PPRs in Tables 4-11 as well as PPRs for 
higher-order parity transitions that are not shown in Tables 4-11 (see note to Table 3). The PPRs in 
Table 12, pertaining to the open parity interval 7+ to 8+, are not used in calculating the TFRs and 
TMFRs in Table 13.

Period analysis Cohort analysis

TOTAL FERTILITY RATES

TOTAL MARITAL FERTILITY RATES
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Figure 3: Lexis diagram illustrating censoring when setting up the 
expanded data set for a multivariate period analysis of the trend in 
progression from 10th birthday to first marriage, based on pooled data 
from surveys in 1993, 1998, and 2003

Note: See note to Figure 1.
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 Adjusted estimates of pB and mean and median ages at first marriage are similarly 
calculated, the only difference being that the underlying CLL model is expanded to include 
residence and education in the set of predictor variables, again with quadratic specifications of 
their time-varying effects. Estimates of pB and mean and median ages at marriage are then 
calculated from the model in the same way as in the unadjusted case, but this time with U, M, 
and H set to their interval-specific mean values in the pooled data set of person-year observations. 
The logic of the procedure is that, if the predicted values of pB (or mean or median age at first 
marriage) are found to be the same for all three periods, we would provisionally conclude that 
changes in population composition by residence and education and changes in the effects of 
residence and education explain the trend in pB (provisionally because there are other predictor 
variables that affect marriage but are not included in the model). 
 
 Unadjusted and adjusted values of PPRs and mean and median failure times for higher-
order transitions for the three periods are similarly calculated, and unadjusted and adjusted 
values of TFR and TMFR for the three periods are calculated from the unadjusted and adjusted 
PPRs. In this way, one can also analyze the extent to which residence and education explain the 
trends in PPR and mean and median failure times for higher-order progressions and for TFR and 
TMFR. 
 
 The approach is similar in the cohort analysis. We start by reconstructing the original 
cohort data sets in Table 2 for women age 40–44 instead of 40–49. This results in cohorts that 
are five years wide instead of ten years wide. The 10-year-wide cohorts from the three surveys 
overlap, as mentioned earlier, whereas the 5-year-wide cohorts do not. For purposes of pooling, 
we want to start with non-overlapping cohorts, and the 5-year-wide cohorts are suitable for this 
purpose. The shaded area in the Lexis diagram in Figure 4, which again takes progression to first 
marriage as an example, indicates the person-year observations to be included in the pooled 
cohort data set. Except for this shift to 5-year-wide cohorts, the pooling of the data sets from 
each survey proceeds in the same way as in the period case. 
 
 In the cohort analysis based on the pooled cohort data set, the three 5-year-wide cohorts 
are specified by two dummy variables, COHORT2 and COHORT3, representing the second and 
third five-year cohorts. The analysis then proceeds in the same way as in the period case, except 
that COHORT2 and COHORT3 are used in place of PERIOD2 and PERIOD3. 
 

Results of the multivariate trend analysis based on pooled data from the three Philippines 
surveys are shown in Tables 14 and 15. The unexpected upward trend in pB and downward trend 
in age at first marriage in the period analysis, observed earlier in Table 3, persist after adjustment 
for residence and education, as shown in Table 14. The trends in higher-order PPRs are mostly 
downward, the trends in mean and median closed birth intervals are mostly upward, and the 
trends in TFR and TMFR are both downward. In most cases, adjusting for residence and 
education reduces—i.e., partially explains—the trend. 
 

Not all the changes in PPRs and mean and median failure times in Table 14 are 
statistically significant. Unadjusted and adjusted changes in both period and cohort estimates of 
TFR and TMFR, however, are always statistically significant, not only between the first and 
third periods and the first and third cohorts, but also between the first and second periods and the  
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Note: See note to Figure 2.
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Figure 4: Lexis diagram illustrating censoring when setting up the 
expanded data set for a multivariate cohort analysis of the trend in 
progression from 10th birthday to first marriage, based on pooled data 
from surveys in 1993, 1998, and 2003
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Table 14: Unadjusted and adjusted trends in TFR and its components (pooled data analysis)

Transition Measure 1988-92 † 1993-97 1998-02 1993 † 1998 2003

B-M p B

        Unadjusted 0.86 0.89 0.92 ** 0.95 0.92 * 0.95
     Adjusted 0.85 0.88 0.91 ** 0.93 0.91 0.94
Mean A m

