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ABSTRACT

In this thesis, finite element method (FEM) with Lanczos algorithm under uniform-grid

and multi-grid meshes, denoted as FEML-U and FEML-M algorithms respectively, are

introduced to solve the photon diffusion equation. In FEML-U and FEML-M

algorithms, an n-dimensional state-space system is established by FEM, and the output

of this system is approximated by that of an m-dimensional reduced system, which is

generated by Lanczos algorithm. The implementations of FEML-U and FEML-M

algorithms simulate the output at detectors of two given organ-size phantoms, and the

corresponding simulators are validated. It is shown that the space and time complexities

of FEML-U and FEML-M simulators are about O(n) and O(m*n) respectively.

Compared to the uniform-grid alternating direction implicit algorithm (ADI-U), it is

demonstrated that FEML-U simulations to the given organ-size phantoms are more than

50 times faster. Furthermore, without essentially losing accuracy, FEML-M simulations

use at most 30% of space and 75% of time ofFEML-U simulations.
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CHAPTERl

INTRODUCTION

1.1 Photon Diffusion Problem

Optical mammography research derives its impetus from a desire to detect cancerous

lesions of human breast tissue at an early stage using non-invasive and non-ionizing

near-infrared (NIR) light [Alfano 1998]. It has created a need to understand the diffusion

oflight in turbid (i.e., highly scattering) media such as biological tissue. Mathematically,

the photon diffusion can be described by the diffusion equation as follows.

(1.1) O¢(X, y,z, t) =dil:(D(x,y,z)V¢) -Cl1a(x,y,z)¢(x,y,z,t) +q(x,y,z,t), V(x,y,z) E Q,
at

where Q is the domain of the medium, ¢(x,y,z,t) is the light density at position (x, y,

z) at time t, V¢ =(O¢, O¢, O¢JT, c is the speed of light in the medium, l1a(X,y,z) is
Ox By oz

the absorption coefficient and q(x,y,z,t) is the light density ofthe source. Furthermore,

the optical diffusion coefficient D(x,y,z) is given by

C C
D(x,y,z) = ,::::;"

3(l1a(X,y,z) + I1s(x,y,z» 3I1s(X,y,z)

with assumption of scattering coefficient 11~(x,y,z»> l1a(X,y,z). This means that the

medium is scattering-dominated. The output flux O(x,y,z,t) of a detector attached on the

boundary of Q is computed by Fick's law as follows:



(1.2) D( ) =- D a¢(x,y,z,t)1x,y,z,t ,
an an

The medium is called homogeneous if Jla(X'y,z) is constant everywhere; otherwise it

is called heterogeneous. Four conditions described below guarantee that the diffusion

equation (1.1) represents a good approximation of light propagation [Model et al. 1995].

(i)Jl~(x,y,z»> Jla(x,y,z)

(ii) The detectors are located at a suitable distance from the source position.

(iii) The dimension of the object must be sufficiently large so that scatter-

dominated propagation may be assumed.

(iv) The photon source may be assumed to be isotropic, and the source is

theoretically moved from the boundary to a distance of 1/ Jl~ inside the

object as usually proposed.

There are two types of photon propagation problems: forward and inverse problems

[Model et al. 1995].

• Forward Problem

For a given source term q(x, y, Z, t), an initial light distribution ¢(x,y,z,O) , known

optical parameters c, Jla(x,y,z) and Jl.;(x,y,z) , determine the outputs at detectors on

the phantom surface, where °s t sT.

• Inverse Problem

For a given source term q(x, y, Z, t), an initial light distribution ¢(x,y,z,O) and known

optical parameter c, and outputs at given detectors, determine the optical parameters

Jla(X,y,z) and/or Jl~(x,y,z) at each position of the phantom, where Os t sT.
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In this thesis, only the forward problem is discussed. Numerical forward algorithms of

diffusion equation (1.1) are proposed to simulate the output at given detectors and the

corresponding simulators are developed. This research is supported by the "Computer

Modeling in Photonics (CMP) Project" of Laboratory of Intelligent and Parallel System

(LIPS), University of Hawaii.

1.2 Organ-Size Rectangular and Hemispheric Phantoms

In the CMP Project, a time-resolved system (TRS) is set up, where an optical fiber

light source is put on the phantom surface to emit a laser pulse, and detectors are placed

at some locations on the phantom surface to collect photons. Two organ-size phantoms,

called as rectangular and hemispheric phantoms, are provided for the TRS experiments.

The two phantoms are illustrated in Figures 1.1 and 1.2 respectively. Here "organ-size"

means the phantom size is close to some human organs, e.g., the size of a woman's

breast. The size of the given rectangular phantom is 180 x 136 x 70mm 3
, while the radius

of the hemispheric phantom is 64 mm. Both of them are made of homogeneous epoxy

media with given background absorption coefficient f.1a and scattering coefficient f.1~.

The dominant scattering coefficients are constant anywhere inside the phantom, i.e.,

f.1~(x,y,Z) == f.1~ or D(x,y,z) == D.

A few holes are built inside the two given phantoms, the medium outside the holes are

homogeneous, thus the homogeneity of the rectangular and hemispheric phantoms is

determined by the absorption coefficient of media filled inside the holes. Black fabric

covers the phantoms so that all of the photons are absorbed when reaching the boundary

3



in modeling. Therefore, the boundary condition of equation (1.1) is considered to be

zero in simulations.

y

• dl

... cl2

sl @ ... d4

s2 @ ... d5

s3 '*' • cl6

s4 ... d7
Z • d8s5 @

s7 '0

s8 '0

x

•

Source

Detector

Figure 1.1: 3-D front view of rectangular phantom

Figure 1.2: 3-D front view of hemispheric
phantom

Figure 1.3: Top view ofhelmet

The given rectangular phantom fits tightly within a rectangular box, where 16 sockets

are built on the front and rear surfaces of the box respectively, as shown in Figure 1.1.

The center coordinates of the front and rear sockets are listed in Appendix C, showing

that the front and rear sockets are opposite to each other (called source and detector
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sockets respectively), and source (detector) sockets are lined evenly. In TRS

experiments for the rectangular phantom, an optical fiber light source is inserted into one

of the eight front source sockets, while some detectors, inserted into the rear detector

sockets to receive the output photons. The detector surface of the TRS system is

designed as a 3mm-diameter circular plane.

On the other hand, the given hemispheric phantom is put on a flat table, and a helmet

is built to cover it as shown in Figure 1.3. The flat table can be fully rotated around the

symmetric z-axis of the hemisphere. On the surface of the helmet, 46 sockets are built,

and the center coordinates of the sockets are also given in Appendix C. In TRS

experiments, an optical fiber light source can be inserted into anyone of the 46 sockets,

while at most eight detectors can be inserted into the reminding 45 sockets. The two

phantoms have the same medium parameters: f-la =O.0057mm- l
, f-l~ =O.86mm- l

,

c =O.19467mm· pS-1 .

1.3 Some Numerical Methods for Solving the Diffusion Equation

The finite element method (FEM) [Lindquist et. al 1998, Su 1998] is a numerical

method for solving the diffusion equation (1.1), while the FEM with Arnoldi model

reduction method under uniform-grid mesh (called FEMA-U algorithm here) for solving

(1.1) is discussed by Su (1998). In the FEMA-U algorithm, a phantom is first meshed by

uniform cubic grids of size h, and a square basis function, corresponding to each cubic

grid is defined such that the basis function is 1 inside the cube and 0 elsewhere. This

kind of uniform-grid mesh is denoted as Uh. FEMA-U algorithm derives an n­

dimensional state-space system with impulse input, denoted as {A, B, C}, under the

5



defined basis functions by FEM. The non-zero elements of matrix A are determined by

parameters D,Jia,Ji:, while the non-zero elements of B and C indicate the source and

detector locations respectively.

The Arnoldi model reduction method projects system {A, B, C} to an m-dimensional

state-space system {A,B,C} with impulse input and m«n, by Krylov subspace theory,

in which an orthogonormal matrix V E R nxm is generated such that the eigenvalues of A

are m largest eigenvalues of A, and A = V TAV, B = VTB, C = CV [Su 1998]. Here

{A,B,C} is called the reduced system. The output of the reduced system {A,B,C} is

proved to be a good approximation to that of system {A, B, C} if m is large enough

[Saad 1992].

Finally, the discrete-time output of system {A,B,C}, CeA(kTlB,k = 1,2,.··, is solved

by a discrete-time iteration scheme involving the computation of eAT by Pade

approximation, where T is time step size [Grace, et al. 1990, Sadje 1998, Golub & Von

Loan 1989].

In the CMP Project, high-resolution simulations with grid size Imm or sub-mm are

expected so that more accurate simulation results can be obtained. Note that the space

cost of matrix V is 8*n*m bytes, assuming double-precision variables are used. Thus,

under mesh U i to the given rectangular phantom with n=180*136*70=1,713,600, more

than 3.7G byte memory are allocated to matrix V, when m=270 is selected. Such an

enormous memory requirement of the FEMA-U simulation is unaffordable to a general

computer, let alone for the simulations under uniform-grid mesh of sub-mm grid sizes,

h<lmm. Thus, the big drawback of the FEMA-U algorithm is its large space cost.

6



The alternative direction implicit (ADI algorithm) is another numerical method for

solving the same diffusion equation (1.1) based on finite difference [Ge & Yun 1999,

Model et al. 1995]. It solves the diffusion equation in three dimensions with three

separate steps. Each step uses one-third of the time step size. A tri-diagonal linear

equation is derived in a one-dimensional "strip" with neighbor grids. The "strip"

solutions for each grid in three directions are saved in each time step and used for the

next step. The ADI algorithm at time step size t is described in the following three

equations [Ge & Yun 1999].

t+~ C t+~ t+~ t+~ t+~

<PXy: -<P~yz = h~ [(<Px+f,yz +<Px-(YZ -2<Pxyn+(<p~y+I,z +<P~y-I,z +<P~yz+I +<P~YZ-I)]-Cz,ua(<P~yz + <pxyn,

I+~ I+~ C I+~ I+~ I+~ I+~ I+~ I+~ I+~ I+~ I+~

<Pxy; -<Pxy; =h~ [(<px+f,yZ +<Px-f,yz -2<Pxyn+(<pxy]l,z +<Pxy!l,z + <Pxy;+1 +<PXY;-I)]-Cz,ua(<Pxy; +<Pxy;),

z z z Z 2 Z
1+1 1+"3 _ CI 1+1 1+1 1+1 1+"3 1+"3 1+"3 1+"3 1+"3 1+1

<Pxyz -<Pxyz -J;2[(<PX+l,yZ +<Px-I,yz -2<PxyJ+(<Pxy+l,z + <Pxy-I,z + <Pxyz+1 +<Pxyz-l)]-Cz,ua(<Pxyz +<Pxyz),

where Cl'CZ are parameters defined as the functions of D,r,,u~ and <p~YZ =<p(x,y,z,t).

It is experienced that the CPU time of simulation of the ADI algorithm under the

uniform-grid mesh U1 for the same organ-size rectangular phantom is more than 20

hours on our Dell Precision Workstation 610 (Pentium II Xeon processor with 2,048Mb

physical memory). This means that the time of ADI-U simulations will be very long for

the sub-mm simulations since the time complexity of the ADI algorithm under uniform-

mesh Uh (ADI-U algorithm) is in the order of O(n) [Ge & Yun 1999]. Therefore, the big

drawback ofthe ADI-U algorithm is the very long execution time.

