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ABSTRACT

Topological data analysis (TDA) is a new approach to analyzing complex data which often helps

reveal otherwise hidden patterns by highlighting various geometrical and topological features of the

data. Persistent homology is a key in the TDA toolbox. It measures topological features of data that

persist across multiple scales and thus are robust with respect to noise. Persistent homology has had

many successful applications, but there is room for improvement. For large datasets, computation

of persistent homology often takes a significant amount of time. Several approaches have been

proposed to try to remedy this issue, such as witness complexes, but those approaches present their

own difficulties.

In this work, we show that one can leverage a well-known data structure in computer science

called a cover tree. It allows us to create a new construction that avoids difficulties of witness

complex and can potentially provide a significant computational speed up. Moreover, we prove

that the persistence diagrams obtained using our novel construction are actually close in a certain

rigorously defined way to persistence diagrams which we obtain using the standard approach based

on Čech complexes. This quantifiable coarse computation of persistence diagrams has the potential

to be used in many applications where features with a low persistence are known to be less important.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Complexes, Homology, and Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Homology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Persistent Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Cover Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Persistent cohomology of cover refinements via cover tree . . . . . . . . . . . . . 24
4 Theorem in case of NPC space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Computation and algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



LIST OF FIGURES

2.1 An example of simplices, from left to right: vertex; edge; triangle; tetrahedron . . . . 5
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CHAPTER 1
INTRODUCTION

In recent years, data of various kinds have been collected at an extremely fast rate, and it

has become clear that the standard techniques of data analysis are not always capable of handling

the severe growing complexity of these data. Consequently, there has been active development of

alternative tools for complex data analysis, in particular the ones employing methodology from

combinatorial and algebraic topology, as they can potentially provide a better insight into the

patterns hidden within the data than the standard tools and methods of data analysis. Topological

data analysis (TDA) has thus become a fast-growing field which has already developed a number of

topological and geometrical tools that can help us understand some important features of various

complex data sets, in particular the features related to their shape.

Of course, this immediately brings up the question of what we mean by the “shape” of a discrete

data set. Invoking the intuition behind a “zoomed out view” of data, we can think of a data set

as representing a topological space obtained by drawing a ball with some fixed radius around each

point and then taking the union of all these balls. However, it may not be at all clear how one should

choose the radius for such balls. Hence, instead of fixing the radius we can consider all possible radii

and get a family of topological spaces. When the radius changes from 0 to ∞ we can see, how the

shape of these spaces changes, and how their topological features, e.g. holes of various dimensions,

get created and destroyed during this process. While the field of topology offers a number of ways

to characterize the shape of an object (within the category of topological spaces and continuous

maps), one of the most computationally efficient yet descriptive ways is to compute its homology

(or cohomology) groups. Of course, computational consideration also requires one to represent the

union of balls using a more convenient structure, and it turns out such a structure is an appropriately

constructed simplicial complex. This is the main idea behind one of the most widely used tool in

TDA – persistent homology. This concept was initially introduced by Edelsbrunner et al. [10]. It

has found a lot of applications in different areas: Bio-Science [9, 13]; sensor networks [6, 14]; analysis

of breast cancer [18, 19]; and many others (see [16] for more examples)

With all of its successes, the persistent homology method does have some drawbacks. When

the number of points and/or dimensions of the underlying space is too large, the computations

may turn out to be prohibitively expensive. One can note, however, that if the usual set-up for
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persistent homology is used, i.e. when radii of the balls change from 0 to ∞, then in the beginning,

for small radii, we compute a lot of features that capture “noise” – small holes, which do not carry

any information about the true shape of the space underlying the data set. On the other hand, one

can begin computations from the other end, that is, start with the balls of a very large radius and

then decrease it to zero, using persistent cohomology instead of homology. However, in this case,

the immediate computational slow down will be caused by the extremely large number of simplices

needed to correctly represent the union of the balls.

The one possible way to avoid these problems is to use witness complexes, introduced in [5].

The idea behind the witness complexes is to select an appropriately chosen small subset of the data

points, called landmarks, as a vertex set of a family of nested simplicial complexes and use all of the

data points, referring to them as witnesses, to determine which simplices should be added to this

family as the radius increases to infinity. Thus constructed family of witness simplicial complexes can

be used to employ the usual persistent homology algorithm. There are variations of this approach,

and its applications to real-world data can be found in [7, 8].

An astute reader can notice that the witness complex approach presents another problem: How

many landmark points should one select and how does one go about selecting them? Several ap-

proaches have been suggested, but with very limited theoretical justification. Moreover, there are

only very limited theoretical results allowing us to compare the results of the persistent homology

computations using witness complexes and the ones obtained using simplicial complexes over the

full set of data points.

In this work, we develop a new method for computing persistent homology and cohomology which

allows us to circumvent the aforementioned problems for the price of some accuracy. This approach

is based on the observation that a well-known computer science data structure called “cover tree”

(which is mostly used for finding nearest neighbors) gives us some sort of a “discrete” set of covers of

our data set, meaning that each element of a cover is represented as a point with descendants, thus

giving us a discrete neighborhood. Importantly, it is a leveled data structure, that is, it has multiple

levels, each containing a different number of points (subsets), starting from a single point at the

highest level, and ending with all data points at a lower level. Furthermore, covers at lower levels can

be regarded as refinements of covers at higher levels. Similar to the methodology described earlier,

we were able to develop a technique for constructing continuous/combinatorial representation of the

underlying unknown structure from these discrete covers. More specifically, we have developed a
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method for constructing a simplicial complex aimed at capturing the nerve of the unknown continu-

ous cover underlying the discrete covers at each level, along with simplicial maps between the levels.

Consequently, the persistent (co)homology algorithm can be applied to our construction. A central

result of this work is to show that the results of the persistent (co)homology computations obtained

using our novel construction are close to the results obtained using the standard approach. The

rigorous formulation of this result employs the notion of interleaving between persistence modules

obtained using the two approaches. Intuitively, this implies that the homological features computed

with either of the two approaches appear and disappear at around similar scales.
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CHAPTER 2
BACKGROUND AND PRELIMINARIES

The main premise of the topological data analysis is that data have shape and that shape

matters. A typical assumption is that observed samples lie around a subspace (e.g a submanifold) of

Euclidean space, and the goal is to get some insight into the topological properties of that space. Of

course, trying to assess topology when given a set of discrete points leads to an immediate question

of how those points should be connected. A well-established approach is to construct a simplicial

complex using the given points as a vertex set. Once such construction is done, one can appeal to

computationally tractable topological tools like homology to get an idea about the shape of the object

of interest. However, when implementing this approach one runs into the problem of deciding which

simplices should actually be added to our complex. One possible way of circumventing this issue is to

use the concept of persistent homology. To understand our main result the reader needs to be fairly

well familiar with certain families of simplicial complexes and persistent homology theory. Therefore,

to keep thing mostly self contained, we will now cover the relevant background information.

2.1 Complexes, Homology, and Persistence

We start with the definitions of geometric and abstract simplices and simplicial complexes. More

details about this topic can be found in [11]

2.1.1 Simplicial Complex

Let x0, x1 ... xk be a set of affinely independent points in Rn. A (geometric) k-simplex is a convex

hull of k + 1 affinely independent points, σ = conv{x0, x1, ..., xk}. Its dimension is dimσ = k.

Simplices of small dimension are typically referred to using specific names: 0-simplex is called a

vertex, 1-simplex – an edge, 2-simplex – a triangle, and 3-simplex – a tetrahedron (Figure 2.1). A

face of simplex σ is the convex hull of a subset of the points x0, . . . , xk.

Definition 2.1. A (geometric) simplicial complex is a finite collection of simplices K, such that

σ ∈ K and γ is a face of σ implies γ ∈ K, and if σ1, σ2 ∈ K then σ1
⋂
σ2 is either empty or a face

of both σ1 and σ2.

To not restrict ourselves only to Euclidean space Rn, we can also think about simplicial complexes
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Figure 2.1: An example of simplices, from left to right: vertex; edge; triangle; tetrahedron

in a more abstract way:

Definition 2.2. An abstract simplicial complex is a finite collections of sets A, such that α ∈ A

and β ⊂ α implies β ∈ A.

The sets in A represent simplices in the simplicial complex. If we have a geometric simplicial

complexK, we can construct an abstract simplicial complex A by only considering the sets of vertices

of each simplex in K. It is also well known that every abstract simplicial complex of dimension d

has a geometric realization in R2d+1 (see e.g. [11]). Thus, we can still keep in mind the geometric

picture when dealing with abstract simplicial complexes.

Returning to the original problem of connecting discrete data points, we now see that constructing

a simplicial complex over such points is a viable approach, since we obtain an object possessing non-

trivial topological and geometric properties. But what points should we connect into simplices? The

intuition should tell us that points which we connect should not be far away from each other. Let’s

assume that we are given points form a Euclidean space. It seems reasonable to connect a set of

points into a simplex if all of those points lie inside a ball of some radius r > 0, where r represents

our threshold for “closeness”. It turns out that the resuliting collection of simplicies does form a

simplicial complex, which is called a Čech complex at scale r. Notice that a set of points being

contained inside a ball with radius r is equivalent to having a nonempty intersection of the balls of

radius r centered at these points.

To formalize the above discussion, consider a metric space (X, d) (e.g. the Euclidean space with

the usual metric). Let’s denote by Bx(r) = {y ∈ X | d(x, y) ≤ r} a closed ball with radius r

around a point x. The Čech complex over a set S ⊂ X at scale r is the abstract simplicial complex

Čech(r) = {σ ⊂ S |
⋂

x∈σ Bx(r) ̸= ∅} (Figure 2.2).

Note, that if r1 < r2 then points lying inside a ball of radius r1 also lie inside the ball of radius
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Figure 2.2: An example of construction of a Čech complex

r2 with the same center. This implies that Čech(r1) ⊆ Čech(r2). Thus, increasing the radius r from

zero to infinity yields a nested family of vCech complexes. This property will enable us to employ

persistent homology, as we discuss later.

Regarding the construction of vCech complexes from a practical viewpoint, we are faced with

the problem of finding the smallest enclosing ball for a given set of points. This is a non trivial

problem, and it can be computationally challenging, especially if we are working in a non-Euclidean

space or a Euclidean space of a high dimension. One possible approach to simplify the construction

is to connect a set of points into a simplex if all the pairwise distance are less or equal to 2r, which

is equivalent to saying that the edges of the simplex belong to the Čech complex at scale r. The

resulting collection of simplices forms a simplicial complex knows as the Vietoris-Rips complex:

Vietoris-Rips(r) = {σ ⊂ S | d(x, y) < 2r∀x, y ∈ σ} (Figure 2.3). Thus, in order to build a Vietoris-

Rips complex at scale r we only need to know pairwise distances between the points, which is clearly

easier to compute that smallest enclosing balls.

One can see directly from the definitions that for every r, Čech(r) ⊂ Vietoris-Rips(r). Indeed,

edges are added to both constructions using the the same criterion. For simplices of higher dimen-

sions, two points lying inside a ball with radius r implies that the distance between them is less 2r.
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Figure 2.3: An example of construction of a Vietoris-Rips complex

Hence, for any simplex σ ∈ Čech(r) pairwise distances between points in σ are less than or equal

to 2r, yielding σ ∈ Vietoris-Rips(r). We shall make use of this property later. Also, one can easily

show that similarly to Čech complexes, if r1 < r2 then Vietoris-Rips(r1) ⊂ Vietoris-Rips(r2).

Constructing Vietoris-Rips complexes over data points is a computationally viable task, letting

us to obtain an object with topological and geometric properties. However, it is still not clear how to

chose an appropriate radius r. Before delving deeper into this topic, let’s first talk about topological

properties which we are trying to recover. They are homology groups.

2.1.2 Homology Groups

Intuitively, homology groups give us information about “holes” in the topological object. In Fig-

ure 2.4 we can see an annulus. We can think about the dark blue circle as a “representative” of the

hole in the middle. But intuitively, the light blue circle should represent the same hole, since we can

continuously deform one circle into the other. We also note that the purple circle in the figure is of a

different kind. It does not represent any hole since it can be continuously deformed into a point. So,

this trivial example suggests that every circle (or closed curve) is either contractible or represents

some hole, and we need to understand which closed curves represent the same hole. Generalizing
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these ideas leads to the topic of homotopy theory, which is a powerful framework for describing the

shape of topological spaces. The issue is that it is not computationally tractable. Remembering

that we have to deal with simplicial complexes, we can try to capture similar ideas using simplicial

constructions, which leads to the notion of homology groups.

Figure 2.4: Circles as representatives of holes

Let K be a simplicial complex. A p-chain is a formal sum:
∑
aiσi, where σi is simplex of

dimension p and ai are coefficients. In computational settings these coefficients are often restricted

to the values of 0 or 1, i.e. elements of Z2. In general, these coefficients can belong to a more

complicated algebraic structure which can be such be a field, a ring, or a group. The standard

choice is the set of integers, Z. We can add different p-chains like polynomials. With this addition

operation, p-chains form a group, denoted by Cp = Cp(K). For convenience, in all of the examples

in this section we will assume that the coefficients are elements of Z2.

Given a simplex σ with vertices x0, x1, ..., xp, σ = [x0, x1, ..., xp] we can define a boundary op-

eration: ∂pσ =
∑p

j=0(−1)j [xo, x1, ..., x̂j , ..., xp], where [x0, x1, ..., x̂j , ..., xp] is a simplex of dimension

p− 1 with the vertex set {x0, x1, ..., xp} \ {xj}. For example, the boundary of a tetrahedron is sum

of 4 triangles, the boundary of a triangle is sum of 3 edges – “sides” of the triangle, the boundary of

an edge is the sum of two vertices – the endpoints, and the boundary of a vertex is the trivial chain,

0. The boundary of a p-chain is obtained by linearly extending the above operation, i.e. it is the
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sum of the boundaries of the corresponding simplices (multiplied by the corresponding coefficients,

in general). It is a (p − 1)-chain which we are going to call a (p-1)-boundary. All p-boundaries

also form a group, denoted by Bp. The map ∂p : Cp −→ Cp−1 is a homomorphism which we shall

refer to as a boundary map and, for convenience, will often drop the index p. The collection of

all the chain groups and boundary maps between them is called a chain complex, and is typically

denoted C∗.