     Unadjusted 23.9 23.9 23.2 ** 21.8 21.8 22.0
     Adjusted 24.5 24.3 23.6 ** 22.7 22.5 22.5
Median A m

     Unadjusted 23.1 23.0 22.4 ** 21.1 21.1 21.2
     Adjusted 23.8 23.6 22.8 ** 22.0 21.7 21.7

M-1 p M

     Unadjusted 0.96 0.96 0.94 ** 0.97 0.97 0.96
     Adjusted 0.96 0.96 0.94 ** 0.97 0.97 0.96
Mean CBI
     Unadjusted 1.3 1.3 1.4 * 1.4 1.4 1.4
     Adjusted 1.3 1.3 1.4 ** 1.4 1.4 1.4
Median CBI
     Unadjusted 1.0 1.0 1.0 1.1 1.0 1.0
     Adjusted 1.0 1.0 1.0 1.1 1.0 1.0

1-2 p 1

     Unadjusted 0.89 0.85 * 0.83 ** 0.95 0.92 * 0.91 **
     Adjusted 0.88 0.85 * 0.83 ** 0.94 0.92 * 0.91 **
Mean CBI
     Unadjusted 2.9 2.9 3.2 ** 2.4 2.5 2.6 **
     Adjusted 2.9 2.9 3.2 ** 2.4 2.5 2.6 **
Median CBI
     Unadjusted 2.3 2.4 2.5 ** 2.0 2.0 2.1 *
     Adjusted 2.3 2.4 2.5 ** 2.0 2.0 2.1 *

2-3 p 2

     Unadjusted 0.81 0.78 0.73 ** 0.90 0.87 * 0.87 *
     Adjusted 0.80 0.78 0.72 ** 0.89 0.86 0.86 *
Mean CBI
     Unadjusted 3.1 3.2 3.6 ** 2.7 2.8 * 3.0 **
     Adjusted 3.1 3.2 3.5 ** 2.7 2.8 3.0 **

Median CBI
     Unadjusted 2.6 2.6 2.9 ** 2.3 2.4 2.5 **
     Adjusted 2.6 2.6 2.8 ** 2.3 2.4 2.5 **

Period analysis Cohort analysis
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Table 14, continued: Unadjusted and adjusted trends in TFR and its components (pooled data analysis)

Transition Measure 1988-92 † 1993-97 1998-02 1993 † 1998 2003

3-4 p 3

     Unadjusted 0.74 0.67 ** 0.64 ** 0.83 0.76 ** 0.77 **
     Adjusted 0.73 0.66 ** 0.64 ** 0.81 0.75 ** 0.76 **
Mean CBI
     Unadjusted 3.2 3.2 3.5 ** 2.9 3.0 3.1
     Adjusted 3.2 3.2 3.5 ** 3.0 3.0 3.1
Median CBI
     Unadjusted 2.6 2.6 2.8 ** 2.5 2.5 2.6
     Adjusted 2.6 2.6 2.8 * 2.5 2.5 2.6

4-5 p 4

     Unadjusted 0.68 0.66 0.59 ** 0.74 0.74 0.69 *
     Adjusted 0.66 0.64 0.58 ** 0.72 0.72 0.68
Mean CBI
     Unadjusted 3.0 3.2 3.4 ** 2.8 3.1 * 3.0
     Adjusted 3.1 3.2 3.4 ** 2.8 3.1 * 3.0
Median CBI
     Unadjusted 2.6 2.8 2.9 ** 2.4 2.6 * 2.5
     Adjusted 2.6 2.7 2.9 ** 2.4 2.6 * 2.5

5-6 p 5

     Unadjusted 0.71 0.65 * 0.61 ** 0.77 0.71 0.73
     Adjusted 0.69 0.64 0.59 ** 0.75 0.69 * 0.72
Mean CBI
     Unadjusted 3.1 3.2 3.3 2.9 2.9 2.9
     Adjusted 3.1 3.1 3.3 2.9 2.9 2.9
Median CBI
     Unadjusted 2.7 2.7 2.8 2.5 2.6 2.5
     Adjusted 2.7 2.7 2.8 2.5 2.6 2.5