7



1.4 Thesis Motivation

It is common knowledge that the finer the mesh is, the more accurate is the simulation

result. The motivation of this thesis is to develop numerical algorithms of diffusion

equation (1.1) such that high-resolution (i.e., grid size h:::;; lmm ) simulations for the two

given organ-size phantoms can be achieved with reasonable space and time. As a result,

the FEM with Lanczos algorithm under uniform-grid mesh (FEML-U algorithm) and

multi-grid mesh (FEML-M algorithm) are proposed.

The state-space system {A, B, C} is called symmetric if matrix A is symmetric;

otherwise it is called asymmetric. Corresponding to the square basis functions, it is

addressed by Su (1998) that the derived system {A, B, C} is symmetric under a uniform-

grid mesh. However it will be shown later that system {A, B, C} is asymmetric under a

multi-grid mesh. Lanczos algorithm can be used to project a symmetric system {A, B,

C} to the same state-space system {A,B,C} generated by the Arnoldi method, using the

same orthogonormal projection matrix V [Sidje 1998, Golub & Von Loan 1989], but in

the Lanczos algorithm, the matrix V is not fully stored for computing A,B,C . Instead,

A,B,C can be calculated by using only two n-dimensional vectors. Thus the Lanczos

algorithm uses much less space than the Arnoldi method. Finally, the reduced system is

solved by the same discrete-time iteration scheme of the FEMA-U algorithm.

In the FEML-M algorithm, the multi-grid mesh is designed so that the finest size-h

grids mesh the region of interest, while coarser grids mesh the remaining regions of the

phantom. In the FEML-M algorithm, an asymmetric system {A, B, C} under a multi-

grid mesh, is first transformed to an n-dimensional symmetric state-space system

8



~ ~ ~

{A,B,C} with impulse input by a similarity transformation, such that the symmetric

system (J,ii,C} can be projected to a reduced system by the Lanczos algorithm.

Finally, the derived reduced system, still denoted as {A, B, C} , is solved by the discrete-

time iteration scheme.

The FEML-U and FEML-M algorithms are implemented for the organ-SIze

rectangular and hemispheric phantoms described above, resulting to four simulators,

which are denoted as FEML-UR, FEML-UH, FEML-MR and FEML-MH simulators

respectively. For example, FEML-UR is the simulator of FEML-U algorithm for the

rectangular phantom, while FEML-MH is the simulator of FEML-M algorithm for the

hemispheric phantom and so forth.

Denote ADI-UR and ADI-UH simulators as the implementations of ADI algorithm

under a uniform-grid mesh to the rectangular and hemispheric phantoms respectively.

And the ADI-UR simulator, developed by LIPS, has been validated against TRS

experimental data [Ge et. al 2000]. The validation methods of FEML-UR, FEML-UH,

FEML-MR and FEML-MH simulators follow the flow chart in Figure 1.4, where TRS-R

and TRS-H are denoted as the TRS experimental data corresponding to rectangular and

hemispheric phantoms respectively. It shows in Figure 1.4 that the FEML-UR simulator

is validated against the validated ADI-UR simulator, while the FEML-MR simulator is

validated by FEML-UR simulator. As a result, FEML-UR and FEM-MR simulators are

indirectly validated against the TRS-R data.

The validations of FEML-UH and FEML-MH simulators follow the same indirect

methods as FEML-UR and FEML-MR simulators without directly comparing to the

TRS-H experimental data.

9
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Figure 1.4: Flow chart of indirect validation methods to simulators

1.5 Organization of the Thesis

In Chapter 2, the FEML-U algorithm is addressed. In Chapter 3, the validations, space

and time complexities of FEML-UR and FEML-UH simulators are discussed. In

Chapter 4, the FEML-M algorithm is introduced. In Chapter 5, the validations, space

and time complexities ofFEML-MR and FEML-MH simulators are discussed. Finally in

Chapter 6, conclusions are made and some future research directions are pointed out.
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CHAPTER 2

THE FEML-U ALGORITHM

2.1 Finite Element Method (FEM)

Let Q be a domain in R3
, bounded by aQ. For any point (x,y,z) E Q, the

variational form of the diffusion equation (1.1) is derived as follows:

(2.1) i ~~vdQ = i diveD\! ¢)vdQ - i CJla¢vdQ + i qvdQ,

where v stands for an arbitrary test function. Equation (2.1) is spatially discretized by

subdividing Q into a set of cubic regions Q i of sizes hi' i =1"",n. Assume the left-

cube Q i in this thesis and vice versa. By splitting the integral over Q into the sum of

integrals over the elements Q i and by performing integration by parts, we obtain the

weak formulation of Equation (2.1). Especially, for each Qi' define

(jJi =(jJ(x, Y, Z, Xi' Yi' zJ as a basis function associated with Qi' satisfying that (jJi is zero

outside of Qi' Let function v = (jJi,i =1,"',n in (2.1), the following elemental equation

is derived [Su 1998]:

(2.2)

where Jl~ =Jla(xpYi,zJ. Furthermore, in (2.2) the solution ¢(x,y,z,t) and input q(x,

y, z, t) can be approximated by basis functions (jJi as follows:

11



(2.3a)

(2.3b)

n

¢(x,y,z,t) ~ Llf/;lP;,
;=1

q(X,y,z,t) ~ ({J(X,y,z,xi 'Yi ,Zi )u(t) ,
I 1 I

u(t) is assumed as impulse due to the fast pulse input. Consequently, the elemental

equation of (2.2) turns out to be

n n

(2.4) Llfri(t). (({Jj,({JJ =LlfIi(t)[-D· a(({Jj,({Ji) - c,u~ . (({Jj'({Ji)] + (((Jj'({Ji)' u(t) ,
j=1 j=]

which is simplified to the following ordinary-differential equation:

(2.5) EIfr(t) = -(DG + S)lfI(t)+ Fu(t) ,

with

where V({Jj 0 V ({Ji is the inner product of gradients V({Jj and V({Ji'

2.2 Square Basis Functions, Matrices E and G

In this thesis, the basis functions qJi' i = 1, .. " n of (2.2) are defined by (2.10), which is

called as square basis functions by Su (1998).

12



(2.10)

Obviously, CPi is zero outside 0i' By plugging the basis functions (2.10) into (2.6), we

derive that E is a diagonal matrix, i.e.,

(2.11) E = diag{hi,. .. ,h~}.

Particularly, for a uniform-grid mesh with grid sizes hI = h2 = ... = hn = h, (2.11) turns

out to be the following identical matrix and can be stored sparsely in the space of 0(1).

(2.12)

Before discussing the structure of matrix G, we give some notations below. The six

.c: f b' n d t d II x- II x+ IIY- IIY+ II Z
- II z+ h' hsquare surlaces 0 cu IC />(,i are eno e as i' i' i , i , i' i , W IC

obviously are on plane equations x = Xi' X = Xi + hi' Y =Yi' Y = Yi + hi' Z = Zi'

Z = Zi + hi' respectively. Two cubes 0i and OJ are called neighboring if the area of

their shared surface is greater than zero. °1, Or' 0u' ad' OJ' 0b are denoted as the

left, right, up, down, front and back neighbors of cube 0c with the cube sizes hi' hy ,

Now, we define partial derivatives aqJc , aqJc ,aqJc of basis function fPc associated
ax ay az

with cube 0c at any point (x,Y,z) EO, which are used to calculate matrix G.
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(2. 13a)

(2.13b)

(2. 13e) atpcCx,y,z) I'::j

Oz

(2.14)

Thus, G in (2.7) turns out to be

r atpj .dcrG.. =a(tpJ" tpJ = r (V tp j 0 V tp; )dQ - .bn, an tp,
IJ .h, ) atp.

1. (atpj atp; + atpj atp; + atpj atp; dO _1-J tp;dcr
= a;}";},, az az ' an, ax x vy vy

1
atp.

-_ _J dcr
- ,an
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Now, we analyze the structure of matrix G in more details. For cube 0e denote n;-

as the exterior normal direction at surface II:- ,which points to the negative direction of

x-axis, or ~ =-1. Assume the grid size of left neighboring cube 0, of 0e is notanx-
e

h h h h h b (2 13) orp,(xe'Y'z) 1 d hgreater t an e' or '~e' t en y . a, ax =- h' an we ave,

orp, orp, & ( 1J 1 ~ oCf1 1oCf1 1- =--= -- (-1) =-. Therefore G =- -da=- -dlJdz=- x 7;2 =_In.anx- & anx- h h 'el en x- en '.J' h'~ "
eel 1 ,

On the other hand, cube 0e is the right neighbor of cube 0" similarly by (2.13a),

orpe(Xe,y,Z) 1 11· h . f h h h h .= reca mg t e same assumptIOn 0 '~e. Note t at t e extenor
ox h,

normal direction n;+ to the surface IIr points to the positive x-axis, or~ = ,thusanx+,

orpe orpe ox ( 1 J(I) 1 db· h-- = ---- = - = -, an we 0 tam t at
on;+ ox on;+ h, h,

(2.15) G =- r orpe da=- r orpe dlJdz=-J...- xh 2 =-h =G .'e .IJn ~_ ,hx+ a '.J' h ' , eI
I un In,

Similarly, as h, > he , it is easy to show that G,c =Gel still holds.

orpj __ Orpi I -- 0,Furthermore, if cubes i and j are not neighboring, by (2.13),
on an, on an}

and

(2.16) G.. =- r orp j deY =G .. =0, for non-neighboring cubes i and j.
1) .!In, on )I

Consequently, G is a sparse and symmetric matrix under any mesh to the region 0.
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From (2.14), Gee is determined by grid sizes of 0c 's neighbors and itself. Now, we

calculate Gee under the uniform-grid mesh Uh. Note that the exterior normal direction

to n;- points to the negative x-axis. By (2. 13a), aqJcCxc'Y'z) 1
=

ax h'

On the other hand, the exterior normal direction n:+ to n;+ points to the positive x-

aXIs,
aqJc (xc + h,y,z)

=
ax

Similarly, we have

Consequently, under uniform-grid mesh we have

while (2.15) turns to be Gij =-h, as cubes i, j are neighboring. In summary, under

uniform-grid mesh Uh, matrix G has the following structure:

(2.17)
{

6h, i = j,

Gij = - h, i,j are neighboring,i:f:. j

0, i,j are not neighboring,

According to (2.17), it is obvious that matrix G can be stored sparsely in a space of

0(1) under uniform-grid mesh Uh.

2.3 State-space System under Uniform-grid Mesh Uh

Based on the definition of square basis functions (2.10), Equations (2.8) and (2.9)

become
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(2.18)

(2.19) {h 3 • •
i ,1 = 11 .

~ = (q,rpi) = .b rpi rpi dQ = [ .,1 = l,.··,n,
; [ 0, otherWIse

respectively, where M a = diag{fl~}. Recall that the two phantoms described in Chapter

I are designed such that a homogeneous medium becomes heterogeneous by placing

media with different absorption coefficients from the background fla at the designed

holes inside the phantom. Thus, in numerical implementations corresponding to this

kind of phantom setups, matrix M a = diag{fl~} can be stored sparsely in a space of

0(1).