Coming back to our toy example of an annulus, we can think about what kind of a chain would

represent a hole if the annulus were represented by a simplicial complex. Intuitively, it should be

a chain of edges forming a “cycle”, i.e. with any two edges having a single endpoint in common

(Figure 2.5). If we consider the boundary of this chain we note that the boundary of each edge

consists of two vertices, but each vertex will be in the boundary of exactly two edges, thus canceling

out since we are talking about Z2 group. Consequently, the boundary will be equal to 0.

Figure 2.5: An example of a cycle of dimension 1

We can generalize these ideas to higher dimensions. Suppose our simplicial complex consists of

exactly four triangles – faces of a tetrahedron, but not the tetrahedron itself. We can think about

the void inside as a 2-dimensional hole, and we can view the collection (sum) of these 4 triangles as

a representative of this hole. Let’s find the boundary of this sum of 4 triangles. The boundary of

each triangle consists of three edges, but each edge belongs to exactly two triangles. Again, since we

are working with Z2 coefficients, the boundary will be zero. This gives us the idea of how to define

a cycle. A p-cycle is a p-chain c ∈ Cp, such that ∂c = 0. All of the p-cycles form a group Zp, a

subgroup of Cp.
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Note that in the above example we considered a simplicial complex that was actually a boundary.

In fact, by performing careful calculations we can show that the boundary of the boundary of any

simplex, and hence of any p-chain, is 0 ( see e.g. [11]).

Lemma 2.1 (Fundamental Lemma of Homology). ∂p∂p+1d = 0 for all p and all (p+ 1)-chains d

The above lemma states that a p-boundary is also a p-cycle. One can also show that the collection

of all p-boundaries, Bp, is a subgroup of Cp, and hence a subgroup of Zp (Figure 2.6). And now we

have all we need to define homology groups.

Figure 2.6: Homomorphism connections between chains, cycles and boundaries

Definition 2.3. The p-th homology group is the p-th cycle group modulo the p-th boundary

group, Hp = Zp/Bp. The p-th Betti number is the rank of this group, βp = rankHp.

Intuitively, the p-th Betti number gives us the number of p-dimensional holes in a simplicial

complex. Also, two cycles represent the same hole if they differ by a p-boundary, the boundary of a

(p+1)-chain. Let’s go back to our annulus example (again, assuming it is represented by a simplicial

complex) and consider the boundary of the sum of all the triangles (which represent the interior of

the annulus). This boundary will the sum of the two chains representing the dark blue and light

blue circles. Since we are working with Z2, it implies that any one of these circles is the sum of the

other one with the boundary of interior of the annulus. So, these two cycles differ by 1-boundary

which puts them into the same homological class (element of 1-st homology group), as intended.

The purple circle is the boundary of the small disk itself, so it is 1-boundary, hence it represents a

zero element of the 1-st homology group, as intended. Thus, the 1-st homology group of the disk

has the rank 1.
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To illustrate further properties of homology groups, let us consider several more examples in

Figure 2.7. It can be shown that the 0-dimensional homology group captures (path) connected

components of the space. There is only one connected component in all of the examples in the

figure, so β0 = 1. In the Figure 2.7 (a) we have a 2-dimensional sphere. We can notice that every 1-

cycle actually bounds a disk. In other words, every 1-cycle is boundary of some 2-chain, for example

the red cycle is a boundary of the “hat” above it. So the H1 is trivial. Also, the whole surface of

the sphere (when represented by triangles) is a 2-cycle which is not the boundary of any 3-chain,

since there are no 3-chains. Consequently, this cycle represents the only non-trivial element of H2.

In other words, the sphere has the only one “hole” of dimension 2. In the Figure 2.7 (b) we have

a torus. It has 2 different cycles of dimension 1 representing nontrivial homology classes (red and

green ones). We can notice that both red cycles belongs to the same homology class – they are the

boundary of the tube connecting them. Since we are working in Z2, it implies that one is the sum of

the other with the boundary of the tube. So β1 = 2. Similarly to the previous example, the whole

surface of the torus is a 2-cycle, which is not the boundary of any 3-chain, so β2 = 1. Lastly, in

Figure 2.7 (c) we have a solid torus. Now, the red cycles represent a trivial homology class, since

it bounds a disk, i.e. the red cycles are boundaries themselves. The green one is still represents a

nontrivial homology class, so β1 = 1. The surface of the whole solid torus is still a cycle, but now

that this cycle is a boundary of interior of the torus (represented by the sum of all the tetrahedra).

Hence H2 is trivial and β2 = 0.

2.1.3 Persistent Homology

Armed with Vietoris-Rips and Čech complexes along with (simplicial) homology theory, we can now

return to the problem of capturing the shape of a discrete set of data points. Let’s consider a simple

example of a sample from some subspace of the Euclidean plane shown in Figure 2.8.

Our goal is now more concrete – we are trying to recover homology groups (with Z2) of the

(unknown) subspace from the given sample. Since we are working in the plane, we are interested in

the 1-st homology group. We know how to construct a simplicial complex (Čech or Vietoris-Rips)

at some scale r > 0, and we can compute its homology groups. For convenience, let’s use the

Vietoris-Rips complex. Thus, we add edges if the corresponding endpoints are within distance 2r,

and we add triangles if all their edges have been added. We show the resulting simplicial complex

in Figure 2.9. We did not fill in the triangles to keep the picture visually simpler, but it should be
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Figure 2.7: An example of homology groups and their representatives in: (a) - 2-sphere; (b) - torus;
(c) - filled torus

clear which triangles are contained in the complex. We can also notice that there is a tetrahedron

in this complex.

We got lucky as our simplicial complex does seem to capture the right connectivity, but in general

it is unclear how to chose the radius r in the Vietoris-Rips construction. If r is too small, then every

point will create a separate connected component (Figure 2.10 (a)). If r is too big, than we will get

contractible complex. ((Figure 2.10 (b)).

The idea behind persistent homology is to not focus on any specific value of the radius, but to

look at the all radii from 0 to ∞. As we discussed already, if r1 < r2, then Vietoris-Rips(r1) ⊆

Vietoris-Rips(r2). Hence, we will get a family of nested simplicial complexes and, at least intuitively
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Figure 2.8: Some random data set

Figure 2.9: An example of Vietoris-Rips complex for some appropriate radius selection

for now, we can to track at what radius/scale a hole, i.e. a 1-cycle representing a non-trivial homology

class, appears (is born) and at what scale it disappears (dies). Figure 2.11 illustrates this idea, as

we can see that on the left there is a small non-trivial 1-cycle born, but it becomes a boundary, i.e.

dies, on the right, as we increase the radius.

The subsequent birth-death process is illustrated in Figure 2.12. In picture (a), we can see that

there is one more 1-cycle born, but then it is “split” into two cycles in picture (b). This split is

nothing more but a birth of another 1-cycle representing a different homology class. And in the
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Figure 2.10: An example of Vietoris-Rips complex for some inappropriate radius selection: (a) - the
radius is too small; (b) - the radius is too big

Figure 2.11: The birth (a) and death (b) of the first hole

picture (c) we can see that one of these cycles, the top one, died because two triangles were added to

the complex. Keeping in mind that we are actually interested in homology classes, not just cycles,

we should ask ourselves how to decide which of the two homology classes dies: the one that born

firstly or the one that born lastly? In this simple example we can employ elder rule – the younger

homology class dies and the older one continues to live. In picture (d), we can see how the older one

dies as well.

In the Figure 2.13 (a) we can see how the new big hole is born, and dies on picture (b).

In general, the elder rules works only for 0-dimensional homology classes. The formal tracking

of births and deaths of higher dimensional homology classes is much more complicated, but can be

done when considering homology with field coefficients (see [11] for details). As a result, for each
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Figure 2.12: The births and deaths of the second and third holes

Figure 2.13: The birth and death of the last fourth hole
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nontrivial homology class we can say when it is born and when it dies. Assuming that b and d

denote the birth and the death of some homology class, we can regard these values as coordinates

of a point in the plane, (b, d). The collection of all such points constitutes a persistence diagram,

with the difference d− b being the persistence of the corresponding homology class. Obviously, for

any point in the diagram we have d ≥ b, so no point lies below the diagonal. In Figure 2.14 we can

see four points corresponding to the homology classes that discussed earlier. If the point is close

to the diagonal, i.e. has small persistence, then the corresponding homology class lived for a short

rage of scales. Oftentimes, such homology classes represent noise. By contrast, a point which is

far away from the diagonal, i.e. has large persistence, represent a homology class that lived across

a large range of scales. Such a homology class may correspond to a true homology class of the

underlying topological space. In general, the distinction between noise and true homology may be

illusive, but there are results stating that under certain conditions one can determine which points

in a persistence diagram represent true homology of the underlying space (see [11] for details).

Figure 2.14: The persistence diagram of the example above

The ideas described above are a part of the persistent homology theory. We shall now describe

it more more detail.

First, we need to define a simplicial map. Given simplicial complexes A and B, a map f : A −→

B is called simplicial if it maps the vertex set of A into the vertex set of B and for any simplex
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σ ∈ A we have f(σ) ∈ B. This is equivalent to saying that the image of the set of vertices of a

simplex is a set of vertices of a simplex. It may be useful to consider an example of a map that is

not simplicial. Suppose a simplicial complex A consists of three points: A1, A2, A3 and a triangle

on these points (with all its faces), and let a simplicial complex B consist of three points B1, B2, B3

with only three edges connecting these points (Figure ??). If f maps A1 to B1, A2 to B2, and A3

to B3, then this is not a simplicial map. Indeed, if σ is the triangle in A, then f(σ) should be the

simplex with vertices B1, B2, B3, but there is no such simplex in B. Note that mapping A1 to B1,

A2 to B2, and A3 to B2 yields a simplicial map which maps the triangle to the edge with vertices

B1, B2.

It is a well known fact (see e.g. [11]) that a simplicial map f : K1 −→ K2 between simplicial

complexes K1 and K2 induces homomorphisms between the corresponding homology groups, i.e. we

get a homomorphism fp∗ : Hp(K1) −→ Hp(K2) for each homological dimension p. The idea of the

proof is that the simplicial map f induces a map between p-chains which maps cycles to cycles and

boundaries to boundaries. Hence it induces the map between quotient groups, i.e. p-th homology

groups. For concreteness, we shall restrict ourselves to coefficients in Z2, but the approach works

with any fields coefficients. If the homological dimension is clear from the context, we denote the

induced homomorphism simply by f∗.

Suppose we have the finite family of simplicial complexes Ki, i = 1, . . . , n, and a family of

simplicial maps fi : Ki −→ Ki+1. In TDA, one typically considers a nested family of simplicial

complexes Ki ⊆ Ki+1, which is called a filtration. Vietoris-Rips complexes considered earlier are

an example of a filtration. In such a case, all simplicial maps fi are just inclusion maps. In general,

we can consider any sequence of simplicial maps. Let f i,j = f i ◦ f i+1 ◦ ... ◦ f j−1 be the resulting

simplicial map between Ki and Kj and let f i,jp∗ : Hp(Ki) −→ Hp(Kj) be the corresponding induced

homomorphism. Note that we have the following sequence of homology groups

Hp(K1)
f1
p∗−−→ Hp(K2)

f2
p∗−−→ ...

fn
p∗−−→ Hp(Kn)

in each homological dimension p. Since we consider field coefficients, these are actually vector spaces

connected by linear maps. Such a sequence is referred to as a persistence module.

Definition 2.4. The p-th persistent homology groups are the images of the homomorphisms induced

by the simplicial maps, Hi,j
p = imf i,jp∗ for 0 < i < j ≤ n. The corresponding p-th persistent Betti
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numbers are the ranks of these groups, βi,j
p = rankHi,j

p .

The persistent homology group Hi,j
p consists of the homology classes present in Ki and still alive

at Kj . If γ is a class in Hp(Ki), we say it was born at Ki if γ /∈ Hi−1,i
p . Moreover, we say γ

dies at Kj if it merges with some older class as we go from Kj−1 to Kj , i.e. f
i,j−1
p∗ (γ) /∈ Hi−1,j−1

p

but f i,jp∗ (γ) ∈ Hi−1,j
p (Figure 2.15). If γ is born in Ki and died in Kj then the persistence is

pers(γ) = j − i. When considering filtrations where the simplicial complexes Ki correspond to

real parameters ri, as in the case of Čech or Vietoris-Rips complexes, the persistence is typically

defined as pers(γ) = rj − ri. Note that in the case of Čech or Vietoris-Rips complexes the values ri

correspond to the scales at which new simplices are added to the complex.

Figure 2.15: An example of a call γ which is born at Ki and dies entering Kj

Notice that βi,j
p −βi,j−1

p is the number of homology classes that are born at of before Ki and die

at Kj . Similarly, βi−1,j
p −βi−1,j−1

p is the number of homology classes that are born at or before Ki−1

and die at Kj . Thus, if we consider the difference of these two quantities we will get the number

of homology classes that are born at Ki and die at Kj , µ
i,j
p = (βi,j

p − βi,j−1
p )− (βi−1,j

p − βi−1,j−1
p ).