6-7 p 6

     Unadjusted 0.71 0.66 0.69 0.80 0.74 0.78
     Adjusted 0.70 0.65 0.67 0.77 0.73 0.75
Mean CBI
     Unadjusted 3.0 3.2 3.4 * 2.9 2.9 3.4 *
     Adjusted 3.0 3.2 3.3 * 2.9 2.9 3.3 *
Median CBI
     Unadjusted 2.6 2.7 2.8 2.5 2.5 2.8 *
     Adjusted 2.6 2.7 2.7 2.5 2.5 2.7 *

Period analysis Cohort analysis
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Table 14, continued: Unadjusted and adjusted trends in TFR and its components (pooled data analysis)

Transition Measure 1988-92 † 1993-97 1998-02 1993 † 1998 2003

7+-8+ p 7+

     Unadjusted 0.65 0.61 0.60 * 0.80 0.76 0.75 *
     Adjusted 0.65 0.61 0.60 0.80 0.75 0.74 *
Mean CBI
     Unadjusted 2.9 3.0 3.1 3.1 2.8 3.1
     Adjusted 2.9 2.9 3.0 3.1 2.8 3.1
Median CBI
     Unadjusted 2.5 2.5 2.6 2.6 2.5 2.6
     Adjusted 2.5 2.5 2.6 2.6 2.5 2.6

TFR Unadjusted 3.58 3.23 ** 2.99 ** 5.31 4.58 * 4.45 **
Adjusted 3.36 3.11 * 2.90 ** 5.00 4.61 4.28 **

TMFR Unadjusted 4.15 3.64 ** 3.23 ** 5.62 4.96 * 4.69 **
Adjusted 3.97 3.55 ** 3.18 ** 5.36 5.05 4.55 **

† Reference Category.       * 0.01 < p  � 0.05.       **p  � 0.01.        All tests of statistical signficance are 2-tailed tests.

Note: A m  denotes age at first marriage, and CBI denotes closed birth interval.The calculation of TFR 
and TMFR utilizes not only the PPRs shown in the table (except for p 7+ , which is not used) but also 
higher-order PPRs that are not shown (see note to Table 3).

Period analysis Cohort analysis

 
first and second cohorts, except for changes in the adjusted cohort estimates of TFR and TMFR 
between the first and second cohorts. 
 
 The extent to which residence and education explain the trends in the various measures is 
examined in more detail in Table 15, which is calculated from Table 14 using values more exact 
than shown in Table 14. By “trend” in Table 15 is meant the change in TFR or one of its 
components between the first and third surveys. “Explanation” is measured by the percentage by 
which the introduction of cross-survey controls for residence and education reduces the change. 
This “percentage explained” is calculated as {[(unadjusted change) � (adjusted 
change)]/(unadjusted change)} x 100. 
 
 None of the “percentages explained” pertaining to the B–M and M–1 transitions are 
statistically significant at the 5 percent level. In the period analysis, however, the “percentages 
explained” for the B–M transition are not far off from statistical significance. Observed levels of 
significance of “percentage explained” are 6 percent for pB, 8 percent for mean age at first 
marriage, and 9 percent for median age at first marriage.  
 
 In the case of the B–M and M–1 transitions, some of the “percentages explained” are 
negative. Negative percentages occur when pB or pM increases or when mean or median failure 
time decreases. In these cases, urbanization and rising levels of education partially offset the 
change by reducing pB or pM or by increasing mean or median failure time. Removing these 
offsetting effects of urbanization and rising levels of education by controlling for residence and  
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Transition Measure

B-M p B -13.7 -130.4
Mean A m -31.1 235.4
Median A m -46.6 333.9

M-1 p M 3.9 -1.7
Mean CBI -5.9 23.9
Median CBI -68.9 31.6

1-2 p 1 7.5 2.6
Mean CBI 13.5 * 10.6
Median CBI 10.6 * 13.9

2-3 p 2 9.4 5.4
Mean CBI 13.8 ** 18.9 **
Median CBI 16.1 ** 18.8 *

3-4 p 3 9.4 26.2 *

Mean CBI 6.8 37.3
Median CBI 4.6 31.0

4-5 p 4 8.8 18.8
Mean CBI 9.4 16.7
Median CBI 8.8 17.2

5-6 p 5 9.0 16.4
Mean CBI 11.6 30.4
Median CBI 13.9 26.2

6-7 p 6 -12.4 29.9
Mean CBI 15.8 5.4
Median CBI 11.0 3.9

7+-8+ p 7+ 6.5 -3.3
Mean CBI 25.7 158.9
Median CBI 6.3 44.2

TFR 23.1 ** 16.1
TMFR 12.7 ** 12.4
 * 0.01 < p  � 0.05.     **p  � 0.01.     All tests of statistical signficance are 2-tailed tests.

