LARGE-SCALE OPTIMIZATION OF ELECTRIC VEHICLES USING
GRAPHICS PROCESSING UNITS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘l AT M ANOA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN
MECHANICAL ENGINEERING

MAY 2012

By
\Volker Schwarzer

Dissertation Committee:

Reza Ghorbani, Chairperson
Richard Rocheleau
Weilin Qu
James Griffin
Zachary Trimble

To my family.

Acknowledgments

This research project would not have been possible withmustpport of many people.
First and foremost, | would like to express my thanks and egiption to my dissertation advisor,
Dr. Reza Ghorbani, who was abundantly helpful and offeredlirable assistance, support and
guidance.

My deepest gratitude goes to my second advisor and comnmmtégeber, Dr. Richard
Rocheleau, for giving me the opportunity and support to g doctoral degree at the University
of Hawai‘i at M'anoa. His broad knowledge of the field and staralyses were indispensable
contributions to my research.

I would also like to express my sincere appreciation to thenbers of my supervisory
committee, Dr. Weilin Qu, Dr. Zachary Trimble and Dr. Jametdfia for their time, effort and
valuable suggestions.

Special thanks goes to Dr. David Garmire for providing astedHOSC'’s GPU cluster. |
am also grateful to my fellow student Stephan Fabel for stipygpme with his great programming
knowledge and computer skills.

Finally, | would like to thank my labmate and friend, Tyler dmbrue, for proofraeding

this dissertation.

Abstract

Large-scale design optimizations of electric vehiclesetHasen limited in the past due to a
lack of computational power. In order to fully utilize thetpatial of EV technology, novel optimiza-
tion methods need to be developed. This dissertation igpates new opportunities for EV system
optimization evolving from recent advancements in paraltecessing hardware. The power train
and control system of a fuel cell hybrid electric vehicle aptimized on the parallel architecture
of graphics processing units. A two-level optimization hwetology is developed specifically for
peak performance on GPU architectures. Computationatdsipefactors of more than 2,000x and
70,000x are achieved over a sequential C/C++ implementaitia the Matlab/Simulink environ-
ment, respectively. The significant gain in computationespenables incorporation of expensive
lifetime effects, such as battery degradation, as well espeter uncertainties, such as variations in
driving patterns. To achieve this, the entire lifetime othicle is simulated during the optimization.
Therefore, a novel methodology is proposed to generatéastic drive cycles based on applica-
tion and driver-specific driving profiles. Results show ttie generated drive cycles accurately
represent driving profiles with respect to the frequencyespespeed distribution, acceleration dis-
tribution, and load characteristics of their correspogdiity cycles. Overall, the novel approach
broadens the scope of conventional EV optimization metlgiles and therefore increases the sig-
nificance of results in terms of quality and accuracy. Segitinis opportunity, a variety of studies
are performed that reveal significant fuel efficiency galmeugh driver and application-specific

lifetime optimizations.

Table of Contents

Acknowledgments e iii
Abstract e e e e iv
Listof Tables e e Vii
Listof Figures e e iX
Listof Symbols e Xiii
List of Abbreviations e e Xvi
1 Introduction e e 1

2

1.1 Problem Description and Scope of the Research 1

1.2 Dissertation Outline 10
Vehicle Model e e 12
2.1 \Vehicle DynamicsModel o 13
2.1.1 Component Weight Functions 14
2.2 FuelCellStack Model 15
2.2.1 CellVoltage Model 16
222 StackModel 18
2.3 BatteryModel e 19
2.3.1 BatteryDegradation a. 20
2.4 Motor Efficiency 21
2.5 Energy Management 22
2.6 Programming Environments e 24
2.6.1 CUDA e 24
2.6.2 CICH+. . . e 25
2.6.3 Matlab/Simulink 26
Drive Cycle Generation i e e e e 27
3.1 Modular stochastic drive cycle generation 29
3.1.1 DriveCycle e 29
3.1.2 DrivingScenario 30
3.1.3 DrivingPulse 13
3.1.4 PulseModules 32
3.1.5 Probabilty Functions 0 0. 35
3.2 ToolValidation 37
Large-Scale Optimizationon GPUs 0. ... 41
4.1 Optimization in Engineering Design e 41
4.2 FCHEV Optimization Problem 43
4.3 Optimization with Genetic Algorithms 45

wOw>

4.3.1 Population Initialization e 46

4.3.2 Selection a7
4.3.3 CroSSOVEI v i i 49
4.3.4 Mutation e e 50
435 Termination 15
4.3.6 Convergence Testing o o it 52
4.4 FCHEV Optimization Methodology «.... 57
4.4.1 Cardinality of the Search Space 60
45 GPUlImplementation 61
Performance Evaluation e 68
5.1 Hardware Configuration 68
5.2 Algorithm Performance 69
5.21 InnerLoop GA 70
522 OuterLoop GA e e 71
5.2.3 OverallPerformance 74
5.2.4 SectionFindings e 75
5.3 Hardware Benchmarking e 76
5.3.1 Computing Architecture 76
5.3.2 Devicearchitecture e 80
Optimization Results e 83
6.1 DCGT-Based Optimization 83
6.2 Design Sensitivity Towards Peak Loads 87
6.3 Application and Driver-Specific Vehicle Design 90
6.3.1 Optimization efficiency e 94
6.4 Impact of Battery Degradation e, 97
6.4.1 Case 1: Different lifetimes, similar degradatioresat. 97
6.4.2 Case 2: Equivalent lifetimes, different degradatetes 98
Conclusion e e 100
7.1 SUMMANY . . . o o e e e e e e e e e 010
7.2 Contributions 103
7.3 Future Work 104
FCHEV Model Parameter e e e 107
Inner Algorithm e 108
Outer Algorithm L e 110
ibliography e 113

vi

Table

2.1
2.2

3.1

3.2

4.1

5.1
52

5.3

54

6.1

6.2

6.3

6.4

6.5

List of Tables

Page
Specifications of the FCHEV systemmodel 13
Battery Parameters 20
Definition of the terminologies used in this study andralative terminologies used

inthe literature. e 29
DCGT key parameters and their notations. DC: Drive Gy Driving Scenario,
VN: Velocity NOISe. 30

Functional constraints of the FCHEVmodel 45

Three different GPU architectures used for code arsafysil benchmarking 69
Inner loop GA: Average number of iterations until cogerce for different popu-

lation sizes L 70
Outer loop GA: Average number of iterations until cogegrce for different popu-

lation sizesn/ais used when no convergence isachieved. 72
Speedup comparison matrix for 100,000 performed FCHEMIlations. Speedup

factor is obtained as column value divided by rowvalue. 79

Results of the design optimization for cases 1-3 andhgesiuel consumption when

the obtained results are tested for the three differentdetsving data: ((a) 10h of
recorded real-world driving data, (b) 10h of DCGT generatdde cycles, (c) one
representative cycle created from (a) according to Austal.€38]) 84
Optimal design, fuel consumption, and improvement @ é@nsumption for cases

1-6 of the sensitivity study. e 89
Optimal component sizing and fuel consumption for vasidriving profiles and
levels of driver aggressiveness e e 92
Fuel efficiency matrix for the designs of Table 6.3 te$ted different driving pro-

files with 3 different levels of aggressiveness. The first lof each entry is the
average fuel consumption i#f-, the second line is the difference in fuel consump-
tion relative to the optimal design. If a tested design cafuléll the demand of the
driving profile, its entry issetto“n/a”. L 96
Optimal component sizing, lifetime degradation and-aye fuel consumption for
curves 1-5. . . L L e e 98

Vii

6.6 Optimal component sizing, lifetime degradation andaye fuel consumption for
CUrVes 1-4. e e

viii

Figure

1.1
1.2
1.3

1.4

2.1

2.2
2.3
24
2.5

2.6

2.7

3.1
3.2

3.3

3.4

List of Figures

Page
A schemaitic classification of mathematical optimizanieethods 5
Schematic diagram of a typical iterative and meta-#&aroptimization method . . 5
Development of the processor clock speed since 1968e 2003, the clock speed
has not increased due to thermodynamic limitations. 6
Dissertation Qutline e 11
System architecture and EMS setup of FCHEV model cangisf fuel cell stack

and battery pack as energy buffer. The model incorporatesftacts of regenerative

brake energy recovery and battery degradation. 12
Hypothetical component weight functions of motor, feell system, and battery pack. 15
Block diagram ofafuelcell., . 15

Hypothetical life-cycle curve of the lithium-ion batgepack for full charging cycles. 20
3D Lookup table of the motor efficiency as a function of imaxn rated power and

power demand as a percentage of maximum rated load. 21
Energy Management Strategy for the FCHEV. The EMC I(gﬂahe SOC and
power demand according to a precalculated driving scenario. 22
Simulink block diagram of the FCHEVmodel 26
Graphical illustration of the 4-level nested modulacbncept of the DCGT 31
Partitioning of an urban driving pulse into four pulsedules (acceleration phase,
cruising period and deceleration phase) aa. ... 32

DCGT frequency decomposition methodology applied tardy data recorded on
Interstate Highway H-1 in Hawaii, USA: (a) recorded datastdal line) and average
speed of recorded data (solid line), (b) velocity noise @efias speed over time
minus average speed (dashed line) and its low frequency idais@lid line), (c)
velocity noise minus low frequency domain (dashed line)itswhedium frequency
domain for 100s intervals (solid line), (d) velocity noiseénos low and medium
frequency domain (dashed line) and its high frequency dorfai 100s intervals
(dashed line), (e) recorded data (dashed line) and the slowofedium and high
frequency domains plus average speed (solidline). 33
(a) Summation of Gaussian distributions fitted to a bisto of 100 urban accelera-
tions, (b) cumulative probability distribution deriveai the Gaussian distribution
and adapted for a uniform random number generator 36

3.5 Recorded (left column) and DCGT generated (right colutiniming pulses for 5 the
different driving scenarios 38
3.6 A speed-acceleration frequency distribution (SAFB)dgram and contour plot for
10h of recorded drive cycle data vs. 10h of DCGT generatea adsrcle data. The
data excludes the zero-acceleration/zero-speed bin temirgisual distortion due
to its dominance. (a) 10h of real drive cycle data recordaterCity and County of
Honolulu, USA, (b) 10h of DCGT generated drive cycle dateebasn a stochastic
driving profile extrapolated from recorded data in (a). . 39
3.7 A power - delta power frequency distribution (PdPFD)dgsam and contour plot
for a duty cycle profile generated from 10h of recorded driyele data vs. 10h
of DCGT generated drive cycle data. The data excludes tleEerer/zero-delta-
power bin to prevent visual distortion due to its dominar{e¢ Estimated power fre-
guency distribution of 10h of real drive cycle data recordethe City and County
of Honolulu, USA, (b) Estimated power frequency distribatiof 10h of DCGT

generated drive cycle data based on a stochastic drivirfdepro. 40
4.1 Operators of the genetic algorithm 46
4.2 Rosenbrock’s function for n=2, -2.048 x; < 2.048. The global minimum is

located atf(x; = 1) = 0. 53

4.3 100 GA convergence tests and average convergence gpriocesgn. 4.3.5 with
n=3, -2.048< x; < 2.048 and random, uniformly distributed initial populaiso

Population size=200, CMR=0.9, PMR=0.4. b3
4.4 Easom function for -108 z; < 100. The global minimum is Iocated ﬁ(ﬂ pz)
— e 54

4.5 100 GA convergence tests and average convergence griocesgn. 4.3.6 -100
< z; < 100 and random, uniformly distributed initial population®opulation

size=200, CMR=0.9, PMR=0.4. e 54
4.6 Rastrigin’s function for n=2, -5.12 x; < 5.12. For A=10, the global minimum is
located atf(x; =0) =0. 55

4.7 100 GA convergence tests and average convergence pfoc&gn. 4.3.7 with n=3,
-5.12< z; <5.12 and random, uniformly distributed initial populatiorPopulation
size=200, CMR=0.9, PMR=0.4. 55

4.8 Langermann function for n=2, m=&;; = [3,5,2,1,7;5,2,1,4,9],0< z; <10. . 56

4.9 100 GA convergence tests and average convergence griocesgn. 4.3.8 with
n=3, 0< z; < 10 and random, uniformly distributed initial populatiorBopula-
tion size=200, CMR=0.9, PMR=0.4;; = [3,5,2,1,7;5,2,1,4,9;1,2,5,2, 3] and
global minimum atf(2.793,1.597,5.307) = —4.156. 56

4.10 Two-level optimization framework using two genetigaithms: The outer loop
finds the ideal component design configuratidior 100,000km of drive cycle data;
the inner loop determines an ideal energy management saetigach drive cycle

simulated for each population member. v ... B9
4.11 The CUDA programming model consisting of grlds bloahd threads 61
4.12 2-level optimization methodology implemented on alsirdevice GPU. Each sub-

optimization is performed in separate blocks, which erabtalability. 63

4.13 2-level optimization methodology implemented on atmBPU architecture. Each
sub-optimization is performed in separate blocks. Thekdare evenly split into

grids, which are executed on multiple devices inparallel. 64
4.14 Thread synchronization for the kernel withinoneblock 65
4.15 Parallel odd-even transposition sort implementatiothe GPU architecture 66

5.1 Benchmark drive cycle for population size optimizatafrthe GAs. The percent
composition in terms of driving scenarios is 9% SNG, 38% URB% SUB, 11%
RURand 25% HIG. e e e e 70

5.2 Estimation of the optimal population size for the inreayd GA on a GPU architecture 71

5.3 Outer loop GA: Kernel execution time versus populatiae @and effect of SM
OCCUPANCY. .+ .« v v v v e e e e e e e e e e e e e e e e e e 72

5.4 Estimation of the optimal population size for the outerd GA on a 2xTesla M2050
GPU architecture 37

5.5 Overall optimization time for a vehicle lifetime of 2000km on the consumer-level
GPU architecture and the GPU cluster. 74

5.6 Estimated number of kernel executions and simulatioiopeance for various pop-
ulation sizes. L 57

5.7 Benchmarking of 3 CPU-based FCHEV implementations @d+3/and Simulink,
and 6 CUDA-based simulations on various GPU architectufesthe GPU archi-
tectures, the number of threads in a block is set to 200 if tieber of simulations
islargerthanorequalto 200. e 77

5.8 Benchmarking of 6 CUDA-based GPU environments for 1,000,000 executed
simulations. The number of threads in a block is set to 200. C. 78

5.9 Computation times for different degrees of utilizatafrthe GPU archltecture The
FCHEYV simulation for the benchmarking drive cycle is used asference kernel. 80

5.10 Average computation time per kernel for different degrof utilization of the GPU
architecture. The FCHEV simulation for the benchmarkingedcycle is used as a
reference kernel. 82

6.1 Case 3 optimization results tested with 20,000s of dmmbdrive cycle data. (a)
Recorded drive cycle displayed as speed vs time. (b) Dutle ayfcthe proposed
design. The power demand exceeds the maximum power of tippged motor at
several occasions. (c) Battery state-of-charge (d) Fulesteek power demand. . . 85

6.2 Case 2 (DCGT) optimization results tested with 20,000secorded drive cycle
data. (a) Recorded drive cycle displayed as speed vs timeDuyty cycle of the
proposed design. The power demand does not exceed the rmaxpawier of the
proposed motor. (c) Battery state-of-charge (d) Fuel ¢atllspower demand. . . . 86

6.3 Sensitivity analysis for 6 different power peak chagestics. The magnitude of
the power peak is determined as the difference betweenge/emver demand and

maximum powerdemand. L 8 8
6.4 Probability function for acceleration in an urban eomiment for three different

levels of aggressiveness (low, medium, and high) 91
6.5 Sensitivity analysis for 5 different degradation cervéth similar |n|t|al degrada-

tion rates but different lifetimes. L L. 97

Xi

6.6 Sensitivity analysis for 4 different degradation cgrweth different initial degrada-

tion rates but equivalent lifetimes. Lo 99
B.1 Convergence study of the inner GA with population size 30. 108
B.2 Convergence study of the inner GA with population size50. 108
B.3 Convergence study of the inner GA with population siz@.10. 109
B.4 Convergence study of the inner GA with population siz@.20. 109
C.1 Convergence study of the inner GA with population size 20. 110
C.2 Convergence study of the inner GA with population size 30. 110
C.3 Convergence study of the inner GA with population size 50. 111
C.4 Convergence study of the inner GA with population size 80. 111
C.5 Convergence study of the inner GA with population siz¢.10. 111
C.6 Convergence study of the inner GA with population siz¢.20. 112
C.7 Convergence study of the inner GA with population siz@.40. 112
C.8 Convergence study of the inner GA with population siz@¢.80. 112

Xii

List of Symbols

Aps Amplitude

Apront Front area

E |deal electrode potential

E, Battery constant voltage

Ebat,,.. Maximum energy content of battery
F,.. Aerodynamic drag

Fy,q¢ Rolling resistance

F,,q, Inertia force for acceleration

F,.;; Projected normal force

F;:1 Total force on vehicle

G Gibbs free energy

Iy, Fuel cell current

1,; Stack current

K Polarization constant

P(z) Cumulative probability distribution
P;{n Discharging power demand to battery pack
P,; Power demand to battery pack

P, Power demand to fuel cell stack
P,,; Rated motor power

() Battery capacity

Q. Actual battery charge

R Gas constant

R;,: Internal Resistance

Sy Standard molar entropy

Ty Standard temperature

W, Maximum obtainable work from an electrochemical reaction

Xiii

a Vehicle acceleration

cq Drag coefficient

d;; Lifetime mileage of a vehicle

er f Gauss error function

f(x) Fitness function

fi Fugacity of species i

g Gravitational acceleration

¢ Number of population members of outer loop
1* Filtered current

1; Limiting current density

1y Battery current

4 Number of population members of inner loop
k Number of drive cycles in the lifetime of the vehicle
m Vehicle mass

mp, Overall hydrogen consumption

my: Weight of battery pack

mpy

H Hydrogen consumption for one drive cycle

m . Weight of fuel cell system
my,: Weight of motor

p Component design vector

q EMC parameter design vector
s Scaling coefficient

tpc Duration of drive cycle

tpp Duration of driving pulse
tm Thickness of the electrolyte membrane
v Velocity of the vehicle

vaet Activation Loss

Veone CONCENtration Loss

Vorm OhMic Loss

vg Overall stack voltage

vg Overall stack voltage

x Design vector

AG° Gibbs free energy change at standard pressure

Xiv

AP Maximum power intensity in lifetime of vehicle
®(x) Cumulative distribution function
o1 EMC adjustment parameter

a9 EMC adjustment parameter

m g, Hydrogen consumption rate

~ EMC adjustment parameter

A\m Water content of membrane

S Search Space

u Tire rolling resistance

wrg Frequency

Pair DENSItY Of air

om Membrane conductivity

6 Road angle

prs Phase

XV

List of Abbreviations

ACO Ant Colony Optimization

API Application Programming Interface
BEV Battery Electric Vehicle

CMR Candidate Mutation Rate
CUDA Compute Unified Device Architecture

DC Drive Cycle

DCGT Drive Cycle Generation Tool
DOH Degree of Hyridization

DP Driving Pulse

DS Driving Scenarios

DyP Dynamic Programming

ECMS Equivalent Consumption minimization strategy
EM Energy Management

EMC Energy Management Controller

EMS Energy Management Strategy

EV Electric Vehicle

FCHEV Fuel Cell Hybrid Electric Vehicle

FPSFitness Proportionate Selection

GA Genetic Algorithm

GLSL OpenGL Shading Language

GPGPGPUGenetic Programming on General Purpose Graphics Progdadsits
GPGPU General Purpose Computing on Graphics Processing Units