As we alluded to earlier, we can visualize births and deaths as points in R⊭, with the x-coordinate

corresponding to birth and the y-coordinate corresponding to death. Note that some points may

have infinite y-coordinate, since a homology class may never die, and several homology classes

can have the same birth and death values. Hence, we are looking at a multiset of points (i.e.

points with multiplicities) in the extended R2
. These points together with all points from diagonal

x = y, where each point on a diagonal has an infinite multiplicity, gives us the p-th persistence

diagram. A point (ri, rj) in this diagram has multiplicity µi,j
p , which is the number of homology

classes it represents. The difference between coordinates is then the persistence of the corresponding

homology classes. We will explain the need to include points on the diagonal shortly.
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It is important to note that persistence diagrams allows us to recover persistent Betti numbers,

βi,j
p , and since we are considering homology with fields coefficients, this means that the diagrams

encodes all the information about persistent homology group:

Lemma 2.2 (Fundamental Lemma of Persistent Homology). Let K1
f1−→ K2

f2−→ ...
fn−1−−−→ Kn be a

simplicial filtration. For every pair of indices 1 ≤ k ≤ l ≤ n and every homological dimension p, the

p-th Betti numbers βk,l
p =

∑
i≤k

∑
j>l µ

i,j
p .

Thus, to compare the shape of two data sets we can compare the homology of the corresponding

simplicial filtrations by comparing the resulting persistence diagrams. To make such a comparison

rigorous, we need to define a notion of the distance between persistence diagrams.

Definition 2.5. Let X and Y be two persistence diagrams. The bottleneck distance between

these diagrams is defined as

W∞(X,Y ) = inf
ν:X−→Y

sup
x∈X

||x− ν(x)||∞,

where ν ranges over all bijections between X and Y .

One can see that the above bottleneck distance is well defined only if a set of bijections between

any two diagrams is not empty. This is where our decision to include points on the diagonal to the

diagrams comes into play, as it provides such a guarantee by allowing to us map off-diagonal points

to the diagonal.

To make the bottleneck distance truly useful we need it to be close for the diagrams which are

obtained for samples that are close (in Hausdorff distance). The corresponding result is given in

[4], and actually covers a more general case of subsets of a metric space. An even more general

result is given in [3], and it shows that the bottleneck distance for the diagrams obtained from close

persistence modules remains close. We shall need a slightly modified and simplified version of this

result, which we shall now state. Two persistence modules V1 → · · · → Vn and W1 → · · · →Wn are

said to be 1-interleaved if there exist linear maps ϕi : Vi → Gi+1 and ψi : Wi → Vi+1 such that for

any integer k ≥ 0 the following diagrams commute:

Vi−1 Vi+k+1

Wi Wi+k

ϕi−1 ψi+k

Vi Vi+k

Wi−1 Wi+k+1

ψi−1 ϕi+k
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The horizontal maps in the above diagrams are simply compositions of the connecting maps of the

modules. The following lemma follows from the result in [3] regarding weakly interleaved persistence

modules.

Lemma 2.3. If two persistence modules are 1-interleaved then the bottleneck distance between the

corresponding persistence diagrams is bounded by 3.

2.1.4 Persistent Cohomology

Looking back at the earlier examples illustrating ideas behind persistent homology, we can notice that

computations at small scales, which happen at the beginning of the standard persistent homology

algorithm, are likely to mostly produce homological classes of small persistence that represent noise

rather than true homology of the underlying space. That’s because we expect relevant homology

classes to have q relatively large persistence and hence die later in the process. Hence, we may

ask ourselves if we could develop an alternative algorithm which also captures persistent homology

information but instead of starting at the smaller scales and continuing to the larger scale it goes in

the opposite direction, i.e. starts at the larger scales and moves towards the smaller scales. A possible

advantage of such an approach would be capturing relevant persistent homology information earlier

in the computations, thus possibly reducing the computational cost by simply avoiding computing

persistent homology at smaller scales.

Theoretical underpinnings of the above “top-to-bottom” approach are provided by the theory of

cohomology, which is a notion dual to homology. In cohomology theory, instead of considering a chain

complex C∗ one considers a cochain complex obtained by considering dual groups, Cp = Hom(Cp, G),

where Cp are considered with integer coefficients and G is a fixed group, which, for simplicity, we

once again assume to be Z2, although the persistence framework can work with any field. Dualizing

boundary maps ∂p : Cp −→ Cp−1 we obtain coboundary maps δp−1 : Cp−1 −→ Cp, and since ∂∂ = 0

we get δδ = 0 as well. Hence, similarly to homology, we can define cocycle groups Zp = ker δp and

coboundary groups Bp = im δp−1 (Figure 2.16). Consequently, we can define cohomology groups:

Definition 2.6. The p-th cohomology group is the quotient Hp = Zp/Bp for all p.

Similarly to homology theory, a simplicial map f : K1 −→ K2 induces a homomorphism between

cohomology groups, fp∗ : Hp(K2) −→ Hp(K1). Hence, given a sequence of simplicial complexes

connected by simplicial maps the resulting cohomology groups and indiced homomorphisms also
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Figure 2.16: Homomorphism connections between cochains, cocycles and coboundaries

form a persistence module, except that arrows point in the opposite direction. As a result, we can

define persistent cohomology as persistent homology of such a module, and it gives us maps going

from larger scales to smaller scales.

The definition of cohomology groups suggests that there should be a relation between persistent

homology and cohomology. It turns out that persistent cohomology captures the same information

as persistent homology (see e.g. [11]):

Theorem 2.1 (Universal Coefficient Theorem.). Given a simplicial complex K and a field G, there

are maps Hp(K) −→ Hom(Hp(K), G) −→ Hp(K) in which the fist map is a natural isomorphism and

the second is an isomorphism that is not natural.

Naturality of the first map means that if we have another simplicial complex L and a simplicial

map K → L then the following diagram commutes:

Hp(K) Hom(Hp(K), G)

Hp(L) Hom(Hp(L), G)

The second map is not natural because it depends on the choice of bases.

2.2 Cover Tree

It is important to note that existing algorithms for computing standard persistent homology and

cohomology for a data set require us to compute the corresponding simplicial complexes, e.g. Čech

or Vietoris-Rips, at the largest scale of interest. If the data set consists of a lot of points lying in a
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high dimensional space, then the sheer number of simplices may make the computation extremely

expensive. A possible way to deal with this problem is to construct simplicial complexes whose ver-

tex sets are subsets of the data points rather than the whole set. However, this approach raises two

natural questions: how to choose the vertex sets of our simplicial complexes and how to determine

which of the vertices span simplices? When considered previously, these questions led to the devel-

opment of so called witness complexes [5]. However, the choice of the vertex set for these complexes,

which is the same at all scales, is done in an ad hoc manner. Here, we take a different approach. We

are going to employ a well-known data structure in computer science called “cover tree”, which is

typically used to perform a nearest neighbor search. [1]. For the sake of self-containment, we shall

now provide a brief description of this data structure, following closely the exposition in [1].

Definition 2.7. Given a finite subset S of a metric space with metric d, a cover tree T on S is a

leveled tree where each level is a “cover” for the level beneath it. Each level is indexed by an integer

scale i which decreases as the tree is descended. Every node in the tree is associated with a point

in S. Each point in S may be associated with multiple nodes in the tree; however, we require that

any point appears at most once at every level. Let Ci denote the set of points in S associated with

the nodes at level i. The cover tree obeys the following invariants for all i:

(i) (Nesting) Ci ⊂ Ci−1. This implies that once a point p ∈ S appears in Ci then every lower

level in the tree has a node associated with p;

(ii) (Covering tree) For every p ∈ Ci−1, there exists a q ∈ Ci such that d(p, q) < 2i and the node in

level i associated with q is a parent of the node in level i−1 associated with p, and respectively

the node in level i− 1 associated with p is a child of the node in level i associated with q.

(iii) (Separation) For all distinct p, q ∈ Ci, d(p, q) > 2i.

Important Note: We will commit a slight abuse of terminology and identify nodes with their

associated points, keeping in mind the the distinction made above. Since a point can appear in at

most one node in the same level, no confusion can occur.

Instead of using scales 2i, we can generalize the definition a little bit and use ai, where a > 1

is some constant. However, our main result in this work uses the standard choice of scales, 2i. We

have a reason to believe that this result will also hold true for some a ∈ (1, 2), which would be a

slight improvement, but we only managed to find a proof for a = 2.
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The cover tree consist of infinite number of layers, where C∞ consists of one “root” node, and

C−∞ = S. Note, that we can put every point p ∈ S into correspondence with exactly one node q for

every level i. To see this, suppose that point p first time appeared in the cover tree at level j, Cj .

If j ≥ i, then this point also will be the node of Ci, so q is going to be the child of itself at level i. If

j < i, then p has exactly one parent p1 at level j+1, p1 has exactly one parent p2 on the level j+2,

and so on. Thus, in the end we can put into correspondence point p and point pi−j = q ∈ Cj . We are

going to say, that q is a parent of p at level i, and also that p is an descendant of q at level i. Note,

that for any point q ∈ Ci and any of its descendant p, d(p, q) < 2i+1. Indeed, since we can build a

finite sequence of parent-child connections between p and q, we obtain d(p, q) <
∑∞

k=0 2
i−k = 2i+1.

We will appeal to this fact frequently later in this work.

The cover tree gives us a sequence of levels, Ci, which correspond to subsets of S, and each

point in such a subset represents the set of its descendants. If we can manage to construct a

simplicial complex Ti over the nodes of Ci for every i and connect these simplicial complexes with

simplicial maps between Ti and Ti+1, then we will be able to compute the corresponding persistent

(co)homology. Keeping in mind that the standard persistent (co)homology computations based

on Čech or Vietoris-Rips complexes allow us to provide certain guarantees regarding recovered

(co)homology classes, we may ask ourselves if it is possible to construct Ti and the connecting

simplicial maps in such a way that the resulting persistent (co)homology is similar the one obtained

using the standard way. The next chapter is devoted to providing an affirmative answer to this

question.
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CHAPTER 3
PERSISTENT COHOMOLOGY OF COVER

REFINEMENTS VIA COVER TREE

The goal of this chapter is to develop a procedure for constructing a sequence of simplicial complexes,

Ti, at each the level i of the cover tree, Ci, along with a sequence of connecting simplicial maps

between them. In addition, we will show that the resulting persistence module is 1-interleaved with

the corresponding persistence module obtained using the regular Čech complexes. Throughout this

chapter, we assume that our data set S is a finite subset of a Euclidean space, and all the lemmas

implicitly assume that all the points under consideration belong to this Euclidean space.

Recall that the cover allows us to select the subset of S at each level of the cover tree. We

would like to such a subset at level i as the vertex set for our simplicial complex Ti. The general

idea remains the same as earlier – connect points into a simplex if they are “close enough”. To

understand what “close enough” might mean in this case, let us imagine that the nodes of the i-th

level are tree trunks in a forest. Each tree has its own family of leaves at the top, similarly to how

each node has a family of descendants. Then we can say that a set of trees is close enough if we can

find a set of leaves, one leaf from each tree, all of which lie inside some relatively small ball. Using

this intuition, we can provide the formal definition of our simplicial complex Ti. Consider a subset

of points A ⊂ Ci. We add simplex σ with the vertices from A to the simplicial complex Ti if and

only if there exists a set of points B ⊆ S, such that a radius of a minimal ball containing B is not

greater than 2i−1, and for any point a ∈ A there exist a point b ∈ B, such that b is a descendant of a

at level i. Note that since the radius of the minimal ball containing B is not greater than 2i−1, the

set B spans a simplex σ ∈ Čech(2i−1). Let Ki = Čech(2i). We say that σ ∈ Ki−1 creates simplex

σ ∈ Ti. Notice that such a simplex σ ∈ Ki−1 might not be unique.

We should mention that the choice of the value 2i−1 as a bound on the smallest enclosing ball of

the creator simplex is not arbitrary. As me mentioned earlier, we would like to obtain an interleaving

between the persistence modules constructed using the cover tree and the usual Čech complexes.

Choosing the value of 2i−1 makes this possible. Let’s start by reiterating that creator simplices for

a simplex at scale 2i belong to the V̌cech complex at scale 2i−1. Moreover, we can notice that we

can define a simplicial map hi : Ki−1 −→ Ti: hi(a) = a, where a is any vertex in Ki−1, and a is a

parent of a at level i. To see that this map is well defined, consider any simplex σ ∈ Ki−1. Let σ
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be the simplex on the parents of vertices of σ at level i, i.e., hi(σ) = σ. We want to ensure that σ

is indeed in Ti. But it is clear from the construction that σ creates σ.

Similarly, we can define a map gi : Ti−1 −→ Ti from a vertex to its parent at level i. Again, we

need to make sure that this map is well defined. Suppose gi(σ) = σ̂. We want to show that σ̂ is

indeed in Ti+1. Since σ ∈ Ti, there exists σ ∈ Ki−1 such that σ creates σ ∈ Ti. Notice that σ also

creates σ̂ ∈ Ti+1.

We can see now that we have sequence of simplicial complexes connected by simplicial maps,

...
gi−1−−−→ Ti−1

gi−→ Ti
gi+1−−−→ Ti+1

gi+2−−−→ .... Hence, we can apply the usual procedure to compute

persistent homology of the corresponding persistence module, ...
gi−1∗−−−→ Hp(Ti−1)

gi∗−−→ Hp(Ti)
gi+1∗−−−→

Hp(Ti+1)
gi+2∗−−−→ .... We also have the persistence module obtained using Čech complexes, ...

fi−1∗−−−→

Hp(Ki−1)
fi∗−−→ Hp(Ki)

fi+1∗−−−→ Hp(Ki+1)
fi+2∗−−−→ ..., with the maps fi∗ induced by inclusion. Our main

result shows that the two persistence modules are 1-interleaved.