Table 15: Percentages of the unadjusted changes in PPR, mean and median failure times, TFR, and 
TMFR between the 1993 and 2003 surveys that are explained by residence and education (pooled 
data analysis)

Note: Calculated using more exact values than shown in Table 14. Standard errors were derived by the 
jackknife method (see Appendix B). One or more asterisks after a percentage indicate that the 
percentage differs significantly from zero.

(5-year period before each survey) (women 40-44 at each survey)
Period analysis Cohort analysis
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education across surveys causes pB or pM to rise even more and mean or median failure time to 
fall even more in the adjusted case than in the unadjusted case.  
 
 In the cohort analysis in Table 15, the unadjusted changes in PPRs and mean and median 
failure times for the B–M and M–1 transitions between the first and third surveys are very small, 
so that, in the expression {[(unadjusted change) � (adjusted change)]/(unadjusted change)} x 100, 
the numerator is percentaged on a very small denominator, sometimes resulting in a very large 
“percentage explained”. A small denominator occurs because of offsetting effects (effects of 
residence and education and effects of other factors operating in opposite directions) that are 
both large compared with the total change. In such cases, the very large “percentage explained” 
is not statistically significant. 
 
 In the case of transitions 1–2 and higher, very few of the “percentages explained” are 
statistically significant, the exceptions being those pertaining to mean and median closed birth 
intervals for the 1–2 and 2–3 transitions.  
 
 In the 1–2, 2–3, and higher-order transitions, the percentage of change that is accounted 
for by residence and education is usually greater for mean and median closed birth intervals than 
it is for PPRs. A possible explanation of this pattern is that declines in PPRs reflect not only 
effects of residence and education at the individual level but also across-the-board effects of 
other factors, such as promotion of smaller families by the family planning program. Quite 
plausibly, most of these other factors have a larger effect on PPRs than on birth intervals. If so, 
the additional effects of these other factors on PPRs tend to reduce the percentage of the 
downward change in a PPR that is due solely to urbanization and rising levels of education. 
 
 Table 15 also shows that, overall, residence and education account for 23 percent of the 
change in the period TFR and 16 percent of the change in the cohort TFR between the first and 
third surveys. In the case of TMFR the percentages are lower, at 13 and 12 percent. They are 
lower because the effects of residence and education on PPRs are always to lower fertility, 
regardless of parity transition. But the overall increase in pB tends to reduce the decline in TFR 
so that the unpercentaged contribution from residence and education to change in the TFR is 
percentaged on a smaller denominator (i.e., a smaller decline in the TFR), thereby tending to 
increase the percentaged contribution from residence and education. This does not happen in the 
case of change in TMFR, which is unaffected by what happens to pB. The table also shows that 
the “percentages explained” pertaining to changes in the period TFR and TMFR are statistically 
significant, but the “percentages explained” pertaining to changes in the cohort TFR and TMFR 
are not significant. 
 

Another feature of Table 15 is that the percentage contribution of residence and education 
to change in TFR and TMFR is greater than the percentage contribution of residence and 
education to the change in any of the individual PPRs from which TFR and TMFR are calculated. 
This occurs because of the way that TFR and TMFR are calculated from PPRs in equation (2), 
where, within each term on the right-hand side of the equation, a number of PPRs are multiplied 
together. Because of the cumulative multiplicative nature of the calculation, small percentaged 
changes in individual PPRs within a term, if all such changes are in the same direction, can result 
in a much larger percentaged change in the term as a whole and, ultimately, in TFR and TMFR.
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DISCUSSION AND CONCLUSION 

The multivariate methodology developed in this paper, though somewhat complicated in its 
internal details, ultimately results in simple bivariate tables that are much more easily understood 
than the multiplicity of coefficients in the underlying CLL models. The methodology has the 
added advantage of being applicable to not only the cohort TFR and its components but also the 
period TFR and its components. The application to the period TFR is of particular interest, 
because the period TFR is the fertility measure most commonly used by demographers and 
policy makers. 
 