GPU Graphics Processing Unit

XVi

HEV Hybrid Electric Vehicle

HF High frequency

HIG Highway

HLSL High-Level Shading Language

IC Internal Combustion

ICE Internal Combustion Engine

LF Low frequency

MF Medium frequency

NLLSR Non-linear least square regression

ODE Ordinary Differential Equation
OETS Odd-Even Tranposition Sort

PdPFD Power - delta Power Frequency Distribution
PEMFC Proton Exchange Membrane Fuel Cell
PHEV Plug-in Hybrid Electric Vehicle

PMR Parameter Mutation Rate

RUR Rural

SA Simulated Annealing

SAFD Speed-Acceleration Frequency Distribution
SDP Stochastic Dynamic Programming

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SNG Stop-And-Go

SOC State of Charge

SQP Sequential Quadratic Programming

SUB Suburban

UAV Unmanned Aerial Vehicle
URB Urban

XVii

Chapter 1

Introduction

1.1 Problem Description and Scope of the Research

Motivation

Considering the rising cost of gasoline, political depewiles caused by resource imports and
tougher fuel-efficiency standards, electric vehicles (Easd hybrid electric vehicles (HEVS) ap-
pear to be a worthwhile alternative to internal combusti@) power trains. This is especially true
when the vehicles are powered by low and zero-emission r@nlevenergy sources. As aresult, the
transition from internal combustion engine (ICE) cars tosiE¥becoming desirable for consumers.
The market demand for EVs is predicted to significantly inseein the next decade. However,
only recently have car manufacturers started to push E\ésth@ consumer automotive market.
While ICE technology has enjoyed the benefits of over 130syefresearch and the growth of a
technology-specific infrastructure, modern EVs are famfitmeing technologically matured. These
shortfalls need to be made up in order to be competitive iratitemotive market as EVs are ex-
pected to fulfill similar technical standards and systemattaristics that are found in ICE vehicles.
EVs have the potential to be very energy efficient due to tteréonnection of power sources with
different energetic properties. Most EV concepts such dmithyelectric vehicles, plug-in hybrid
electric vehicles (PHEV) or fuel cell hybrid electric veladis (FCHEV) are characterized by a high
degree of system complexity when compared with converiti@ta power trains. The complexity
results from the combination of different power sourcesciical and mechanical components and
a sophisticated energy management strategy (EMS). Additio EV power sources suffer from
degradation. The power output capabilities of batteries farl cells change over the course of
the vehicle’s lifetime depending on their utilization. Maower, varying degradation rates of power
sources might cause a continuous shift of the degree of dighation (DOH). This transient sys-

Chapter 1 Introduction 2

tem state needs to be considered in the conceptual desige phthe vehicle. In short, EV power
train designs are significantly different from conventiol@@E designs. Traditional ICE design op-
timization methodologies will therefore not carry over t&' Bpplications without modifications.
Consequently, there is a need for novel optimization meitoagiles specifically tailored to the de-
mands of EVs.

Previous Work concerning Optimization of Energy Managemen Controller

A large number of studies dealing with EV optimization hawet published, which mostly
focus on energy management optimization. State-of-theeantrol strategies for HEVs were clas-
sified and reviewed by Salmasi [19]. Won and Langari [20] istich fuzzy logic-based control
approach for hybrid vehicles. The proposed control system evaluated under the FTPA&ban
drive cycle. Johannesson and Egardt [21] employed dynamigramming (DyP) methodologies
to determine the optimal control trajectories for HEVs, @htan then be used as a benchmark to
design control rules. Linear approximations of the valugcfion and model approximations were
utilized to reduce the computation time. Lin et al. [24] apglthe DyP technique to solve the opti-
mal power management problem of a hybrid electric truck byimizing a cost function over one
drive cycle. Simplifications and look-up tables were useadtieve a reasonable computation time.
Furthermore, Lin et al. [25] investigated using stochad}inamic programming (SDP) to find the
optimal control strategy for HEVs. The power demand fromdhger was modeled as a random
Markov process. A limited number of state variables was kegirder to minimize computation
time. Rodatz et al. [22] determined the real-time optimal@odistribution of a fuel cell powered
vehicle using the equivalent consumption minimizatiomatsygy (ECMS). The proposed method-
ology was tested with the NECFCTulupe et al. [23] benchmarked a ECMS power management

against globally optimal dynamic programming.

Previous Work concerning Optimization of Component Design

Various approaches have also been proposed for compongighdptimization. Fellini et al.
[28] provide an overview of various software design envin@mts and optimization algorithms
for HEV design optimization. Kim and Peng [29] developed enbined power management and
design optimization framework and tested it for 3 differenive cycles. The vehicle simulation
was simplified to make it suitable for the computationallpexsive optimization process. Assanis

1TheFederalT estProcedure FTP75 is a drive cycle established by the Uniteig SEnvironmental Protection Agency
for emission testing.
2TheNew EuropearDriving Cycle (NEDC) was designed to represent typical Europeardeityng.

Chapter 1 Introduction 3

et al. [30] optimized the fuel economy of an HEV in the ADVIS@Rvironment using sequential
guadratic programming (SQP). The crucial relationshipveen accuracy and computation time
is discussed in this paper. Gao and Porandia [32] compar&EOT, a genetic algorithm and
simulated annealing for optimizing a parallel hybrid efiecpower train design using a combined
FTP-75/HWFEP drive cycle. Optimization times of more than 100 hours afored caused
by the slow evaluation speed of PSAZhang et al. [31] proposed a multi-objective parameter
optimization for a series hybrid electric vehicle and tdstevith a combined UDDS/HWFET drive
cycle. Liu et al. [34] developed a hybrid genetic algorittondptimal component sizing and studied
its performance for the City-Hwy test procedure in the AD@R® environment. Allison et al.
[26, 27, 4] studied the effect of optimal partitioning anctdeposition-based design optimization
for complex engineering systems, such as HEVs. The goalash@ve faster optimization times

while maintaining similar accuracy.

Increasing Computation Speed

Looking at the above references, it becomes clear that m@sbEimization engineers face
similar challenges, which are very slow overall computationes and the resulting need for sim-
plifications. Software simulation is an integral part ofteys design optimization. Physical sim-
ulation of EV power trains is computationally expensive. eTdomputation time for large-scale
design optimizations increases roughly proportionalltheonumber of simulations performed. For
multi-parameter optimizations the computation time glyiddecomes infeasible since the number
of required simulations grows exponentially with the numbg state variables. The following
measurements are identified from the cited references abosolutions to reduce optimization

times:
1. Simplifying the objective function (system simulation)

e Minimizing the number of state variables reduces the dinosadity of the simulation.

e Replacing computationally expensive operations with agipnation functions or look-
up tables saves processing time by substituting compleimarcomputations with sim-

pler (array indexing) operations.

3The Highway Fuel Economy Cycle (HWFET) is a chassis dynanendtive cycle developed by the United States
Environmental Protection Agency for the determinationusflfeconomy of light duty vehicles.

4PSAT is aPowertrainSystemAnalysisToolkit developed by the Argonnen National Laboratory.

5The Urban DynamometeiDriving Schedule is a dynamometer test on fuel economy that repseségtdriving
conditions. It was developed by the United States Envirartalé>rotection Agency.

SADVISOR is a Matlab-baseAddvancedv ehicleSimulator developed by the National Renewable Energy Laboratory.

Chapter 1 Introduction 4

¢ Reducing the order of numerical ordinary differential etpra(ODE) solvers decreases
the computation time.

e Increasing the simulation stepsize proportionally deswedhe number of processor op-

erations, if the system is modeled in a discrete fashion.

The trade-off for all of the above measurements is a lossairacy.
2. Simplifying the objective:

¢ In case of a large input dataset, smaller representativetsngan be designed based
on the stochastic characteristics of the original set. kangple, one average-assumed

drive cycle can be employed instead of an entire lifetimeingi profile.

e For multi-objective optimization, reducing the number bjaxtives exponentially de-

creases the complexity of the optimization problem.

The trade-off for both measurements is the inability to aotdor all stochastic eventualities

(lifetime effects, uncertainties), and the resulting lokaccuracy and result variety.

3. Selecting the most suitable optimization algorithms enplementing a task-specific opti-

mization framework:

e Determining the optimal parameter setup for each specifiblpm improves the effi-

ciency of the optimization algorithm.

e System decomposition and partitioning are efficient toolsrprove the optimization

time.

Besides an increased implementation effort, other trdfdefar the proposed measurements

are negligible.

There are two ways to improve the speed of a computer-badedipgtion process: Im-
proving the software or accelerating the computation hardw We have seen that a variety of
options have been proposed in the literature for improvimggutation times in terms of software
modifications. On the other hand, very little has been regoon the effect of computation hard-
ware on the optimization time. The main scope of this dissert is to investigate the potential

benefit of employing modern computation hardware for laagale design optimizations.

Chapter 1 Introduction 5

Mathematical
Optimization

Methods
Analytical Optimization Numerical Optimization
Finitely terminating Iterative (sequential) Metaheuristic
algorithms algorithms algorithms

Figure 1.1. A schematic classification of mathematicalrojztion methods

es
Initial Condition Fitness Function Convergence Criteria —}y
‘L =
Optimization Algorithm |«
(a) lterative optimization routine
Candidate 1
))) . |yes
Candidate 2 Fitness Function Convergence Criteria |—>

no

Candidate n

i Initial Candidatesé

Optimization Algorithm

(b) Meta-heuristic optimization routine

Figure 1.2. Schematic diagram of a typical iterative andaafeuristic optimization method

Sequential versus Parallel Computing for Optimization

To understand the importance of computation hardware dmggtion algorithms, it is neces-
sary to look at how different algorithms utilize the hardeuafFig 1.1 illustrates a schematic classifi-
cation of mathematical optimization methods that can bel@yegd in engineering optimization. On
the top level, there are derivative-based analytical &lyois and numerical algorithms. The latter
are traditionally used for non-linear problems that aredomplex to determine an analytical solu-
tion. Numerical optimization is classified infinitely terminating algorithmgterative or sequential
algorithmsandmeta-heuristic algorithmsA typical example of finitely terminating algorithms is
the simplex algorithrfY6]. Examples of iterative algorithms alewton’s methodi78], sequential
guadratic programming79], andgradient descenfi77]. Finally, examples of meta-heuristic algo-

Chapter 1 Introduction 6

10,000 o
1,000 —

100

Clock Speed [MHZz]

T T T T T T T T T T T T T T T T T T
1970 1980 1990 2000 2010
Year

Figure 1.3. Development of the processor clock speed si@68.1Since 2003, the clock speed has
not increased due to thermodynamic limitations.

rithms aregenetic algorithms (GA9B9, 70, 13], andsimulated annealing (SAY1, 72, 73]ant
colony optimization (ACOJ74, 75]. Most iterative algorithms are comparatively e&symple-
ment and guarantee at least local convergence. The imptatisenof meta-heuristic algorithms is
somewhat more challenging. In most cases, neither globaloeal convergence can be guaran-
teed. Fig. 1.2(a) illustrates the general principle ofatime optimization routines. The inherently
serial properties of the process are recognizable. Eachtagtion depends on the results of the
previous iteration until convergence is achieved. Mostaaeturistic algorithm have a similar outer
setup. However, the key difference is that meta-heuridgordhms are based on a set of pos-
sible solution candidates while iterative algorithms aperwith just one candidate (Fig. 1.2(b)).
The computationally expensive evaluation of the candislditmess can be parallelized for meta-
heuristic algorithms under normal circumstances. Funtloee, it is possible to program certain
operations of meta-heuristic optimization routines irgfiat, such as parameter sorting.

Typically, design engineers have limited access to supgpabers and large-scale CPU
clusters. In addition, parallel implementations of systandels and optimization routines are sig-
nificantly more challenging and time-consuming than setigeimplementations. As a conse-
guence, most optimization algorithms used in engineeriggjgth are inherently sequential or are
meta-heuristc algorithms implemented in a serial fashiblowever, inherently sequential opti-
mization algorithms are directly dependent on the clocledpef the CPU since they are single-
threaded. According to Moore’s Law, the number of transgstm integrated circuits doubles every
18-24months [68]. In the past, Moore’s Law had been linkethéoclock speed of CPUs. How-
ever, the clock speed of CPUs has not been notably increases 2003 due to thermodynamic

Chapter 1 Introduction 7

limitations. The development of clock speed since 1969listilated in Fig. 1.3. Nevertheless,
Moore’s Law is still valid as the transistor rate is still irasing through the integration of multi-
ple computation cores into a single processing unit. As aegnence of this development, modern
computation units will not become significantly faster ia thture, but instead will feature increased
multi-threading capabilities. Therefore, inherently weatial optimization algorithms will not ben-
efit from future improvements in computation hardware, itt,fthey have already peaked in terms
of hardware acceleration. On the other hand, meta-hausstirch algorithms are parallelizable
for the most part, allowing them to take full advantage of tirthreaded hardware. Optimization
engineers that adapt to this development will benefit frorh lvastically reduced computation
times and the ability to solve optimization problems foumdvously infeasible on conventional

architectures.

Potential of Graphics Processing Units

In recent years, the parallel computing architecture gblgi@processing units (GPU) has evolved
more significantly than any other parallel processing &chire, such as modern multi-core CPUs.
GPUs have become increasingly parallel to accomplish adeb8D graphic rendering techniques
for modern gaming software. In their beginning, GPUs welg programmable with special graph-
ics application programming interfaces (APIs). With thee®BL’ API and Microsoft's Direct®
AP, flexible higher level shader programming was made ptsthrough the High-Level Shad-
ing Language (HLSL) and the OpenGL Shading Language (GL®kpectively [82]. Shaders are
software instructions that were primarily used to calail@ndering effects on GPUs. HLSL was
designed for three types of shaders: vertex shaders, gposhetders and pixel shaders. The par-
allalizable properties of shading explain the fast evolutof the parallel processing architecture
of GPUs. However, general purpose programming used to herestricted since computations
had to be expressed in graphical terms like vertices, tegfuragments, and blending. In 2007,
the California-based company NVidia introduced CUDA (CanepUnified Device Architecture),
a parallel computing architecture, alongside with C for @R C-based API for GPU program-
ming. The extremely high floating point performance of cansulow-cost GPUs, together with
an improved programming interface, allows for the exeeutibscientific applications on desktop
computers [82]. Nowadays, modern GPUs are not only gragigies, but also highly parallel
processors that significantly outpace CPUs for certainiegdns. Since most design engineers

"Open GraphicsL ibrary (OpenGL) is a cross-platform API for writing prograrthat produce computer graphics.
8DirectX is a collection of APIs for handling multimedia taslsuch as gaming and video.

Chapter 1 Introduction 8

have no access to supercomputers, GPU computing is becamowerful and affordable alter-
native. The sequential part of the application runs on th&) @Rd the computationally-intensive
part is accelerated by the parallel GPU [81]. The hardwarhitcture of a modern GPU follows
a single instruction multiple data (SIMD) programming mibdkleally, a GPU processes many
threads in parallel for the same instructions. Due to theptexnmemory architecture of GPUSs,
inter-thread communication is possible but not trivialgpiement. The technique of using GPUs
to perform computations that are typically executed on CRWslled general-purpose computing
on graphics processing units (GPGPU) [83, 84]. Researih@egious fields have reported signif-
icant computational speedups by employing GPGPU techsiqiibault et al. [85] reported two
orders of magnitude of speedup relative to a serial CPU imeidation of a Navier-Stokes solver
for incompressible flows on a multi-GPU desktop. Stivalal eg®] achieved a 34x speedup over a
CPU implementation of a tableau-based protein substrigearch with simulated annealing. Ko-
matitsch et al. [87] achieved a speedup of up to 20x over aeieée CPU cluster for a high-order
finite-element application, which performed the numergaiulation of seismic wave propagation
on a large cluster of NVidia Tesla graphics cards. Gevelat. ¢88] measured an eightfold speedup
using modern GPUs in contrast to multi-threaded CPU codénéosimulation of laminar fluid flows
based on the two-dimensional shallow water equation anddtiee-Blotzmann method. Other re-
search areas that have benefited from GPU computing inctiada:mining, computational finance,
medical imaging, and more.

Previous Work concerning Optimization on GPUs

Promising results of GA implementations on GPUs have alsm l@hieved within the com-
puter science community. The research field is called Gefgtigramming on General Purpose
Graphics Processing Units (GPGPGPU). So far, the majofithe publications focus solely on
the hardware-specific implementation of the algorithms thiedt performance compared to tradi-
tional CPU implementations. Harding et al. [89, 90] dematet that the use of GPUs accelerates
evolutionary computation applications by up to severaldnad times over typical CPU implemen-
tation. Simple benchmark functions were used as fitnesdifursc Fok et al. [91] were able to
show speedups of up to 5x when they ported evolutionary progring to a GPU. The operators
of mutation, selection, and fitness calculation were fuifypiemented on their GPU. Harding and
Banzhaf [92] proved that splitting the program compilatifitmess case data, and fithess execution
over a cluster of GPU equipped computers further improvespetation speeds. Pospichal et al.

[93] mapped a parallel island-based GA with unidirectioriaff migrations to a CUDA software

Chapter 1 Introduction 9

model. Tests were performed using Rosenbrocks, Griewamdkdviichalewiczs benchmark func-
tions. The proposed approach led to speedups of up to sevasatid times higher compared to
one CPU thread. Furthermore, Pospichal et al. [95] showatlalconsumer-level GPU can be
used to significantly speed up optimization of the Knap3aekblems. Speedups of up to 1340x
were reported, however, Pospichal also elaborated onrfiations of GPU computing for evolu-
tionary computations. The main finding was that GPUs musttitizad with sufficient block and
thread sizes in order to overcome the disadvantage of melatagcy. Sato et al. [94] demon-
strated the possibility of solving Sudoku puzzles on GPU#endchieving a practical processing
time. The achieved speedup was reported to be up 25x ovegla4imeaded CPU implementation
in C/C++ and up to 96x over a single-threaded Java implertientaLuong et al. [96] used the
GA island model to solve large-scale and time-intensiveioatorial optimization problems with

GPUs. Speedups of over 2000x were achieved in this study.

Scope of this Dissertation

Using GPGPGPU for a large-scale design optimization offagineering systems such as EVs s
a novel approach. While it has been shown that GAs for simghelmark functions can efficiently
be implemented on GPUs, parallel simulation of engineesiyglems as part of an objective func-
tion is a more challenging task. The scope of this researtt iisvestigate the potential speedup
of performing a large-scale design optimization of a FCHEV®@PUs. For speed benchmark-
ing, a backward-looking system simulation is created ieeldifferent programming environments:
CUDA for GPU programming, the intermediate-level programgranguage C/C++, and the graph-
ical programming environment Matlab/Simulink. The CUDAdeds then mapped into the fitness
function of a GPU-based GA optimization routine that is $jieadly designed for the optimization
of the FCHEV. The proposed optimization approach is moslyegic and can easily be employed
to other transient-state simulations of engineering systeith only minor modifications. The re-
sulting speedup of this novel implementation concept caagpto the C/C++ and Matlab/Simulink
implementations is studied and utilized to improve coneeral EV optimization methodologies.
As mentioned before, single-threaded CPU optimizatioris\bgystems are, in many cases, compu-
tationally infeasible without simplifications, resultiimga loss of accuracy and additional constraints
on the research scope. Fast GPU-based design optimizatimt constrained by the multitude of
simplifications that are commonly used to avoid impractieglomputation times on single-threaded

9The Knapsack problem is a problem in combinatorial optiniiza which is often used as a benchmark problem.