Theorem 3.1. For every p, there exist maps αi : Hp(Ki−1) −→ Hp(Ti) and βi : Hp(Ti−1) −→

Hp(Ki) such that for any k ∈ Z+
0 the following 2 diagrams commute:

Hp(Ti−1) Hp(Ti+k+1)

Hp(Ki) Hp(Ki+k)

g∗

βi

f∗

αi+k+1

Hp(Ti) Hp(Ti+k)

Hp(Ki−1) Hp(Ki+k+1)
f∗

αi

g∗

βi+k+1

Let us briefly describe why this interleaving implies that the corresponding persistence diagrams

are within bottleneck distance three. Fix the homological dimension p. Using the interleaving, we see

that if some homology class lives across k ≥ 3 consecutive groupsHp(Ki), Hp(Ki+1),..., Hp(Ki+k−1),

then there is a corresponding homology class that lives across at least k − 2 consecutive groups

Hp(Ti+1), Hp(Ti+2),..., Hp(Ti+k−2), and vice versa. In terms of persistence diagrams, it means that

if DT is the persistence diagram in dimension p computed for the persistence modules obtained

from the cover tree and DK is the persistence diagram in dimension p computed for the persistence

module obtained using Čech complexes, then for any x = (x1, x2) ∈ DT , if |x2 − x1| ≥ 3 there is
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corresponding y ∈ DK , such that ||x − y||∞ ≤ 2, and vice versa. However, since we are looking

for bijections between all such x’s and y’s, the bottleneck distance becomes bounded by three:

W∞(DT , DK) ≤ 3 (for details see [3]). We should note that since we use indices as coordinates

of the points in the persistence diagram, we are technically dealing with the logarithmic scale (the

actual scale is given by the corresponding powers of 2).

We discussed earlier, there is a well defined map Ki−1 −→ Ti. We know that this map induces a

map between homology groups Hp(Ki−1) −→ Hp(Ti). This is going to be our map αi.

Now, consider the following diagram:

Hp(Ti)

Hp(Ki−1) Hp(Ki) Hp(Ki+1)

As we just mentioned, the bottom-top diagonal map is the map αi. However, it is not immediately

clear how to define the top-bottom diagonal map. We would like to cycles of Ti into cycles of Ki+1.

Unfortunately, if σ ∈ Ti, then simplex σ on the same vertex set in Ki+1 might not exist. But we

know that there exists σ ∈ Ki−1 which creates σ ∈ Ti. Since Ki−1 ⊆ Ki+1, we have σ ∈ Ki+1.

It means that there are some small simplices in Ki+1 which create simplices in Ti. We will use

these small simplices to find the corresponding cycles in Ki+1. More precisely, we will construct

an auxiliary simplicial complex Ki+1 ⊆ Ki+1, Ki−1 ⊆ Ki+1, such that Ki+1 ≃ Ti are homotopy

equivalent, Ki+1 ≃ Ti. A reader not familiar with the concept of homotopy equivalence can consult

[15] for the definition. However, we do not use the definition. Rather, we rely on the fact that

homotopy equivalence induces an isomorphism between homology groups (see e.g. [15] for details).

As a result, this homotopy equivalence allows us to define the necessary top-bottom map.

We will now start the process of constructing Ki. This simplicial complex will need to possess

certain nice geometric properties, which we will describe using three main lemmas. All three have

a similar setup. We begin with a simplex σ ∈ Ti. In the first lemma, we show that if a simplex

σ with the same vertices exists in Ki+1, then for each simplex σ that creates σ there exists a big

simplex with vertices from both σ and σ in Ki+1. In the second lemma, we show that if a simplex

σ with the same vertices does not exist in Ki+1, then all simplices σi that create σ form one big
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simplex in Ki+1. The third lemma is a sort of union of the first two. We show that if a simplex σ

with the same vertices does not exist in Ki+1 but there is a face σ̂ of σ which exist in Ki+1, then

all simplices σi which create σ together with simplex σ̂ form one big simplex in Ki+1. We will also

employ several other lemmas, which are auxiliary lemmas to prove the main ones.

Lemma 3.1 (Main lemma 1 ). Consider a simplex σ ∈ Ti such that σ ∈ Ki+1. Consider any

simplex σ ∈ Ki−1 which creates σ. Let A be the union of vertices of σ and σ. Then A spans a

simplex α ∈ Ki+1.

Proof. By definition, a simplex α exists in Ki+1 if all of its vertices lie inside the ball of radius 2i+1.

So we want to prove that there exists point O, such that A ⊂ B2i+1(O). Let Oσ be the center of the

ball with the minimal radius rσ containing simplex σ. Because σ ∈ Ki+1 then rσ < 2i+1. Let Oσ

be the center of the ball with the minimal radius rσ containing simplex σ. Because σ ∈ Ki−1, we

have rσ < 2i−1.

Let’s place new point Ô at the point Oσ and start moving Ô towards the point Oσ until the

distance between Ô and some point C ∈ σ is equal to 2i+1 (Figure 3.1). If we never hit the distance

2i+1, then d(Oσ, C) < 2i+1 for any point C ∈ σ and d(Oσ, C) < 2i−1 for any point C ∈ σ, so

A ⊂ B2i+1(Oσ). So, assume we hit the distance d(Ô, C) = 2i+1. Note that in this case, ∠CÔOσ is

obtuse. Because σ creates σ, there is C ∈ σ such that C is a descendent of C. Hence the distance

d(C,C) < 2i+1, so d(C,Oσ) ≤ d(C,C) + d(C,Oσ) < 2i+1 + 2i−1. Now we can use the cosine

theorem for triangle CÔOσ: d
2(C,Oσ) = d2(C, Ô) + d2(Ô, Oσ) − 2d(C, Ô)d(Ô, Oσ) cos(∠CÔOσ)

> d2(C, Ô) + d2(Ô, Oσ) = d2(Ô, Oσ) + 22i+2, so d2(Ô, Oσ) < d2(C,Oσ)− 22i+2 < (2i+1 + 2i−1)2 −

22i+2 = 22i+1 + 22i−2 = 9 · 22i−2, so d(Ô, Oσ) < 3 · 2i−1. Then for any vertex D ∈ σ d(Ô,D) ≤

d(Ô, Oσ) + d(Oσ, D) < 3 · 2i−1 + 2i−1 = 2i+1. It means that σ ∈ B2i+1(Ô). Also, by construction

σ ∈ B2i+1(Ô). The above facts imply the existence of a point O such that both σ ∈ B2i+1(O) and

σ ∈ B2i+1(O), so α exists in Ki+1.

□

Lemma 3.2. Consider a finite set of points S. Let OS be the center of the ball BS of minimal

radius containing S. Let γ be any hyperplane passing through OS . This hyperplane divides the

boundary of the ball into two hemispheres. For any of these hemispheres, there exists a point C ∈ S

that lies on this hemisphere.

Proof. We will use the proof by contradiction. Suppose all points on the boundary of BS lie on
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Figure 3.1: Supplementary figure for Lemma 3.1. The point Ô can be chosen as O, i.e., A ⊂ B2i+1(Ô)

one side of the hyperplane (Figure 3.2 (a)). Then we can move BS perpendicularly to γ so none of

the points from S will be on the boundary (Figure 3.2 (b)). But this implies that we can decrease

the radius of the ball containing S, which contradicts the fact that BS is the ball of minimal radius

containing S.

□

Lemma 3.3 (Main lemma 2 ). Consider a simplex σ ∈ Ti such that σ /∈ Ki+1. Consider the

family of all simplices σj ∈ Ki−1 which create σ. Let A be the union of vertices of
⋃

j σj . Then A

spans a simplex α ∈ Ki+1.

Proof. Similar to Lemma 3.1, we want to prove that there exists point O such that A ⊂ B2i+1(O).

Let Oσ be the center of the ball Bσ with the minimal radius rσ containing simplex σ. Since

σ /∈ Ki+1 then rσ > 2i+1. Consider any simplex σ ∈
⋃

j σj . Let Oσ be the center of the ball

with the minimal radius rσ containing simplex σ. Because σ ∈ Ki−1 we have rσ < 2i−1. Consider

a hyperplane γ that passes through Oσ and is perpendicular to the line OσOσ. This hyperplane

will divide the boundary of the ball Bσ into two hemispheres. By Lemma 3.2, there exists at
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Figure 3.2: If all the points lie on the one side of the hyperplane (a), then we can move the ball
(b), and decrease the radius

least one vertex C from σ that lies on the hemisphere and that lies on the opposite side from the

point Oσ (Figure 3.3). Note that in this case, ∠COσOσ ≥ 90◦. Since σ /∈ Ki+1 then d(Oσ, C) >

2i+1. Because σ creates σ, there is C ∈ σ such that C is a descendent of C. Hence the distance

d(C,C) < 2i+1, so d(C,Oσ) ≤ d(C,C)+d(C,Oσ) < 2i+1+2i−1. Now we can use the cosine theorem

for the triangle COσOσ: d
2(C,Oσ) = d2(C,Oσ) + d2(Oσ, Oσ)− 2d(C,Oσ)d(Oσ, Oσ) cos(∠COσOσ)

> d2(C,Oσ) + d2(Oσ, Oσ) > d2(Oσ, Oσ) + 22i+2, so d2(Oσ, Oσ) < d2(C,Oσ) − 22i+2 < (2i+1 +

2i−1)2 − 22i+2 = 22i+1 + 22i−2 = 9 · 22i−2, so d(Oσ, Oσ) < 3 · 2i−1. Then for any vertex D ∈ σ

d(Oσ, D) ≤ d(Oσ, Oσ)+d(Oσ, D) < 3 ·2i−1+2i−1 = 2i+1. It means that σ ∈ B2i+1(Oσ). The above

is true for any σ ∈
⋃

j σj . This implies that A ⊂ B2i+1(Oσ), hence α exists in Ki+1.

□

Lemma 3.4. Let O be a point and S be a set of points such that for any A1, A2 ∈ S we have

d(O,A1) = d(O,A2). Let OS be the center of the ball BS with the minimal radius rS containing S.

Suppose A,B,C ∈ S are such that d(A,OS) = d(B,OS) = rS > d(C,OS). Consider any point Ô on

the segment OOS . Then d(O,A) > d(Ô, A) = d(Ô, B) > d(Ô, C).

Proof. First, let us prove that ∠OOSA = ∠OOSB = 90◦ and ∠OOSC > 90◦. Consider a hyperplane

γ that passes through OS and is perpendicular to OOS . By Lemma 3.2, there is at least one

point on each hemisphere. Suppose A lies on the one side and B on the other (Figure 3.4 (a)).
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Figure 3.3: Supplementary figure for Lemma 3.3. The point Oσ can be chosen as O, i.e., A ⊂
B2i+1(Oσ)

Then ∠OOSA ≤ 90◦ and ∠OOSB ≥ 90◦. Consider triangles OOSA and OOSB: OA = OB,

and OSA = OSB. So, ∆OOSA = ∆OOSB. But then 90◦ ≥ ∠OOSA = ∠OOSB ≥ 90◦, so

∠OOSA = ∠OOSB = 90◦. Note that OO2
S+OSA

2 = OA2. Consider the triangle OOSC. Note that

OSC < rS = OSA. Then OO
2
S+OSA

2 = OA2 = OC2 = OO2
S+OSC

2−2·OOS ·OSC ·cos∠OOSC <

OO2
S +OSA

2 − 2 ·OOS ·OSC · cos∠OOSC, so cos∠OOSC < 0, and hence ∠OOSC > 90◦.

To finish the proof, let d(Ô, OS) = x, then ÔA = ÔB = x2 + r2S and ÔC = x2 + OSC
2 − 2 · x ·

OS · cos∠OOSC (Figure 3.4 (b)). Let f(x) = ÔA− ÔC = r2S −OSC
2+2 ·x ·OS · cos∠OOSC. This

is a linear equation. When Ô = O, then x = OOS and f(x) = 0. When Ô = OS , then x = 0 and

f(x) = OSA − OSC > 0. Hence f(x) > 0 if x ∈ (0, d(O,OS)), so d(Ô, A) > d(Ô, C). Also, clearly

OA2 = OO2
S +OSA

2 > ÔOS +OSA
2 = ÔA, so d(O,A) > d(Ô, A) = d(Ô, B) > d(Ô, C).

□

Lemma 3.5 (Main lemma 3 ). Consider a simplex σ ∈ Ti such that σ /∈ Ki+1 and such that there

exists a face σ̂ ⊂ σ with σ̂ ∈ Ki+1. Consider the family of all simplices σj ∈ Ki−1 which creates σ.

Let A be the union of the vertices of
⋃

j σj together with the vertices of σ̂. Then A spans a simplex
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Figure 3.4: Supplementary figure for Lemma 3.4. The figure (a) is needed to prove that ∠OOSA =
∠OOSA = 90◦. The figure (b) is needed for the rest of the proof

α ∈ Ki+1.

Proof. Similarly to the previous main Lemmas, we want to prove that there exists a point O such

that A ⊂ B2i+1(O). Let Oσ be the center of the ball of minimal radius containing simplex σ. By

Lemma 3.3 we have
⋃

j σj ⊂ B2i+1(Oσ). Moreover, for any σ ∈
⋃

j σj , d(Oσ, Oσ) < 3 · 2i−1, where

Oσ is the center of the ball of minimal radius containing σ. Let S be the set of all points Ĉ ∈ σ̂

such that d(Ĉ, Oσ) = max
D∈σ̂

d(D,Oσ) (it may consist of one point, but clearly, it is nonempty). Let

OS be the center of the ball BS of minimal radius rS containing S. Since S is the set of points

that are vertices of σ̂ ∈ Ki+1, we have rS < 2i+1. Let us take a point Ô = Oσ and start moving

Ô towards the point OS until one of the following three things happens: (I) - for some σ ∈
⋃

j σj ,

d(Ô, Oσ) = 3 · 2i−1, where Oσ is the center of the ball with a minimal radius rσ containing σ; (II) -

there is at least one more vertex E ∈ σ̂, E /∈ S such that d(E, Ô) = max
D∈σ̂

d(D, Ô); (III) - we reached

the point OS .