 Another important feature of the methodology is its analytical flexibility. This flexibility, 
involving separate specifications of calendar time and life table time in the same statistical 
modeling procedure, offers great potential for solving difficult problems of two-way causation 
by means of lagged predictors, time-varying predictors, and time-varying effects of predictors, 
where time lags and time variation in predictors and their effects refer to life table time, not 
calendar time. For example, had our surveys included work histories as well as birth histories, a 
variable representing woman’s work status could be lagged one year behind the time in the life 
table when she is at risk of a birth, so that causation runs from work to fertility but not from 
fertility to work (except to the extent that future plans for both work and fertility are 
simultaneously decided earlier in the life cycle), and this could be done without changing the 
values of the calendar-time variables representing time periods or cohorts.  
 
 The methodology can also handle integrated event histories, which are much talked about 
but rarely collected. Examples of event histories that can be integrated include marriage histories, 
birth histories, education histories, work histories, and migration histories. Regarding event 
histories, the application of the methodology to period data is especially significant because, if a 
survey sample is large enough, the period analysis can be restricted to the year before the survey, 
during which many time-varying characteristics (e.g., urban/rural residence) can realistically be 
viewed as time-invariant predictor variables in the multivariate models. This approach obviates 
the need for retrospective information on every time-varying characteristic of interest, as would 
be necessary when analyzing a real cohort whose experience extends further back in calendar 
time. The result is that more predictor variables can be included in the analysis when using data 
from surveys that ask about current status but not historical status on many predictor variables of 
interest. 
 
 Finally, it should be noted that the methodology is applicable not only to parity 
progression but also to any measure involving time elapsed between a starting event and a 
terminating event, such as birth and death, birth and first sexual intercourse, childbirth and 
cessation of breastfeeding, entering and exiting the formal education system, and entering and 
exiting the labor force. 
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APPENDIX A 
 

CONSISTENCY CHECKS 
 

This appendix presents a few simple consistency checks that show how the estimates of PPRs 
and TFR derived by the above methodology compare with estimates of PPRs and TFR derived 
by more conventional methods. The CLL models used for the checks include only the predictor 
variables representing life table time. Residence and education are omitted from the models.  
 
Effect of the cutoff parity for the open parity interval on CLL model-based 
estimates of the TFR 

The cutoff parity for the open parity interval can make a difference in the CLL model-based 
estimate of the TFR, as shown in Table A1. In the case of the cohort TFR, the higher the cutoff, 
the lower the TFR estimate. Cutoffs higher than 6+ make very little difference in the estimate of 
the TFR, however. In the case of the period analysis, the choice of cutoff makes no difference in 
the estimate of the TFR, at least out to tenths of a child.  
 

Clearly it is desirable to use as high a cutoff for the open parity interval as possible, and 
that is what is done in this paper. 
 
Comparison of CLL model-based estimates with birth history-based estimates of 
PPRs and TFR
 
This consistency check compares CLL model-based estimates with birth history-based estimates 
of PPRs and TFR using cohort data for women age 40–49 in the 1993 survey. Comparisons are 
first done without weights (i.e., all weights in the original person sample are re-set to one), so 
that potential errors in our weighting procedures cannot enter into the comparisons. Of course, 
when weights are not used, the estimates of PPRs and TFR are biased upward, because, as 
mentioned earlier, rural women are over-represented in the surveys.  
 

The comparisons are then re-done with weights. The birth history-based PPRs are based 
on persons (i.e., women) as the units of analysis, while the CLL model-based PPRs are based on 
person-years as the units of analysis, implying different weighting procedures, as described 
earlier. When making comparisons, births of order 16 or higher are ignored. 
 

PPRs are calculated by single parities out to 13+. The CLL model-based PPRs are 
calculated using the dummy variable specification of life table time intervals out to the 9�10 
transition, and the quadratic specification of life table time for transitions 10�11, 11�12, 12�13, 
and 13+. 
 
 Results are shown in Table A2. In each of the two cases, without weights and with 
weights, the CLL model-based PPR and the birth history-based PPR agree closely at lower-order 
transitions but increasingly less closely at higher-order transitions. The direction of the 
discrepancies is systematic, whereby the CLL model-based PPR increasingly exceeds the birth 
history-based PPR as parity increases.  
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Table A1: Effect of the cutoff parity for the open parity interval on CLL model-
based estimates of the cohort TFR (based on women age 40-49 at time of 
survey) and the period TFR (pertaining to the 5-year period immediately 
preceding the survey): 1993 DHS, Philippines 
   