Taking K 1 at both sides of (2.5) derives the following equation.

(2.20)

where

(2.21 a)

(2.21b)

rjf(t) = A If/(t)t Bu(t),

B=E-IF.

According to the definition of basis functions (2.10), the state If/i(t) = If/(xi,Ypzpt) is

actually ¢(x,y,z,t) at position (Xi,YpZi) [Su 1998].

Recalling the sparsity and symmetry matrices of G and M a , matrix A in (2.21a) is

also symmetric and sparse under the uniform-grid mesh Dh. Since K 1
, D, G and M a can

be stored in a space of 0(1), matrix A under uniform-grid mesh Dh can be also stored in

a space of 0(1) in implementations. By (2.19) and (2.21b), vector B is sparse whose

non-zero elements indicate the source location and can be stored in a space of 0(1).
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Assume that states If/JI (t),lf/h (t), '',If/J
p
(t) are used to calculate outputs at detectors,

and the corresponding coordinates of grid points (xik ,YJk ,Zik ), k =1,. ," p, will be

defined later in this chapter for rectangular and hemispheric phantoms respectively.

Let

(2.22)

matrix C E RPxn is defined as

(2.23) {
1 J'=J'. i=l .. · P

C .. =' 1'"
lj 0, otherwise

According to (2.23), matrix C is sparse whose non-zero elements indicate the grid

locations for output computations at detectors and can be stored in a space of O(p), and

equation (2.22) can be written as

(2.24) ~(t) =CIf/(t),

Putting (2,21) and (2.24) together, we form an n-dimensional state-space system {A, B,

C} with impulse input u(t).

2.4 Lanczos Algorithm for Model Reduction

According to linear system theory [Kailath 1980], the output of system {A, B, C}

with impulse input is

(2.25) ~(t) =Ce At B,

For a system with large dimension, which is the case in our study, computing the

discrete-time output Ce A(kT) B, k =1,. ", should be avoided due to the large space cost of

the dense matrix eAT, where r is the time step size. Consequently, Arnoldi and Lanczos

18



model reduction methods are applied to compute the approximation of eA B [Saad 1992]

such that Ce AB can be approximated by Taylor expansion:

(2.26)

where Pm- I is a polynomial of degree m-1 with m«n. This approximation actually is an

element ofthe Krylov subspace Km == span{B,AB,··,Am-IB}. According to the Arnoldi

method described in Appendix A, an orthonormal basis V ={vI' vz,",vm} E Rnxm of

Krylov subspace is generated by using VI =B / II B liz (or B =11 B liz VI) and matrix A,

whether or not matrix A is symmetric. The system {A, B, C} is projected to an m-

dimensional reduced system {A,B,C} by matrix V such that the eigenvalues of A are

m largest eigenvalues of matrix A and

(2.27) A =VT AV E Rmxm,B =VT BE RmxI,C =CV E RPxm ,

where A is a Hessenberg matrix.

The state-space system {A, B, C} is defined below:

(2.28a)

(2.28b)

,yet) = A(t)lf/(t) + Bu(t),

set) = C If/(t).

Let f3 =11 B liz, and el be the first column of the identity matrix 1. For a symmetric

negative definite matrix A, it is proved [Saad 1992] that

(2.29)

19



where p =11 A 112' This means that when the dimension of the reduced system m is large

enough and the time step size T is small enough, the output of the reduced system is a

good approximation to that ofthe original system {A, B, C}.

On the other hand, when matrix A is symmetric, the Lanczos algorithm can replace

the Arnoldi method to derive the same reduced system {A, B, C} for the purpose of

saving space [Golub & Von Loan 1989, Sadje 1998]. Instead of directly using (2.27), the

pseudo code of the Lanczos algorithm described below generates a symmetric reduced

system {A,B,C}, in which only two n-dimensional vectors wand q, are used without

fully storing matrix V.

The pseudo code of the Lanczos algorithm for the reduced system {A, B ,C} :

100E i,j=l:mandi::l:-j
Aij =0;

end i,j loop
q =0; W =Bill B 112
loop j =1: m

if j::l:-1
loop i =1: n

S =Wi; Wi =qi I fJj-l;qi =-Pi-IS
end i loop

end if
q=q+Aw
- T - T -
A .. =w q, b. =w B, c. =Cw» _ J _ J_

q =q -A jj w; Pi =A i,i+l =A i+l,i=11 q 112
end j loop

Note that vector w in the pseudo code of the Lancozs algorithm above corresponds to

the orthonormal basis v j ' which is updated in loop j , and only tri-diagonal elements of

A are calculated. According to Golub & Von Loan (1989), the multiplication

complexity of the Lanczos algorithm is approximately the order ofO(m*n).
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2.5 The Numerical Solution of the Reduced State-space System

The discrete-time output, !;(kr),k =1,.··,K, of the m-dimensional, continuous-time

system {A,B,C}, is obtained by the following discrete-time iteration scheme, where

kr is the k-th sampling time [Frank et al. 1980, Grace et al. 1990].

(2.30a)

(2.30b)

where

(2.31a)

(2.31b)

!;(kr+r) =CIf/(kr+r),k =O,l,.··,K-1.

stored in space of o(m2
) , and Oem) respectively, are derived from the matrix

[Ad BId]exponential 0
[AT BT] [AT BT]

=e 0 0 E R(m+l)x(m+l) [Grace et al. 1990], while e 0 0 is

calculated by the Pade approximation in the space of O((m+li) with multiplication

operations of O((m+1)3) [Golub & Von Loan 1989, Sidje 1998]. Details on this section

are addressed in Appendix B. Obviously, space costs for If/(t) E Rm
, !;(t) = C If/(t) E RP

are of Oem) and O(P) respectively. Thus, the multiplication complexity of iteration

scheme (2.30) is the order ofO(K*m*(m+p)).

2.6 Outputs at Detectors of Rectangular and Hemispheric Phantoms

After the output !;(kr) of the reduced system {A, B, C} is obtained, we calculate the

outputs at detectors. As introduced in Chapter 1, the surface of the designed detectors of

the TRS system is a circular plane with diameter 3mm. We assume that point
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(dx ,dy,dz ) is the center of a detector d, and the output at detector d, denoted as Od (t),

is calculated by the following formula in simulations:

(2.32) Od (t) =( ~)ratio(x,y,z) * If/{X,y,z,t)] - z)ratio(x, y, z) * If/(x,y,z,t)])/ h,
(X,y,Z)ED., (d) (X,y,Z)ED. o (d)

where IJ../d),IJ..o(d), are called Inner and outer detector regions respectively, and

ratio(x, y, z) is called the detector ratio at grid point (x, y, z). In the following

subsections, the inner and outer detector regions, detector ratios are discussed for

rectangular and hemispheric phantoms respectively. The multiplication complexity of

(2.32) is the order of O(p*K).

2.6.1 Detector Regions and Ratios for the Rectangular Phantom

Recalling that the diameter of the circular plane of a detector is 3mm, we define

IJ..(d) = IJ..i(d) u IJ.. o(d) as the detector region of detector d, which is a rectangular block

of dimension 3mm x 3mm x 2h centered at (dx , dy,d Z - h). The center coordinates

(dx,dy,dz) of detector d on the rectangular phantom surface are defined in Appendix

C. Both of the inner and outer detector regions IJ..i(d),IJ..o(d), defined below are

rectangular blocks of dimension 3mm x 3mm x h .

(2.33a)

(2.33b)

IJ.. i ={(x,y,z),lx-dx Is 1.5, Iy-dy Is1.5,-2hsz-dz <-h},

IJ.." ={(x,y,z),lx-dx Is 1.5, Iy-dy Is1.5,-hsz-dz sO}.

A cylinder with a 3mm-diameter circular bottom surface and 2h height is embedded

into the rectangular detector region and the detector ratio r(x,y,z) of size-h grid (x, y, z)

is defined as the ratio of the volume of the cylinder inside the cube over the cube volume
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h3 itself. Figure 2.1 shows the inner and outer detector regIOns and the embedded

cylinder associated with a detector d under a uniform-grid mesh UO.5. Obviously, the

grid number of the detector region /1(d) = /1 i (d) U /1
0
(d) of a detector d of the given

rectangular phantom is 6*6*2=72. Thus, the grid number of the detector regions of the 8

detectors is p=72*8=576, which is much smaller than the total grid number

n=180*136*70*8=13,708,800 of the whole rectangular phantom under uniform-grid

mesh Uo.5, or p«n. As it will be noticed in later chapters that p«n is always true in our

simulations.

Outer regiou Inner region

Inner region

.-- 3mm ~

Figure 2.1: Detector region of rectangular
phantom under mesh UO.5

Figure 2.2: Detector region of hemispheric
phantom under mesh Uh

2.6.2 Detector Regions and Ratios for the Hemispheric Phantom

For the given hemispheric phantom of radius 64mm, the detector region of a detector

d is still defined as a rectangular block of dimensions 3mm x 3mm x 2h , and the center of

a detector region, (dx , dy' dz ), is on the surface of hemisphere, whose coordinates are

defined in Appendix C. The bottom surface of rectangular block is parallel to tangent

plane of hemisphere at (dx ,dy,dz ). A cylinder with a 3mm-diameter circular bottom

surface and 2h height is embedded into the detector region, and the corresponding
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detector ratios can be calculated. Figure 2.2 illustrates the 2-D view of a detector region

for a hemispheric phantom under uniform-grid mesh Uh.

In the next chapter, the implementations of the FEML-U algorithm for rectangular

and hemispheric phantoms will be discussed separately.
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CHAPTER 3

FEML-UR AND FEML-UH SIMULATORS

3.1 The Steps of FEML-U Algorithm and Space/Time Complexities

Below, we summarize the procedure for the FEML-U algorithm to simulate the output

at detectors from the discussions in Chapter 2.

Step 1: Generate state-space system {A, B, C} by FEM under a uniform-grid mesh.

Step 2: Generate a reduced system {A,B,C} by Lanczos algorithm.

Step 3: Calculate the output of the reduced system by discrete-time iteration scheme.

Step 4: Calculate the outputs at detectors by using detector ratios.

According to the terms of Tables 3.1 and 3.2, which are collected from Chapter 2, the

total space and time complexities of FEML-U algorithm are the orders

O(n+(m+li+p*m) and O(m*n+K*m*(m+p)+(m+l)3) respectively, where the time

complexity is represented by multiplication order.