(I) Notice that ∠OSÔOσ ≥ 90◦. Let γ be a hyperplane that passes through Ô and is per-

pendicular to ÔOσ. Let γ be a hyperplane that passes through OS and is parallel to γ (Fig-

ure 3.5). Since ∠OSÔOσ ≥ 90◦, we have OS and Oσ lying on the opposite sides of γ. By

Lemma 3.2, there is a point C ∈ S that lies on a hemisphere of BS , and that also lies on the

opposite side from Oσ relative to γ. Clearly, C and Oσ lie on the opposite sides γ as well. Hence

∠CÔOσ ≥ 90◦. Suppose d(C, Ô) ≥ 2i+1. Let us use the cosine theorem for the triangle CÔOσ:
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CO2
σ = CÔ2 + ÔO2

σ − 2 · CÔ · ÔOσ · cos∠CÔOσ ≥ (2i+1)2 + (3 · 2i−1)2 = (2i+1 + 2i−1)2. So

COσ ≥ 2i+1 + 2i−1. Because σ creates σ, there is C ∈ σ such that C is descendent of C. So

the distance d(C,C) < 2i+1, so d(C,Oσ) ≤ d(C,C) + d(C,Oσ) < 2i+1 + 2i−1. We reached

a contradiction. Hence d(C, Ô) < 2i+1. But C lies on the boundary of BS . By Lemma 3.4

d(Ô, C) = max
D∈S

d(D,OS) = max
D∈σ̂

d(D,OS) < 2i+1. So σ̂ ⊂ B2i+1(Ô). Also, we still have⋃
j σj ⊂ B2i+1(Ô). So we can pick O = Ô.

(II) In this scenario, we will update our set S by adding a point E to S, after which we update

BS and continue to move Ô towards the new point OS . By Lemma 3.4 we can see that as soon as

any point E ∈ σ̂ becomes a point in S, it will never leave BS . Because the number of vertices in

σ̂ is finite, we will face scenario (II) finitely many times. So eventually, scenario (I) or (III) will

happen.

(III) In this case, we can pick O = OS . Indeed, notice that still for any σ ∈
⋃

j σj , d(OS , Oσ) <

3 · 2i−1 where Oσ is the center of the ball of minimal radius containing σ. So, for any vertex D ∈ σ

d(OS , D) ≤ d(OS , Oσ)+ d(Oσ, D) < 3 · 2i−1 +2i−1 = 2i+1, so σ ∈ B2i+1(OS). Let E be some vertex

of σ̂ such that d(E, Ô) = max
D∈σ̂

d(D,OS). Since scenario (II) did not happen, then E ∈ S. So for

any D ∈ σ̂, d(D,OS) ≤ d(E,OS) ≤ rS < 2i+1. Hence A ⊂ B2i+1(OS).

Figure 3.5: Supplementary figure for Lemma 3.5

□

Now we are ready to construct an auxiliary simplicial complex Ki. Consider any simplex σ ∈
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Ti−1. If σ exists in Ki, consider any simplex σ ∈ Ki−2 that creates σ. By Lemma 3.1, there exists a

simplex inKi spanning the union of vertices of σ and σ. Let’s this simplex Cσ,σ. LetKi,σ =
⋃

σ Cσ,σ.

In other words, this is the union of big simplices where each big simplex has all parents and one set

of descendants as vertices (Figure 3.6).

Figure 3.6: An example of Ki,σ, where we have 3 sets of descendants in Ki−2 that create σ

If, on the other hand, σ does not exist in Ki, consider all simplices σj ∈ Ki−2 that create σ.

By Lemma 3.3, there exists a simplex in Ki spanning the union of vertices of
⋃

j σj . Moreover, by

Lemma 3.5, for any σ̂ ⊂ σ, σ̂ ∈ Ki, there exists a simplex in Ki spanning the union of vertices

of
⋃

j σj
⋃
σ̂. Let’s call this simplex Cσ,σ̂. Let Ki,σ =

⋃
σ̂ Cσ,σ̂. In other words, this is the union

of big simplices where each big simplex has all descendants and some subset of parents as vertices

(Figure 3.7).

Define Ki =
⋃

σ∈Ti−1
Ki,σ. This complex Ki has a couple of important properties. First, note

that Ki−2 ⊂ Ki. Indeed, recall that we have the simplicial map hi−1 : Ki−2 −→ Ti−1, which maps

vertices to their parents. Consider any simplex σ ∈ Ki−2. Then hi−1(σ) = σ for some σ ∈ Ti−1. It

is easy to see that σ ∈ Ki,σ by construction. Second, note that simplicial map qi−1 : Ki −→ Ti−1,

which maps vertices from Ki to the parents at level i − 1, is well defined. In general, we do not

have a simplicial map from Ki to Ti−1 since some simplices do not exist in Ti−1, but in the case of

Ki, it is easy to see that any simplex from Ki,σ is mapped to a face of σ which exists in Ti−1 by

construction. It turns out that this map qi−1 has an essential property.
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Figure 3.7: An example of Ki,σ, σ /∈ Ti−1 where we have two big simplices (blue and orange) built
on one vertex from σ and all four descendants

Lemma 3.6. The simplicial map qi−1 : Ki −→ Ti−1, which maps vertices from Ki to their parents

on level i− 1, is a homotopy equivalence.

Before proving this lemma, we need to introduce a new concept pertaining to simplicial com-

plexes.

Definition 3.1. We call an edge {u, v} of a simplicial complex △ contractible if every simplex

σ ∈ △ satisfying {u}
⋃
σ ∈ △ and {v}

⋃
σ ∈ △ also satisfies {u, v}

⋃
σ ∈ △.

If the edge {u, v} is contractible, the contracted simplicial complex △/{u, v} is constructed as

follows:

- We remove the vertices u and v from the vertex set S of △ and add new vertex w

- A set τ ⊆ V \ {u, v} is a simplex of △/{u, v} if w /∈ τ and τ ∈ △ or w ∈ τ and at least one of

τ \ {w}
⋃
{u}, τ \ {w}

⋃
{v} is a simplex of △.

We are going to simplify notation and may identify the “new” vertex w with one of the old ones, u

or v.

It is a well known fact that edge contraction is a homotopy equivalence (see [12] for details).
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Theorem 3.2. Suppose an edge {u, v} of a simplicial complex △ is contractible. Then the sim-

plicial map f : △ −→ △/{u, v}, which maps u and v into w and identity elsewhere, is a homotopy

equivalence.

The idea behind the proof of Lemma 3.6 is the following. We will show that all edges in Ki

between level i − 1 parents and their descendants are contractible. Moreover, they will stay con-

tractible after each such contraction. Ultimately, after all such contractions, we will get a simplicial

complex on cover tree Ti−1. Since every contraction is a homotopy equivalence, the composition will

also be a homotopy equivalence. We will divide the proof into smaller parts.

Lemma 3.7. Consider any vertex v which is not a parent itself in Ti−1 along with its parent

v ∈ Ti−1. Edges {v, v} are contractible in Ki. Moreover, they remain contractible after a series of

contractions of any edges of the form {v, v} to v.

Proof. Note that the second part of the lemma is not an obvious fact, and in general, it might not

be true. For example in Figure 3.8 we can see that at first both edges {v1, u1} and {v2, u2} are

contractible. However, after the first contraction {v1, u1} to w, the second edge is not contractible

anymore.

Figure 3.8: An example where edge becomes not contractible after other contraction

By definition, the edge {v, v} is contractible if for any simplex γ ∈ Ki
∗
satisfying {v}

⋃
γ ∈ Ki

∗

and {v}
⋃
γ ∈ Ki

∗
also satisfies {v, v}

⋃
γ ∈ Ki

∗
, where Ki

∗
is the simplicial complex Ki after some

edge contractions. Consider vertices of γ: v∗1 , v
∗
2 , ..., v

∗
k. Since the simplex spanning {v∗1 , v∗2 , ..., v∗k, v}

exists in Ki
∗
, then simplex ω spanning {v1, v2, ..., vk, v} exists in Ti−1, where vj is the parent of v∗j .

Consider simplices {v∗1 , v∗2 , ..., v∗k, v} and {v∗1 , v∗2 , ..., v∗k, v} ∈ Ki
∗
. Since they exist in Ki

∗
, there are

two simplices, {ṽ1, ṽ2, ..., ṽk, v} and {v̂1, v̂2, ..., v̂k, v} ∈ Ki, such that v̂j and ṽj are the same as v∗j
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in the case if v∗j is the original vertex of Ki which was not involved in contractions before, or they

are some previous versions of the vertex v∗j before contractions (might be the same vertices though).

Consider two significant cases: (I) - simplex ω does not exist in Ki; (II) - simplex ω exists in Ki.

(I) Claim: both {ṽ1, ṽ2, ..., ṽk, v} and {v̂1, v̂2, ..., v̂k, v} belong to Ki,ω. Consider any of these

simplices, for example, {ṽ1, ṽ2, ..., ṽk, v}. Suppose it belongs to some other Ki,ω̂. Notice that it is

possible only if ω ⊂ ω̂ (all vertices vj and v should be in ω̂). Simplex {ṽ1, ṽ2, ..., ṽk, v} consists

of some parents {ṽj1 , ṽj2 , ..., ṽjl} and some descendants who are not parents {ṽjl+1
, ṽjl+2

, ..., ṽjk , v}.

The simplex on parents {ṽj1 , ṽj2 , ..., ṽjl} also exists in Ki,ω. We only need to show that any of

the descendants above also exist in Ki,ω. Consider any of the above descendants, u ∈ Ki,ω̃. It is

part of the simplex that creates ω̃. A A face of this simplex will also create ω, and obviously, u

will be part of this face since its parent is in ω. Hence u ∈ Ki,ω. As we mentioned above, Ki,ω

consists of big simplices where each big simplex is built on a face of ω ({ṽj1 , ṽj2 , ..., ṽjl}) and all

of the descendants (we showed that each descendant of {ṽjl+1
, ṽjl+2

, ..., ṽjk , v} is in Ki,ω). Hence,

{ṽ1, ṽ2, ..., ṽk, v} ∈ Ki,ω (the same arguments hold for {v̂1, v̂2, ..., v̂k, v}).

Simplex {v̂1, v̂2, ..., v̂k, v} is a part of a big simplex in Ki,ω, and each big simplex contains all the

descendants. v is one of the descendants of Ki,ω. Therefore, {v̂1, v̂2, ..., v̂k, v, v} is a simplex in Ki,ω.

Hence, {v∗1 , v∗2 , ..., v∗k, v, v} = {v, v}
⋃
γ ∈ Ki

∗

(II) Unlike the above scenario, a similar claim might not be valid. Consider a simplex

{ṽ1, ṽ2, ..., ṽk, v}. It belongs to some Ki,ω̂. Here we have two smaller cases: (a) - simplex ω̂ does not

exist in Ki, (b) - simplex ω̂ exists in Ki.

(a): Simplex {ṽ1, ṽ2, ..., ṽk, v} consists of some parents {ṽj1 , ṽj2 , ..., ṽjl} and some descendants

which are not parents {ṽjl+1
, ṽjl+2

, ..., ṽjk , v}. If we add one more parent v, we will get simplex

{ṽj1 , ṽj2 , ..., ṽjl , v} which also belongs to Ki,ω̂ since {ṽj1 , ṽj2 , ..., ṽjl , v} is a face of ω, which exists

in Ki. Since each big simplex in Ki,ω̂ contains all the descendants, there exists a simplex on

{ṽj1 , ṽj2 , ..., ṽjl , v}
⋃
{ṽjl+1

, ṽjl+2
, ..., ṽjk , v} = {ṽ1, ṽ2, ..., ṽk, v, v}. Therefore {v∗1 , v∗2 , ..., v∗k, v, v} =

{v, v}
⋃
γ ∈ Ki

∗

(b): Simplex {ṽ1, ṽ2, ..., ṽk, v} is a part of a big simplex in Ki,ω̂. Each simplex in Ki,ω̂ consists of

some descendants and all the parents. Hence, we can add the vertex v, which is a parent to the above

simplex. Thus, {ṽ1, ṽ2, ..., ṽk, v, v} ∈ Ki,ω̂. Therefore, {v∗1 , v∗2 , ..., v∗k, v, v} = {v, v}
⋃
γ ∈ Ki

∗
. □

Now we can prove Lemma 3.6.
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Proof. Using Lemma 3.7, we know we can contract all the edges connecting descendants and parents.

Also, Theorem 3.2 gives us that the simplicial map that maps vertices into the contracted vertices is

a homotopy equivalence. The last step is to notice that the final complex we get after all contractions

is the complex Ti−1 itself. Indeed, the only vertices we get in the end are parents on level i − 1.

And clearly, each Ki,σ contracts into σ itself. Therefore, map qi−1 : Ki −→ Ti−1 is a homotopy

equivalence. □

Now we have all the necessary ingredients to prove Theorem 3.1. We will consider each diagram

from the theorem in separate lemmas. We will only consider the case when k = 0. The proof remains

is essentially the same for the case when k > 0.