Open parity     
interval Period TFR Cohort TFR
   
2+ 3.59 5.48
3+ 3.61 5.38
4+ 3.60 5.31
5+ 3.60 5.29
6+ 3.60 5.27
7+ 3.60 5.24
8+ 3.59 5.19
9+ 3.59 5.17
10+ 3.59 5.16
11+ 3.59 5.16
12+ 3.59 5.14
13+ 5.15

Note: The category 13+ includes 13-14 and 14-15. Births of order 16 and 
higher are ignored. A dummy-variable specification of life table time was 
used up to but not including the parity transition where the CLL model no 
longer converged, after which a quadratic specification of life table time was 
used. In the case of the period analysis, the CLL model for 13+ did not 
converge even with a quadratic specification. The estimates in this table and 
all subsequent tables incorporate weights. 
 
 

The reason for this pattern of discrepancies is that the CLL model-based PPRs take into 
account censoring, whereas the birth history-based PPRs do not. Because the birth history-based 
PPRs pertain to women age 40�49 at the time of the survey, not all of these women have 
completed their childbearing by the survey date. The impact of this censoring on the birth 
history-based PPRs increases as starting parity increases, because for a woman of any given age 
between 40 and 49 at time of survey, the likelihood of another birth occurring after the time of 
the survey increases as starting parity increases. Table A1 shows that the CLL model-based TFR 
exceeds the birth history-based CEB by 0.23 child in the unweighted case, and by 0.20 child in 
the weighted case. This result is consistent with the expected effects of censoring. 
 
Comparison of CLL model-based estimates with Kaplan-Meier life table-based 
estimates of PPRs and TFR 
 
The PPRs and TFR estimated from CLL models, based on person-year observations, should 
agree closely with PPRs derived from Kaplan-Meier (product-limit) life tables, based on person 
observations. In this case we expect close agreement, because both the CLL model and the 
Kaplan-Meier model take censoring into account. 
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PPRs, TFR,                Unweighted                  Weighted
and CEB CLL BH CLL/BH CLL BH CLL/BH

PPR
  p B 0.95 0.95 1.00 0.94 0.94 1.00
  p M 0.97 0.97 0.99 0.97 0.97 0.99
  p 1 0.95 0.95 0.99 0.95 0.95 0.99
  p 2 0.91 0.91 1.00 0.90 0.91 1.00
  p 3 0.85 0.84 1.00 0.84 0.83 1.00
  p 4 0.78 0.78 1.01 0.77 0.76 1.01
  p 5 0.78 0.76 1.02 0.77 0.76 1.02
  p 6 0.80 0.76 1.04 0.79 0.76 1.04
  p 7 0.80 0.74 1.08 0.79 0.73 1.08
  p 8 0.74 0.66 1.13 0.74 0.65 1.12
  p 9 0.70 0.60 1.16 0.69 0.60 1.15
  p 10 0.64 0.57 1.13 0.64 0.57 1.12
  p 11 0.69 0.56 1.23 0.71 0.58 1.23
  p 12 0.50 0.40 1.25 0.51 0.41 1.25
  p 13+ 0.62 0.38 1.62 0.57 0.37 1.52

TFR 5.30 5.07 1.05 5.15 4.95 1.04
CEB 5.07 4.95

Table A2: Comparison of CLL model-based estimates with birth history-based estimates of PPRs, 
TFR, and CEB (number of children ever born): Cohort estimates based on women age 40-49 in 
the 1993 DHS, Philippines

Notes: BH denotes birth history. The CLL estimates are based on person-year observations, 
whereas the BH estimates are based on person (i.e., woman) observations. Births of order 16 or 
higher are ignored in the calculations. CLL model-based estimates of PPRs for transitions  B-M, 
M-1, ..., 9-10 are calculated from models that use a dummy variable specification of life table 
time, and CLL model-based estimates of PPRs for transitions 10-11 and higher are calculated 
from models that use a quadratic specification of life table time.  
 
 

SAS does not provide an option to calculate Kaplan-Meier life tables using weights, so 
weights were incorporated in the following way: First, for the expanded data set for a specified 
parity transition, we multiplied the weights by 1,000 and truncated each of the resulting numbers 
to the nearest integer. Then, for any given woman, we created a number of duplicate women, the 
number of such women (including the original woman) being equal to the above integer. Using 
this data set, we then calculated the Kaplan-Meier life table for the specified parity transition. 