Total space compleXity IS O(n+(m+l) +p m)

Variables A,B
C, C;(kr) Q,w

A,Ad B ,Bd , If/(kr) C [A
o
' ~,]

e

Space 0(1) O(p) O(n) Oem") Oem) O(p*m) O«m+IY)

,"- *

Table 3.1 Space complexity of FEML-U algorithm

Total time compleXity IS Oem n+K m (m+p)+(m+l»

Lanczos Algorithm Iteration Scheme Pade Approximation Output Calculation

O(m*n) O(K*m*(m+p» O«m+l» O(p*K)

* * *

Table 3.2 Time complexity ofFEML-U algorithm
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3.2 Definition of a Simulated Phantom

Suppose a phantom with domain Q, is meshed by cubes Q;, i = 1,,'" n. Let

Q = uQ;> i = 1,.··, n, satisfying that volume of Q n Q; is non-zero. We define a

phantom with domain Q as the simulated phantom of the original phantom, and the

simulators developed in this thesis are based on the simulated phantom. Obviously, we

can define cubic meshes such that the original rectangular phantom and its simulated

phantoms are the same. However, the hemispheric phantom and its simulated phantom

under any cubic mesh are different. Below, we define the simulated phantom of a

hemispheric phantom with radius r under a cubic mesh.

Note that cube i has a left-down-front comer grid (Xi, yi, Zi) with size hi, and its eight

its eight vertices (Xi,v, Yi,v, Zi,v), v=I, ... ,8, is in the hemispheric region, or

(3.1)

then cube i is set to be in the simulated hemispheric phantom. For example, under the

uniform-grid mesh Uh to the hemispheric phantom, the corresponding simulated

phantom is defined as

where (Xi, yi, Zi) is the left-down-front grid of cube Q;. Figure 3.1 illustrates the 2-D

front view of the simulated hemispheric phantom under a uniform-grid mesh, where the

domain Q is formed by the bold-black lines.
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Figure 3.1: Simulated hemispheric phantom (2-D front view)

3.3 Some Parameters Related to Error Analysis

Assume that OCt) is a output at a detector, below we introduce some indices in error

analysis to simulation results. Define parameter Tx%(O(t)) as follows:

(3.2) Tx % (O(t)) = ["% o(t)dt = x% . ro (t)dt ,

where Tx%(O(t)) is written as Tx% in short. Tx% refers to the time when x% percent of

the whole integral is taken. A relative error at x% between two outputs 0(1)(t) and 0(2)(t)

is defined below by using Tx% index:

(3.3)

Both Tx% and Tx%err are first defined by Ge & Yun (1999) and the values of x are

selected as 5, la, 15, ... , 95. To be more clarified, we first calculate the 19 data pairs

of output measurements O(1)(t) and 0(2)(t) by (3.2), then, calculate the corresponding 19

Tx%errs between O(1)(t) and 0(2)(t) by (3.3), which are respective Ts%err, T100/0err, ... ,

T95%err. In general, these 19 Tx%errs are denoted as e j ,j = 1, ... ,19 . As the 19 Tx%errs
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are derived, we can calculate the corresponding maximum, mInImUm, average and

standard deviation, which are denoted as err_max, err_min, err_avg, and err_std of the

output measurements 0(1)(t) and 0(2)(t), respectively, or err_max=max{e J },
]

However, in our simulation with respect to a given source, there are more than one

outputs and this kind of simulation is call multiple-output simulation with respect to one

source. Assume in a simulation there are b output measurements, O}I), O~I) , .•• ,O~I) at

respective detectors dl, d2, ... , db, while in another simulation, there are other b output

measurements 0 }2) , 0 ~2) , ... ,0 ~2) at the same respective detectors d1, d2, ... , db. The 19

Tx%errs between outputs O~I), and O?), denoted as ef, are calculated by (3.2) and (3.3),

for i=l, ... ,b, j=l, 2, ... , 19. A 19*b-element vector Err is defined as

E { I 19 1 19 1 19} th d t d drr= el,"',el ,e2 ,"',e2 ,eb,"',eb , e maXImum, mInImUm, average an san ar

deviation of the 19*b-element row vector Err, denoted as maxTx%err, minTx%err,

avgTx%err, and stdTx%err respectively, are defined as maxTx%err,= max {ef},
i=l:b,J=I:19

1 19 b

minTx%err,= '_ mi~, {ef}, avgTx%err=--*-(LLef), and stdTx%err=standard deviation
l-l.b,]-1.l9 19 b J=I i=1

3.4 Selecting the Dimension of the Reduced System

In simulations, the time step size is always set at 10 pico-seconds (ps), thus according

to (2.29), when m is large enough, the output of the reduced system {A,B,C} will
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converge to that of the original system {A, B, C}. Below we give an empirical criterion

to select a relative small dimension of a reduce system.

Criterion 3.1: Assume that an m-dimensional reduced system {Am,Bm,Cm}, projected

from the original system {A, B, C}, has positive output. A positive integer mh is called

a validated dimension of the reduced system under a uniform-grid mesh Uh, (or a multi-

grid mesh with finest grid size h), if mh ~ m ~ mh + 200, the maxTx%err between the

output measurements of systems {Amh ,Bmh ,Cmh } and {Am,Bm,Cm} is less than a small

number 10-6
.

The actual steps to find the appropriate m under a mesh are described below. The m1

value under mesh UI is found by applying Criterion 3.1 with initial m value 100 and

increment step size 10; while mO.5 value under mesh Uo.s is found by applying Criterion

3.1 with initial m value 2m1-l00 and increment step size 20. The mO.25 under mesh UO.2S

is found by applying Criterion 3.1 again with initial m value 2 mO.5 -100 and increment

step size 50. As a result, the dimensions of the reduced system of the FEML-UR

simulations under the uniform-grid meshes UI, Uo.s, UO.2S are 270, 540 and 1100

respectively. In contrast, the dimensions of the reduced system of the FEML-UH

simulations under the uniform-grid meshes UI, Uo.s, UO.2S are 240, 500 and 1000

respectively.

3.5 Validations of the FEML-UR and FEML-UH Simulators

Since ADI and FEM solve the same diffusion equation (1.1), the outputs by ADI and

FEM algorithms should be close to each other. The ADI simulators for rectangular and
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hemispheric phantoms under uniform-grid mesh are denoted as ADI-UR and ADI-UH

respectively and the uniform-grid meshes of grid size h for the given rectangular and

hemispheric phantoms are denoted as Uh[R] and Uh[H] respectively. Figure 3.2

illustrates the validation methods of FEML-UR and FEML-UH simulators, where on

one hand, ADI-UR(ADI-UH) and FEML-UR(FEML-UH) simulation results are

compared, on the other hand, FEML-UR(FEML-UH) simulation results under different

meshes are compared. The shadowed blocks in Figure 3.2 mean that ADI-UR

simulations under meshes UO.5 and UO.25 are not applicable due to the very long CPU

time. Below we give a criterion of validating a measurement from another validated

measurement.

I ADI-UR(ADI-UH), U1 I .......1----. '-------r---J

Figure 3.2: Validation methods ofFEML-UR and FEML-UH simulators

Criterion 3.2: Assume a measurement 81 is to be validated against a validated

measurement 82• The measurement 81 is validated, if the maxTx%err, avgTx%err, and

stdTx%err between 81 and the validated measurement 82 are less than a error bound

EB=l%.

In fact, ADI-UR simulation measurements have been validated against TR8

measurements by showing maxTx%err less than 1%. Thus, we apply Criterion 3.2 to

validate the simulation measurements ofFEML simulations.
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Note that the ADI simulation measurements are validated [Ge& Yun 1999], thus, any

of the validated measurements from ADI simulations can be considered as the baseline

S2 in Criterion 3.2.

The simulation results calculated in this thesis are basically aimed at error analysis.

Thus, without explicit mention, the medium is set to be homogeneous with the

absorption and scattering coefficients defined in Chapter 1.

3.5.1 Error Analysis between FEML-UR and ADI-UR Results

With the source at S2, S3 and S4 respectively, and with all of the 8 detectors selected,

the maxTx%err, avgTx%err and stdTx%err between the FEML-UR and ADI-UR

simulation measurements under uniform-grid mesh UI, are listed in Table 3.3, where

ADI-UR measurements are baselines in Criterion 3.2. Here the maxTx%err, avgTx%err

and stdTx%err of two multiple-output simulations are calculated based on the method

described in Section 3.3. Note that all of errors in Tables 3.3 are less than 1%, while

Figure 3.3 shows the output curves at detector Dg with respect to source S4 (denoted as

output S4Dg) of the FEML-UR and ADI-UR simulations with err_max of these two

outputs as 0.381%. According to Criterion 3.2, FEML-UR simulation measurements

under mesh U1 are validated.
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Table 3.3: Errors between FEML-UR
and ADI-UR simulations under mesh U1

Source maxTx%err avgTx%err stdTx%err

S2 0.379% 0.185% 0.056%

S3 0.380% 0.175% 0.055%

S4 0.381% 0.171% 0.055%

Figure 3.3: Curve comparison: FEML-UR vs. ADI-UR
under mesh U1

3.5.2 Comparisons among FEML-UR Simulation Results

With the source at S2, S3 and S4 respectively, and with all the eight detectors selected,

we calculate the maxTx%err, avgTx%err and stdTx%err among the FEML-UR simulation

results for h=lmm, O.5mm, 0.25mm, where FEML-UR simulation measurements under

mesh Ul are the baselines in Criterion 3.2. The resulting errors are listed in Table 3.4.

The notation like "Q vs. R" is used in Tables 3.4, 3.6, 5.1, 5.2, 5.3, 5.4, where Q and R

are two different meshes to a phantom. For example, "Ul vs. UO.25" in the Table 3.4(a)

has the meaning of calculating the maxTx%err between two FEML-UR measurements

with the same source and detectors setting, one is obtained under mesh U1, the other

obtained under mesh UO.25.

By looking at Table 3.4, on one hand, we note that all the errors are less than 1%. On

the other hand, the errors between 1mm and 0.25mm, 1mm and O.5mm, O.5mm and

O.25mm simulation results are decreased. This indicates that the finer the mesh is, the

smaller is the error. According to Criterion 3.2, the FEML-UR simulation measurements

under meshes Ul, UO.5, and U0.25 are validated. Note that ADI-UR simulation results

have been validated against to TRS measurements, thus the FEML-UR simulation

measurements are indirectly validated against TRS measurements. Overall, we claim
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that the correctness of the FEML-UR simulator has been validated and this validated

simulator will be used in Chapter 5.

Source U1vs. UO.25 U1vs. UO.5 UO.5vs. UO.25

S2 0.770% 0.461% 0.321%

S3 0.728% 0.444% 0.294%

S4 0.667% 0.407% 0.297%

(a): maxTx%err

Source U1vs. UO.25 U1vs. UO.5 UO.5vs. UO.25

S2 0.511% 0.281% 0.232%

S3 0.536% 0.293% 0.246%

S4 0.561% 0.307% 0.263%

(b): avgTx%err

Source U1vs. UO.25 U1vs. UO.5 UO.5vs. UO.25

S2 0.083% 0.070% 0.012%

S3 0.090% 0.075% 0.012%

S4 0.094% 0.078% 0.012%

(c): stdTx%err

Table 3.4: Comparisons among FEML-UR simulation results

3.5.3 Error Analysis between FEML-UH and ADI-UH Simulations

The simulation results of the FEML-UH and ADI-UH simulators are compared under

uniform-mesh UI, considering ADI-UH measurements are baselines in Criterion 3.2.