Lemma 3.8. There exist maps αi−1 : Hp(Ki−1) −→ Hp(Ti) and βi−1 : Hp(Ti−1) −→ Hp(Ki) such

that the following diagram commutes:

Hp(Ti−1) Hp(Ti) Hp(Ti+1)

Hp(Ki)

g∗i

βi

g∗i+1

αi+1

Proof. Recall that we already defined the map αi+1 as the map induced by the simplicial map hi+1

described earlier. By Lemma 3.6, the map qi−1 : Ki −→ Ti−1 is a homotopy equivalence. We also

know that Ki ⊂ Ki, so we can define the inclusion map pi : Ki −→ Ki. Now, consider the following

diagram:

Ti−1 Ti Ti+1

Ki

Ki

gi gi+1

qi−1

pi

hi+1
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It is easy to see that the diagram above commutes. Indeed, both qi−1 ◦ gi ◦ gi+1 and pi ◦ hi+1 map

vertices from Ki to their parents on level i + 1. Hence, the following induced diagram between

homology groups commutes as well:

Hp(Ti−1) Hp(Ti) Hp(Ti+1)

Hk(Ki)

Hk(Ki)

g∗i g∗i+1

q∗i−1

p∗i

α∗
i+1

But since qi−1 is a homotopy equivalence, then q∗i−1 is an isomorphism. So the following diagram

commutes as well:

Hp(Ti−1) Hp(Ti) Hp(Ti+1)

Hp(Ki)

Hp(Ki)

g∗i g∗i+1

(q∗i−1)
−1

p∗i

α∗
i+1

Finally, we can define βi = (q∗i−1)
−1 ◦ p∗i □

Lemma 3.9. The same maps αi−1 : Hp(Ki−1) −→ Hp(Ti) and βi−1 : Hp(Ti−1) −→ Hp(Ki) as in

Lemma 3.8 make the following diagram commute:
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Hp(Ti)

Hp(Ki−1) Hp(Ki) Hp(Ki+1)
f∗i

βi+1

f∗i+1

αi

Proof. Similar to the previous lemma, consider the following diagram:

Ti

Ki+1

Ki−1 Ki Ki+1

fi

ri+1

qi

pi+1

fi+1

hi

where the map ri+1 : Ki−1 −→ Ki+1 is the inclusion map, since we know that Ki−1 ⊂ Ki+1. The

diagram above commutes. Indeed, all of the ri+1, pi+1, fi, fi+1 are just inclusion maps. And both

ri+1 ◦ qi and hi map vertices from Ki−1 into their parents on level i. So the induced map between

homology groups commutes as well:

Hp(Ti)

Hp(Ki+1)

Hp(Ki−1) Hp(Ki Hp(Ki+1)
f∗i

r∗i+1

q∗i

p∗i+1

f∗i+1

αi

But again, q∗i is an isomorphism, so the following diagram commutes as well:
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Hp(Ti)

Hp(Ki+1)

Hp(Ki−1) Hp(Ki) Hp(Ki+1)
f∗i

r∗i+1

(q∗i )
−1

p∗i+1

f∗i+1

αi

Finally, recall that βi+1 = (q∗i )
−1 ◦p∗i+1, which finishes the proof of the lemma and the Theorem 3.1.

□
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CHAPTER 4
THEOREM IN CASE OF NPC SPACE

Theorem 3.1 from the previous chapter is proved in the case when our data set is a finite subset of

a Euclidean space. It is interesting to look deeper and see if this theorem holds when the points lie

in other kind of spaces.

Feeling optimistically, we can try to consider the case when the ambient space is an arbitrary

metric space. But, as we will now show, the theorem does not hold in such a case. In particular, we

will build an example for which the statement of Lemma 3.9 does not hold. Consider a circle with

the circumference of 18 and the intrinsic metric d: for any two points x, y, d(x, y) is the length of

the shortest arc between them. Consider a point set as shown in Figure 4.1.

Figure 4.1: Setup of points on a circle for which the statement of the Main theorem does not hold
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Let us construct a cover tree for this set. Cj for j ≥ 4 will consist of only one point A. C3 will

have two points now: A and A. A will be a child of A. Indeed, we can see that d(A,A) = 9, and

23 < 9 < 24. The sets C2 and C1 will be the same as the set C3, and they will have only two points.

Set C0 will have four new points: B1 and B2 as children of A and B1 and B2 as children of A. Set

C−1 will have four more new points: D1 as a child of B1, D2 as a child of B2, D1 as a child of B1,

and D2 as a child of B2. And finally, the set C−2 will be the same as the original point set: E1 is

a child of D1, E2 is a child of D2, E1 is a child of D1, and E2 is a child of D2. Let us look at the

simplicial complex T1 on a set C1. As we showed, it consists of two points. In order to understand if

these points are connected with an edge, we need to look at the simplicial complex K0 (Figure 4.2).

We can observe that E1 and E1 are connected with an edge, but E1 is a descendant of A and E1 is

a descendant of A. This implies that A and A are connected in T1.

Figure 4.2: Simplicial complex K0. The loop is present
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Also, we can see a non-trivial homology class in dimension one present in H1(K0), so the question

is, does this homology class live in K2? In order to check it, we have computed persistent homology

using a C++ library called mayysus 2 [17]. The computation revealed that the homology class of

interest was born at radius 1 (as we observe in Figure 4.2) and died at radius 4.5. When creating

K2, we look at the intersection of balls of radius 22 = 4 < 4.5. Hence, this homology class exists

in H1(K2). We can also describe an intuitive idea behind the existence of this homology class in

H1(K2). If we consider three points A, B, and C on the circle, they will divide the circle into three

arcs as shown in Figure 4.3. The radius of the ball of minimum radius containing these three points

will be min(
a+ b

2
,
b+ c

2
,
a+ c

2
). In order to cover representatives of our nontrivial homology class

with triangles, we need to cover the interior of the corresponding cycles. So, there will be a triangle

that contains the center of the circle. However, for such a triangle, all three a+ b, a+c, and c+b are

greater or equal to half of the circumference. Hence, min(
a+ b

2
,
b+ c

2
,
a+ c

2
) ≥ 4.5. This implies

that our homology class lives in H1(K0) and H1(K2). However, there is no non-trivial homology

classes in H1(T1) since it is just an edge. This is a contradiction to Lemma 3.9.

Figure 4.3: Supplementary figure which is helping to see why the loop is still present in K2

It should be noted that the circle with the intrinsic metric is a space of positive curvature. So,
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the counterexample above tells us that our theorem does not work in general spaces of positive

curvature. It is then reasonable to ask if it holds true in spaces of nonpositive curvature. It turns

out that the situation is much better in the case of spaces of nonpositive curvature. We will show

that the Theorem 3.1 holds in the case of a CAT (0) space, also known as Hadamard space.

Let us start with definitions. We will closely follow [2] and suggest the reader consult this text

for more details. Let (X, d) be a metric space. The geodesic map is an isometric map ρ between

a convex subset I ⊆ R and X, ρ : I −→ X. The map ρ is called a geodesic segment, ray, or

line if I is a closed interval, half-line, or line respectively. A geodesic metric space is a metric

space in which every two points are connected with a geodesic segment. A comparison triangle for a

triple (a, b, c) ∈ X3 is a triple (a, b, c) of points in a Euclidean plane R2, such that d(a, b) = d(a, b),

d(a, c) = d(a, c) and d(b, c) = d(b, c), where d is a usual metric in Euclidean space. A geodesic triple

(a, b, c) is said to satisfy CAT(0) inequality, if for any point p on any geodesic segment (a, c), and

for any point q on any geodesic segment (b, c) the following inequality holds: d(p, q) ≤ d(p, q), where

p is a point on a segment (a, c) and q is a point on a segment (b, c) in a comparison triangle for

(a, b, c), such that d(a, p) = d(a, p) and d(b, q) = d(b, q). If X is a geodesic space such that all of its

triples satisfy CAT (0) inequality, then X is called an Hadamard space.

Let us introduce some useful nomenclature that we will employ a little later in this work. If

A,B,C are points in Hadamard space (X, d), then define angle ∠ABC as the angle ∠ABC of a

comparison triangle for a triple (A,B,C). Also, if ∠ABC < 90◦, then we are going to say, that “by

the cosine theorem” d(A,C)2 < d(A,B)2+ d(B,C)2. Although there is no such thing as the “cosine

theorem” in Hadamard space, we can use the cosine theorem for a comparison triangle for a triple

(A,B,C), which, together with the fact that the length of sides of the comparison triangle is the

same as the length of the sides of the original one, will give us the inequality above. Similarly, we

will use the “cosine theorem” if ∠ABC ≥ 90◦.

In order to prove Theorem 3.1 in the case of an Hadamard space, it suffices to prove the main

geometric lemmas that we used in the proof for a Euclidean space, which are Lemma 3.1, Lemma 3.3

and Lemma 3.5. After proving these lemmas, an argument identical to the one in the case of a

Euclidean space shows that Theorem 3.1 also holds in the case of an Hadamard space.

Let us start by recalling which geometric properties of Euclidean space were essential for us to

prove these lemmas. Multiple arguments in our proofs involved moving one point towards another

along the straight line. Therefore, we need to show that an analogous argument can be made in the
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case of an Hadamard space. Fortunately, we have the following theorem [2]:

Theorem 4.1. Every two points in an Hadamard space are connected by a unique geodesic

Also, we employed heavily the notion of the ball of minimal radius containing some finite set.

As it turns out, such a ball is well defined in an Hadamard space (see [2] for details).

Theorem 4.2. In an Hadamard space, every bounded set has a unique closed ball of minimal radius

containing this set.

We can now consider what changes need to be made to the original proofs to adapt them to the

case of an Hadamard space. Suppose we are moving one point (let us say A) toward another (B)

until the distance to some third point (C) increases to some number a. In a Euclidean space, we

know some facts: if we continue to move this point, then the distance to C will keep increasing, and

∠CAB ≥ 90◦. We need to prove analogous results in an Hadamard space.

Lemma 4.1. Consider a geodesic triangle △(A,B,C) in an Hadamard space (X, d). Let D be any

point on the geodesic segment (B,C). Then d(A,D) < max(d(A,C), d(A,B)).

Proof. Consider a comparison triangle △(A,B,C) for the triangle △(A,B,C). Let D be a point on

the segment BC such that d(D,B) = d(D,B) (Figure 4.4). First, notice that the fact we are trying

to prove is obvious in the case of a Euclidean space. Indeed, ∠ADC+∠ADB = 180◦. Then at least

one of these angles is greater or equal than 90◦. Without loss of generality, assume that ∠ADC >

90◦. Then in the triangle △(A,D,C) the side AC is the largest, so d(A,C) > d(A,D). Hence

d(A,D) < max(d(A,C), d(A,B)). But since every geodesic triangle satisfies CAT (0) inequality, we

have d(A,D) ≤ d(A,D). So, d(A,D) ≤ d(A,D) < max(d(A,C), d(A,B)) = max(d(A,C), d(A,B)).

□

Lemma 4.2. Consider a geodesic line γ in an Hadamard space (X, d) and any point A /∈ γ. For

any l ∈ R, there are at most two points B, C ∈ γ, such that d(A,B) = d(A,C) = l

Proof. Suppose there are three points A, B, C ∈ γ, such that d(A) = d(B) = d(C) = γ. Without loss

of generality, suppose D lies between A and C. By Lemma 4.1 d(A,D) < max(d(A,B), d(A,C)) = l.

Contradiction. □

Lemma 4.3. Consider a geodesic triangle △(A,B,C) in an Hadamard space (X, d), and let

△(A,B,C) be a comparison triangle for the triangle △(A,B,C). Suppose ∠ABC < 90◦. Then
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Figure 4.4: The length of a geodesic AD in an Hadamard space is less than the length of segment
AD in comparison triangle

there exists ϵ1 > 0 such that for any 0 < ϵ2 ≤ ϵ1 and a point D on the geodesic segment BC

satisfying d(B,D) < ϵ2, the distance d(A,B) > d(A,D). In other words, if we are moving a point

D starting from B towards C, then the distance to A, d(A,D), is decreasing.

Proof. Let F be a point on the ray BC such that ∠AFB = 90◦. Then for any point D ∈ FB,

d(D,A) < d(B,A). We can always take such a point D to lie on the segment BC (even though

the point F may lie farther from B than the point C). Let D be a point on a geodesic segment

BC such that d(B,D) = d(B,D). Since every geodesic triangle satisfies CAT (0) inequality, then

d(A,D) ≤ d(A,D) < d(B,A) = d(A,B). Hence, ϵ1 exists and epsilon1 = min(d(B,F ), d(B,C)). □

The following corollary is immediate.

Corollary 4.1. Consider a geodesic triangle △(A,B,C) in an Hadamard space (X, d), and let

△(A,B,C) be a comparison triangle for the triangle △(A,B,C). Suppose there exists ϵ1 > 0 such

that for any 0 < ϵ2 < ϵ1 and a point D on a geodesic segment BC satisfying d(B,D) < ϵ2, the

distance d(A,B) < d(A,D). In other words, if we are moving point D starting from B towards C,

then the distance to A, d(A,D), is increasing. Then ∠ABC ≥ 90◦.

Now we are ready to prove Lemma 3.1 in the case of an Hadamard space. The main idea and

approach of the proof remain the same as in the the original proof.

Lemma 4.4 (Main lemma 1 ). Consider a simplex σ ∈ Ti such that σ ∈ Ki+1. Take any simplex
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σ ∈ Ki−1 that “creates” simplex σ. Let A be the union of vertices of σ and σ. Then A spans a

simplex α ∈ Ki+1.

Proof. The proof is very similar to the original one. We want to prove that there exists a point O such

that A ⊂ B2i+1(O). Let Oσ be the center of the ball with the minimal radius rσ containing simplex

σ. Because σ ∈ Ki+1 then rσ < 2i+1. Let Oσ be the center of the ball with the minimal radius rσ

containing a simplex σ. Because σ ∈ Ki−1 then rσ < 2i−1. Let us place a point Ô at the point Oσ

and start moving Ô towards the point Oσ until the distance between Ô and any point C ∈ σ is equal

to 2i+1 (Figure 4.5). If we never hit the distance 2i+1 then d(Oσ, C) < 2i+1 for any point C ∈ σ and

d(Oσ, C) < 2i−1 for any point C ∈ σ, so A ⊂ B2i+1(Oσ). Suppose we hit the distance d(Ô, C) = 2i+1.