 

Results are shown in Table A3. The CLL model-based estimates of PPRs and TFR agree 
closely with the Kaplan-Meier-based estimates of PPRs and TFR. The agreement is to four 
decimal places for each PPR up to p9. For p10 and above the agreement is slightly less close, 
which is expected because, in the case of the CLL model-based estimates, a quadratic 
specification of the basic life table time dimension of the model is used instead of a dummy 
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variable specification for parity transitions 10�11 and higher. TFR calculated from the CLL-
based PPRs and TFR calculated from the Kaplan-Meier-based PPRs are identical out to 
hundredths of a child.  
 
 

CLL model-based Kaplan-Meier
PPR estimates estimates

 p B 0.94 0.94
 p M 0.97 0.97
 p 1 0.95 0.95
 p 2 0.90 0.90
 p 3 0.84 0.84
 p 4 0.77 0.77
 p 5 0.77 0.77
 p 6 0.79 0.79
 p 7 0.79 0.79
 p 8 0.74 0.74
 p 9 0.69 0.69
 p 10 0.64 0.64
 p 11 0.71 0.71
 p 12 0.51 0.51
 p 13+ 0.57 0.60

TFR 5.15 5.15

Table A3: Comparison of CLL model-based estimates with Kaplan-Meier estimates 
of PPRs and TFR: Cohort estimates based on women age 40-49 in the 1993 DHS, 
Philippines

Note: The CLL model-based estimates are based on person-year observations, 
whereas the Kaplan-Meier estimates are based on person (i.e., woman) 
observations. Weights are incorporated in both sets of estimates. The estimates are 
for all women age 40-49, regardless of their socioeconomic characteristics. The open-
parity interval 13+ includes 13-14 and 14-15.  
 
 
Comparison of PPRs and mean and median failure times, derived from CLL 
models that alternatively use a dummy variable specification and a quadratic 
specification of life table time 
 
Table A4 shows that CLL models with a dummy variable specification of life table time yield 
slightly lower PPRs, slightly higher mean failure times (except for the B�M transition), and 
slightly lower median failure times than do CLL models with a quadratic specification of life 
table time. The discrepancies are larger for median failure times than for mean failure times.  
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     Dummy variable specification            Quadratic specification
Mean Median Mean Median

Parity failure failure failure failure
transition PPR time time PPR time time

B-M 0.94 21.7 20.9 0.94 21.4 21.3
M-1 0.97 1.4 1.0 0.97 1.4 1.0
 1-2 0.95 2.4 2.0 0.95 2.3 2.2
 2-3 0.90 2.6 2.3 0.91 2.6 2.5
 3-4 0.84 2.8 2.4 0.85 2.8 2.6
 4-5 0.77 2.9 2.4 0.78 2.8 2.7
 5-6 0.77 2.9 2.5 0.78 2.9 2.7
 6-7 0.79 2.8 2.4 0.80 2.7 2.6
 7-8 0.79 2.9 2.5 0.79 2.8 2.7
 8-9 0.74 2.8 2.4 0.74 2.7 2.6
 9-10 0.69 2.7 2.4 0.69 2.6 2.5

Table A4: Comparison of PPRs and mean and median failure times, derived from CLL models 
that alternatively use a dummy variable specification and a quadratic specification of life table 
time: Cohort estimates based on women age 40-49 in the 1993 DHS survey, Philippines

Note: Comparisons cannot be made for transitions higher than 9-10, because CLL models with a 
dummy variable specification of life table time do not converge for parity transitions higher than 9-
10.  

 
 
The discrepancies in Table A4 are small enough to use the quadratic specification in CLL 

models for higher-order parity transitions in instances where CLL models with the dummy 
variable specification do not converge. 

 
Comparison of proportional and time-varying specifications of effects of 
socioeconomic predictor variables on the risk of failure 
 
In the text it was argued that the effects of residence and education were not proportional and 
had to be modeled as time-varying. Time-varying effects were accordingly modeled by 
interacting each of these predictor variables with a quadratic specification of life table time.  
 

In the case of the B�M transition, the models with time-varying effects are as shown in 
equations (11) and (12) above. Figure A1 uses data from the 1993 survey to graph exp(f+gt+ht2) 
and exp(j+kt+mt2) against t to show how much the quadratic specifications of the time-varying 
effects of medium and high education on the continuous-time hazard of first marriage, relative to 
the effect of low education, depart from the time-invariant (i.e., proportional) specifications of 
these effects. In the proportional case, the graphs would be horizontal lines, so the comparison 
amounts to seeing the extent to which the graphs depart from horizontal lines.  