With the source at 84 and 822 respectively, and five selected detectors Du , D17, D25 , D45

and D46, the maxTx%err, avgTx%err and stdTx%err between the FEML-UH and ADI-UH

simulation measurements under mesh UI are listed in Table 3.5. From Table 3.5, it

shows that all of errors are less than 1%. According to Criterion 3.2, FEML-UH

simulation measurements under mesh U1 are validated.
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3.5.4

Source maxTx%err avgTx%err stdTx%err

S4 0.134% 0.086% 0.018%

S22 0.136% 0.080% 0.020%

Table 3.5: Errors between FEML-UH and ADI-UH results under mesh U I

Comparisons among FEML-UH Simulation Results

With the source at 84and 822 respectively, and five detectors selected as Dll , D17, D25,

D45 and D46, the maxTx%err, avgTx%err and stdTx%errs among FEML-UH simulation

measurements, for h=lmm, O.5mm, 0.25mm are listed in Table 3.6, where FEML-UH

simulation measurements under mesh U1 are the baselines in Criterion 3.2.

Source U1VS. UO.25 U1VS. UO.5 UO.5VS. UO.25

S4 0.554% 0.381% 0.177%

S22 0.861% 0.723% 0.183%

(a): maxTx%err

Source U1 VS. UO.25 U1VS. UO.5 UO.5VS. UO.25

S4 0.438% 0.318% 0.120%

S22 0.695% 0.552% 0.143%

(b): avgTx%err

Source U1VS. UO.25 U1VS. UO.5 UO.5VS. UO.25

S4 0.005% 0.013% 0.004%

S22 0.010% 0.007% 0.002%

(c): stdTx%err

Table 3.6: Comparisons among FEML-UH simulations

From Table 3.6, on one hand, we note that the all the errors are less than 1%. On

the other hand, the errors between lmm and 0.25mm, lmm and O.5mm, O.5mm and

0.25mm simulation results are decreased. This indicates that the finer the mesh is, the

smaller is the error. According to Criterion 3.2, the FEML-UH simulation measurements

under meshes Ul, UO.5, and UO.25 are validated. Overall, we claim that the correctness of
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the FEML-UR simulator has been validated and this validated simulator will be used in

Chapter 5.

3.6 Space/Time Costs of FEML-UR and FEML-UH Simulators

Recall Section 3.1 that the space and time complexities of FEML-U algorithm are

orders of O(n+(m+ li+p*m) and O(m*n+K*m*(m+p)+(m+1)3) respectively. The actual

n, m, p, K values of FEML-UR and FEML-UH simulations for h=lmm, 0.5mm and

0.25mm are listed in Tables 3.7 and 3.8, where 8 detectors are selected for FEML-UR

simulations, and 5 detectors Dll, D17, D25 , D45 and D46 are selected for FEML-UH

simulations.

It is observed from Tables 3.7 and 3.8 that m+l~m, p*m«n, K*(m+p)«n, m2«n,

therefore, the space and time complexities of FEML-UR and FEML-UH simulators are

approximated by O(n) and O(m*n) respectively.

From Tables 3.7 and 3.8, we observe that the dimension of reduced system, m,

changes with the total grid number n, or m is a function of n, m=f(n), where m is

validated by Criterion 3.1. Interestingly, as n becomes 8 times bigger (or the grid size

becomes a half), m is almost doubled. Thus, an empirical formula is defined between the

validated m value and n as follows:

(3.4) m=f(n)=Cn*~,

where Cn is a constant. Formula (3.4) shows the non-linear relationship between n and

m.

On the other hand, the space and time costs of FEML-U and ADI-U algorithms are

compared in Tables 3.7 and 3.8, where FEML-U simulator runs more than 50 times
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faster ADI-U simulator. The space complexity of ADI-U algorithm is the order of O(n)

[Ge & Yun 1999], where two n-dimensional vectors are allocated to store the states of

current and previous time steps. However, these two vectors can be stored in single

precision (4 bytes/variable) without losing accuracy. Recall that two n-dimensional

vectors q, w in Lanczos algorithm have to be stored in double precision (8

bytes/variable). As a result, the FEML-U simulations use more space than ADI-U

simulations as shown Tables 3.7 and 3.8. However, from Tables 3.7 and 3.8, the space

costs ofFEML-U simulations are not beyond twice of those of ADI-U simulations.

Furthermore, based on the space complexity O(n), the space cost of FEML-U

simulation can be defined by the following linear equation:

(3.5) SP=Cs*(16n),

where SP is the space cost under uniform-grid mesh, Cs is a constant, and 16n is the

space cost of double-precision vectors q and w. Formula (3.5) can be used to estimate

the space cost of FEML-U simulation as a Cs is determined. Figure 3.4 shows the

estimated and actual space costs of FEML-U simulations, where Cs for FEML-UR and

FEML-UH simulations is selected as 1.1 and 1.2 respectively. In Figure 3.4(a), the n,

space cost are taken from the 2nd and 6th columns of Table 3.7, while in Figure 3.4(b),

the n, space cost are taken from the 2nd and 6th columns of Table 3.8. From Figure 3.4, it

shows that with the selected Cs values, formula (3.5) gives good estimations to the actual

space costs

On the other hand, based on the time complexity O(m*n), the time cost is defined as a

non-linear function of n as follows, by recalling the non-linear relationship between n

andm:
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(3.6)

where TM is the time cost under uniform-grid mesh, and Ct is a constant. Formula (3.6)

can be used to estimate the time cost of FEML-U simulation as a Ct is determined.

Figure 3.5 shows the estimated and actual time costs of FEML-U simulations, where Ct

for FEML-UR and FEML-UH simulations is selected as 2.1 and 2.5 respectively. In

Figure 3.5(a), the n, m, time cost are taken from the 2nd
, 3rd

, and 9th columns of Table

3.7, while in Figure 3.5(b), the n, m, space cost are taken from the 2nd
, 3rd

, and 9th

columns of Table 3.8. From Figure 3.5, it shows that with the selected Ct values, formula

(3.6) gives good estimations to the actual time costs.

Mesh n M p K FEML-U ADI-U Space FEML-U ADI-U Time

Space(Mb) Space(Mb) Rate Time(min.) Time(min.) Rate

U1[Rj 1,713,600 270 256 1,000 35.3 22.0 160.5% 8.7 970.1 0.90%

Uos[Rj 13,708,800 540 576 1,000 231.6 ------ ------ 148.3 ------ ------

Uo25[Rj 109,670,400 1,100 2,304 1,000 1791.6 ------ ------ 2416.2 ------ ------

Table 3.7: Space and time costs ofFEML-UR and ADI-UR simulatIOns

Mesh n m p K FEML-U ADI-U Space FEML-U ADI-U Time

Space(Mb) Space(Mb) Rate Time(min.) Time(min.) Rate

U1[Hj 568,420 240 192 1,000 21.3 14.4 147.9% 4.1 358.6 1.14%

Uos[Hj 4,547,360 500 532 1,000 102.8 ------ ------ 56.4 ------ ------

U025[Hj 36,378,880 1,000 1,754 1,000 738.2 ------ ------ 895.5 ------ ------

Table 3.8: Space and time costs ofFEML-UH and ADI-UH simulatIOns
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CHAPTER 4

THE FEML-M ALGORITHM AND SELECTED

MULTI-GRID MESHES

4.1 Introduction

In reference to Section 2.4, it has been experienced that two n-dimension vectors, q

and w, in the Lanczos algorithm have to be allocated as double-precision variables in

simulations to obtain convergent results. Table 4.1 gives the space of q and w of FEML­

UR and FEML-UH simulations under uniform-grid mesh UO.125, which are more than

13Gb and 4.6Gb respectively. This means that FEML-UR and FEML-UH simulations

under mesh U0.125 cannot be realized on our computer with 2,048Mb physical memory.

Since higher-resolution simulations are always desired, we propose the FEML algorithm

under multi-grid mesh Mh (FEML-M algorithm) in this chapter. Also, the FEML-M

algorithm is expected to use less space and time costs than the FEML-U algorithm.

Phantom n Space of q and w (Mb)

Rectangle 877,363,200 13,708.8

Hemisphere 291,031,040 4,656.5

Table 4.1: Space costs of vectors q and W III FEML-U simulations under mesh UO.125

4.2 An Asymmetric System {A, B, C} under a Multi-grid Mesh

Recall that matrix G defined in (2.14) is symmetric, the transpose of matrix
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According to (2.11), E-1 = diag{~-3,.··,h;3}, obviously matrix E-1 is not identical

under any multi-grid mesh with non-identical grid sizes. Therefore, matrix A is

asymmetric and the state-space system {A, B, C}, defined by (2.20) and (2.24), is

asymmetric. As a result, the Lanczos algorithm described in Chapter 2 cannot be directly

applied to the asymmetric system {A, B, C} to derive a reduced system {A,B,C} by

using only two n-dimensional vectors. Below, a similarity transformation is introduced,

which transforms the asymmetric system {A, B, C} to a symmetric system {A,B,C}.

4.3 Similarity Transformation for the Asymmetric System

Define a linear transformation

(4.2) If/(t) =WIjI(t)

where

Similar to matrix E, matrix W can be stored in the space of 0(1). By plugging (4.2) in

(2.20), we have

(4.4) wlj;(t) =AWIjI(t) + Bu(t).

Taking W-1 at both sides of (4.4) gives

Ij;(t) =W-IAWIjI(t) +W-IBu(t)
=W-I(-(DE-1G + cMa))WIjI(t)+W-1Bu .
=-(DWGW + cMa)ljI(t) + W-1Bu

Let

(4.5a) A = -(DWGW + cMa) ,
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(4.5b)

(4.5c) C=cw,

a state-space system (4,B,C} with impulse input is defined by (4.6) and (4.7) below.

(4.6) I/J(t) =Ali/(t) + Bu(t) ,

(4.7) ;(t) =Cli/(t).

Recall that the space complexities of G, W, M a are 0(1), clearly the multiplication

complexities of (4.5a)-(4.5c) are O(n), 0(1) and O(p) respectively, or O(n) in total due

to p«n.

Referring to (2.2la), and (4.3), formulation (4.5a) can be written as follows:

Since G, E-O
.5 ,Ma are symmetric, then AT =A, or A is symmetric. As a result, we

derive a symmetric state-space system {A,B,C} from the asymmetric system {A, B, C}.

By the linear system theory [Kailath 1980], system {A,B,C} and system {A, B, C}

are equivalent in the sense that the output of the state-space system {A, B,C}, CeAtB,

equals to that of the original system {A, B, C},CeAtB. (4.2) and {A,B,C} are called

similarity transformation and similarity transformation respectively. Now, the Lanczos

algorithm described in Chapter 2 can be applied on the symmetric system {A,B,C} to

obtain a reduced system {A, B, C} by using only two n-dimensional vectors.
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4.4 The Steps for the FEML-M Algorithm and Space/Time

Complexities

The procedure for the FEML-M algorithm described below is quite similar to that of

the FEML-U algorithm introduced in Chapter 3, but adding one more step to derive the

similarity system (i,ii,C}.

Step 1: Generate an asymmetric system {A, B, C) by FEM under a multi-grid mesh.

Step 2: Generate a symmetric, similarity system (4,B,C} by similarity

transformation.

Step 3: Generate a reduced system {A, B, C} by Lanczos algorithm.

Step 4: Calculate the output of the reduced system by discrete-time iteration scheme.

Step 5: Calculate the outputs of detectors by using detector ratios.