We claim that for any point D on the geodesic ray ÔOσ we have d(Ô, C) < d(D,C). Suppose, by

contradiction, it is not the case. Then, since the ray is infinitely long, there exists a point F ̸= Ô

on a geodesic ray ÔOσ, such that d(F,C) = d(Ô, C) = 2i+1. However, similarly, if we consider the

other ray of the same geodesic line starting from Oσ, there will be a point F on this ray, such that

d(F ,C) = d(Ô, C) = 2i+1, since d(Oσ, C) < 2i+1. But then we have three points on a geodesic line

F , F , and Ô, such that d(C,F ) = d(C,F ) = d(C, Ô) = 2i+1, which contradicts Lemma 4.2. Suppose

d(Ô, Oσ) ≥ 3 · 2i−1. Since for any point D on the geodesic ray ÔOσ we have d(Ô, C) < d(D,C), we

also have ∠CÔOσ ≥ 90◦ by Corollary 4.1. Then by the cosine theorem for the comparison triangle of

the triangle△(C, Ô,Oσ) we get d(C,Oσ)
2 ≥ d(C, Ô)2+d(Ô, Oσ)

2 ≥ (2i+1)2+(3·2i−1)2 = 25·(2i−1)2,

so d(C,Oσ) ≥ 5 ·2i−1. But because σ creates σ, there is C ∈ σ such that C is a descendant of C. So

the distance d(C,C) < 2i+1, hence d(C,Oσ) ≤ d(C,C)+ d(C,Oσ) < 5 · 2i−1. Contradiction. Hence,

d(Ô, Oσ) < 3·2i−1. Then for any vertexG ∈ σ d(Ô,G) ≤ d(Ô, Oσ)+d(Oσ, G) < 3·2i−1+2i−1 = 2i+1.

This means that σ ∈ B2i+1(Ô). Also, by construction, σ ∈ B2i+1(Ô). The above facts imply the

existence of a point O such that both σ ∈ B2i+1(O) and σ ∈ B2i+1(O), so α exists in Ki+1.

□

In the original proof of Lemma 3.3, we used Lemma 3.2 which employs hyperplanes. Unfortu-

nately, such an approach does not extend to Hadamard spaces. However, similar arguments with

some adjustments allow us to prove the result for Hadamard spaces as well.

Lemma 4.5 (Main lemma 2 ). Consider a simplex σ ∈ Ti such that σ /∈ Ki+1. Consider also the

family of all simplices σj ∈ Ki−1 that “create” simplex σ. Let A be the union of vertices of
⋃

j σj .

Then A spans a simplex α ∈ Ki+1.
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Figure 4.5: Supplementary figure for Lemma 4.5. The point Ô can be chosen as O, i.e., A ⊂ B2i+1(Ô)

Proof. Let Oσ be the center of a ball Bσ with the minimal radius rσ containing simplex σ. Since

σ /∈ Ki+1 then rσ > 2i+1. Consider any simplex σ ∈
⋃

j σj . Let Oσ be the center of the ball with

the minimal radius rσ containing simplex σ. Because σ ∈ Ki−1, we have rσ < 2i−1. Similarly

to the original proof, we want to show that d(Oσ, Oσ) < 3 · 2i−1. By contradiction, suppose that

d(Oσ, Oσ) ≥ 3 · 2i−1. Consider any point C ∈ σ which lies on the boundary of Bσ, i.e., d(C,Oσ) =

rσ > 2i+1. Suppose ∠COσOσ ≥ 90◦. Then by the cosine theorem for a comparison triangle of

the triangle △(C,Oσ, Oσ) we have d(C,Oσ)
2 ≥ d(C,Oσ)

2 + d(Oσ, Oσ)
2 ≥ (2i+1)2 + (3 · 2i−1)2 =

25 · (2i−1)2, so d(C,Oσ) ≥ 5 · 2i−1. But, as was already shown, d(C,Oσ) < 5 · 2i−1. This leads to a

contradiction. Then, for any such C, ∠COσOσ < 90◦. But by Lemma 4.3, if we start moving the

point Oσ towards the point Oσ, the distance to the point C decreases. This is true for any point

C on a boundary Bσ. Hence, we can slightly move the point Oσ towards the point Oσ, so that the

distance d(C,Oσ) < rσ for any point C on a boundary of Bσ and still having d(D,Oσ) < rσ for

any point D ∈ σ inside the Bσ. This contradicts the fact that Oσ is the center of a ball Bσ with

the minimal radius rσ containing simplex σ. Therefore, d(Oσ, Oσ) < 3 · 2i−1. Then for any vertex
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D ∈ σ d(Oσ, D) ≤ d(Oσ, Oσ) + d(Oσ, D) < 3 · 2i−1 + 2i−1 = 2i+1. This means that σ ∈ B2i+1(Oσ).

The above is true for any σ ∈
⋃

j σj . This implies that A ⊂ B2i+1(Oσ), hence α exists in Ki+1. □

In Lemma 3.5, hyperplanes and parallel translation of hyperplanes were the keys to the proof.

Unfortunately, as we already discussed, we cannot use hyperplanes in an Hadamard space. While

we were not able to find a workaround for the original proof, we did find a different approach to the

proof. We still need to employ an idea similar to the one in presented in Lemma 3.4, in the sense

that we should be able to move a point in some direction and decrease the distance to a certain set

of points.

Lemma 4.6. Let A, B1, B2, ... , Bn be a set of points in an Hadamard space such that d(A,Bi) =

d(A,Bj) for all i, j. Let O be the center of a ball with the minimal radius r containing points
⋃

j Bj .

Then there exists ϵ1 > 0 such that for any 0 < ϵ2 < ϵ1 and a point C on the geodesic segment AO

satisfying d(A,C) < ϵ2 the distance d(Bj , A) > d(Bj , C) for any j. In other words, if we are moving

the point C starting from A towards O, then the distance to Bj , d(Bj , C) is decreasing.

Proof. Consider any Bi. Suppose ∠BiAO ≥ 90◦. Then BiO is the largest side of the triangle

△(A,Bi, O). But then d(A,Bi) < d(Bi, O). Hence A is closer to Bj than O for all j, so O

cannot be the center of the ball of minimal radius containing points
⋃

j Bj . Contradiction. Hence,

∠BiAO < 90◦ for all i. After that, Lemma 4.3 finishes the proof. □

The new proof is quite technical, but the idea behind it can be roughly described as follows.

Recalling the statement of the lemma, we see that we may prove it if we show that the vertices

of interest belong to an appropriate ball. We will define a function on the ambient space whose

minimizer coincides as the center of such a ball. To will prove the latter claim by contradiction,

assuming that the minimizer is not the center of the sought ball. We will create a finite set of points

with a certain “nice property”, and we will show that the convex hull of this set (i.e. the smallest

convex set containing this set) satisfies this property as well. To prove the latter, we show in a

separate lemma that a convex set of a finite set of points can be constructed in a concrete way.

In a Euclidean space, the convex hull of a finite set of points will be closed, but that might not

be the case in an Hadamard space. Hence, we will show in another lemma that the closure of the

convex hull is convex. Also, we will prove in a separate lemma that the center of the minimal ball

containing the original set is contained in this closed convex hull. Thus, this center will have the
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“nice property” as well. Combined with other properties of the center of the minimal ball, it will

give us the contradiction to the original point being a minimizer.

We will also need to prove that our function actually attains its minimum. In order to do this,

we will introduce the notion of a convex function in an Hadamard space and state some properties

of these functions (see [2] for details).

Definition 4.1. Let X be a geodesic space. A function f : X −→ R is said to be convex if its

restriction to any constant-speed geodesic γ(t) : R −→ X is convex. That is, f ◦ γ is a convex

function, f(γ(tx+ (1− t)y)) ≤ tf(γ(x)) + (1− t)f(γ(y)), 0 ≤ t ≤ 1, x, y ∈ R.

Definition 4.2. Let X be a geodesic space and λ > 0. A function f : X −→ R is λ-convex if for any

unit-speed geodesic γ ∈ X, the function t −→ f(γ(t))− λt2 is convex.

A function that is λ-convex for some λ > 0 is called strongly convex.

Theorem 4.3. A continuous function f : X −→ R is λ-convex if and only if for any x, y ∈ X and z

the midpoint between x and y satisfies

f(z) ≤ f(x) + f(y)

2
− λ

4
d(x, y)2.

Theorem 4.4. For every point p in an Hadamard space, the function d2p(x) = d(p, x)2 is 1-convex.

Theorem 4.5. Let X be a complete space with a strictly intrinsic metric, and let f : X −→ R be a

continuous strongly convex function bounded from below. Then f has a unique minimum point

We now have all the tools we need to prove the lemma about existence of a minimizer for a

function that we will employ later. For convenience, we will slightly abuse notation and write
⋃

j Aj

instead of
⋃

j {Aj} to denote the union of singletons. We shall also omit the (finite) index set for j

when it is not used.

Lemma 4.7. Let S be a convex closed set. Let
⋃

j Bj be a finite set of points. Let g(x) =

maxB∈
⋃

j Bj
d(x,B). There exists a point D ∈ S such that g(D) = infC∈S g(C)

Proof. We will prove that g2(x) is 1-convex in S. According to Theorem 4.3, we want to show that

g(z)2 ≤ g(x)2 + g(y)2

2
− d(x, y)2

4
where x, y ∈ S and z is a midpoint between x and y. Obviously,

since S is convex, then z ∈ S. Note that g(z) = d(z,B) for some B ∈
⋃

j Bj . Also, Notice that
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g(x) ≥ d(x,B) and g(y) ≥ d(y,B). By Theorem 4.4 function d2B is 1-convex. So

g(z)2 = d(z,B)2 ≤ d(x,B)2 + d(y,B)2

2
− d(x, y)2

4
≤ g(x)2 + g(y)2

2
− d(x, y)2

4
,

which proves that g(x)2 is 1-convex. Hence, according to Theorem 4.5, there is point in S, which

minimize function g(x)2. Clearly, the same point minimizes g(x) which finishes the proof. □

Let us now consider the topic of the convex hull of a finite set of points in an Hadamard space.

Lemma 4.8. Let S = {A1, A2, ..., An} be a set of points in an Hadamard space. Let S1, S2, . . . be

a sequence of sets constructed as follows. Take S1 = S. For all pairs of points x, y ∈ Si consider

a geodesic segment connecting these two points and take union of all such geodesic segments to

construct Si+1. Then coS =
⋃

j Sj is the convex hull of set S.

Proof. First, let us prove that coS is a convex set. Consider any two points x, y ∈ S. There exist

i1 and i2, such that x ∈ Si1 and y ∈ Si2 . Without loss of generality, suppose i1 ≥ i2. Hence, both

x, y ∈ Si1 . Then, by construction, the geodesic segment connecting x and y must be in Si1+1. So,

this geodesic segment belongs to coS. Therefore, coS is a convex set.

Now, let us prove that coS is the smallest convex set containing S. Let Ŝ be the convex hull

of S. We will prove that for any j, Sj ⊆ Ŝ. If this is true, then coS =
⋃

j Sj ⊆ Ŝ. But since Ŝ is

a minimal convex set, then coS = Ŝ. Let us prove the above fact by induction. Clearly, S1 ⊆ Ŝ.

Suppose Si ⊆ Ŝ. Then for any two points x, y ∈ Si, the geodesic segment connecting these two

points belong to Ŝ. Hence, Si+1 ⊆ Ŝ. Therefore coS = Ŝ, so coS is the convex hull of S. □

Lemma 4.9. Let (X, d) be an Hadamard space and S ⊂ X. Then coS is a convex set, where coS

is a closure of coS

Proof. We will first prove that a geodesic segment connecting a point on the boundary of coS, i.e. in

the set coS \ coS, with any point from coS belongs to coS. Then we will prove the same statement

for two points on the boundary of coS. Let A be a point on the boundary of coS, and B ∈ coS.

Suppose the geodesic segment γ connecting A and B is not contained in coS. Then there exist D ∈ γ

and ϵ > 0 such that d(D, coS) > ϵ. Since A belongs to the boundary of coS, there exists C ∈ coS

such that d(A,C) < ϵ. Lets consider a comparison triangle △(A,B,C) for the triangle △(A,B,C).

Let D be a point on segment AB, such that d(A,D) = d(A,D). It is easy to see that distance from

D to the segment BC is less then d(A,C) < ϵ. So, there is point E ∈ BC such that d(D,E) < ϵ.
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Let E be a point on the geodesic segment BC such that d(C,E) = d(C,E) (Figure 4.6). Then by

CAT (0) inequality d(D,E) < d(D,E) < ϵ. But E ∈ coS since the geodesic segment connecting B

and C belongs to coS. This contradicts the fact that d(D, coS) > ϵ. Thus, we established that a

geodesic segment connecting a point on the boundary of coS and a point from coS belongs to coS.

Using this fact, the proof for the case when two points lie on the boundary of coS follows the same

argument.

Figure 4.6: Supplementary figure for Lemma 4.9. The figure depicts the case when B ∈ coS. The
picture for the case when B is on the boundary of coS can be obtained by simply moving the point
B to the boundary.

□

Lemma 4.10. Let S = {A1, A2, ..., An} be a set of points in an Hadamard space. Let O be the

center of the ball of minimal radius containing S. Then O ∈ coS, where coS is a closure of coS.

Proof. By contradiction, suppose that O /∈ coS. Let D ∈ coS be such that d(O,D) = d(O, coS) > 0.

Such a point D exists according to Lemma 4.7. Since D is not the center of minimal ball containing

S, then there is A ∈ S, such that d(A,D) > d(A,O). Suppose ∠ODA ≥ 90◦. But then, OA is

a greatest side in △(A,O,D), hence d(O,A) > d(A,D). Contradiction. Therefore, ∠ODA < 90◦.

Consider geodesic segment γ connecting points A and D. By Lemma 4.9, coS is a convex set, so

γ ⊆ coS. Since ∠ODA < 90◦, by Lemma 4.3, if we start moving point D towards A, then its
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distance to point O decreases. So, there exist point E ∈ γ such that d(O,E) < d(O,D) (Figure 4.7).