Chapter 1 Introduction 10

CPU systems. Thus, GPU-based design optimization provieesopportunities to study the opti-
mal system design of EVs and gain a thorough understandikgyodesign challenges.

Stochastic simplification of optimization input paramstbas been identified as a preva-
lent procedure. It is common practice to use just one driveecyfor example UDDS, which is
designed as a stochastic representation of an entire ginwiofile, as input data for the objective
function. Driving profiles are the collection of all drive dgs in the lifetime of a vehicle. Evi-
dently, performing a vehicle simulation for a driving prefi~~100,000-200,000km) is much more
computationally expensive than a simulation for just ongedcycle (~~10-100km). GPU-based
EV optimization allows for the utilization of entire drivinprofiles in the objective function, thus

enabling the extension of conventional optimization sggs with the following prospects:

1. Consideration of lifetime effects: Incorporating detation effects into the simulation allows
for the accounting of the transient state of components) sgcbattery packs and fuel cell
stacks.

2. Consideration of parameter and model uncertaintiesziigyiprofiles automatically account
for most variations of driving patterns. Parameter unaetitss can be represented by prob-
ability functions along with random number generatorsgaithe driving profile simulation

space is large enough for an accurate stochastic repriéeanta

3. Vehicle design individualization: Driving profiles cae individually created according to
the driving characteristics of a specific driver. The rasgloptimization would provide the

optimal car for the needs of this driver.

4. Sensitivity studies: The effects of parameter sens@ican be thoroughly investigated by
executing multiple optimization runs. Small changes of el@drameters or input parameters
might have a considerable effect on the overall system desig

1.2 Dissertation Outline

Fig. 1.4 illustrates the outline of this dissertation. Cleaf introduces the scope of this
research. It presents an overview of previous work and digsithe motivation and contributions
of this dissertation. Chapter 2 describes the physics oFtDHEYV model and its implementation
into three different programming environments. Chapterdppses a novel methodology to gen-

erate stochastic drive cycles based on application anérespecific driving profiles. Chapter 4

Chapter 1 Introduction 11

Motivation and Fundamentals

1. Introduction

v

General Approach

2. Vehicle Model

3. Drive Cycle Generation

e pr— !

4. Large-Scale Optimization on GPUs

v

Results and Analysis

5. Performance Evaluation

6. Optimization Results

v

Summary and Conclusion

7. Conclusion

Figure 1.4. Dissertation Outline

incorporates the vehicle model and drive cycle generatiohinto a two-level optimization routine
which is specifically designed for GPUs. The performancehefgroposed optimization method-
ology is evaluated and analyzed in Chapter 5.6. ResultsrafuaFCHEYV optimization scenarios
are presented and discussed in Chapter 6. Chapter 7 suramtniz dissertation, emphasizes the

conclusions of this research, and proposes future work.

Chapter 2

Vehicle Model

A discrete backward-looking system simulation of a FCHE¥rsated in three different
programming environments: CUDA for GPU programming, C/Ca#xd Matlab/Simulink. Figure

2.1 illustrates the system architecture of the vehicle.

e, : FCHEV mode

Vehicle Dynamics

o
=
<

®

(9]
<

23
D)

Duty Cycle

| \4
(Motor [Regen. Braking]
3 Efficiency Charging

Energy

\ 4

Energy Management

Power Power
Demand v Demand soc
\

7 i
E Fuel Consumption ’i<—'— Fuel Cell System Battery

Discharged Max
Energy v Capacity

Battery Degradation

Figure 2.1. System architecture and EMS setup of FCHEV modesisting of fuel cell stack
and battery pack as energy buffer. The model incorporatesfthcts of regenerative brake energy
recovery and battery degradation.

A drive cycle is the input to the model. Drive cycles are repreged as an array of vehicle
speed data and possibly elevation data for each discretstiqm. The vehicle dynamics model

converts the drive cycle into a duty cycle considering thespdal properties of the vehicle. Duty

12

Chapter 2 Vehicle Model 13

Parameter Notation Value
Base vehicle weight M 500kg

Fuel cell type — PEMFC
Battery type — Lithium-lon
Brake recuperation efficiency ppy, 30%
Timestep size ts 0.2s

Drag coefficient Cd 0.26

Tire rolling resistance I 0.013
Front area Afront 2m?

Active area of fuel cell Afe 200cm?
Fuel cell membrane thicknessd,,, 1.25mm
Water content of membrane \,, 14 (=100%)

Table 2.1. Specifications of the FCHEV system model

cycles are arrays of vehicle power demand data, consisfiran® data point for each discrete
timestep. The vehicle is powered by a proton exchange meralbitel cell (PEMFC) stack and a
lithium-ion battery pack as an energy buffer. The battergkpa either charged by excess energy
provided from the fuel cell stack or by regenerative brakiith a recuperation efficiency of 30%.
A component degradation model keeps track of the batteligatton and computes the resulting
loss of capacity while the energy management controller@EiManages the power flows between
the two power sources. A detailed description of the EMC @afobnd in Section 2.5 and Table 2.1
provides specifications for the vehicle. Each system compois seperately modeled obeying the
principles of conservation: mass, momentum, speciesgetand thermal energy. The component

models are then interconnected to create the overall sysitamiation.

2.1 Vehicle Dynamics Model

The power demand of the vehicle is estimated by a vehiclerdigsamodel. The model
calculates the incremental change in position of the veldod the external forces for each iteration
of the simulation. The external forces are inertia forcedoceleration &,..), projected normal

force (Fy,qv), rolling resistancef;.,;) and aerodynamic drad;,.,) [33].

Lvehicle weight without fuel cell system, battery pack andono

Chapter 2 Vehicle Model 14

Fucelt) = - (0 21.1)
Fypanlt) = m g sin (6(1) 212)
Fran(t) = p-m- g -cos (6(1) 213)
Furag(t) = 3 - puie - 08 - Ao (21.4)
Fuotat(t) = Face(®) + Fyran () + Fron(®) + Fuag 1) (215)

Here,m is the vehicle mass; is the acceleratiory is the gravitational acceleratiof,is the road
angle,u is the rolling resistance coefficient,;, is the density of airy is the velocity of the vehicle,
cq is the drag coefficient and ,..,,; is the vehicle’s front area. The total forég,,; on the vehicle
is the sum of all external forces. In a discrete notation,.Exjh.1-2.1.5 can be expressed as:

Up — Un—1

Faccn =m-:-—7F (216)
ls
hy — R
Fyrav, =m - g-sin (arctan n n 1> yUp 0 (2.1.7)
s " Un

E _ hn - hnfl

roll, = f-m-g-cos | arctan ————— | , vy, # 0 (2.1.8)

ts - Un
1

Fdragn = 5 " Pair UEL “Cd - Afront (219)
Ftotaln = Faccn + Fgr(wn + Frolln + Fdragn (2110)

whereh is the elevation of the vehicle. Due to analytical restoiefi, v,, = 0 has to be replaced
with v, — 0+. The overall power demand is obtained with:

Ptotaln - Ftotaln *Un (2111)

2.1.1 Component Weight Functions

The hypothetical component weight functions of the motgy,, fuel cell systemm ;.

and battery packn,; are illustrated in Fig. 2.2 and represented by the follovaggations:

Mt = (—0.007756 - | Praz|> + 5.6 - | Praz| + 26.88)kg (2.1.12)
myee = (80 + ny./2)kg (2.1.13)
mpr = (50 + Cyaz/200) kg (2.1.14)

The overall vehicle weight is computed as:

M= My + Mot + Mg + My (2.1.15)

Chapter 2 Vehicle Model

15

1,500

1,000

Ici
=
=
2
7] /
i A
2 ¥
500 "
1F
¥
!
[
/
15 o«

"' —e- Weight Motor
‘ —&- Weight Fuel Cell Stack
’l —=- Weight Battery Pack
]
1
/ — —o--e-o oY
i’ i -
/ o
A -
o pred

A
&bk

N P ‘,_‘.*—A—*—&*‘*
— A=A A

S
e f:- Ak

-

0

— v [v v v v [T T T T
0 50 100 150
Max Motor Power [hp] / Number of Fuel Cells [] / Battery Pack Capacity [Ah]

—
200

— T
250 300

Figure 2.2. Hypothetical component weight functions of onofuel cell system, and battery pack.

2.2 Fuel Cell Stack Model

Fuel cells convert chemical energy contained in a fuel, sichydrogen, into electrical

energy. A typical fuel cell consists of an anode and a catlwdeither side, and an electrolyte

membrane in between. A schematic block diagram of a fuelilbgdtrating gas and ion flow di-

rections is shown in Fig. 2.3 [49]. Hydrogen is continuouiglgl to the andode and oxygen to the

cathode while electrons are drawn from the anode side angptoated to the cathode side through

an external circuit, thus performing work on the load. Therall reaction in a hydrogen/oxygen

fuel cell can be written as:

1
Hy(g) + 5 Oz(g) = H20q)

v

Anode

e

¥

H* Electrolyte

H+

Load

Cathode

N

fo.

¥ H:0

Figure 2.3. Block diagram of a fuel cell

(2.2.1)

Chapter 2 Vehicle Model 16

2.2.1 Cell Voltage Model

The fuel cell voltage is computed as a function of press@mperature, reactant partial
pressure, and relative humidity [43, 44, 45, 46, 47, 48, 2% maximum potential of a fuel cell
can be obtained from the Gibbs free energy. The change ins@Gibb energyAG) is the maximum
obtainable work {V’,;) from an electrochemical reaction at a constant temperatnd pressure.

We =AG = —nFFE (2.2.2)
It can also be expressed as:
fe17
AG = AG°+ RTn | & g (2.2.3)
Tals

wheren is the number of electrons per reacting ion or molecélds Faraday’s constant (96,485
C/mol), F is the ideal electrode potentiahG° is the Gibbs free energy change of the reaction at
standard pressuré, is the gas constant (8.3144 J/mol K), T is the temperatureelmiK scale, and

fi is the fugacity of species i. Combining equations 2.2.2 a@d32eads to the Nernst equation:

e Jord
E=E+ = (fgff;) (2.2.4)

Since PEMFCs typically operate at low pressures, the fiyggagin be approximated by partial

pressures.
T
pop - By (ﬂ) (2.2.5)
nk pHQ\/pOQ

The standard state defines a standard state referenceigloféit which is equal to 1.229V at

298.15K and latmE? varies from the standard state reference in accordanceemitberature [49]

using:
ASO
E'=E)+(T-T) | —= 2.2,
0+ (0) (e) (2.2.6)
with EO = B, + BT, fy = 1.220V — 2815850 g, _ 2%

whereTy is the standard temperature (298.15K) &iyds the standard molar entropy. The entropy
change of a given reaction is approximately constant andbeaset to the standard state value.
According to Amphlett et al. [44], using literature values the standard-state entropy change, the
Nernst equation for a fuel cell can now be formulated as:

1
E=1229—0.85-107% (T —298.15) +4.3085- 107> - T |Inpga + 5 pos (2.2.7)

Chapter 2 Vehicle Model 17

Voltage Losses

Several voltage losses occur in a fuel cell due to the cordleffects of thermodynamics,
mass transport, kinetics, and ohmic resistance. Thesécahgsid chemical factors determine the
output voltage of the cell. The three major losses of a fuktbee:

e Activation Overvoltage Loss or Activation Lo$g,;
e Ohmic Resistance Loss or Ohmic Lasg,,,

e Concentration LOS8.y,.

Activation Loss Activation losses are caused by dissociation and ionigaif@ases in
the electrodes. The activation overvoltage occurs at thdeas well as at the cathode, however, the
anode loss can be neglected since it is very rapid. Thearlattween the activation overvoltage
vaet @nd the current density is described by the Tafel equatidis [

Vaet = @ - In i (2.2.8)
10
wherea is a constant and, is the exchange current density. Since the Tafel equationlisvalid
for ¢ > ig, equation 2.2.8 can be approximated by the following equdidr use in the fuel cell
model [46].

Vget = Vo + Ua(l - e_cli) (229)

whereu is the voltage drop at zero current density apdindc; are constants (see Appendix A).

Ohmic Loss The ohmic loss is caused by the resistance to the flow of ionthdan
membrane and the resistance to the flow of electrons thrdweglkelectrodes. The voltage drop is
proportional to the stack current

Vohm = 1 - Rohm (2210)
with
Rohm = Im (2.2.11)
Om

tm 1S the thickness of the electrolyte membrane apnds the membrane conductivity. According to

Springer et al. [45], the membrane conductivity can be apprated with the following equation:

1 1
Om = (b1 Am — b2) exp <b3 <% — ch>> (2.2.12)

wherebq, by andbs are constants that have to be adjusted to fit the fuel cell ddta value of\,,
can vary betweefi (=0%) and14 (=100%).

Chapter 2 Vehicle Model 18

Concentration Loss Concentration losses or mass transport losses are caused fr
the change in concentration of the reactants as they aremt@usin the reaction. Concentration
losses are the reason for the rapid voltage drop at highrdwtemsity and can be obtained with the

following relationship:

RT]
=—In(l-— 22.1
teme = 5 n (1= 7) (22.13)

1; is a limiting current density at which the fuel is used up ate equal to its maximum supply rate
[48]. Concentration losses are often ignored in fuel celteis since it is not desirable to operate

the stack in regions where the concentration losses arenginy

2.2.2 Stack Model

The fuel cell operating voltage;. can be obtained by subtracting the voltage losses de-
scribed in Section 2.2.1 from the open circuit voltage désd by Eqn. 2.2.7.

Vfec = E — vact — Vohm — Veone (2.2.14)

The overall stack voltage,; is then obtained as the sum of the individual cell voltages:

Nge

Vgt = Z Vfen (2.2.15)
i=1

If all cells are identical, Eqn. 2.2.15 can be simplified todme:
Ust = Nfe* VUfe (2.2.16)

wherewy, is the number of fuel cells in the stack. The stack curdgnts equal to the cell current
I;.. The current density is defined as the stack current per tin&lbactive area:

Ist

fo = 2.2.17
Lfc Afc ()
The hydrogen consumption raitgy, is a function of the stack current using
. nfcIst
mp, = My, - Ya (2.2.18)

The overall hydrogen consumption for one drive cyalg, is the integral of the hydrogen con-

sumption rate over the duration of the drive cytig-.

t=tpc
mg, = / mH2 (t)dt (2.2.19)
t=0

Chapter 2 Vehicle Model 19

In the FCHEV model, the overall fuel consumption for a driyele is obtained by converting the
above equations to a discretized form. UsiAg as the power demand to the fuel cell stack, the

equations become:

. Pfc

ife, = ———— 2.2.20

fen e 1Afc ()

Vfc, = E, — Vact, — Yohm, — Uconcn (2.2.21)

n P

Amye, = Mye, —Mfe, , = M, - % : # t (2.2.22)
k='DC

mg, = Y Amye, (2.2.23)

n=0

2.3 Battery Model

A simple controlled voltage source in series with a congtasistance is used to model the
lithium-ion battery. The actual state-of-charge (SOC)haf battery is the only state variable used
to calculate the open source voltage with a non-linear émuat he following equations describes

the battery voltage for charging:

© o g9 g 44.c8 (2.3.1)

Q_Qc Q_Qc

Uyt = Fo — Ripg -ty — K

and for discharging:

— . ; Q sk Q —B-Qc
vy = o — Rint - e KQC—O.l-QZ KQ_QCQC+A e (2.3.2)

whereEy is the battery constant voltag&; is a polarization constant? is the filtered currentbt
is the battery currenty).. is the actual battery charg€), is the battery capacityk;,; is the internal
resistanceA is an exponential voltage, ariglis an exponential capacity. A detailed description of
the model can be found in references [50, 51].
The battery current is obtained from the power demand tosvire batteryP,; and the
battery voltage.
i = Sl (2.3.3)

Upt
The actual battery charge can be computed in a discretizedds follows:

Qe = Qe,_y +ipt - Ls (2.3.4)
The filtered current is approximated by:

in o= (g —ip—y) - (L= e 0%%) iy (2.3.5)

Chapter 2 Vehicle Model 20

Parameter Unit Value
Battery constant voltagg [V] 3.366
Internal Resistanc®& [0.01
Polarization constank’ [€] 0.0076

Exponential voltage constadt [V] 0.26422
Exponential capacity constaft [Aih] 26.5487

Table 2.2. Battery Parameters

100

80

Capacity [%]
3

IS
S
T

20

i i | I I I
0 100 200 300 400 501 600 700 800 900

0
Number of Cycles

Figure 2.4. Hypothetical life-cycle curve of the lithiuror battery pack for full charging cycles.

The battery SOC is defined as:

soc = 2 100 [%] (2.3.6)

Q
The battery cell model is scaled up to pack level for the FCHiEWulation. Table 2.2 provides the

specification parameters for the battery model.

2.3.1 Battery Degradation

Degradation of lithium-ion batteries is a complex proceb&tv depends on a large num-
ber of factors, such as depth of discharge, charge and digchates, temperature, etc. Various
cycle life models have been published [52, 32, 54, 55, 5966164, 63, 62]. However, the load on
HEV battery packs compared to conventional battery testiethodologies distinguishes itself by
dynamic, and rather short periods of charging and dischgrgaused by quick driving maneuvers
and recuperative braking. There seems to be a lack of dyndegiadation models in the literature.

Chapter 2 Vehicle Model

21

To simplify matters, a basic degradation model that is galependent on the energy usage of the
battery pack is employed in this study. It can be easily mgaaby more complex and accurate
models when they areavailable. The proposed model is basé&uedypothetical cycle life curve
shown in Fig. 2.4. The cycle life curve is represented by ation C'(n), wheren is the number of
full charge-discharge cycles aii(n) is the percent capacity of the battery with regard to théainit

capacity. For the degradation modelis obtained as

t
Jo Pras(t

n="—""

Ebatmaz

) (2.3.7)

P is the discharging power demand to the batteiy, the overall utilization time of the battery,
and Epq,,... 1S the maximum energy content of the battery, which is assuimée constant in this

study.

2.4 Motor Efficiency

S
S
S

>

= SIS SRS N
o\ / ' " ?’ " “““‘\\‘ \\\\"*\
5 s
3 a0 f " () ““‘
E 20 lI,// ' ¢
| / / \
|
0 v
200 | | / /)
4, 150
% o 100 || . / / Ky/
017/6 50 - il 80 100
A/@ " XN 60 ad \°/o\
7 2(\;ercent Rated L0

Figure 2.5. 3D Lookup table of the motor efficiency as a fumctdf maximum rated power and
power demand as a percentage of maximum rated load.

Electric motors are most efficiently operated at 50-100%eirtrated load with the maxi-

mum efficiency usually close to 75%. Due to increased irgaysand mechanical losses, the motor

efficiency rapidly drops if the motor is operated below 50%eddoad. Fig. 2.5 illustrates a typical

motor efficiency curve. The motor efficiency is ploted as acfiom of maximum rated power and

Chapter 2 Vehicle Model 22

power demand as percentage of the maximum rated load. Aytiaregbproximation of the pictured

curve is implemented in the vehicle model.