Recall to the Section 4.3, matrix W can be stored in the space of 0(1) and the

multiplication complexity of system transformation by W is the order of O(n).

Obviously, the total space and time complexities of the FEML-M algorithm are still the

o(n+(m+1)2+p*m) and O(m*n+K*m*(m+p)+(m+1)3) respectively, same as those of

FEML-U algorithm.

Before implementing the FEML-M algorithm for the two organ-size phantoms, below

we define two multi-grid meshes, one is to the rectangular phantom; the other is to the

hemispheric phantom.

4.5 A Selected Multi-grid Mesh for the Rectangular Phantom

Figure 4.1 shows a multi-grid mesh for the rectangular phantom, where the whole

phantom is cut into five blocks, Bj, i=l, 2, ... ,5, and the cut planes are vertical to the x-
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axis. The multi-grid mesh is defined such that the center block B3 is meshed by size-h

grids, blocks Bz and B4 meshed by uniform size-2h grids, and blocks B1 and Bs by

uniform size-4h grids. Denote Lj, j=l, 2, ... ,5, as the length ofBj in x-direction. This 5-

block cut to the rectangular phantom is denoted as cut LI-Lz-L3-L4-Ls. This specific

multi-grid mesh with cut L1-Lz-L3-L4-LS is denoted as Mh[R]. The implementation of

FEML-M algorithm under the selected multi-grid mesh Mh[R] to the rectangular

phantom is denoted as FEML-MR simulator.

The cubes in Figure 4.1 are classified into 11 types according to the sizes of the cube

itself, its left, right, up, down, front, and back neighboring cubes. For example, for a

type-5 cube, referring to 5 in Figure 4.1, hc=hi=hu=hd=hFhb=2h, hr=h, while for a type-6

cube, hc=hr=hu=hd=hFhb=h, hi=2h. Below, we calculate Gii for all the 11 types of cubes

under the specific multi-grid mesh Mh[R].

z 3 4 9 10 11

llIIIII L I ~ ...-- L2~.-z,3~ .... L4 --. ...llIIIIIt---- L5 ---t~~

Figure 4.1: The multi-grid mesh to the rectangular phantom, Mh[R]

• Gii oftype-7 cube

Obviously, under the uniform-grid mesh Uh, each cube is type-7. Referring to (2.17)

(4.9)
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Formula (4.9) for Gii of type-7 cube is generalized to type-l and type-4 cubes, and the

corresponding Gii values are listed in Table 4.2.

• Gjj oftype-5 cube

Note for a type-5 cube i, there are four neighboring cubes on the right side of the cube

with size h, and the remaining neighboring cube sizes are 2h. By (2.13) and (2.14), we

have

(4.10)

Formula (4.10) for Gjj oftype-5 cube is generalized for type-2, type-9 and type-II cubes

as listed in Table 4.2.

• Gjj of type-6 cube

As with a type-6 cube, there is one size-2h cube on the left side of cube i, while all

the remaining neighboring cubes are of size h. By (2.13) and (2.14), we have

(4.11) G.. =- r 8cp; dcy=!...xh2 x 6=6h.
II .IJn; an h

Formula (4.11) for Gii of type-6 cube is generalized for type-3, type-8, and type-l0

cubes as listed in Table 4.2. Consequently, all of Gjj values of the 11 types of cubes are

listed in Table 4.2.

Cube type I 2,11 3,4,10 5,9,12 6,7,8,13, 14, 15

Gji 24h 28h 12h 14h 6h

Table 4.2: Gjj for 15 dIfferent cubes under meshes Mh[R] and Mh[H]

4.6 A Selected Multi-grid Mesh for the Hemispheric Phantom

The hemispheric phantom of radius r is embedded into a rectangular block of

dimensions of 2r x 2r x r as shown in Figure 1.2. A specific multi-grid mesh is defined

44



for the embedding rectangular phantom as well as the given hemispheric phantom in

Figure 4.2, where the embedding rectangular phantom is cut into four smaller

rectangular blocks with defined dimensions. The four blocks are denoted as I, II, III, IV,

respectively, where the dimension of each block in y direction is 2r. Note that Block IV

of dimension L4x2rxH4, is meshed by size-h grids, while the remaining blocks are

meshed by size-2h grids. Note that the dimensions of blocks II and IV in x direction are

equal, or L2=L4, we denote this kind of cut to the hemispheric phantom as cut L1-L2-

L3(H4), and the selected multi-grid mesh associated with cut L1-L2-L3(H4), is denoted as

Mh[H]. The implementation of FEML-M algorithm under the multi-grid mesh Mh[H] to

the hemispheric phantom is denoted as FEML-MH simulator.

~l Z
... L1 ..... L FL, ..... L3 ..

V ---- ----r---.l
I

/
~ ~

~
<T

~

/ 4 5 I 6 7 8 9 \14 13 15

I ~ 12 -- - - -
\I

~
II

I
~1

~

Figure 4.2: The multi-grid mesh to the hemispheric phantom (2-D view) x

i

There are 10 types of cubes under the multi-grid mesh Mh[H], as shown in Figure 4.2,

which are type-4, 5, 6, 7, 8, 9, 12, 13, 14, and 15 respectively. The Gii values associated

with the 10 types of cubes can be found in Table 4.2, where Gii of the type-12 cube is

still derived by (4.10), and Gii oftype-13, type-14, and type-IS cubes are calculated by

(4.11).
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As noticed in Figures 4.1 and 4.2, the two specific multi-grid meshes are selected with

restriction that for a cube of size 2k h,k = 0,1,2, its neighboring cube size is 2k h, 2k
-

1h,

or 2k
+

1h . This allows the smooth transition among cubes with different sizes. By (2.13)

and (2.14), the non-zero values ofGij with i -:j:. j, are calculated in Table 4.3. Note that

size-4h cube does not have a size-h neighbors and vice verse.

hrh hj-2h hj=4h

h]-h -h -h ----

hi-2h -h -2h -2h

hi=4h ---- -2h -4h

Table 4.3: Non-zero Gij , i -:j:. j , for neighboring cubes i and j

In the next chapter, validations of FEML-MR and FEML-MH simulators will be

discussed.
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CHAPTER 5

FEML-MR AND FEML-MH SIMULATORS

I FEM-UR(FEM-UH), UO.25 I ....-.

5.1 Introduction

The FEML-MR and FEML-MH simulators are the implementations of the FEML-M

algorithm under multi-grid meshes to the given rectangular and hemispheric phantoms

respectively. Figure 5.1 illustrates the methods of validating the FEML-MR and FEML­

MH simulators, where on one hand, the FEML-MR (FEML-MH) and validated FEML­

UR (FEML-UH) simulation results are compared, on the other hand, FEML-MR

(FEML-MH) simulation results under different meshes are compared. The shadowed

block in Figure 5.1 means that FEML-UR (FEML-UH) simulations under meshes UO.lZ5

is not applicable due to the unaffordable space as addressed in Chapter 4.

I FEM-UR(FEM-UH), UO.' I ••-. L..,-----r------'

Figure 5.1: Validation methods of FEML-MR and FEML-MH simulators

5.2 Validations of the FEML-MR and FEML-MH Simulators

Recalling Section 4.5, the multi-grid mesh Mh[R] is associated with a cut LI-Lz- L3­

L4-L5 to the given rectangular phantom. To run the FEML-MR simulations, a cut has to
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be given, or the Lj values, j=l, 2, ... , 5, have to be defined first. To compare with the

FEML-UR simulation results, the cut for the rectangular phantom is selected, satisfying

that the source and detector sockets are within the center block, B3. Furthermore, the

FEML-MR simulations associated with the selected cut can be run on our computer,

within its 2,048Mb physical memory, for h=0.5mm, 0.25mm and 0.125mm. Eventually,

a cut 78-4-16-4-78 is selected for the multi-grid mesh of rectangular phantom. On the

other hand, a cut 48-32-48(39) of the hemispheric phantom is selected such that the

FEML-MH simulations can also be run on our computer, for h=0.5mm, 0.25mm and

0.125mm.

The validated m values under Mo5, M0.25 are selected same as those under U05 and

MO.25 respectively, which satisfies Criterion 3.1, while the validated m value under M0.125

is defined by Criterion 3.1 with initial value 2 m 0.25 -200 and the increment step size 50

to give convergent outputs.

5.2.1 Error Analysis between FEML-MR and FEML-UR Results

Now, we calculate the maxTx%err, avgTx%err and stdTx%err between FEML-MR and

the FEML-UR simulations under the selected cut 78-4-16-4-78, for h=0.5mm, 0.25mm

with one source (S2, S3, or S4) and 8 detectors selected, where FEML-UR simulation

measurements under meshes UO.5 UO.25 are the baselines in Criterion 3.2. The

corresponding errors are listed in Table 5.1

From Table 5.1, first of all, it is noticed that all the errors are less than ER=1%, or

even less than 0.5%. Secondly, it shows that for each selected source, the errors between

the FEML-MR and FEML-UR results are decreased as h decreases from 0.5mm to
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0.25mm. This means that FEML-MR simulation results converge to those of FEML-UR

simulation results. According to Criterion 3.2, FEML-MR simulation measurements

under meshes MO.5 and MO.25 are validated.

Source Mo.5V5. UO.5 Mo.25 V5. U025

S2 0.415% 0.260%

S3 0.359% 0.246%

S4 0.311% 0.222%

(a): maxTx%err

Source Mo.5 V5. UO.5 Mo.25 V5. U025

S2 0.221% 0.151%

S3 0.213% 0.148%

S4 0.207% 0.137%

(b): avgTx%errs

Source Mo.5 V5. UO.5 Mo.25 V5. UO.25

S2 0.061% 0.043%

S3 0.058% 0.042%

S4 0.057% 0.044%

(c): stdTx%errs

Table 5.1: Errors between FEML-MR and FEML-UR simulation results

5.2.2 Comparisons among FEML-MR Simulation Results

With the source at 82, 83 and 84 respectively, and with all the 8 detectors selected, we

calculate the maxTx%err, avgTx%err, and stdTx%err among the FEML-MR simulation

results under the cut 78-4-16-4-78, for h=0.5mm, 0.25mm, and O.l25mm, where FEML­

MR simulation measurements under meshes MO.5 M0.25 are the baselines in Criterion 3.2.

The resulting errors are listed in Table 5.2.

From Table 5.2, on one hand, we notice that the all the errors are less than ER=l %, or

even less than 0.5%. On the other hand, the errors between 0.5mm and 0.125mm,
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O.5mm and O.25mm, 0.25mm and O.125mm simulation results are decreased. This

indicates that the finer the mesh is, the smaller is the error. According to Criterion 3.2,

the FEML-MR simulation measurements under meshes Mo.s, Mo.2s, and M0.12S are

validated. Overall, we claim that the correctness of the FEML-MR simulator has been

validated.