But this contradicts the fact that d(O,D) = d(O, coS). Hence, O ∈ coS.

Figure 4.7: Supplementary figure for Lemma 4.10 which shows that O ∈ coS

□

Now we have all the necessary ingredients to start proving Lemma 3.5 in the case of an Hadamard

space.

Lemma 4.11 (Main lemma 3 ). Consider a simplex σ ∈ Ti such that σ /∈ Ki+1 such that there

exists a face σ̂ ⊂ σ with σ̂ ∈ Ki+1. Consider the family of all simplices σj ∈ Ki−1 that “creates”

simplex σ. Let A be the union of vertices in
⋃

j σj together with vertices of σ̂. Then A spans a

simplex α ∈ Ki+1.

Proof. For each j, let Oj be the center of the ball with the minimal radius rj containing all vertices

of simplex σj . Define a function f : X −→ R as f(x) = maxO∈
⋃

j Oj
d(x,O). Let set SO = {x|f(x) ≤

3 · 2i−1}. Firstly, note that SO is not empty. Indeed, it follows from the proof of Lemma 4.5.

Secondly, note that SO is an intersection of closed balls. Hence SO is a closed convex set.
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Let
⋃

j Ĉj be the union of all vertices of simplex σ̂. Define a function g : X −→ R as g(x) =

max
Ĉ∈

⋃
j Ĉj

d(x, Ĉ). By Lemma 4.7, there exists a point D ∈ SO, such that g(D) = minC∈SO
g(C).

If g(D) ≤ 2i+1, then the ball of radius 2i+1 with center at D contains all vertices from simplex σ̂,

and contains all vertices from simplex σj for any j, since the distance to Oj is less or equal to 3 ·2i−1

and rj ≤ 2i−1. So α exists in Ki+1.

Suppose g(D) > 2i+1. First, let’s prove that D lies on the boundary of SO, i.e. there exists Oj ,

such that d(D,Oj) = 3 · 2i−1, or f(D) = 3 · 2i−1. Suppose f(d) < 3 · 2i−1 − ϵ1 for some ϵ1 > 0. Let

PĈ ⊂
⋃

j Ĉj be a set of points such that g(D) = d(D, Ĉ) for any Ĉ ∈ PĈ . Let Ô be the center of

the ball of minimal radius containing PĈ . Then, by Lemma 4.6, if we start moving point D towards

Ô, the distance to all points from PĈ will be decreasing. For all points Ĉ ∈
⋃

j Ĉj , Ĉ /∈ PĈ we

have d(D, Ĉ) > g(D). So we can choose ϵ2 > 0 such that d(D, Ĉ) − ϵ2 > g(D) for all such Ĉ.

Then we can move point D towards point Ô by a small enough ϵ to D′ (which satisfies conditions

of Lemma 4.6 above and is less than ϵ1 and ϵ2), so the distance to all points from PĈ decreases,

the distance to all other points from
⋃

j Ĉj still less than g(D), and still f(D′) < 3 · 2i−1. This

means that g(D′) < g(D) and D′ ∈ SO, which contradicts the fact that g(D) = minC∈SO
g(C). So

f(D) = 3 · 2i−1.

Let PO ⊆
⋃

j Oj be a set of points such that d(D,O) = 3 · 2i−1 for all O ∈ PO. Consider any

O ∈ PO and any Ĉ ∈ PĈ . If ∠ĈDO ≥ 90◦, then by the cosine theorem for comparison triangle of

△(Ĉ,D,O) we have d(Ĉ, O) ≥ 5 · 2i−1. But this is impossible, since there is a child of Ĉ, C, such

that d(O,C) ≤ 2i−1 and d(Ĉ, C) < 2i+1. Then d(Ĉ, O) ≤ d(Ĉ, C)+d(C,O) < 2i−1+2i+1 = 5 ·2i−1.

Hence, ∠ĈDO < 90◦ for all O ∈ PO and Ĉ ∈ PĈ .

Consider again any O ∈ PO and any Ĉ ∈ PĈ . By Lemma 4.3 there exist ϵĈ,O such that for

any B on geodesic segment D, Ĉ and d(B,D) < ϵĈ,O, d(B,O) < d(D,O). We can choose ϵĈ

small enough such that ϵĈ < minO∈PO
ϵĈ,O and if B is a point on the geodesic segment D, Ĉ

satisfying d(D,B) = ϵĈ , then still d(B, Õ) < 3 · 2i−1, where Õ is any point from
⋃

j Oj \ PO. Then

f(B) < 3 · 2i−1. Let ϵ = minĈ∈PĈ
ϵĈ . For any Ĉj ∈ PĈ take the point Ĉj,ϵ on the geodesic segment

ĈjD such that d(D, Ĉj,ϵ) = ϵ (Figure 4.8. Note that f(Ĉj,ϵ) < 3 · 2i−1.

Now, lets construct the convex hull S of
⋃

j Ĉj,ϵ as we did in Lemma 4.8. It is important to

note that at any step of constructing this convex hull, any point B that we add has the following

property: f(B) < 3 · 2i−1. It follows from Lemma 4.1 and the fact that for all original points Ĉj,ϵ,

f(Ĉj,ϵ) < 3 · 2i−1. By Lemma 4.10, the center Ôϵ of the ball with the minimal radius rϵ containing
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⋃
Ĉj,ϵ belongs to S. Hence f(Ôϵ) < 3 · 2i−1, so Ôϵ ∈ SO.

The last step is to check that g(Ôϵ) < g(D). Recall that g(x) = max
Ĉ∈

⋃
j Ĉj

d(x, Ĉ). First,

consider any Ĉj ∈ PĈ . Since f(D) = 3 · 2i−1 > f(Ôϵ), points D and Ôϵ are different. Since

d(D, Ĉj,ϵ) = ϵ, we have rϵ < ϵ. Then by triangle inequality d(Ôϵ, Ĉj) ≤ d(Ôϵ, Ĉj,ϵ) + d(Ĉj,ϵ, Ĉj) =

rϵ + d(Ĉj , D) − ϵ < d(D, Ĉj) = g(D). Now consider any Ĉj /∈ PĈ . Clearly, d(D, Ĉj) < g(D).

The claim is that we still can choose our ϵ small enough so d(Ôϵ, Ĉj) < g(D). Indeed, by triangle

inequality d(Ôϵ, Ĉj) ≤ d(Ôϵ, D)+d(D, Ĉj) ≤ rϵ+ϵ+d(D, Ĉj) < d(D, Ĉj)+2ϵ. Clearly, we can choose

ϵ small enough, such that d(D, Ĉj) + 2ϵ < g(D). Hence, d(Ôϵ, Ĉj) < g(D) for all Ĉj /∈ PĈ and for

all Ĉj ∈ PĈ . Consequently, g(Ôϵ) < g(D). But this contradicts the fact that g(D) = minC∈SO
g(C)

since g(Ôϵ) < g(D) and Ôϵ ∈ SO. Therefore, g(D) cannot be greater than 2i+1, which finishes the

proof.

Figure 4.8: Supplementary figure for Lemma 4.11. The general idea is to show that Ôϵ can be picked
instead of D

□
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CHAPTER 5
COMPUTATION AND ALGORITHM

Our theoretical result establishes an interleaving between persistence modules obtained via cover

tree refinements and the ones obtained using the usual Čech construction. However, the simplicial

complexes constructed from the cover refinements are also Čech-like and not Rips-like, in a sense

that our condition for inclusion in the complex is checked for the whole simplex, not just its edges.

Consequently, as is true for the usual Čech complexes, the required computations may be too costly.

Note however that our cover tree based approach also allows for some sort of a Vietoris-Rips con-

struction: instead of adding a simplex to the simplicial complex Ti at level i of the cover tree when

there is a simplex on its descendants in Ki−1, we can add a simplex to Ti as soon as all of its

edges showed up. It is easy to see that there still going to be well a defined simplicial map that

maps children to their parents gi : T̂i−1 −→ T̂i, where T̂i is a simplicial complex on a cover tree

which is built using the Vietoris-Rips construction. And, as we said in Chapter 2.1.1, construction

of simplicial complexes using the Vietoris-Rips construction instead of the Čech one is significantly

computationally cheaper. But our theoretical result holds only for Čech construction. Hence, it

would be nice to have some sort of a connection between Čech and Vietoris-Rips constructions. We

already know that Čech(r) ⊂ Vietoris-Rips(r). It turns out there is also an inclusion in the opposite

direction (see e.g. [11]).

Lemma 5.1 (Vietoris-Rips Lemma).

Let S be a finite set of points in a Euclidean space and let r ≥ 0. Then we have Vietoris-Rips(r) ⊆

Čech(
√
2r).

For the case of Hadamard spaces, and any other metric space, we can use a little bit more rough

estimate: Vietoris-Rips(r) ⊆ Čech(2r). The proof is straightforward, since if we know that the

distance between any pair of the points is less than or equal to 2r, then all of these points lie inside

a closed ball of radius 2r.

Thus, we can construct the following commutative diagram:
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... Hp(Ki−1) Hp(Ki) Hp(Ki+1) ...

... Hp(K̂i−1) Hp(K̂i) Hp(K̂i+1) ...

Here, Ki = Čech(2i), K̂i = Vietoris-Rips(2i), and maps between homology groups are induced

by simplicial inclusion maps. If DK is a persistence diagram (at the logarithmic scale) of the

persistent module obtained using the Čech construction and D̂K is a diagram (at the logarithmic

scale) obtained suing the Vietoris-Rips construction, then W∞(DK , D̂K) ≤ 1. This follows from the

result in [3] regarding strongly interleaved persistence modules

Exactly the same thing happens when using the cover tree approach. It is easy to check that

since Čech(2i) ⊆ Vietoris-Rips(2i), then Ti ⊆ T̂i. Similarly, since Vietoris-Rips(2i) ⊆ Čech(2i+1),

then T̂i ⊆ Ti+1. We also have the following commutative diagram:

... Hp(Ti−1) Hp(Ti) Hp(Ti+1) ...

... Hp(T̂i−1) Hp(T̂i) Hp(T̂i+1) ...

Consequently, the distance between persistence diagrams (at the logarithmic scale) ob-

tained using the two construction is also bounded by 1. Together with Theorem 3.1, we get

W∞(D̂T , D̂K) ≤W∞(D̂T , DT ) +W∞(DT , DK) +W∞(DK , D̂K) ≤ 5.

The above discussion suggests that in practice we can use the Vietoris-Rips construction, which

significantly simplifies calculations.

There is another important computational aspect of the construction of simplicial complex T̂i

that we need to mention. In order to build this simplicial complex, we need to figure out which

edges should be added to this complex. Our criterion tells us that we add an edge at level i between

two points u, v ∈ Ci if and only if there are two descendants u, v of u, v respectively such that

d(u, v) ≤ 2i−1. Let Su be the set of all descendants of u and Sv be the set of all descendants of

v. We want to understand if the distance between these two sets is greater than 2i−1. In order to

determine this, we can modify the algorithm for finding nearest neighbors from [1].
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Algorithm 1 Distance between sets (cover tree T , level i, point u, point v)

1. Set Qu,i = u, Qv,i = v.

2. for j from i down do −∞:

(a) Set Qu = {Children(q) : q ∈ Qu,j}, Qv = {Children(q) : q ∈ Qv,j}.
(b) Form set Qu,j−1 = {q ∈ Qu : ∃p ∈ Qv, d(p, q) ≤ d(Qu, Qv) + 2j}, Qv,j−1 = {q ∈ Qv :

∃p ∈ Qu, d(p, q) ≤ d(Qu, Qv) + 2j}.

3. return argmin(p,q)∈(Qu,−∞,Qv,−∞)d(p, q).

Unfortunately, analysis of the running time of the algorithm above is highly nontrivial. The issue

is that the existing analysis of the algorithm for finding nearest neighbors using the cover tree does

not extend to the case of finding the closest pair of points. Our intuition suggests that the running

time of the algorithm above is likely to be dominated (at least in most cases) by the running time

of computing persistent homology (or cohomology). Therefore, we are confident that in practice the

speed-up when computing persistent homology using the cover tree approach will be very significant.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to leverage an existing efficient data structure called a cover

tree to construct a family of simplicial complexes connected by simplicial maps representing cover

refinements of the unknown topological space underlying a given data set. This family may provide

a substantial speed-up when computing persistent homology and cohomology, and can be viewed, in

a sense, as augmenting the choice of landmarks for the vertex set at each level. We also show that

our nontrivial procedure for deciding which simplices should be included in the simplicial complexes

allowed us to prove the interleaving between the persistence modules obtained using our novel

methodology and the usual Čech complexes constructed over the full data set. When combined with

the interleaving between Čech and Vietoris-Rips constructions, our result yields a well-quantified

level of the coarseness of our approach. When such a coarse persistent (co)homology estimate is

appropriate, which may be the case in many practical applications with large data sets, our cover

tree approach can significantly reduce the computational cost.

The novel cover tree approach to computing persistent (co)homology presents several directions

for future work. Firstly, we believe that the result also holds for the cover tree base slightly less

than 2. However, the proof will likely have to follow a completely different route, since none of our

main geometrical lemmas will be true in this case.

Secondly, even though we understand that the computational cost of our cover tree approach is

dominated by the computational cost incurred due to computing persistent homology or cohomology,

it is still important to conduct a detailed analysis of its computational complexity.

Another direction of research that is important (and interesting) to pursue is trying to understand

whether our results can be extended (in some way) to general spaces of non-positive curvature,

where one can employ comparison triangles only locally, unlike in the Hadamard space, where one

can appeal to this property globally.

We should also mention that persistent (co)homology computations can be done not only for

the whole data set but also locally, thus capturing important local structures. It might be useful to

investigate if our cover tree approach can be modified to allow for computations of local (co)homology.
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