2.5 Energy Management

Preliminary Information
(GPS, traffic, driving characteristics, etc.)

v

Drive Cycle Approximation

v

Radial Basis .| EM Controller
Neural Network Parameter a;

v '

Power Demand Approximation -
Vehicle Dynamics Meta-Model

a

e aﬁ’lll-.f'.l, e

o MY

EM Controller
1 Parameter o, > O ; X (SOCuesired-SOCactual)

Actual Drive Cycle ‘/'Ww'\“\f‘“&’ : o 5]

kel W

Energy Management Controller

v

Energy Distribution
Fuel Cell Stack - Battery

Figure 2.6. Energy Management Strategy for the FCHEV. Th&€CHE&ferages the SOC and power
demand according to a precalculated driving scenario.

The main task of an energy management controller is to peositiear-optimal power
split between the power sources in order to minimize fuebkoamption. Since the proposed EMC
is incorporated in an optimization routine of a backwardking vehicle simulation, it needs to
fulfill further requirements: First, the tuning of the EMGatards specific drive cycles should be
performed using a limited number of controller parametEtsthermore, the controller parameters
should be easily optimizable towards the objective. A fastvergence time is desirable for the
parameter optimization since it exponentially affects dherall optimization time of the vehicle

(see Chapter 4).

Chapter 2 Vehicle Model 23

A predictive two-parameter EMC is implemented in the FCHEWidation. Fig. 2.6
illustrates the setup and functioning of the controllerigiesThe controller uses preliminary driving
data, such as GPS, terrain, and traffic data to generate aoxirtpption of the expected drive cycle
before operating the vehicle. The vehicle dynamics modies this data to estimate the average
power demand of the vehicle during driving scenarios. Therage demand is then used as a
baseline power demand for the fuel cell stack. The EMC engpey linear controller parameters.
The first parameted; levels the error between the average target SOC of a timedperand the
actual SOC of the battery pack. This can be viewed as a peoaltyion. The farther actual state is
from the desired state, the stronger the impulse to reactidbieed state. The second parameter
adjusts the power demand approximation of the vehicle dygceamodel (meta-model). The power
demand adjustments are formulated as follows:

Py(t) = [ASOC(t,~) x (a1 + 1)] x (o x Pi(t)) (2.5.1)

with
ASOC(t,y) = SOC,(t,v) —SOC(t) (2.5.2)
SOC,(t,y) = % f SOC,(t)dt (2.5.3)

Py(t) is the actual power demang, (¢) is the predicted power-demand by the meta-masielC;(t)

is the target state-of-charge, asdC,(t,~) is the actual state-of-charge of the battery pack. A
value ofy=20 seconds has proven to be a good trade-off between natimssing the dynamic ca-
pabilities of the fuel cell stack and achieving maximum feéiciency. SOCy(t) is set to a constant
value of 50% in this study. The optimal controller paramefer each drive cycle are determined
using an GA optimization routine. The GA finds the optimal tcolter settings that minimize the
overall fuel consumption while maintaining a constant agerSOC.

Since the proposed vehicle model is backward-looking aerdetttire simulation drive
cycle is known in advance, the vehicle dynamics model cagrohéhe an accurate duty cycle before
the execution of the actual simulation. This facilitatesirarease in accuracy and a decrease in
optimization time of the controller. References [36, 37dvy& the applicability of the proposed
concept to real-world driving scenarios. A radial basisrabnetwork is used to determine the
optimal controller parameters according to preliminarivalcycle data. The advantage of this
approach is the fast execution time of neural networks coetjt® numerical optimization methods.
Hence, the EMC is almost instantaneously operational whiéntaining a very high degree of

accuracy.

Chapter 2 Vehicle Model 24

2.6 Programming Environments

The discrete FCHEV model is coded in three programming enuirents (CUDA, C/C++
and Matlab/Simulink) for speed benchmarking purposes.

2.6.1 CUDA

Algorithm 2.1 CUDA: n-parallel FCHEYV simulations for 1 drive cycle
HOST:

init threadsize, blocksize

n = threadsizex blocksize
init DriveCycle, DesignParameter, Results, InitialCondgion
cudaMalloc DriveCycle, DesignParameter, Results, InitialCondiion
cudaMemcpyHostToDeviceDriveCycle, DesignParameter, Results, InitialCondgion
kernel <<blocksize, threadsize> DriveCycle, DesignParameter, Results, InitialCondgion
DEVICE:
init ModelParameter
for : = 1 — DriveCycleLength do

VehicleDynamicsModel

if i = DriveCycleLength then

return AveragePowerDemand

end if
end for
for i = 1 — DriveCycleLength do

VehicleDynamicsModel» EnergyManagementController FuelCellModel— BatteryModel— Degradation-

Model

if i = DriveCycleLength then

return Results, InitialConditions

end if
end for
HOST:
cudaMemcpyDeviceToHosResults, InitialConditions

C for CUDA is a high-level programming language based on @/Gathich facilitates
co-processing on the CPU (host) and GPU (device). The ewntinicle simulation is embedded
in a CUDA kernel. Drive cycle array data and design pararsesee entirely mapped from the
host memory to the shared memory of the GPU device, and atinsgiables are initialized on
the device. Crucial state variables are also ported intdatsteregister memory of the GPU’s mul-
tiprocessors. As a result, the FCHEV simulation for a fulercycle is entirely executed on the

Chapter 2 Vehicle Model 25

GPU, thus avoiding the large latency in CPU-GPU commurdcatiHost-device memory transfer is
usually the bottleneck for many GPU applications. To optaperformance, the simulation routine
is therefore limited to one data transfer at the beginninp@kimulation and one transfer at the end
of the simulation.

Algorithm 2.1 illustrates the pseudocode of n-parallel GUémulations performed for
one drive cycle. Drive cycle data and design parametersaii@ized on the host and then allocated
and transfered to the device memory. A kernel call start§ @IdEV simulation on the device. First,
the vehicle dynamics model is executed to determine theagegpower demand for each driving
scenario (see Section 2.5). Following this, the entire F&Enulation is performed utilizing the
prior results to determine the optimal energy managemanrfigrration. The simulation results are
then copied back and evaluated on the host.

2.6.2 C/C++

Algorithm 2.2 C/C++: 1 FCHEV simulations for 1 drive cycle
init DriveCycle, DesignParameter, Results, InitialCondgiddodelParameter

for i = 1 — DriveCycleLength do
VehicleDynamicsModel
if i = DriveCycleLength then
return AveragePowerDemand
end if
end for
for : = 1 — DriveCycleLength do
VehicleDynamicsModel~ EnergyManagementController FuelCellModel— BatteryModel— Degradation-
Model
if i = DriveCycleLength then
return Results, InitialConditions
end if

end for

Since the CUDA APl is based on the C/C++ API, the structurah®CUDA code (Sec-
tion 2.6.1) and the implemented C/C++ code are very similigorithm 2.2 shows the pseudocode
for one simulation performed on one CPU core. After thealfization of all parameters, the vehi-
cle model routine is called to determine the average powaade for each driving scenario. The
full FCHEV model is then executed and results are returndmk @/C++ implementation does not

require advanced memory allocations and data transfexge gie CPU memory model is compara-

Chapter 2 Vehicle Model 26

DriveCycleData —>{>—>Speed
it Conversion

From Unit G 1
Workspace Power Demand FC Power Demand Fuel C i
To Workspace
> .
Elevation

Vehicle Dynamics Model Fuel Cell Stack

Y

soc mp2

Metapower

Convert -
(s \gamma [s]
Clock Energy Management Controller
Data Type Conversion
Bt Power Demand lee)

Li lon Battery

Figure 2.7. Simulink block diagram of the FCHEV model

tively simple. On the down side, the CPU routine is stricggential and does not provide parallel
processing capabilities.

2.6.3 Matlab/Simulink

Simulink is a graphical multi-domain simulation and modgltool for dynamic systems
developed by the MathWorks corporation. To assure fair beracking, the FCHEV model is kept
as simple and fast as possible. The model structure and matht@mns are analogically modeled
after the CUDA and C/C++ routine. Time-consuming plottimglanemory storage tools, as well
as expensive Simulink library functions are not utilizetheTSimulink-extension, Stateflow, is used
as an environment for the EMC. Drive cycle data is loaded faonarray in the Matlab workspace,
and the simulation results are written to the workspace atetid of the simulation. The model
and equation solvers are set as discrete using a fixed timsigie of 0.2s. Fig. 2.7 illustrates the

component interaction and data utilization of the FCHEV midd the Simulink environment.

Chapter 3

Drive Cycle Generation

Most of the proposed power management optimization methgas and nearly all of
the component design optimization methodologies predent8ection 1.1 share the fact that they
use only one drive cycle in their objective function. Thigisignificant simplification from the ideal
objective of evaluating a vehicle simulation for the entifetime of a vehicle. Instead, a smaller
time range with compressed driving characteristics is @sethput data. Sciaretta and Guzzella
[35] stated that the achievable improvement in fuel efficyedepends strongly on the particular
HEV system as well as on driving conditions. Control pararsethat perform well under one
set of conditions may lead to poor behavior under anothemceleSciaretta suggested adopting
meaningful objective functions.

Evidently, this argument is also applicable to componesigiteparameters. To conclude,
HEV design parameters that are optimized for just one aeeaagumed drive cycle are not nec-
essarily optimal for other drive cycles or the entire driviorofile, which is the collectivity of all
drive cycles in the lifetime of a vehicle. Single-cycle opization might lead to so-called cycle
beating: The optimized system design might be ideal for fliengcycle, but may be suboptimal
or not robust for other cycles. Further weaknesses of sitygte optimizations include the neglect
of deviations in driving patterns and life-time effects Isws component degradation. On the other
hand, the advantages are simplicity and lower requirenfentomputational resources.

Several methodologies to generate drive cycles have bd#iskped in the literature, most
of them in the context of emission testing. Austin et al. [BB)posed to construct drive cycles by
chaining categorized microtrips, which are defined as thengr activity between adjacent stops,
including the leading period of idle. These microtrips ae¢ested from observed data with the
goal that the created cycle closely matches the charaasrisf the data. Lin and Niemeier [39]
criticize Austin’s approach as lacking robustness and efbécting of the stochastic nature of the

27

Chapter 3 Drive Cycle Generation 28

data. Thus, Lin and Niemeier suggested a mode-based cyestraction method, in which real
world driving is viewed as a sequence of acceleration, deatbn, cruise, or idle modes. Markov
process theory is used to describe the stochastic procassladr et al. [40] also created a method
that generates drive cycles by resembling the charadtsrist one original drive cycle in terms of
frequency spectra and speed distribution.

The drive cycle generation tool (DCGT) proposed in thisd@isgion distinguishes itself
from the above methods by operating entirely non-detestidzilly in terms of data. It does not
use a database of recorded data or data snippets that arénednid form a cycle, rather all key
parameters of a drive cycle are described stochasticatly avprobability density function. Drive
cycles are created in a modular fashion by assigning sttichigdetermined values to each key
parameter. The modules are then assembled to form a drileeayeording to predetermined rules.
Hence, the DCGT offers the following advantages that arergiss for stochastic optimization:

e |tis capable of producing an unlimited amount of drive cgcle
e stochastic parameters can either be determined from adabeata or be manually adjusted
e It generates driving profiles that represent stochastgreaif observed data

e It generates driving profiles that represent load profiletherpower train (duty cycle)

This section presents a new methodology to generate dratescfor stochastic optimiza-
tion. It is shown that DCGT generated drive cycles are coatgarto recorded driving profiles in
terms of frequency spectra, speed distribution, accéberalistribution and load characteristics of
their corresponding duty cycles. Furthermore, the adgmstaf using the DCGT for stochastic op-
timization are investigated for a fuel cell powered HEV.luding life-time component effects, such
as degradation and uncertainties of driving patternssléadnproved and more comprehensive op-
timal solutions when compared to conventional single-eygbtimization methods. The proposed
approach guarantees stable system operation throughoaintiulation and for all scenarios of the
driving profile.

Various terminologies are used in the literature in the eéxindf this topic, as pointed out
by Liaw and Dubarry [41]. Table 3.1 contains the definitioosterms used in this paper as well as
alternative terminologies from the literature.

Chapter 3 Drive Cycle Generation 29

Table 3.1. Definition of the terminologies used in this staahyl alternative terminologies used in
the literature.

Terminolgy Alternative Terminologies Definition

Drive Cycle Driving Cycle Set of data points representing
vehicle speed versus time.
Duty Cycle - Set of data points representing
power demand versus time.
Driving Pattern - Characteristics of a drive cycle influethce
by internal and external factors such
as the environment and driving behavior.
Driving Profile Driving Cycle Profile Collectivity of all dvie cycles
in the lifetime of a vehicle.
Driving Scenario Driving Event Subsection of a drive cycistidguished
by similar topographic environments,
for example highway driving or urban
driving.
Driving Pulse Trip Snippet, Microtrip Subsection of a drisycle consisting
of all data points between two idle
periods.

3.1 Modular stochastic drive cycle generation

Driving profiles are dependent on a large set of propertieb ag topography, traffic, lo-
cation, driving characteristics of the operator, and thérenment. These dependencies generate
immense complexity, which makes it virtually impossiblentodel each feature of a driving profile
in a stochastic manner. Hence, some simplifying assungp@émea required. The parameters pre-
sented in Table 3.2 were identified as the most crucial focriteag the characteristics of a driving

profile. Moreover, they are sufficient for the purpose of giigly.

3.1.1 Drive Cycle

The DCGT methodology is based on a nested modularity conasptlustrated in Fig.
3.1. The most outer module (module 1) is the DC itself. Thegeddycle durationtp- and its

Chapter 3 Drive Cycle Generation 30

Table 3.2. DCGT key parameters and their notations. DC:eéD@ycle, DS: Driving Scenario, VN:
Velocity Noise.

Parameter Notation Prob. Fcn Unit
(fcn of) (fcn of)
Driving scenario DS pps,..(DS) string
DC duration tpc({DSn}) ppc,(DS) s
DS duration tps(DS) pps,(DS) s
Acceleration a(DS) pa(DS) ms~2
Deceleration d(DS) pa(DS) ms~2
Cruising speed vogr(DS) py(DS) ms~1
Cruising duration tcr(DS) pcr,(DS) s
Idle duration tip(DS) prp,(DS) s
Velocity noise VN(DS) DVN,..(DS) string
VN amplitude A, (DS) pa, (DS) ms~!
VN frequency w,(DS) P, (DS) (rad)s—1
VN phase on(DS) P, (DS) s

probability functionppc, (DS) are dependent on the DS categories (module 2) that bretesd
for the cycle. Overall, drive cycles consist of the folloggimodules: driving scenarios (module
2), driving pulses (module 3) and pulse modules (module #)jchvconsist of acceleration, cruise,

deceleration, idle, and velocity noise.

3.1.2 Driving Scenario

Driving scenarios are classified into five categories asqueg by [41]:
1. Stop-and-Go (SNG)
2. Urban (URB)
3. Suburban (SUB)
4. Rural (RUR)

5. Highway (HIG)

Chapter 3 Drive Cycle Generation 31

ASpeed

m Time

fModuIe 1: Drive Cycle \
/Module 2: Driving Scenario \ (Module 2: Driving Scenario \ /\
Module 3: Driving Pulse /\ Module 3: Driving Pulse /\

/

Velocity Noise Velocity Noise

Ve v

r g r

€ e

p p p

e e e

a a

t t a

t
A A A
Driving Pulse Duration Driving Pulse Duration
. J_ I\« J_/

Driving Scenario Duration Driving Scenario Duration
{ N)

(Drive Cycle Duration)

Figure 3.1. Graphical illustration of the 4-level nesteddularity concept of the DCGT

The classification is intuitive. While URB, SUB, RUR and Hi@&&elected according
to street topology, SNG can occur in any of these topologiggd heavy traffic congestion. An

occurrence probabilityps,,. (DS) is assigned to each driving scenario, with

5
> P05, (DSi) = 100% (3.1.1)
=1

The duration of one scenariotiss and the duration probability isps, (DS). The DCGT

repeatedly generates driving scenarios until the follgwgriteria is met:
n .
> ths >=tpc (3.1.2)
=1

3.1.3 Driving Pulse

A driving pulse (DP) consists of an initial acceleration phaa cruising period, a deceler-
ation phase, and an idle period as shown in Fig. 3.2. A typigaing pulse in an urban environment
could be a trip from a traffic light to a stop sign, for exampldwe DP duratiort pp is determined

using the following equation:

Chapter 3 Drive Cycle Generation 32

0 10 20 30 40 50

idle | accel. cruising with velocity noise decel. idle

driving pulse

o
L
o

Speed [m/s]

61 S,
S

S

S

S

o

o

o

9

0 10 20 30 40 50
Time [s]

Figure 3.2. Partitioning of an urban driving pulse into fqaulse modules (acceleration phase,
cruising period and deceleration phase)

ger
tpp = a(DS) —{—tCR(DS)—{—W—FUD(DS) (3.1.3)

vi;) and utC:,_-iCR(DS) are the vehicle speed at the beginning and at the end of tigngrphase,
respectively. Typicallyfpp is very short for SNG traffic in a busy urban environment, andhe
other extreme, very long for highway driving. The DCGT gextes DPs until their accumulated

duration is larger than the duration of the DS as defined by:
Ztlbp >=1pg (3.1.4)
i=1

3.1.4 Pulse Modules

For simplification, acceleration and deceleration arerasslto be linear. An acceleration

period ends when cruising speed is reached, and a decetepatiiod ends when the vehicle idles.

Velocity noise

As mentioned before, drive cycles are influenced by a largetan of internal and exter-
nal parameters. The vehicle speed during a cruising penmtutites to a greater or lesser extent
depending on these parameters. These speed fluctuatidng ducruising period are referred to
asvelocity noiseand are viewed as a superposition of oscillations in thidyst The advantage of
this approach is that the velocity noise can be fully paranmgd. It is then possible to obtain the

’
<&

e
N
N
il bl
pe
T

A

'
[=)}

N O N

A

2
,<

Speed [m/s]

'
(o))

—_

Speed [m/s]

'
—_

111 ||||$||I|||
=
i——
=
=
=
>>
>~,
2
—
>
},

S
>
>
L
<
=
}<
=

'
N

eed [m/s]
N
\\’
(?
L
e~
C
>
$

o
—_
o
o
N
o
o

300 400 500 600
Time [s]

Figure 3.3. DCGT frequency decomposition methodologyiadpb driving data recorded on Interstate Highway H-1 in ldawWJSA: (a)

recorded data (dashed line) and average speed of recorthedsdhid line), (b) velocity noise defined as speed over timieus average
speed (dashed line) and its low frequency domain (solid,lif@@ velocity noise minus low frequency domain (dashed)liand its medium
frequency domain for 100s intervals (solid line), (d) véipaoise minus low and medium frequency domain (dashed kmel its high

frequency domain for 100s intervals (dashed line), (e)ndmxb data (dashed line) and the sum of low, medium and higfuémcy domains
plus average speed (solid line).

uoleIauUaS) 8|9k aAlq ¢ Jardeyd

€€

Chapter 3 Drive Cycle Generation 34

parameters and their probability functions from the datadjust them manually. Velocity noise

oscillations are categorized into three groups:

e Low Frequency (LF) Noise (0-0.01H2):
caused by terrain topology, traffic congestion, speeddinsibnstruction areas, etc.

e Medium Frequency (MF) Noise (0.01-0.25Hz):
caused by road topology, traffic flow, driving charactecistietc.

e High Frequency (HF) Noise (0.25-0.5Hz):
caused by road condition, lane switches, rapid driving ma@es, spontaneous reactions, etc.