Source MO.5 vs. MO.125 MO.5 vs. MO.25 MO.25 vs. MO.125

S2 0.417% 0.272% 0.145%

S3 0.350% 0.223% 0.117%

S4 0.332% 0.201% 0.131%

(a): maxTx%err

Source MO.5 vs. MO.125 MO.5 vs. MO.25 MO.25 vs. MO.125

S2 0.147% 0.091% 0.060%

S3 0.141% 0.084% 0.061%

S4 0.160% 0.086% 0.081%

(b): avgTx%err

Source MO.5 vs. MO.125 MO.5 vs. M025 MO.25 vs. MO.125

S2 0.073% 0.053% 0.015%

S3 0.070% 0.050% 0.013%

S4 0.077% 0.051% 0.017%

(c): stdTx%err

Table 5.2: Comparisons among FEML-MR simulation results

5.2.3 Error Analysis between the FEML-MH and FEML-UH Results

Note that the sockets 4, 11, 17,22,25,45,46 are within block IV under the cut 48-32­

48(39) because the distance from D4S to D 46 (and from D 17 to D 2S), 25.82mm, is less

than L4=32mm of block IV. Now, we can calculate the maxTx%err, avgTx%err and

stdTx%err between FEML-MH and the FEML-UH simulation results at the five

detectors, D ll , D17, D 2S, D 4S , D 46, under the cut 48-32-48(39), for h=O.5mm, 0.25mm,
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with the source at S4 and S22 respectively, where FEML-UH simulation measurements

under meshes UO.5 UO.2S are the baselines in Criterion 3.2. The corresponding errors are

listed in Table 5.3.

From Table 5.3, first of all, it is noticed that all the errors are less than ER=l%, or

even leass than 0.5%. Secondly, it shows that for each selected source, the errors

between the FEML-MH and FEML-UH results decrease as h decreases from 0.5mm to

0.25mm. According to Criterion 3.2, FEML-MR simulation measurements under

meshes Mo.5 and MO.2S are validated.

Source Mo.s vs. Uo.s Mo.2s VS. UO.2S

S4 0.356% 0.130%

S22 0.161% 0.057%

(a) maxTx%err

Source Mo.s vs. Uo.s Mo.2s VS. UO.2S

S4 0.101% 0.044%

S22 0.051% 0.018%

(b) avgTx%err

Source Mo.s vs. Uo.s Mo.2s VS. UO.2S

S4 0.032% 0.012%

S22 0.015% 0.006%

(c): stdTx%err

Table 5.3: Errors between FEML-MH and FEML-UH simulation results

5.2.4 Comparisons among FEML-MH Simulation Results

With the source at S22, and five detectors at Dll , D17, D2S, D4S, D46, we calculate the

resulting maxTx%errs, avgTx%errs and stdTx%errs among FEML-MH simulation results

under the selected cut 48-32-48(39), for h=0.5mm, 0.25mm, and 0.125mm, where
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FEML-MH simulation measurements under meshes MO.5 MO.25 are the baselines III

Criterion 3.2. The resulting errors are listed in Table 5.4.

From Table 5.4, on one hand, the errors between 0.5mm and O.l25mm, 0.5mm and

0.25mm, 0.25mm and 0.125mm simulation results are decreased. This again indicates

that the finer the mesh is, the smaller the error is. On the other hand, we notice that the

all the errors are less than ER=1 %, or even less than 0.5%. According to Criterion 3.2,

the FEML-MH simulation measurements under meshes MO.5, MO.25, and MO.125 are

validated. Overall, we claim that the correctness of the FEML-MH simulator has been

validated.

S22 Mo.s vs. MO.12S Mo.s vs. MO.2S MO.2S vs. MO.12S

maxTx%err 0.320% 0.189% 0.148%

avgTx%err 0.230% 0.115% 0.114%

stdTx%err 0.018% 0.012% 0.002%

Table 5.4: Errors among FEML-MR SimulatIon results

5.3 Space/Time Costs of FEML-MR and FEML-MH Simulators

Recall Section 4.4 that the space and time complexities of FEML-M algorithm are

O(n+(m+1)2+p*m) and O(m*n+K*m*(m+p)+(m+1)3) respectively. Tables 5.5 and 5.6

list the actual n, m, p, K values in FEML-M simulations, which shows that m+1~m,

p*m«n, K*(m+p)«n and m2«n are still hold under multi-grid meshes. Thus, the

space and time complexities of FEML-MR and FEML-MH simulators are still

approximated by O(n) and O(m*n) respectively, same as those of FEML-UR and

FEML-UH simulators.
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From Tables 5.5 and 5.6, we also observe that the dimension of reduced system, m,

changes with the total grid number n, or m is a function of n, m=f(n), where m is

validated by Criterion 3.1. Interestingly, as n becomes 8 times bigger (or the grid size

becomes a half), m is almost doubled. Thus, an empirical formula is defined between the

validated m value and n as follows:

(5.1) m=f(n)=Cn*~,

where Cn is a constant. Formula (5.1) shows the non-linear relationship between nand

m.

As it has been mentioned before, the FEML-MR simulations are expected to use less

space and time than the FEML-UR simulations because of the smaller grid number n.

This is confirmed in our simulations by looking at Tables 5.5 and 5.6. In fact, it is

noticed from Table 5.5 that the FEML-MR simulations use about 15% space of the

FEML-UR simulations, while from Table 5.6, FEML-MH simulations, use about 30%

of the space of FEML-UH simulations. One the other hand, the FEML-MR simulations

use about 20% time of the FEML-UR simulations, while FEML-MH simulations can

use about 75% of the time of the FEML-UH simulations. Furthermore, it is noticed from

Tables 5.5 and 5.6 that FEML-MR and FEML-MH simulators realize the higher­

resolution simulations under mesh MO.l25. In contrast, the FEML-UR and FEML-UH

simulations under uniform-grid mesh UO.l25 could not be realized on our computer as

addressed in Chapter 3.

Furthermore, based on the space complexity O(n), the space cost of FEML-M

simulation can be defined by the following linear equation:

(5.2) SP=Cs*(16n),
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where SP is the space cost under multi-grid mesh, Cs is a constant, and 16n is the space

cost of double-precision vectors q and w. Formula (5.2) can be used to estimate the

space cost ofFEML-M simulation as a Cs is determined. Figure 5.2 shows the estimated

and actual space costs of FEML-M simulations, where Cs is selected as 1.2 for FEML­

MR and FEML-MH simulations. In Figure 5.2 (a), the n, space cost are taken from the

2nd and 6th columns of Table 5.5, while in Figure 5.2 (b), the n, space cost are taken from

the 2nd and 6th columns of Table 5.6. From Figure 5.2, it shows that with the selected Cs

values, formula (5.2) gives good estimations to the actual space costs.

On the other hand, based on the time complexity O(m*n) of FEML-M simulation, the

time cost is defined as a non-linear function of n as follows, by recalling the non-linear

relationship between n and m:

(5.3) TM=Ct*(m*n*lO-s)= Ct*(f(n)*n*10-s),

where TM is the time cost under multi-grid mesh, and Ct is a constant. Formula (5.3) can

be used to estimate the time cost of FEML-M simulation as a Ct is determined. Figure

5.3 shows the estimated and actual time costs of FEML-M simulations, where Ct for

FEML-MR and FEML-MH simulations is selected as 3.1 and 7.0 respectively. In Figure

5.3 (a), the n, m, time cost are taken from the 2nd
, 3rd

, and 8th columns of Table 5.5,

while in Figure 5.3 (b), the n, m, space cost are taken from the 2nd
, 3rd and 8th columns of

Table 5.6. From Figure 5.3, it shows that with the selected Ct values, formula (5.3) gives

good estimations to the actual time costs.
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Mesh n m P K FEML-M Space Rate to FEML-M Time Rate to

Space(Mb) FEML-U Time (Min.) FEML-U

Mo.s[R]* 1,480,360 540 576 1,000 35.5 15.3% 31.7 21.4%

Mozs[R]* 11,842,880 1,100 2,304 1,000 264.3 14.8% 493.7 20.4%

Mo12s[R]* 94,743,040 2,200 9,216 1,000 1800.3 ------ 6279.9 ------

* Mh[R] With cut 78-4-16-4-78,8 detectors

Table 5.5: Space and time costs ofFEML-MR simulations

Mesh n m P K FEML-M Space Rate to FEML-M Time Rate to

Space(Mb) FEML-U Time (Min.) FEML-U

Mos[H]** 1,312,772 500 532 1,000 30.3 29.5% 42.9 76.1%

MO.2S[H]** 10,502,176 1,000 1,754 1,000 207.1 28.1% 659.4 73.6%

Mo.125[H]** 84,017,408 2,000 4,992 1,000 1544.1 ------ 10884.7 ------

**Mh[H] With cut 48-32-48(39), five detectors Du, D17, D2s, D4s, D46

Table 5.6: Space and time costs ofFEML-MH simulations
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5.4 Further Discussions on FEML-MH Simulations

5.4.1 Identity of Equidistant Outputs

Denote the output at detector Dp with respect to source Sj as O(Si
Dp

). The outputs

O(S;Dp) and O(SjD
q

) are called equidistant if the distance from Sj to Dp equals to that from

Sj to Dq and the two segments SjDp and SjDq are symmetric with respect to the phantom

geometry. For example, O(S3
D

S) and O(SsD3
) are equidistant outputs regarding to the

rectangular phantom, while O(S4
D

17) and O(S4
D

2S) are equidistant outputs regarding to

hemispheric phantom. Ideally, equidistant outputs are identical for a homogeneous

medium. The equidistant outputs ofFEML-UR, FEML-UH, FEML-MR and FEML-MH

simulations are observed exactly identical under any mesh here. Thus, the Tx% errors

between the two outputs is exactly zero for any given x% value. Figure 5.4(a) shows the

identity property of equidistant outputs o(S22
D

4S) and O(S22
D

46) from the FEML-MH

simulation under mesh Mo.s[H] with cut 48-32-48(39) to a homogeneous medium. In

contrast, Figure 5.4(b) shows the significant difference of O(S22
D

4S) and O(S22
D

46) curves

corresponding to a heterogeneous medium of a lOmm-size inclusion of absorption

coefficient O.06mm-1 centered at (-lOmm, -34mm, 32mm) with the origin of the

coordinate system at the center of the bottom circle of the hemispheric phantom. The

significant difference in Figure 5.4(b) between the two curves reflects the effect of the

abnormal inclusion. Because the abnormal inclusion has a bigger absorption coefficient,

the corresponding output should have a smaller peak value than that in homogeneous

simulation, which is also confirmed in Figures 5.4(a) and (b). On the other hand,
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because the inclusion is close to detector D45, O(S22
D

45) has smaller peak value than
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Figure 5.4: Equidistant curves ofFEML-MH simulation under mesh Mo.s[H] (S22D4S vs. S22D46)

The Relationship between maxTx%err and Source-detector

Distance

Select a cut 59-10-59(56) and three detectors, DI, D21 and D22, with the source at Sl1,

we calculate the maxTx%err between the corresponding FEML-MH and the FEML-UH

simulation results for h=0.5mm and 0.25mm. It is observed from Figure 5.5 that all the

errors are less than 1%, and when the distance from Sl1 to D1, D21 and D22 increased, the

corresponding error is increased for h=0.5mm or 0.25mm. However, it seems that errors

followed the trend in Figure 5.5, do not exceed 1%. On the other hand, the errors for

h=0.25mm are always smaller than those for h=0.5mm, which are consistent to our

observations in Subsection 5.2.3.
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Figure 5.5: Source-detector distance vs. maxTx%err
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

In this thesis, the FEML-U and FEML-M algorithms are proposed to solve the

diffusion equation by FEM with Lanczos algorithm under uniform-grid and multi-grid

meshes. FEML-UR, FEML-UH, FEML-MR and FEML-MH simulators corresponding

to FEML-U and FEML-M algorithms for organ-size rectangular and hemispheric

phantoms are developed respectively.