 
The first graph in the figure is based on period data pertaining to the five-year period 

before the 1993 survey, and the second graph is based on cohort data pertaining to women age 
40–49 at the time of the 1993 survey. Both graphs indicate postponement of marriage with more 
education, inasmuch as the relative-risk curves start out below one, rise above one, and then fall,  
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Figure A1: The effect of medium education, exp(f+gt+ht2), and the 
effect of high education, exp(j+kt+mt2), on progression from birth to 
first marriage, based on the 1993 survey

Note: Effects of medium and high education are relative to low education. See equations (11) and 
(12) in the text. 
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usually to values that are again below one, and inasmuch as the curve for high education is 
shifted to the right, relative to the curve for medium education. Both graphs show that the effects 
of education vary substantially as t increases, indicating major departures from proportionality. 
Similar graphs of the effect of urban/rural residence, which are not shown, also indicate the need 
for a time-varying specification of the effect of residence. Also not shown are similar graphs for 
higher-order parity transitions, which also indicate the need for time-varying specifications of the 
effects of residence and education on the hazard of a next birth. 
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APPENDIX B 

JACKKNIFE ESTIMATES OF STANDARD ERRORS 
 
Following the approach used in DHS surveys for calculating standard errors of complex 
measures such as the TFR, we use the jackknife method, which is recommended when the 
original sample is a multi-stage cluster sample, as is the case in all DHS surveys. DHS surveys 
apply the jackknife by taking repeated samples from the original sample, each time omitting one 
primary sampling unit (PSU) from the original sample. The number of repeated samples is the 
same as the number of PSUs.  
 
 PSUs typically are rural villages (or segments of villages in the case of large villages) and 
urban blocks. In the applications to Philippines data, the number of PSUs is 744 in the 1993 
survey, 752 in the 1998 survey, and 819 in the 2003 survey. In the cross-sectional analysis, in 
which each of the three Philippines surveys is analyzed separately, the number of repeated 
samples and the number of jackknife iterations are the same as the number of PSUs in the 
original sample pertaining to the particular survey under consideration. In the trend analysis, 
based on pooled data, the number of iterations is the sum of the numbers of PSUs over all three 
surveys.  
 
 Jackknife estimates of standard errors are approximations that are more accurate for some 
measures than for others (Sarndal et al. 1992: 437–442). Our measures are unadjusted and 
adjusted PPRs, mean and median failure times, TFR, and TMFR by residence and education. The 
calculation of these measures is complex. The jackknife estimates of standard errors are 
approximations. The degree of bias in these approximations is unknown. 
 
 We did eight runs of our jackknife program—one for period estimates and one for cohort 
estimates for each of the three Philippines DHS surveys separately and for the pooled sample 
comprising all three surveys. In any given run of the program, each of N iterations (where N 
equals the number of PSUs) creates the various expanded samples, re-normalizes weights, and 
calculates unadjusted and adjusted estimates of PPRs, mean and median failure times, TFR, and 
TMFR by residence and education. In the case of the two runs based on the pooled sample, 
estimates of the percentages shown in Table 15 are also calculated for each jackknife iteration. 
The N iterations yield N estimates of each measure, from which a standard error of the estimate 
is calculated.  
 
 The standard error of any particular measure X derived by the jackknife method is 
calculated as  
 
 SE(X)  =  [Var(X)]0.5  =  {[(N – 1)/N][�(Xi – X )2]]}0.5 (B.1) 

 

where Xi denotes the value of X in the ith iteration (as calculated from the sample with one PSU 
removed), X  denotes the mean of the Xi over the N iterations, and the summation ranges from 1 
to N.  
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 We also calculate standard errors of pairwise differences in the value of each measure 
between categories of a predictor variable. For example, in the case of the adjusted TFR by 
education (low, medium, high), we calculate X = TFRM – TFRL) for each of the N iterations and 
then use equation (B.1) to compute the standard error of X = TFRM – TFRL. The calculation is 
repeated for X = TFRH – TFRL. We then form the test statistics zM = (TFRM – TFRL)/SE(TFRM – 
TFRL) and zH = (TFRH – TFRL)/SE(TFRH – TFRL). zM and zH are assumed to be normally 
distributed, thereby enabling tests of whether TFRM and TFRH differ significantly from TFRL. In 
these comparisons, low education is considered as the reference category. All tests of 
significance are two-tailed tests. 
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