The oscillations for each frequency spectrum (FS) are neadat a sum of three sinu-

soidal functions:

3

yrs(t) =Y (A - sin(whst + ¢lrs)) (3.1.5)
i=1

Non-linear least square regression (NLLSR) is used to ohéterthe amplitudesl}s, the
frequenciesu’. ¢ and the phase’. for each FS from recorded driving data [66]. The optimizatio

problem for the regression can be stated as:

min lyrslls = mtin(y%sg +Yrs2+ o+ Ybsm) (3.1.6)
with
yrsy = f(t; Abg,Whs, @lg)
Yrsm = f(tm; Abg,wWhg, Pag)

wherem is the number of timesteps of a discrete DC. Initial guessepigked for the unknown

parameters and the following equation is defined:

AB; = yrs; — f(tj; Alrg, whs, ¢lrg) (3.1.7)

Linear estimates for the parameter changes.;, Aw’.¢, and Ayt needed to reduce

Apj to 0 are obtained using:

Chapter 3 Drive Cycle Generation 35

3
9 9
Agj:<§:< / AA’;S+&U—£W§S+
FS

AL
k=1 Fs (3.1.8)
of & >>
9 = PFS
Yrs ty,(AFs,wFs,PFs)
for j=1,..,3. Egn. 3.1.8 can be written in concise matrixricas
AB = MAX (3.1.9)

whereM is am x 9 matrix and\ = {A%.¢, whq, ¢hg}. Eqn. 3.1.9 can now be solved for
the offsetAX. A + A\ results to a newA 3. The process is iteratively repeated until a convergence
criteria is met.

The regression is executed for all driving scenarios astitted in Fig. 3.3, in which
the approach is performed for highway driving data recomtethterstate Highway H-1 in Hawalii,
USA. The first step is to isolate the velocity noise from thaising period by subtracting the aver-
age speed (Fig. 3.3(a)). Next, the low frequency noise igtified using NLLSR and subsequently
separated from the velocity noise (Fig. 3.3(b)). For théofeing steps, the remainder of the ve-
locity noise is partitioned into segments of equal durafib®0s). The regression parameters of the
medium frequency noise are then determined for each segmdrihe medium frequency noise is
filtered from the remainder of the velocity noise (Fig. 3)R(d he same procedure is executed once
again to identify and filter the high frequency noise (Fig3(8)). Fig. 3.3(e) shows the original
data set versus the velocity noise modeled with Eqn. 3.1rfg tise obtained parameters. The latter

closely resembles the orginal curve.

3.1.5 Probability Functions

A probability function (or probability density function3 assigned to each parameter that
is used to describe the driving profile. Most probability dtions are two-dimensional; however,
they can also be multi-dimensional if they are dependent oltipte parameters. Probability func-
tions are derived by interpolating data from the drivingfipecanalysis. The probability function
is then adjusted for the use of a uniform random number georefar the range [0,1]. Fig. 3.4
illustrates this approach for tlaecelerationparameter in an urban environment. Data of 100 accel-
eration periods, which was collected during urban drivim¢gdonolulu, Hawaii, is categorized into
an arbitrary number of bins. 10 bins are used in this examyle.SR is used to fit the data to the
following equation, assuming that the data has Gaussiaractegistics:

Chapter 3 Drive Cycle Generation

36

30 4 [Frequency
— Combined Gauss Distribution Fit A\
—-- Sub-Distribution (Gauss1]
2 ——- Sub-Distribution (Gauss2]
@ /’\
\ \
20 ; /|
> \ i \
H] i)
3 I h
315 [‘\
@ { i
'y H i
{ A
10 1 / b
\
51 /,' \
// S
0 =l , ; . : —
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Acceleration [m/s?]
2 T
1 1
(b) i |
] 1
i {
i 1
i /
1.5 va /’
= | e
W - ~
£l -
5.7 ==
8
°
§]
<
0.5
— Combined Cumulative Probability Distribution
—- Cumulative Probability Distribution of Gauss1
—=-- Cumulative Probability Distribution of Gauss2
0 T T
0 0.2 0.8 1

0.4 0.6
Uniformly distributed random number [0..1]

Figure 3.4. (a) Summation of Gaussian distributions fittea lhistogram of 100 urban accelerations,
(b) cumulative probability distribution derived from theaG@ssian distribution and adapted for a
uniform random number generator

(I*Mi)2>

o (et

7 e 20'1,2
27

o/ 2m

whereq is a scaling factorg? is the variancey is the mean ana is the number of overlapping

(3.1.10)

f(CE;OZn,O'n,Mn) = Z [

=1

Gaussian distributionsz = 2 is chosen in Fig. 3.4(a). Next, the cumulative distributionction

®(x), which describes the probability of a random variablé-o, z], is determined using:

O(z) = /; (Z:; Lf‘/ﬁe((;%q]) da (3.1.11)
:%i [ai [1+e7’f <“’”U_\/%>” (3.1.12)

=1

whereer f is the Gauss error function, a special function of sigmogtepe. Now® (z) needs to
be normalized to fit the desired probability range.

Chapter 3 Drive Cycle Generation 37

P*(2) = ———2) | d*(x) €0,1] (3.1.13)

Fig. 3.4(b) shows the cumulative probability distributi®¥x) of the acceleration data
adjusted for a random number generator. The displayedifumis derived as the inverse of Egn.
3.1.13 and is solved numerically.

P(y) = @* () (3.1.14)

3.2 Tool Validation

10 hours (489km) of driving data was acquired in the City amdify of Honolulu in
March and April of 2011. The test vehicle used for this stuglyp istandard compact car (1200kg,
92hp @ 5500rpm, 5-speed-manual) with an internal combustigjine. The collected driving data
incorporates all possible driving scenarios (9% SNG, 38%BUR/% SUB, 11% RUR and 25%
HIG). A QstarZMBT-Q1000eX GPS device was used for data acquisition. Thieelés based on
a MTK Il GPS chipset featuring a tracking sensitivity of -t&M, 66 Channel tracking and 5Hz
data logging. The manufacturer lists a velocity accuracy 6f1m/s. A Savitzky-Golay smoothing
filter is used to eliminate the high frequency noised(5Hz) caused by inaccuracies of the GPS
device and by short interruptions of the satellite coniectihen driving underneath bridges [67].

The probability functions of all parameters in Table 3.2 evektrapolated from the data
according to the methodology described in Section 3.1 apitimented into the DCGT. The tool is
now capable of creating an unlimited amount of drive cyclselol on the stochastics of this driving
profile. Fig. 3.5 shows recorded and generated DPs for diftedriving scenarios. Evidently, the
generated cycles possess characteristics similar to igieardata for all five scenarios in terms of
acceleration speed, pulse duration, average speed, tydi@rjuencies, and others.

A more in-depth investigation of the comparability of theeosdled data and the cre-
ated driving profile can be achieved by looking at their spgezkleration frequency distributions
(SAFDs). SAFD analysis provides the needed informatioruati@e time proportions of a driving
profile [42]. Fig. 3.6 shows the SAFD for both the recordedadmtd 10h of data created by the
DCGT. Two frequency peaks &t = 07,y = 232) and(z = 073,y = 17%) are characteristic
for the SAFD in Fig. 3.6(a). Similar peaks @t = 0%,y = 227) and(z = 0%,y = 177), and
overall a very similar frequency distribution, are notickeain the SAFD plots in Fig. 3.6(b). The

recorded driving data features an abrupt frequency dropestds higher than 29m/s. Considering

Chapter 3 Drive Cycle Generation 38

14 -3 () Stop-n-Go (SNG), recorded data 14 - (b) Stop-n-Go (SNG), DCGT
12 12
g0 3 g0 3
E g 5 E g 3
o = - =
3 £ 3
4 = 4 =
2 3 2 =
O_IIII|IIII|IIII|IIII]II O__|IIII|IIII|IIII]IIII|II
0 50 100 150 200 0 50 100 150 200
Time [s] Time [s]
20 (c) Urban (URB), recorded data 20 (d) Urban (URB), DCGT

¢

v

Speed [m/s]
>
Dl bl s
Speed [m/s]
(FRERARRRRARRRRARRARANY

| — LI — T LI — T T L — LI — L — T
¢ | | | * | | | |
0 200 400 600 0 200 400 600 800
Time [s] Time [s]
3 (e) Suburban (SUB), recorded data 3 (F) Suburban (SUB), DCGT
20 20 o
P T, 3
E15 E E15 E
e] ° =
$10 — $10 —
a - (-3 -
w - w —
s o 5 o
°_||||1|1|1|1|11|]| °_||||||||||||||1|]|
0 200 400 600 800 0 200 400 600 800
Time [s] Time [s]

(g) Rural (RUR), recorded data (h) Rural (RUR), DCGT

N
[
~
[

N
o
~
o

Speed [m/s]
Speed [m/s]

=)
o

v
w

volonloelinlunbin
I||||I|l|||||||]l||||||||||||

0 T T [T T T [T T T [T T T 11 0 L L L L L L L |
0 200 400 600 800 0 200 400 600 800
Time [s] Time [s]
30 _F (i) Highway (HIG), recorded data 2 3 () Highway (HIG), DCGT
25 —; 25 —;
%20 —; Ezo —z
215 3 315 3
a E a E
vi0 - w10 3
s 3 5 3
0 17— | L L 0 __| T T T [T T T T [T T T T
0 500 1,000 0 500 1,000
Time [s] Time [s]

Figure 3.5. Recorded (left column) and DCGT generated t{tighumn) driving pulses for 5 the
different driving scenarios

that the DCGT probability functions are based on Gaussistnilolitions, it is not possible to model
such a rapid probability drop-off without implementing straints. However, the DCGT SAFD is
fairly broad and low in the discussed region and thereforteerpected to have any considerable
effects on the optimization results of the vehicle.

Chapter 3 Drive Cycle Generation

ed Frequency

i)

o
EO.
S
z0.

- 40
[
(-4 g
5 ¥
50.8 < S 30
w | AN L
20.6- NN [
[AN .
?50.4\5 /AN 20
502 (@) :

LI B
15 -10

0
-5 0 5 10 15 20
Acceleration [m/s?]

[h]
Figure 3.6. A speed-acceleration frequency distribut®aRD) histogram and contour plot for 10h

of recorded drive cycle data vs. 10h of DCGT generated diyobecdata. The data excludes the
zero-acceleration/zero-speed bin to prevent visual diistodue to its dominance. (a) 10h of real

drive cycle data recorded in the City and County of HonolW&A, (b) 10h of DCGT generated
drive cycle data based on a stochastic driving profile ertedpd from recorded data in (a).

The physical impact of a driving profile on a vehicle can bengixed by visualizing the
frequency domain of the power demand. The power demand mueri$ obtained by converting
a drive cycle into a duty cycle by considering the dynamicpprties of the vehicle. The vehicle
dynamics model (Section 2.1) calculates the incrementahgh in position of the vehicle and the

external forces for each iteration of the simulation. A ohiyprofile can now be converted into an
estimated duty profile.

Fig. 3.7 visualizes the frequency spectra of both convedtédng profiles in a power -
delta power frequency distribution (PdPFD) plot. Agaimigr distributions of both, the recorded
profile and the DCGT profile, are observed. Both distribitiéeature one prominent power fre-

quency peak atr = OkTW,y = 7kW). Additional common characteristic frequency peaks are

39

Chapter 3 Drive Cycle Generation

0 02 0.4 0.6 038 1
30 F30
> [
z
g 1 [
=20 20
$0.8- T - C
u— =
30.6- 2 77\
BYES H qA
Tu £ 10 1 777 7 AN 10
£0.4- g ;[(A
£ a LK) (]|
20.2- o A\ 8|
0 H 0 T WY/ Lo
a 4
-14]
3 -8. 10 -10
Fou,] [
) T T T T T T
15 10 5 0 5 0 15
dPower/ at [kW/s]
(a)
0 02 0.4 0.6 038 1
30 - [30
= [
1%)
g 1~ X
2 =20] [20
EO. : B [
30. e
= 0 g 10 10
gl 8
£0. §
5 o0 Fo
10 F-10
T T T T L T T 2
15 10 0 15

=5 0 5|
dPower/ at [kW/s]

(b)

Figure 3.7. A power - delta power frequency distribution PF®) histogram and contour plot for
a duty cycle profile generated from 10h of recorded driveecyldta vs. 10h of DCGT generated
drive cycle data. The data excludes the zero-power/zdta-dewer bin to prevent visual distortion
due to its dominance. (a) Estimated power frequency digtdb of 10h of real drive cycle data

recorded in the City and County of Honolulu, USA, (b) Estiathpower frequency distribution of
10h of DCGT generated drive cycle data based on a stochasfiicgdprofile.

located at(z = 08Xy = 2kW), (z = 28Xy = 3kW) and(z = —22% ¢y = 3kW). The latter

two are characteristic of the acceleration and decelerigdits of the driver. The frequency distri-
bution in the x-y plane of Fig. 3.7(a) possesses a slightlyewfoundation than its counterpart in
Fig. 3.7(b). This discrepancy is most likely caused by in@acies of the parameter fitting method-

ology for the probability functions. However, the stocl@gnpact during a vehicle optimization is
expected to be minor due to its comparatively small fregigsnia this regions.

Chapter 4

Large-Scale Optimization on GPUs

4.1 Optimization in Engineering Design

Optimization is the act of obtaining the best result undeegicircumstances. In math-
ematical terms, optimization is the process of finding ctois that give the maximum or min-
imum value of a function [1]. Design optimization of complsystems requires immense data
processing and a tremendous number of calculations [2]hdratlvent of high-speed computers,
optimization methodologies are becoming increasinglyutepin engineering design [3]. Engi-
neering optimization is prevalent in various fields, suchsi@sctural design, shape optimization,
topological optimization, and logistics. Neverthelegstjrization of dynamic engineering systems
is exceptionally expensive in terms of computation speedsitherefore still constrained by related
limitations.

If mathematical optimization techniques are used for ezgyiimg design, the optimization
problem can usually be stated in the following form:

min f(x) (4.1.1)
subject to gj(x) >0, i=12,..,J
hy(z) = 0, k=1,2,...K

)

7 9

xZ(L) <z <z

reS

The function to be minimized or maximized is the objectivadiion f(z). The design
variables are represented by the column veeter (z1, 22, ...,zn)7 [3]. g;(z) > 0 andhy(z) =0

41

Chapter 4 Large-Scale Optimization on GPUs 42

define the two types of constraints, the first of which are uradity constraints and the second of
which are equality constraints. Design variables can bevaaed ¢ € R™), integer ¢ € Z"),
binary @ € {0,1}") or categorical (e.gz € {blue, red, white, greert) [4]. Categorial spaces can
usually be replaced by integer spaces by assigning intégeesch categony is the search space or
solution space, which is the set of all possible solutiongaiA,S can be real-valued, integer, binary,
categorical, or a combination of all, since its composititapends on the properties of the design
variables. For example, assuming that the design optimizaf a structural beam consists of two
design variables = (z; = type of cross sectign:, = web thicknesy z; would be element of a
categorical or integer search space apaf a real-valued search space. The overall search space
would be a cartesian product of both solution sBtse (S,, x S,,) with x; € Z andzs € R.

Design variables can be classified into two categoliimdependent design variablesd
dependent design variabledndependent design variables are all crucial design patens rep-
resented by the design vecter Dependent design variable are functions of independesigile
variables and are therefore not required to be includeddrddsign vector. Constraints are condi-
tions that a solution to an optimization problem must sati$he restrictions that must be fulfilled
to produce an acceptable design are callesign constraintsConstraints that are physical limita-
tions on the state of the system are termatttional constraintgl]. For example, the capacity of
a battery pack would be restricted by design constraint&reds functional constraints would be
used to limit the SOC range. Since functional constrairdscanstraints on the state of the system,
they can be classified into three categories:

1. Threshold constraintslf a state variables surpasses its threshold constrajpts), it is set
eqgual to the threshold constraint.
Require: s < gi(s)
if s > g¢(s) then

s = gi(s)
end if

2. Elimination constraints If a state variables surpasses its elimination constraipt(s), the

fitness evaluation is stopped and the candidate is eliminfritan the set of candidates.

Require: s < ge(s)
if s > ge(s) then
kill candidate

Chapter 4 Large-Scale Optimization on GPUs 43

end if

3. Penalty constraintslf a state variables surpasses its penalty constraipts), a penalty p(s)
is imposed on the objective.
Require: s < g,(s)
if s > g,(s) then
f(x) < fz) +p(s)

end if

Engineering design problems are frequently charactetiechultiple, often times con-
flicting, objectives. For example, reducing the weight ofaiplane wing while minimizing the
cost of materials are two conflicting objectives. Light miitls, such a composite carbon fiber, are
usually more costly than their cheaper, but heavier alteem There are two common approaches
to solve multi-objective optimization problems. First, @bjectives can be combined into a single
aggregate objective function using a weighting functioec@dly, a multi-dimensional candidate
solution (Pareto optimal solution) can be determined ¥odld by a decision maker selecting an
ideal candidate according to his preferences. The advamtidpe latter approach is that no a priori

information or weighting function is needed for the actyatimization [5].

4.2 FCHEV Optimization Problem

The FCHEV optimization problem, which is predominantly dise this dissertation, is

stated as:

k
mpin Zzl m§H2 (p) 4.2.1)
p = [Pty ne, Q) (4.2.2)

The objective in Eqn. 4.2.1 is the overall hydrogen consiongh the lifetime of the vehicle. The
stopping point parametéris the number of performed drive cycles until the lifetimdeaage of the
vehicledy; is reachedk is determined by algorithm 4.1.

The selected independent design parameters are the ratedpowerp; =P, the num-
ber of fuel cells in the stack,=v,; and the capacity of the battery pagk=(Q). Hence, the design
vector p contains the crucial sizing parameters for the power ssuacel power suppliers of the
FCHEV power train. The choice of design parameters allowshfe study of the ideal power train

Chapter 4 Large-Scale Optimization on GPUs 44

Algorithm 4.1 Stopping point parametér
d=0,k=1

while d < dj; do
d=d+dpc,
k=k+1
end while

composition for individual (application and driver-sg@)i driving profiles, for specialized driving
profiles (pure city driving, pure highway driving, etc.)ddior universal driving profiles (all-purpose
vehicle). It is then possible to quantify the efficiency glinm using an optimized power train for
certain driving profiles versus universal or non-ideal powains. Furthermore, degradation and
uncertainties of the component models can be investigated.

From an engineering point of view, it often makes sense torelize search spaces for
design parameters of physical systems to save computatien This simplification is feasible since
it is not the mathematically optimal solution that is sougftér, but the solution that is optimal while
still being practical. For example, fuel cells in a fuel cetthck are usually identical in terms of their
size specifications. It is physically not viable to integraiel cells of different sizes into one stack.
Therefore, it is not required to describe the design paramet as a real-valued variable. The
search space and the computation time are drastically eedtic,; is described as an integer.