As square basis functions are chosen, the state-space system {A, B, C} defined by

(2.20) and (2.24) is symmetric under uniform-grid mesh. As a result, the Lanczos

reduction algorithm is directly applied to project the original system {A, B, C} to an m-

dimension system {A,B,C} by using only two n-dimensional vectors without fully

storing an n-by-m projection matrix. On the other hand, the state-space system {A, B,

C} is asymmetric under a multi-grid mesh. A key similarity transformation defined by

(4.2) and (4.3) is introduced to transform the asymmetric state-space system {A, B, C}

to a symmetric system (4:,B,C}, so that the symmetric state-space system (i,B,C} is

projected to the reduced system {A,B,C} by the Lanczos algorithm. The discrete-time

output of system {A, B, C} is approximated by that of the reduced system {A, B ,C} ,

which is computed by the discrete-time iteration scheme defined in (2.30). The space

and time complexities of both the FEML-U and FEML-M algorithms are

58



O(n+(m+1i+p*m) and O(m*n+K*m*(m+p)+(m+1)3) respectively, and the space and

time complexities of the corresponding FEML-U and FEML-M simulators are

approximated by O(n) and O(m*n) respectively.

A key formula (2.14) to calculate the elements of matrix G is derived. As a result, the

non-zero elements of matrix G under a uniform-grid mesh are given by (2.7), while the

non-zero elements of matrix G under the given multi-grid meshes to the rectangular and

hemispheric phantoms are listed in Tables 4.1 and 4.2.

The FEML-UR, FEML-UH, FEML-MR and FEML-MH simulators are validated. It

has been found that the FEML-UR (FEML-UH) simulator runs more than 50 times

faster than ADI-UR (ADI-UH) simulator. The FEML-MR simulation uses about 20%

time and 15% space of FEML-UR simulation, while FEML-UH simulation use about

75% time and 30% space of the FEML-UH simulation without essentially losing

accuracy. Furthermore, FEML-MR and FEML-MH simulators realize the higher­

resolution simulations under multi-grid mesh MO.l25. In contrast, FEML-UR and FEML­

UH simulations under uniform-grid mesh UO.l25 could not be realized.

6.2 Future Research

At present, the simulation results by the FEML-UH and the FEML-MH simulators

have not been checked against the TRS-H data because stable experimental data are not

yet available. Thus, in the future, the correspondence checkup between simulation

results and TRS data for hemispheric phantom should be done.

The validated FEML-UR, FEML-UH, FEML-MR and FEML-MH simulators with

advantages of reasonable space and time costs can be vital tools for future research. In
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fact, as addressed by Ge & Yun (1999) that our validated simulators are usable

"computed experiments" to replace the costly equipment retooling (which includes all

the necessary design, fabrication, testing and component costs and time) and the time­

consuming runs of physical experiments. The abundance of data from cost-effective runs

of virtual experiments can yield new insights into the interaction and detection of light in

tissues and suggest improved designs for new generations of devices/systems.

Recall that the equidistant outputs of two detectors are different if there IS an

abnormal inclusion closer to one detector. The implication is that this so-called self­

referencing scheme may be applied to explore the inverse problem in the future.
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APPENDIX A: THE ARNOLDI METHOD

Consider A as an n-by-n matrix and assume that a few of its largest and/or smallest

eigenvalues are desired. The Arnoldi method is an orthogonal projection algorithm onto

Krylov subspace Km= span{vpAvp... ,Am-Ivl } for general non-Hermite matrix H

[Golub & Von Loan 1989, Su 1998]. This method leads to very good approximations of

the eigenvalues of a large sparse matrix. The central idea is to compute a sequence of

orthonormal vectors {Vj } with the property that vj solves the problem vT AV = H, The

Arnoldi algorithm is illustrated in pseudo code below.

r = VI; f3 = 1; j = 0

while P < &

hj+l,j = f3;v j + 1 = r j / P;j = j + 1

w = Aq .'r = w
J'

for i = 1 : j

hij = qJ'w;r = r -hijqi

end

P =11 r 112

ijj<n

hj+l,j = f3

end

end

The Arnoldi algorithm described above has the multiplication complexity O(n*m)

[Golub & Von Loan 1989].
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APPENDIX B: DISCRETE-TIME ITERATION

SCHEME

B.I The Discrete-Time Output of a Continuous-Time System

As shown in Grace et. al (1990), the state-space system {A,B,C} with impulse input

u(t)

(BI)
,yet) = A(t)lf/(t) + Bu(t)

t;(t) = C If/ (t)

has the discrete-time states If/(kr) and output t;(kr) as follows:

(B2) If/(kr + r) = Adlf/(kr) + Bdu(kr)
t;(kr+r) =CIf/(kr+r), k = O, .. ·,K -I,

where r is the time step size and

(B3)

are approximated by Pade approximation.

B.2 Computing Ad,Bd by Matrix Exponential

Define

(B4)

(B5)
[AT BT]

=eAr =e 0 0 E R(m+l)x(m+l)
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The Taylor expansion of AE is

(B6)

Define

(B7)

Note that

(B8)

(B9)

-2
- A - A
AE = e L = I(m+l)x(m+l) + AL + 2~ +...

Substituting (B8) and (B9) into (B6) [Franklin et al. 1980], we have

(B10)

Knowing that

(B11)

and comparing (B 11) with formula (BS), we have
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B.3 Parle Approximation of eAL

In Pade approximation, rational functions Rp(OJ) is defined as

(B13) R (OJ) _ _N----'p_(_OJ_)
p - Np(-OJ) ,

I p k. p+l-k
where N p(OJ) = ckOJ wIth Co = 1, ck = Ck_1 [Sadje 1998] is applied

k=O (2p+l-k)k

such that Rp (4L ) is an approximation of e AL • The practical formula to approximate e AL

is given below [Golub & Van Loan 1989].

where s is selected such that II r s AL IL"s 1/2. An error analysis shows that if

where

2 2p-3 {0.34 xl 0-
15

(p =6)
(BI5) lit-II", S (p!) (!) ~ 0.l1xl0-18 (p=7)

II AL II", (2p)!(2p+l)! 2 0.27xl0-22 (p = 8)

Thus, a value of p=6 is generally satisfactory to have an accurate approximation to eAL

in the order of to-15
.
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B.4 MATLAB Source Code of Pade Approximation

% Roger B. Sidje (rbs@maths.uq.edu.au)
% EXPOK1T: Software Package for Computing Matrix Exponentials.
% ACM - Transactions On Mathematical Software, 24(1) :130-156, 1998

function E = padm( A, p )

if nargin == 1, P = 6; end;
[n, n] = size (A) ;
% Pade coefficients (l-based instead of O-based as in the literature)
c(l) = 1;
for k = l:p

c(k+1) = c(k)*((p+1-k)/(k*(2*p+1-k)));
end;

% Scaling
s = norm(A, 'inf');
if s > 0.5,

s = max(0,fix(log(s)/log(2))+2);
A = 2"(-s)*A;

end;

% Horner evaluation of the irreducible fraction (see ref. above)
I = eye (n) ;

A2 = A*A;
Q = c (p+l) *1;
P = c(p)*1;
odd = 1;
for k = p-1:-1:1,

if odd == 1,
Q = Q*A2 + c(k)*1;

else
P = P*A2 + c(k)*1;

end;
odd = l-odd;

end;
if odd == 1

Q Q*A;
Q = Q - P;
E = -(I + 2*(Q\P));

else
P P*A; P;
Q = Q - P;Q;
E = I + 2*(Q\P);

end;

% Squaring
for k = l:s,

E = E*E;
end;
E;
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APPENDIX C: THE CENTER COORDINATES

OF SOCKETS

The center coordinates of the 8 source and 8 detector sockets for the given rectangular

phantom are listed in Table C.I, where the origin of the coordinate system is set at the

left-down-front corner ofthe rectangular phantom.

Source Number Coordinate (mm) Detector Number Coordinate (mm)

1 (90, 15.5,0) 1 (90, 15.5,0)

2 (90, 30.5, 0) 2 (90,30.5,0)

3 (90,45.5,0) 3 (90,45.5,0)

4 (90, 60.5, 0) 4 (90, 60.5, 0)

5 (90,75.5,0) 5 (90,75.5,0)

6 (90,90.5,0) 6 (90, 90.5, 0)

7 (90, 105.5,0) 7 (90, 105.5,0)

8 (90, 120.5, 0) 8 (90, 120.5, 0)

Table C.l Center coordinates of 16 sockets for the rectangular phantom

The center coordinates of the 46 sockets of the given hemispheric phantom are listed

in Table C.2, where the origin of the coordinate system is set at the center ofthe bottom

circle of the hemispheric phantom.
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Socket Number Coordinate (mm) Socket Number Coordinate (mm)

1 (0,0,64) 24 (-41.79, 13.58,46.53)

2 (33.65, -46.31, 28.62) 25 (-12.91, -17.77, 60.11)

3 (54.44, 17.69,28.62) 26 (-25.83,-35.55,46.53)

4 (0, 57.24, 28.62) 27 (25.83, -57.52, 10.98)

5 (-54.44, 17.69,28.62) 28 (46.72, -42.34,10.98)

6 (-33.65, -46.31, 28.62) 29 (62.68, 6.79,10.98)

7 (36.95, -12.01, 50.86) 30 (54.70,31.35,10.98)

8 (22.84, 31.43, 50.86) 31 (12.91, 61.71 10.98)

9 (-22.84, 31.43, 50.86) 32 (-12.91, 61.71, 10.98)

10 (-36.95, -12.01, 50.86) 33 (-54.70, 31.35, 10.98)

11 (0, -38.85, 50.86) 34 (-62.68, 6.79,10.98)

12 (59.79, -19.43, 12.01) 35 (-46.72,-42.34,10.98)

13 (36.95, 50.86,12.01) 36 (-25.83, -57.52, 10.98)

14 (-36.95,50.86,12.01) 37 (46.72, -28.76, 32.95)

15 (-59.79, -19.43,12.01) 38 (54.70, -4.20, 32.95)

16 (0, -62.86, 12.01) 39 (41.79,35.55,32.95)

17 (12.91, -17.77, 60.11) 40 (20.89, 50.73, 32.95)

18 (25.83, -35.55,46.53) 41 (-20.89,50.73,32.95)

19 (20.89, 6.79,60.11) 42 (-41.79,35.55,32.95)

20 (41.79, 13.58,46.53) 43 (-54.70, -4.20, 32.95)

21 (0,21.79,60.11) 44 (-46.72, -28.76,32.95)

22 (0,43.94, 46.53) 45 (-12.91,-53.32,32.95)

23 (-20.89, 6.79,60.11) 46 (12.91,-53.32,32.95)

Table C.2 Center coordinates of 46 sockets for the hemispheric phantom
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