The following equations are an example of how the designtcaings of the proposed

optimization problem can be reasonably described:

Ohp < P < 200hp, Pt € Zdyo (4.2.3)
0 < ng < 600, nge € Ly (4.2.4)
0Ah < Q < 15Ah, (Q x 100) € Zizyo (4.2.5)

All three design variables are discretized into partitiohequal length. The minimum discretization
length is chosen according to technical and economicalliigs In the presented example, the

cardinality of the overall search space can be determinéallag/s:

S = Spmt X Snfc X SQ (426)
= IS|=" ISpu.| X ISn,.| X [Sql =200 x 600 x 1500 = 1.8 x 10° (4.2.7)

The cardinality is equivalent to the number of possible tohs for the optimization problem.

Chapter 4 Large-Scale Optimization on GPUs 45

Alongside design constraints, meaningful functional t@sts have to be selected for
most dynamic systems. Table 4.1 lists the functional cairgs implemented in the FCHEV model.
The vehicle speed cannot be zero due to Egn. 2.1.7 and Eq®. 24 remedy this, a threshold

Table 4.1. Functional constraints of the FCHEV model

State variable Type of constraint Constraint condition Corsequence
Vehicle speed Threshold constraint v <1 x 1078 v=1x10"8
Battery state-of-chargfOC Elimination constraint 20% < SOC < 80% kill candidate
Battery degradatiof- Elimination constraint %~ < 80% kill candidate
Fuel cell voltagev. Elimination constraint vs. <0 kill candidate
Power demand;oa. Penalty constraint Piotal > Pt My, =My, - P(Protal)

constraint is used to replace the stopping speed with a \thhteis very close to zerol()—g%).
The battery state-of-charge is constrained within its saf@ge of operation [6]. An elimination
constraint is applied since SOCs outside of the defined ranttieate that the battery is too small
for the intended task. Battery damage has to be avoided. dpecity fade of the battery pack is
limited to 20% according to DOE guidelines [7]. At higher és;, the degradation rate increases
rapidly, and the power train may reach a critical state. Amielation constraint is selected to
prevent this scenario. Numerical instabilities cause megjéuel cell voltages, which indicate that
the proposed fuel cell stack is sized too small. Since thesgbilities are highly non-linear, it
is very challenging to design a meaningful penalty functidio simplify matters, an elimination
constraint is used instead. Finally, a penalty constraintsied for the overall power demand of the
vehicle. If the power demand is higher than the maximum rateder of the motor, the requested
power cannot be supplied. The effect might be negligibledhiy occurs a few times in the lifetime
of a vehicle. However, if the effect is a repeatedly occyrmphenomenon, the proposed design
would be inadequate. In this case, a penalty function canutdor the phenomenon according to

the number of occurrences.

4.3 Optimization with Genetic Algorithms

Genetic algorithms are selected as the optimization medfiatioice in this dissertation

for the following reasons:

e GAs are meta-heuristic optimization routines (Section ard are therefore parallelizable on
the GPU architecture.

Chapter 4 Large-Scale Optimization on GPUs 46

GAs are efficient and effective at finding optimal solutionduge search spaces.

GAs are mostly generic and can be applied to many types ofgrab Little knowledge and

information is needed about the problem domain [8].

The efficiency of GAs can be significantly improved by adjugtihe optimization parameters

towards the characteristics of the optimization problem.

GAs have been proven to be effective optimization tools farge number of applications

[9].

The GAs proposed in this study consist of the operators showvAiy. 4.1, which are population
initialization, selection, crossover, mutation, and teation. The following paragraphs give an

Population Initialization

l‘

Selection

v

Crossover

v

Mutation

v

Termination

lyes

Figure 4.1. Operators of the genetic algorithm

no

overview of the operator’s specifications used in this study

4.3.1 Population Initialization

The ideal population size depends on the nature of the gmiion problem and the
hardware architecture [10, 11]. Section 5.2.1 and 5.2.2rides how the optimal population size
can be determined. Depending on the convergence propefties optimization problem, the ideal
population size can range from as little as 20 members to thare100,000 members [12].

Chapter 4 Large-Scale Optimization on GPUs 47

Initial population members can be either seeded in regidmsrevoptimal solutions are
expected, equally distributed over the search space, doraly generated. In this study, the latter
option is chosen. A uniform random number generator ([Gslsed to create the initial population,
as seen in Algorithm 4.2.

Algorithm 4.2 Random initialization of GA population members
Require: g1 <z, <gp,0<7 <1

fori=1— ndo
r = rand()

zi=g1-7 (92— 9g1)
end for

4.3.2 Selection

Selection is the process of choosing the fittest individ@addidates of a population for
later crossover (breeding). The fitter a candidate, the riores it is likely to be selected. The

selection process in this study is implemented as follows:
1. Fitness Evaluation
2. Sigma Scaling
3. Sorting - Odd-even transposition sort
4. Elitism

5. Fitness proportionate selection

Fitness Evaluation

Each candidate must be evaluated in the selection prochssefore, the FCHEV model
is executed for each population member. The results (db§@are saved and used in the following
operator steps.

Sigma Scaling

Sigma scaling keeps the selection pressure (the degreeidb highly fit candidates are
allowed many offspring) relatively constant during theimyization process [13]. The scaled fitness

Chapter 4 Large-Scale Optimization on GPUs 48

f#(z) is a function of its fitness before scalirfg(z), the population’s mean fitnegs the standard
deviation of the population’s fithess and a constant scaling coefficient

o >0 (4.3.1)

When the standard deviation is high, the probability of beialected is very similar for each candi-
date. On the other hand, fit candidates have a higher prigaifibeing selected when the standard
deviation is low. This usually happens during the later pathe optimization, when the population

is more converged. The selection pressure is increasedvahdien can continue.

Odd-Even Transposition Sort

Algorithm 4.3 Odd-even transposition sort
Require: n is even

for i =0 — ndo
forj=0—n/2—-1do
if f[27] > f[27 + 1] then
swap((2], f[2j + 1])
end if
end for
forj=0—n/2—-1do
if f[27+ 1] > f[27 + 2] then
swap(f[2j + 1], f[2j +2])
end if
end for
end for

Odd-even transposition sort (OETS) is used to sort the datet according to their fitness
and boasts several advantages, which are:

e OETS is parallelizable on the GPU architecture.
e OETS is simple to implement.

e OETS is applicable to different array sizes if even-numtbere

Chapter 4 Large-Scale Optimization on GPUs 49

The algorithm performs compare-exchange operationstnaliag between odd-even pairs and
even-odd pairs, until convergence is reached. The worstprsormance of the algorithm is @X).

Algorithm 4.3 shows a pseudocode implementation of odah-éansposition sort.

Elitism

In order to not lose the fittest candidates, elitism resespeds for the best parent can-
didates in the population of the next generation [14]. Tlie glarent candidates are transfered
without any modifications, i.e. crossover and mutationtigglti prevents a population from moving
away from an already-found optima. Unless otherwise sgetithe number of elite parents is 4 in
this study.

Fitness Proportionate Selection

Fitness proportionate selection (FPS) is analogous tolattewheel with each section of
the wheel proportional in size to the fitness of the candiddtmce, fithess proportionate selection
is also known as roulette-wheel selection. The functiomifitipe operator is described in Algorithm
4.4. First, a cumulative probability is assigned to eachditate of the population. The cumulative
probability range is scaled to [0,1]. Secondly, candidatiespare determined to generate offspring
for the next generation using a random number generatdi][0Candidate pairs are created for
each design parameter of the design vector. Hence, thentntatber of candidate pairs is the total

population size minus the number of elite parents times timeler of design parameters.

4.3.3 Crossover

Crossover is an operator that creates an offspring from tlected parent candidates.
There are several crossover techniques, most of which aegybtrossover technigues, such as
one-point crossover, cut-and-slice, and uniform crogsdveear crossover is used as the crossover
operator in this study, since it is an efficient, real-valtechnique with easy implementation. The
design parameters of the offspring are the mean values agbivalent design parameters of the
parents:

* *

T +x;
x@new — tmale 5 Lfemale (432)

Chapter 4 Large-Scale Optimization on GPUs

50

Algorithm 4.4 Fitness proportionate selection

fsum =0
for i =0 — ndo
fsum = fsum + f;(x)
end for
prl0] = fo(x)/ fsum
fori=1—ndo
psli) = pygli 1+ Ji(@)/ Fum
end for
Number of elite parentsigp = 4
fori=0— (2n — ngp) - || do
r1 = rand(), r2 = rand()
for j =1 — ndo
if pslj — 1] < r1 < pylj] then
1=
end if
if pslj — 1] < ra < pylj] then
2=
end if
end for

*

*
& Ty Ty, — Tey

Ymale

end for

male

4.3.4 Mutation

Mutation is an operator that modifies the values of some desagameters from their

initial states. Mutation is used to ensure candidate diyeand prevent the population from con-

verging to a local optimum. Inspired by biological mutatitime occurrence of mutation is restricted

to a mutation probability. If the mutation probability ist$eo high, the genetic algorithm will per-

form similarly to a random searchGaussian mutatiors used in this study to alter the floating

point design parameters of selected offspring. A Gausssriliited value is generated and added
to the selected design parameters. If the resulting valledatside the constraints, the mutation
procedure will be repeated. Generating Gaussian-distéaboumbers is not a simple task on GPUs,

however, uniform random number generation is supportetienGQUDA environment. Th&ox-

Chapter 4 Large-Scale Optimization on GPUs 51

Muller transformcreates pseudo-Gaussian-distributed numbers by mappingoam distribution
to a standard normal distribution [15]. Two random, unifyrmiistributed variables,,, andr,, in

the interval [0,1] are transformed to become normal digted variablesi(,, , r,,,) using:

Ty = +/—2Inry, - cos(27mry,) (4.3.3)
Tny = +/—2Inry, -sin (27ry,) (4.3.4)

Algorithm 4.5 Floating point Gaussian mutation
fori=0— (2n — ngp) do

rq = rand()
if ry < CandidateMutationRate then
for j =0 — |z| do
re = rand()
if r. < Parameter MutationRate then
m = f(boxmuller(), z;)
Tj—x;+m
end if
end for
end if
end for

Algorithm 4.5 explains the implementation of the mutatigreator. Two mutation rates
are defined: First, theandidate mutation rate (CMR3 the probability that mutation occurs on one
or more design parameters of a population candidate. Settmparameter mutation rate (PMR)
is the probability that mutation occurs on a design paramittiee candidate it belongs to has been
selected for mutation. If a design parameter is selectethfdation, the operator adds a Gaussian-
distributed value to the parameter. The added value is thétref the Box-Muller transform times
a parameter-specific scaling function.

4.3.5 Termination

GAs are either terminated when a certain convergenceiearigamet, or after a pre-defined
number of iterations. If a priori knowledge about the degigoblem is limited, it might be diffi-

cult to define reasonable convergence criteria. To preveimite looping, a maximum number of

Chapter 4 Large-Scale Optimization on GPUs 52

generations should be defined. Infinite looping might octting population gets stuck in a local

minimum.

4.3.6 Convergence Testing

Typical symptoms of underperfoming optimization proceduinclude the algorithm get-
ting trapped in local minima and slow convergence ratesaagwith extremely low gradients. Both
symptoms often emerge as conflicting objectives when agededuring the tuning of meta-heuristic
optimization algorithms. On the one hand, it is desirablm#&intain a wide-spread population over
the entire search space to locate all possible minima. Owttier hand, a large concentration of
solution candidates within close proximity of a minima e&ses the convergence rate of determin-
ing the minima’s exact location. Hence, an effective omtion algorithm is capable of escaping
from local minima while featuring a sufficient convergenaéer

The characteristics of optimization search spaces ofwedld applications are often un-
known. As a result, the optimization routine of choice needse preliminarily assessed for extreme
test cases to obtain a feeling for both its convergence déjesband convergence speeds. Conver-
gence capabilities of optimization procedures are typi@alaluated by using literature benchmark-
ing functions [16]. In the following paragraphs, the comesrce performance of the proposed GA
is tested for various functions of different complexitymginsionality, and optimization resistance.
The selected functions feature extreme search spaces ithién a large number of local minima,
extensive areas of low gradient, or a combination of botis.dhown that the proposed GA performs
remarkably well for all test scenarios. In all of the presentests, the algorithm managed to de-
termine the global minima within the required accuracy @/lkhibiting a reasonable convergence

rate at all times.

Rosenbrock Function

The Rosenbrock function, also known as the second De Jomgidanis a non-convex

function commonly used for performance testing of metarisga optimization algorithms [17].

n—1

i=1
Fig. 4.2 illustrates the characteristics of the Rosenbfaoktion for n=2. The global minimum is
located within a wide-spread valley of low gradients. Thallgmge for the algorithm is to quickly

converge to the global minimum despite the nearly flat cantéthe valley.

Chapter 4 Large-Scale Optimization on GPUs 53

i
4000 “ \‘\:\‘:‘\\‘
(RO
3500 (ORI 3000
i

Wi
i
K
Be

3000

W
\\\\ :s‘s:‘
R
“‘\\‘\\\ Wk

250
° W :‘ : Wik
Wt
RS
\\‘:\\‘:\\‘:\\‘:\ ‘\‘:\\3\“ X
P

2000

A
1500 A
SRS \\“:\‘:\“:
RIS
1000 S

Figure 4.2. Rosenbrock’s function for n=2, -2.048¢; < 2.048. The global minimum is located at

Random Convergence Tests
—— Average Convergence Test

Residual Error

=t I = L .| 1
2500 3000 3500

1500 2000
Number of Generations

Figure 4.3. 100 GA convergence tests and average convergeacess for Eqn. 4.3.5 with n=3,
-2.048< x; < 2.048 and random, uniformly distributed initial populato Population size=200,
CMR=0.9, PMR=0.4.

Fig. 4.3 shows the convergence curves of 100 performed @atifon runs with random
initial populations and the resulting average convergangge. It is noticeable that all 100 runs
converge to an accuracy of less tHam> needing between 60 and 3500 generations to accomplish
the task. Furthermore, a bend in the convergence curve domieant, which can be explained
by the properties of the Rosenberg function. Finding thieyand converging to a function value
close to the global minimum can be quickly achieved by the GA.on the other hand, determining
the exact location of the minima is more challenging andefuge causes the observed decrease in

the convergence rate.

Chapter 4 Large-Scale Optimization on GPUs 54

-9l
100

100 -7

-50
-100 100 -100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 4.4. Easom function for -100 z; < 100. The global minimum is located Atr, pi) = —1.

T T

Random Convergence Tests | _|
— Average Convergence Test

0.8,

Residual Error
o
>
T

I
i

0.2~

1 _— 1
12 14 16 18

8 10
Number of Generations

Figure 4.5. 100 GA convergence tests and average convergeocess for Eqn. 4.3.6 -100
xz; < 100 and random, uniformly distributed initial populatiorBopulation size=200, CMR=0.9,
PMR=0.4.

Easom Function

The Easom function (Eqn. 4.3.6) is a 2-dimensional benckimgfunction for which the
majority of the search space is equivalent to a nearly flateplaith no considerable gradient. Its
only minima is located af (7, 7) = —1.

f(z1,22) = —cos(z1)cos(xo)exp(—(zy — m)* — (29 — 7)?) (4.3.6)

Fig. 4.5 illustrates the GA performance when tested withBheom function. All of the
100 performed tests converged very quickly within less thargenerations. It can be concluded
that the mutation operator of the GA prevents the algorithomfstagnation when the crossover
operator is non-functional due to equivalent function ealof all population members.

Chapter 4 Large-Scale Optimization on GPUs 55

NN
il .‘m,\“‘\\;/;‘\\ AN
A ShA

Figure 4.6. Rastrigin’s function for n=2, -5.%2 z; < 5.12. For A=10, the global minimum is
located atf (x; = 0) = 0.

Random Convergence Tests| |
—— Average Convergence Test

Residual Error

Ll . 1 R 55

Number of Generations

Figure 4.7. 100 GA convergence tests and average convergeacess for Eqn. 4.3.7 with n=3,
-5.12 < z; < 5.12 and random, uniformly distributed initial populasonPopulation size=200,
CMR=0.9, PMR=0.4.

Rastrigin Function

The Rastrigin function (Eqn. 4.3.7) is a non-linear, mutighal function commonly used
for benchmarking. It is characterized by a large number epdecal minima with similar function
values, as illustrated in Fig. 4.6. The Rastrigin functiswonsidered a very difficult optimization

problem due to its large search space and a high probabfilggtting entrapped in a local minima.

f(z)=10n+ z”: (27 — 10cos(27mz;)] Vz € R" (4.3.7)
i=1

Chapter 4 Large-Scale Optimization on GPUs 56

Fig. 4.7 shows the convergence curves for a 3-dimensionatisspace. All test functions
converge between 14 and 420 generations. The convergenas@pproach the global minimum
in a stepwise manner, which is caused by the algorithm cothgidiscovering local minima through

mutation until the global minimum is found.

Langermann Function

\N“!y

\’ M\dm-\h‘\
i

10 —

Random Convergence Test 3
—— Average Convergence Test ||

Residual Error
s
T

Number of Generations

Figure 4.9. 100 GA convergence tests and average convergerucess for Eqn. 4.3.8
with n=3, 0 < z; < 10 and random, uniformly distributed initial populationsPopulation

size=200, CMR=0.9, PMR=0.4,;; = [3,5,2,1,7;5,2,1,4,9;1,2,5,2,3] and global minimum

at £(2.793,1.597,5.307) = —4.156.

Chapter 4 Large-Scale Optimization on GPUs 57

The Langermann function (Eqn. 4.3.8) is a multimodal berafimg function that fea-
tures both flat sections with very small gradients and araedsanmultitude of nested, ring-shaped

minimas (Fig. 4.8). It therefore demands universal appllitg from the optimization algorithm.

n n

f(z) = Zci exp[—% Z(:U] —aij)*cos[m Y (zj—aij)?] V(v,c) €R",a € R™™ (4.3.8)
i=1 j=1 j=1

Fig. 4.9 shows the results of 100 performance tests usindg.dhgermann function. Again, all
optimization runs converge within 9 to 270 generations. average convergence curve features a
relatively long period with a zero convergence rate befggr@aching the global minimum, since
the ring-shaped characteristics of the local minima harttpeeffectiveness of the crossover oper-

ator. However, the GA manages to determine the optimalisalatt all times.

4.4 FCHEV Optimization Methodology

The following requirements are needed to be fulfilled by tB#lEV optimization method-
ology:

e Objective: Determine the best system design in terms of minimizing thexall fuel con-
sumption for a given driving profile.

e Simulation length: Simulate the entire vehicle lifetime for each candidateéd(Q00km).

e Evaluation data: Use driving profiles to account for effects caused by vanetiin driving
patterns.

¢ Lifetime effects: Account for battery degradation during lifetime simulatio

e Optimization time: Achieve reasonable computation time until convergenderdaiis met
(< 2 days).

e Energy management: Optimize energy management for each drive cycle simulation
achieve comparability of all candidates.

A two-level optimization methodology is proposed to detim@rthe ideal system config-
uration while achieving the design goals. Fig 4.10 illustsathe framework of the optimization
method. The methodology consists of two genetic algoritiptimtization routines executed in two

Chapter 4 Large-Scale Optimization on GPUs 58

loops, an outer loop and an inner loop. The outer loop find®ftienal component design param-
eters, which are defined by the design vector in Eqn. 4.2.2. dijective is to minimize the fuel
consumption for the entire lifetime of the vehicle (Eqn. .4)2 There are several ways to achieve

this in terms of data partitioning.

1. All driving data from the lifetime of the vehicle is credtas one large drive cycle up front
and fed to the simulation. The model then simulates the liddtiime of the vehicle without

interruptions.

2. The DCGT is integrated with the vehicle simulation andegates the drive cycle data on-
the-go. Hereby, the DCGT only creates the necessary datmétimestep at a time on the

fly. The simulation is stopped when the overall mileage readhe lifetime mileage.

3. The lifetime driving data is split into partitions of edaaray length, equal mileage, or similar
topology (e.g. driving scenarios). A new data partitionrisated each time the simulation
has finished evaluating the previous data partition. Thd fipstem state of the previous
simulation is saved and used as the new initial state for #x¢ simulation. This process is

repeated until the overall mileage is greater than or equidle anticipated lifetime mileage.

Option 1 requires a lot of memory space for the large datay.aivibdern GPUs currently do not
provide enough fast memory to efficiently handle arrays af #ize. Option 2 is very efficient
in terms of memory utilization. However, due to the lack ofaadhistory, it is very challenging
to design an EMS that ensure comparability between carsdidaption 3, on the other hand, is
very suitable for an efficient CUDA implementation and a derpMS integration. The maximum
array size of the data partition can be determined to fullizatthe fast memory space of the GPU
and thereby minimize the memory latency between host anideleln the proposed optimization
procedure, the DCGT generates drive cycles that consistlgfome type of driving scenario. This
uniformity eases the task of finding the ideal energy managefior the drive cycle.

The inner optimization loop determines the ideal EMC comfigjon for each drive cycle
simulation of each candidate. Since the inner optimizatemrested into the outer optimization loop,
the computation effort increases exponentially. Howethax,nested implementation is necessary
in order to guarantee comparability of the population memlie the outer loop. Assuming the
EMC parameters are not optimized for each drive cycle, tberdotential candidates with efficient
EM parameters might outperform high-potential candidatiés inefficient EM parameters. High-
potential candidates might appear as low-potential catelgdand will have an unproportionally low

Chapter 4 Large-Scale Optimization on GPUs 59

Initialize population with i candidates,
XLi=[Pm,i, nre,i, Qil

| Outer Loop

Generate drive cycle (DCGT/ Re-initialize initial
recorded drive cycle data) state-variables/ degradation

Initialize sub-population with (i x j) candidates,
x2i; =012, alij]

y

Reproduction, Crossover, Mutation: Fitness evaluation Battery Degradation
X*=[x1;,%2,;] fx=[xLi, x2;;) ry Deg
A

Select best candidate of
each sub-population

// Vehicle mileage > lifetime mileage? /;

Fitness evaluation of
Zfg(x=[x1i])

A
Convergence criteria met? Reproductlon,x(l:rfii(iver, Mutation:
z ; i=x*1

| Stop Optimization

Figure 4.10. Two-level optimization framework using twangéc algorithms: The outer loop finds

the ideal component design configuratiefior 100,000km of drive cycle data; the inner loop de-
termines an ideal energy management setup for each drive sinulated for each population

member.

reproduction probability. Capable genes might therefatehe represented in the next generation.
Furthermore, high-potential design candidates, whicle pgarformed well in previous generations,
might perform worse in the following generations becaussubioptimal EMC parameters. Hence,
the entire GA routine might not converge due to inconsistenia the fithess evaluation. As aresult,
the inner EMC optimization loop is absolutely essential.

To use a genetic algorithm for the inner loop, it is necessargreate sub-populations

for each candidate of the outer optimization loop. The dii@pulation size of the optimization

Chapter 4 Large-Scale Optimization on GPUs 60

problem thereby increases to:

Ntotal = Nouter * Tinner (4.4.1)

The objective of the inner loop optmimization is stated as:

mqin My, (4) (4.4.2)
q = [oq, 9] (4.4.3)
Whereme2 is the hydrogen consumption for one drive cycle, ansithe design vector containing

the EMC parameters; andas, which are used in Egn. 2.5.1. Reasonable constraintsdatahign

vectorz can be formulated as:

0<a <0.5, a1 € Zy (4.4.9)
0.5 < ag < 1.5, s € Ziygo (4.4.5)

The best candidate of an inner loop optimization is the oaelihs the lowest fuel con-
sumption while maintaining a well-balanced battery SOCh# SOC of the final state is smaller
than the SOC of the initial state then the battery acted ativegower source and not just as a
buffer. The extra energy provided by the battery must bewattenl for in the objective function in
order to ensure comparability of the candidates. The fussamptions of the best candidates are
summed until the lifetime mileage is reached. During thepss, the model keeps track of the bat-
tery utilization, which is needed to determine the battesgate of degradation. For each generated
drive cycle, the degradation proceeds individually forree@ndidate. The state of degradation is set
back to zero for each new iteration of the outer loop. All otstate variables are also re-initialized.
The optimization is stopped when the convergence critsrimeét or if the maximum number of
generations is reached.

4.4.1 Cardinality of the Search Space

The search space cardinalify,;,; of the proposed two-level optimization routine can be
estimated by the following equation:

Stotall = (ISPl X [Snpel X 18l) + [(Sai| X Sazl) -] k- neconvergence (4.4.6)

Cardinality of outer loop search space Cardinality of inner loop search space

wherei is the number of population members of the outer loop, whsabguivalent to the number
of optimizations performed for each drive cycle in the inlwap. & is number of drive cycles in

Chapter 4 Large-Scale Optimization on GPUs 61

the lifetime of the vehicle, and ,nvergence IS the number of generations of the outer loop until the
convergence criteria is met. The cardinality of the outeplsearch space is given in Egn. 4.2.7.
Eqgn. 4.4.5 and 4.4.5 define the search spaces of the desigmgtars of the inner loopu,yter
typically lies in the intervak20..803. The mileage of a DCGT generated drive cycle is usually
between 5km and 100km. If the overall lifetime of the vehisleset to 100,000km, theh lies in

the interval{1000..20009. The minimum number of generations of the outer loop is 2, thed
maximum number is limited to 100. Hence, the interval rar@enf.onvergence is {2..200. The
overall cardinality of the total search space is therefatarated to be an element of the following

interval:

Stotar] € {(1.8 x 10® + (500 - 1000 - 20) - 1000 - 2) .. (4.4.7)
(1.8 x 10 + (500 - 1000 - 800) - 20000 - 100) }
= Sttat] € {2 x 1010 .. 8 x 10} (4.4.8)

4.5 GPU Implementation

In order to optimally implement the methodology proposed@eéction 4.4, it is crucial
to understand the CUDA programming model. A CUDA kernel isaeted by a large array of

(Host | (Device)
Grid 1
Block Block Block
(0,0 (1,0) (2,0)
Kernel 1 P>
Block Block Bloc.i("' N
oy || @ || @ TBlock 2.1)
...... Thread Thread Thread Thread
------ (0,0) (1,0) (2,0) (3,0)
Grid 2
Thread Thread Thread Thread
Block Block o . @ B
(0,0) (1,0)
Thread Thread Thread Thread
(0,2) (1,2) (2,2) (3,2)
Kernel 2 Block Block
(0,1) (1,1)
v Block Block
(0,2) (1,2)
. J/ . J

Figure 4.11. The CUDA programming model consisting of grldlecks and threads.

Chapter 4 Large-Scale Optimization on GPUs 62

threads. All threads run the same program, but with diffemeput data (SIMD). Threads are
usually organized into a two-level hierarchy, as shown gn Bi11 [18]. When a kernel isvoked

it is executed on the GPU bygid. A grid consists of one or mofig@ocks which again contain the
threads All blocks have the same number of threads assigned to tAghread block is a batch of
threads that allows for sharing data between the threadsdhrshared memory. Thread blocks also
enable synchronizing the execution of the threads witterbibck. However, threads from different
blocks cannot interact; they operate independently.

Each multiprocessor of the GPU can only execute a limitedbairof threads at the same
time, therefore, thread blocks are divided imarps A warp is a group of threads within a block
that are executed together. Each thread block is mappedet@romore warps. If the number of
threads in a block is not a multiple of the warp size of the Gfhgn the computational occupancy
of the GPU is not fully utilized. Hence, an efficient CUDA inephentation needs to be designed
according to the structure of the CUDA programming model.

Two different GPU architectures have been used in this de#an, which are single-
GPUs and multi-GPUs. Single-GPUs are typically consunade graphic cards or specially de-
signed parallel processing units, which are embedded inrstaiion computer. A multi-GPU
cluster is a computer cluster in which each node is equippttdanGPU. The implementation of the
proposed optimization routine slightly differs accordiaghe architecture. The fitness evaluations
of the sub-populations are the most computationally deimgnisks because of their enormous
multitude. Hence, it is highly desirable to parallelizesthivaluation process. Since the fithess eval-
uation process is extremely scalable, it can not only bewggddn parallel on the multiprocessors
of a GPU, but it can also be split between numerous devices.

Fig. 4.12 illustrates the implementation for a single-GRthaecture. First, the popula-
tion for p is initialized on the host. Sub-populations fpare then initialized for each candidate of
the main population. Each sub-population is assigned tparate thread block on the device with
the number of threads in a block equaling to the number ofidates in the sub-population. All
blocks are assigned to a single grid. The FCHEV model and thefGhe inner optimization loop
are implemented within the kernel, which is executed by thiek @rive cycles are generated by the
DCGT on the host and transfered to the global memory of thizdeilew grids are then initialized
on the device for every simulated drive cycle. After eactatien of the outer loop, the fitness level
(overall fuel consumption) of each block is saved to the mesmory. Next, the outer loop GA
optimization is executed on the host. A new population isiE@, split into sub-populations and
send to the device. This process is repeated until conveegerachieved.

Chapter 4 Large-Scale Optimization on GPUs 63

HOST Population
P11 P12 P13 Pin
P21 P22 P23 P2.n
P31 P32 P33 P3.n
Sub-Populations / / \ \
P11 P12 P13 Pin
p21|CI1,1|CI1,ZIQ1,n| p22|Q11IQ12|Q1,n| p23|q11|q1,z|q1,nl p2n|Q11|Q1,2|an|
p3:1| 02,1] 92,2920] p3:2 [92.1]92.2]92.n] p3:3| 02,1]92,2] 920 | p3"n| 02,1]92,2[92.0]
: DEVICE
BN Y I y Grid x
Kernel -k Block 1 Block 2 Block 3 Block n
Drive Cycle > : :;;b::y
HOST v v v v
Genetic Algorithm
New Population y
P11 P12 Pis Pin
P31 P32 P33 P3.n
P31 P32 P33 Pin
New
Sub-Populations
AEncRGn or? [Faf] o] | | bt o] ia] Si;:l GRCRCE
P51 95,1 95,2] 3.0 p§:2|Q’§,1|Q’§,2|q4§,n| p§:3|q5,1|%,2|‘1§,n| D% Q51| G52 | Fon

Figure 4.12. 2-level optimization methodology implemehts a single-device GPU. Each sub-
optimization is performed in separate blocks, which erabtalability.

Fig. 4.13 shows the implementation for a multi-GPU architex= The population fop
is initialized on the host. Sub-populations are then iliitéal for each candidate of the main pop-
ulation. Next, the sub-populations are evenly distribuited groups equivalent to the number of
available devices. Each group is represented by one gridcm@evice. The sub-populations of a
group are assigned to blocks in the corresponding grid, redame kernel and the same drive cy-
cles are executed on all devices in parallel. The resultadi block are copied to the host memory
after each iteration of the outer loop. The outer loop GArnjation is executed on the host. A
new population is created, split into sub-populations,clwvtare grouped according to the number
of available devices, and sent to the device. This procagpeated until convergence is achieved.

Chapter 4 Large-Scale Optimization on GPUs 64

(. Y
HOST Population P11 | P12 P13 Pra | Pis P16 P17 Pre | Pin
P21 | P22 P23 P24 P25 P26 P2,7 P28 P2
P31 | P32 P33 P34 P35 P36 P37 P38 P3n
Sub-Populations
b T o
P32 G20 P3m
P1,m+2 P1.2m
P2,m+2 == din P2,2m
psmiy 922922020 P32m
= :
E;i::::i 912 - S;: 91912
03 vy 2|92 022|920 o3 0 02,1/ 92,2
S
[DEVICE 1) (DEVICE 2) (DEVICE m)
Kernel ? .
Y \ A Y v
Grid x,1 Grid x,2 Grid x,m
Block 1 - Block 1 = Block1 [—
Block2 Block 2 |— Block2 —
Block n/m — Block n/m — Block n/m [
Global Global e Global
Memory Memory Memory
- A A A
Drive Cycle : : :
_ I\ J _ J \ _J
HOST \ Y Y
Genetic Algorithm
) Y
New Population [7pi; T pi; | Pis | Pis | Pis | Pie | Pis | Pis | Pin
P51 | P52 | Pis P24 | P5s | Pie | P57 | Pie | Pin
P31 | P52 | P33 P34 | P5s | P56 | P37 | Pis | Pin

Figure 4.13. 2-level optimization methodology implemehten a multi-GPU architecture. Each
sub-optimization is performed in separate blocks. Theks@re evenly split into grids, which are
executed on multiple devices in parallel.

Grid synchronization is essential for the multi-GPU impéartation to ensure convergence of the
GAs.

The synchronization of threads within one block is illustdhin Fig. 4.14. The kernel,
which is simultaneously launched by each thread, consistgooparts: The first part is the FCHEV
simulation and the second part is the inner loop GA optinoratThe evaluation of the FCHEV is
anembarrassingly parallelvorkload, which means that no dependencies exist betwesgpeattallel

Chapter 4 Large-Scale Optimization on GPUs 65
Block x
Thread 1 Thread 2 Thread n
while criteria while criteria while criteria
do(do(do(
input p,, q; input p,, g, input p,, q,
input SOC, input SOC, input SOC,

input degradation;

for i=1..DC_length
do FCHEV model
end

output fitness;
output SOC,
output degradation;

input degradation,

for i=1..DC_length
do FCHEV model
end

output fitness,
output SOC,
output degradation,

. Sigma scaling

. Odd-even sort (best candidate x* moved to thread 1, 2nd best to thread 2,...)

input degradation,

for i=1..DC_length
do FCHEV model
end

output fitness,
output SOC,
output degradation,

1
2
3. Select m elite parents from {q,}

4. Fitness proportionate selection of (2xn)-m candidates from {q,}
5. Linear crossover of selected parents

6. Add mutation to some children

7. Create children population {g*,}

check criteria

)

check criteria

)

check criteria

)

return fitness,«
return SOC;.
return degradation;«

return fitness,.
return SOC,-
return degradation,:

return fitness, .
return SOC,.
return degradation,:

Figure 4.14. Thread synchronization for the kernel withie dlock

tasks. The GA, on the other hand, is mostiy@-embarrassingly parallelvorkload. Thread
communication is required for many of its operators.

The kernel is repeatedly executed until the GA convergesh Baread of one block gets
assigned the same design veqgidiut different candidates far. The battery’s state-of-degradation
and SOC vary for each thread and are therefore quantifieddependent state variables. The fact
that threads are grouped in warps and are not necessarithreyrized needs to be considered dur-
ing the implementation of the GA. Within a warp, threads arte@atically synchronized. However,
some GA operators require thread-communication betweeads of different warps. It is there-
fore necessary to synchronize all threads before execstinly operators. For example, the sigma
scaling operator requires the computation of the averagestt of all threads in a block (Section
4.3.2). Hence, the operator can only be executed afterrathdls have finished the FCHEV simu-
lation. Also, the average fitness is a mutual variable fottmébads. Thus, it is sufficient to declare

just one variable for the average fitness for each block. TBidamemory bank conflicts on the

Chapter 4 Large-Scale Optimization on GPUs 66

Block n

Thread 1 Thread 2 [Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread n

\’_‘/ \~/ \’_‘/
f* k2 L2 W\
4 7 | 1 3 (S 2 8 |%| 5 9
\"/ \></ \></
4>1|"7>2 3 || 5 8 [kl 9
\»‘/ */
f* Y v
1 4 || 2 7 A 3 5 [8 9
< Z A\ Z
= =y
3
2z
L7
4

A
(G20
~ 9
A
(o]
(]

Figure 4.15. Parallel odd-even transposition sort impleatéon on the GPU architecture

GPU, it makes sense to have only one thread calculating #rage fithess while all other threads
are halted. A similar approach is used to determine the cativalsum of the fitness proportionate
selection operator: After synchronizing all threads inltkack, all but one thread are paused. The
still-active thread then determines the cumulative sumalfdahreads in the block.

The OETS is used to rank the candidates according to thedsftAlgorithm 4.3). Thread
communication is limited to neighboring pairs of threadfie odd-even pairing of the threads al-
ternates with each iteration of the sorting algorithm, hsitated in Fig. 4.15. Once again, it is
necessary to synchronize the threads if the total numbereéds in the block exceeds the max-
imum warp size. Otherwise, parameters might swap theittipasi with parameters of different
warps that might not be at the same stage of the algorithmaatithe. The actual swapping com-
mand is invoked by only one of the threads in a pair. The ottvexad is paused in the meantime. If
both threads would call the swapping function simultanBotise parameters would be re-swapped
to their original position. Hence, the function call would tedundant.

Chapter 4 Large-Scale Optimization on GPUs 67

For the linear crossover of the design parameters, all disrbave to be able to access
all other threads in the block. Hence, thread synchromimatiust be performed before calling the
crossover operator. Each thread creates offspring bylasileg the mean of design parameters from
the two selected threads. The threads return all stateblesiand the objective parameter to the
host memory when the GA converges or its maximum number i&titms is reached.

Chapter 5

Performance Evaluation

This chapter investigates the impact of the GA parametempsen the performance of
the optimization methodology. First, the specificationghef hardware architectures used in this
dissertation are presented. Next, the algorithm perfooesf the inner loop GA and the outer
loop GA are studied as a function of their population sizesally, the overall computation time
of the optimization methodology is quantified and analyzecepards to the CUDA programming
model.

5.1 Hardware Configuration

To study the influence of the GPU hardware on the performamd@eooptimization
methodology, the CUDA code is evaluated on three differeRtUGrchitectures. Table 5.1 pro-
vides an overview of the GPU systems used in this dissentatio

The consumer-level graphic caféeForce GTX 460 2Wiis housed in a Dell T7500
workstation with 24GB (6x4GB) DDR-1333MHz RAM, Intel W5590core processor (8M Cache,
3.33GHz), Dell 0D881F motherboard, and Nvidia Tesla C1080@&GB GDDR3 RAM) on 64-
bit Ubuntu 11.04. This same workstation is used for the C/@ad Matlab Simulink benchmarking
in Section 5.3. The GPU Cluster incorporate§esla M2050computing units in a Dell server
housing with 8 nodes connected via InfiniBand. Each M205@gssor board can be separately
controlled.

68

Chapter 5 Performance Evaluation 69

Table 5.1. Three different GPU architectures used for co@dyais and benchmarking

Specification GPU Architecture 1 GPU Architecture 2 GPU Archtecture 3
Category: Gaming/consumer-level GPU Computing ProcéBsard GPU Cluster

Brand Name: EVGA NVidia NVidia

Model: GeForce GTX 460 2Win Tesla M2050 Tesla M2050
Number of Devices: 2 x GeForce GTX 460 1 8 x Tesla M2050
Core Clock: 1350MHz 1150MHz 1150MHz

Memory Clock: 3600Mhz Effective 3092MHz 3092MHz

CUDA Cores: 2x336 (672) 448 8x448 (3584)
Streaming Multiprocessors: 2x7 (14) 14 8x14 (112)
Registers per Block: 16384 32768 32768

Memory Detail: 2x1024MB GDDR5 3072MB GDDR5 8x3072MB GDDR5
Memory Bandwidth: 2x115.2 GB/s 148.4 GB/s 8x148.4 GB/s
Processing Power: 2x907 (1814)GFLOPs 1040GFLOPs 8x1BMJBFLOPSs
Compute Capability: 21 2.0 2.0

5.2 Algorithm Performance

The population size has a significant impact on the perfoomani a genetic algorithm.
The proposed optimization methodology of Section 4.4 doatawo GAs, which are nested into
each other. This integrated setup exponentially incretmeifluence of the population sizes on
the overall performance of the optimization routine. Initidd, the occupancy of the GPU is also
dependent on the population size of the proposed optimizatiethod. The occupancy is defined
as the number of active warps over the number of maximumeaetarps, and thus is a function of
the number of threads in a block (Section 4.5). The sub-poioul size of the inner optimization
loop is equivalent to the number of threads in a block. Hetieecomputational efficiency of the
GPU is dependent on the population size.

The relationship between different population sizes aedotrformance of the proposed
FCHEYV optimization is investigated in the following sects An estimation of the ideal population
size for the inner loop GA is established in Section 5.2.1e ©htained results are then used in
Section 5.2.2 to determine the optimal population sizeshefduter loop GA for various GPU
architectures.

The drive cycle presented in Fig. 5.1 is used as a benchmank cdycle for this per-
formance study. The cycle consists of 9% stop-and-go, 38%mrl7% suburban, 11% rural and

Chapter 5 Performance Evaluation 70

35 : H : :
{_SNG_: _ HIG . _RUR _i_ URB i SuB

Y
A
Y

N N w
o v o
1 [N

Speed [m/s]

-
v
1

T T T
0 500 1,000 1,500 2,000
Time [s]

Figure 5.1. Benchmark drive cycle for population size ojtation of the GAs. The percent com-
position in terms of driving scenarios is 9% SNG, 38% URB, 1S¥%B, 11% RUR and 25% HIG.

25% highway driving. For lifetime simulations, the drivecty is repeatedly used with the FCHEV
model until the vehicle lifetime (100,000km) is reachedeTiitial conditions of the optimization
problem are listed in Chapter 4.

5.2.1 Inner Loop GA

Convergence tests for the inner loop GA have been perforimred different population
sizes (30, 50, 100, 200). The maximum possible populatipa isilimited to 200 candidates due
to memory constraints from the GPU architecture. Each sefidests consists of 5 simulations.
The estimated convergence rate is determined from thegev@fahe performed simulations. Fig.
B.1-B.4 illustrate the convergence development for the éases and Table 5.2 shows the obtained
results.

Table 5.2. Inner loop GA: Average number of iterations ucihvergence for different population
sizes

Population Size 30 50 100 200
Average number of iterations until convergence 17 8 4 3
Percentage improvement in convergence ratg - 10.6% 4% 1.3%

The convergence rate improves when the population sizetisased, however, it suffers

from diminishing returns. The larger the increase in potasize, the smaller the improvement

Chapter 5 Performance Evaluation 71

in convergence rate. To determine the optimal populatine, st is necessary to consider the ker-
nel execution time, since it increases with the number afatis in a block. Therefore, the overall
execution time of the inner loop is estimated as the prodlitteonumber of iterations until con-
vergence and the kernel execution time. Fig. 5.2 shows timatsd GA execution time of the
inner loop versus the inner loop population size. The kezretution time is a function of the GPU
occupancy, and thus increases in a step-like manner deggeadithe number of warps utilized for
the block. All three GPU architectures in this study featmmmaximum of 32 threads per warp if
compiled with compute capabilityl.3. Hence, the optimal number of threads in a block is tylyica
a multiple of 32. On account of this, the ideal populatioresif the inner loop GA is determined
to be 192. Larger population sizes require the executiom @x#ra warp and therefore decrease the
GPU occupancy, which outweighs the improved convergertee ra

-&- Approximate number of iterations until convergence

1 ---- Kernel execution time [
e~ Overall execution time
1.000 1.000

Estimated ideal population size: 192

Time [ms]

100 100

suoljesaj| Jo JaqunN

10 F10

Number of Threads in Block (Population Size)

Figure 5.2. Estimation of the optimal population size far thner loop GA on a GPU architecture

5.2.2 Outer Loop GA

An analogous approach is used to determine the optimal atpuilsize of the outer loop
GA. First, convergence tests are performed for 8 differepuation sizes (20,30,50,80,100,200,400,800).
The optimal population size of 192, which has been estaddishh Section 5.2.1, is thereby used for
the inner loop GA. Once again, each series of tests congiStsimulations, and the average of the
test runs is used to determine the convergence rate. ThHesrekthe performed tests are illustrated
in C.1-C.8, and the convergence rates are listed in Table 5.3

1The compute capability describes the features supported®lyDA-enabled device.

Chapter 5 Performance Evaluation

72

Table 5.3. Outer loop GA: Average number of iterations urdivergence for different population
sizes.n/ais used when no convergence is achieved.

Population Size

‘ 20 30 50 80 100 200 400 800

Average number of iterations until converger*ce na nfa n@da 60 54 38 33

Again, the convergence rate improves substantially forllempopulation sizes, but with

diminishing returns as population size increases. Pdpulaizes of less than or equal to 50 do not

converge within 100 iterations. Once more, the kernel eti@cuimes for the different population

sizes are needed to compute the overall execution time aftimization. Since the kernel execu-

tion time of the outer loop is proportional to the number afecycles in the lifetime of the vehicle,

the optimal population size can still be determined if thetiine is reduced to just one drive cycle.

Fig. 5.3 illustrates the kernel execution times for varipapulation sizes when the vehicle lifetime

is represented by the benchmark drive cycle.

1.4e+04

1.2e+04

Kernel Execution Time [ms]

2,000

Kernel Execution Time [ms]

0

1e+04

8.000

6.000

1.500 1

1.000 1

500 1

—=— EVGA GTX460 2Win 1 Device
—e— EVGA GTX460 2Win 2 Device
-4~ Tesla M2050 1 Device
—¥- Tesla M2050 2 Device
—<- Tesla M2050 4 Device
—>- Tesla M2050 8 Device

-

.-
e

Population Size

—= EVGA GTX460 2Win 1 Device
—— EVGA GTX460 2Win 2 Device
-4~ Tesla M2050 1 Device
-¥- Tesla M2050 2 Device
-<- Tesla M2050 4 Device
->- Tesla M2050 8 Device

P it s

AP

———

————

e e

T

0 20

40 60 80

100
Population Size

Figure 5.3. Outer loop GA: Kernel execution time versus patan size and effect of SM

occupancy.

Chapter 5 Performance Evaluation 73

On a larger scale, the kernel execution time is roughly prtapeal to the population size.
However, upon closer examination, it is noticeable thalsib &xhibits step-like characteristics for
smaller population sizes. While the kernel execution tiay@dly increases for every 7 additional
population candidates on the consumer-level GPU architledEVGA GTX460), it increases for
every 14 candidates on the GPU cluster architecture (Te2RED). This phenomenon can be ex-
plained by the number of streaming multiprocessors (SM&ach device. Consulting Table 5.1,
each device of the consumer-level GPU consists of 7 SMs, aciul@device of the GPU cluster con-
sists of 14 SMs. In the CUDA programming model, multiprocessare grouped into SMs, which
all execute the same instructions. When a CUDA program oimadise CPU invokes a kernel grid,
the blocks of the grid are enumerated and distributed toipnattessors with available execution
capacity [81]. If the number of blocks is not a multiple of tiiember of available SMs, then the
execution capacity of the GPU is not fully utilized, hence sitep-like characteristics of the kernel

execution time.

1e+06 - 1e+06
| --k- Approximate number of iterations until convergence
| --m- Kernel execution time
|| —®— Overall execution time L
1e+05 7 C 1e+05
"~~~ Estimated optimal population size: 100 E
1 [3
o 1e+04 3 - 1e+04 g
E 1 e a L o
E e SRR - g
P04 — 1,000 &
[I '- ,,,,,,,,,,,, 5'
,,,,,,,,,,,,,,,, 5
wn
100 A - 100
4 kTR e — -
10 T T T T T T T T T T T T T T T T T 10
0 200 400 600 800

Population Size

Figure 5.4. Estimation of the optimal population size foag thuter loop GA on a 2xTesla M2050
GPU architecture

Fig. 5.4 shows the overall execution time of the optimizatom the GPU cluster with
two devices utilized. The estimated optimal populatiore ¢imt minimizes the overall computation
time is determined to be 100. This result is also valid for dkleer GPU architectures, since the
relationship between the kernel execution time and the lptipo size is approximately linear (Fig.
5.3).

Chapter 5 Performance Evaluation 74

5.2.3 Overall Performance

1.000 5

100

Optimization Time [h]

10 4 o r_‘,——"f —=— EVGA GTX460 2Win 1 Device
] = —— EVGA GTX460 2Win 2 Device

- Tesla M2050 1 Device

- Tesla M2050 2 Device

- Tesla M2050 4 Device

- Tesla M2050 8 Device

ER L

L e e B L S w e B S
0 100 200 300 400 500 600 700 800
Population Size

Figure 5.5. Overall optimization time for a vehicle lifegénof 100,000km on the consumer-level
GPU architecture and the GPU cluster.

Considering the results of Section 5.2.1 and 5.2.2, it is pogsible to estimate the overall
optimization time for all architectures. The lifetime ofetivehicle is set to 100,000km, and the
benchmark drive cycle is repeatedly used until the lifetimenet. Fig. 5.5 shows the results for
the GTX460 consumer-level graphics card, the single peicgsboard and for the GPU cluster.
The estimated optimization time for an ideally adjustecbatgm setup is approximately 7 hours
on the GPU cluster when the computation load is distributddiéen its 8 devices, 55 hours on the
2 devices of the consumer-level GPU and 62 hours on the gimgissing unit.

The scalability of the optimization code on various GPU #edtures is noticeable in the
obtained results. Doubling the number of utilized devicéhiw an architecture nearly halves the
computation time of the optimization. This statement isdvédr both the consumer-level card and
the GPU cluster. The load balancing between all devices irelnitecture is handled by the host.
The invocation of the kernel and the memory transfer timgastecompared to the execution time
of the kernel on the devices. As a consequence, the loaddiadgtime is an insignificant fraction
of the overall computation time. Hence, the CUDA code isyfsttalable on multi-GPU systems.

It can be seen from Fig. 5.5 that the fully utilized consuteeel EVGA GTX460 2Win
outperforms one Tesla M2050 device for all population siZHse Tesla M2050 is a significantly

more expensive computation board, which is especiallygdesi for GPGPU applications. Looking

Chapter 5 Performance Evaluation 75

6x10'° 2x10"2

5x101°]

4x10™]

3x10'° 4

5x10'"

~
X
=

Overall mileage of all cars [km]

Number of Kernel Executions

1 O‘U N T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Population Size Population Size

(a) Estimated number of kernel executions until convglh) Estimated mileage simulated during the optimization

gence until convergence

Figure 5.6. Estimated number of kernel executions and sitionl performance for various popula-
tion sizes.

at Table 5.1, the differences between the specificationdJ @rchitecture 1 and the specifications
of one device of GPU architecture 2 are marginal. The lardestrepancies exist between the
memory size and the memory bandwidth. Since both paramatensot the computational bottle-
neck for the FCHEV optimization, the consumer-level GPUwe$ sufficient performance for the
application.

Lastly, Fig. 5.6 demonstrates the magnitude of the comiputah terms of kernels exe-
cuted and in terms of the accumulated simulated mileagee3timated number of drive cycles that
are simulated on the GPU architecture during one optintimatin is larger tham.2 - 10'°. In other
terms, the FCHEV model is executed at least 12 billion tim&sng the optimization procedure.
The sum of the simulated mileage for all vehicles therebyess3 - 10!'km. That is equivalent to
7.5 million trips around the world or 20 times the distanamfrthe earth to the sun.

5.2.4 Section Findings

The choice of population size has a significant influence erotkerall computation time.
For example, selecting a population size of 200 for the dotgy GA nearly doubles the computa-
tion time compared to the optimal population size. If, inifidd, the population size of the inner
loop GA is set to 50, the overall optimization time will quagte. This would extend the computa-
tion times on the GPU cluster to 28 hours and to an unreaseal hours on the consumer-level
GPU. Hence, small changes in the population size can haye &fects on the convergence effi-

ciency of the optimization routine.

Chapter 5 Performance Evaluation 76

Generally speaking, understanding the software-hardwaeeaction on GPU architec-
tures is crucial knowledge for large-scale design optitiora Furthermore, a performance study
for GA-based optimization methodologies is an essentiatguiure to fully utilize the hardware’s
capabilities, especially if the proposed methodology hamiti-level design.

In terms of hardware cost, cheaper consumer-level graphics deliver similar perfor-
mance as more expensive GPGPU processing boards, as longnasyrsize and bandwidth are
not a limitation.

5.3 Hardware Benchmarking

5.3.1 Computing Architecture

To benchmark the computation speed of the GPU architecagaimst the CPU imple-
mentations in C/C++ and Matlab/Simulink, the overall cotagtion time, which is needed to ex-
ecute a certain number of FCHEV simulations, is measure@doh environment. For this, only
the actual FCHEV simulation is evaluated, and thus the dpétion algorithms are not part of the
kernel. The benchmarking drive cycle of Section 5.2 is omgaéraused as a reference, and the com-
putation time is measured for various numbers of simulatiofhe following hardware/software

environments are analyzed and compared in this study:
1. CPU architecture: 1xIntel W5590 3.33GHz, C/C++
2. CPU architecture: 1xIntel W5590 3.33GHz, Matlab/Simikali

3. CPU architecture: 4xIntel W5590 3.33GHz, Matlab/Simkilwith Parallel Computation
Toolbox

4. GPU architecture 1: 1xGeForce GTX460, CUDA

5. GPU architecture 1: 2xGeForce GTX460 (EVGA GTX460 2WE)DA
6. GPU architecture 2: 1xTesla M2050, CUDA

7. GPU architecture 3: 2xTesla M2050, CUDA

8. GPU architecture 3: 4xTesla M2050, CUDA

9. GPU architecture 3: 8xTesla M2050, CUDA

Chapter 5 Performance Evaluation 77

The kernel call of the C/C++ code is nested in a for-loop fas thenchmarking study
and is therefore subject to sequential execution. A sinsédup is implemented for the Simulink
code. A Matlab m-file contains a for-loop, which sequengi#diunches the Simulink FCHEV sim-
ulation. The design parameters and drive cycle data areaddid on the Matlab workspace, which
is accessed by Simulink during the simulation. It is posstbladd parallel execution capabilities
to Simulink with Matlab’s Parallel Computation Toolbox. &toolbox allows for concurrently ex-
ecuting a certain number of Simulink simulations corresidog to the number of available CPU
cores. Since each CPU runs one simulation at a time, the niaxinumber of parallel simulations
is limited to 4 in this study. In the following paragraphse tbomputational performances of the
three CPU implementations are analyzed and compared agfadn&PU implementations, which
were introduced in Section 4. Fig. 5.7 illustrates the bematking results for the range of 1 to

100,000 performed simulations on each architecture.

T T T T T TTTTT T L | T L |
— B — CUDA: 1xTesla M2050
— © — CUDA: 2xTesla M2050
10" E | — A — CUDA: 4xTesla M2050

F | — & — CUDA: 8xTesla M2050

[| —®— CUDA: 1xGeForce GTX460
3 —&— CUDA: 2xGeForce GTX460
E | —%#— C/C++: 1xIntel W5590 CPU
: <> - Simulink: 1xIntel W5590 CPU
—¥— Simulink: 4xIntel W5590 CPU

Computation Time [s]
=

Number of executed FCHEV simulations

Figure 5.7. Benchmarking of 3 CPU-based FCHEV implemeutatin C/C++ and Simulink, and
6 CUDA-based simulations on various GPU architectures.tf®GPU architectures, the number
of threads in a block is set to 200 if the number of simulatierarger than or equal to 200.

It is evident that the GPU-based implementations perfogniicantly better than the
CPU-based implementations for the entire abscissa rangelafger the number of executed sim-
ulations, the greater the advantages of the parallel GPhitacture. On the contrary, CPU-based
simulations do not benefit from larger simulation numberms ttheir sequential nature. Hence, the

simulation time is approximately linear to the number of@red simulations. The graphical Mat-

Chapter 5 Performance Evaluation 78

lab/Simulink environment by far requires the longest cotapon times of all tested environments.
This is because Simulink offers numerous graphical andtimmal features, which are computa-
tionally expensive, even if not utilized. Moreover, pagaitomputation with Simulink using the
Matlab Parallel Computation Toolbox only improves the &rilpreaded implementation by less
than 10% and is therefore inefficient. The C/C++ implemémtaton the other hand, is remark-
ably more efficient than the Simulink implementations, bet well behind the GPU simulations
in terms of computation time. Looking at Table 5.4, the spgedf the C/C++ code compared to
Simulink is larger than 30x for 100,000 performed FCHEV dations. However, the slowest of
the tested GPU architectures still outperforms the C/C+deduy 164x, and the fully utilized GPU
cluster is a noteworthy 2190x faster. In overall computatime, the Simulink environment takes
40,000s (11.1h) to evaluate 100,000 simulations, the C/ee runs for 1,500s (25min), and the
fastest GPU architecture fulfills the same task in 0.7s. énpifevious section, the minimum num-
ber of kernel executions until convergence of the optingratoutine is estimated to bie2 - 101°.
Considering the discussed results, the overall optinundiime for the Simulink environment can
be assumed to exceed 150 years, and the C/C++ implementaitybmn take longer than 5 years to
converge. From a practical point of view, computation tiroéghat magnitude are infeasible and
therefore require simplifications. Fig. 5.8 shows a closew\of the benchmarking results for the
proposed GPU architectures.

10" [. —

— B — CUDA: 1xTesla M2050
— © — CUDA: 2xTesla M2050
— A — CUDA: 4xTesla M2050
— & — CUDA: 8xTesla M2050
—&— CUDA: 1xGeForce GTX460
—@&— CUDA: 2xGeForce GTX460

) -
P -
£ o
'_
c
2
:-’g _ -
=3 0 A/
2 10 B
£]
Q 4
[&]

e |

Number of executed FCHEV simulations

Figure 5.8. Benchmarking of 6 CUDA-based GPU environmemt4 f000-100,000 executed simu-
lations. The number of threads in a block is set to 200.

Chapter 5 Performance Evaluation 79

It is visible that all of the tested GPUs need a very high nunab@arallel tasks to reach
their maximum efficiency. The increase in computation tisi@pproximately proportional to the
increase in number of simulations if more than 10,000 sitraia are performed on the EVGA
GTX460 2Win GPU and if more than 80,000 simulation are penfmt on the fully utilized GPU
cluster (8 active devices). The measured computation tm#&@d0,000 simulations ranges between
0.7s for the GPU cluster and 10s for one GTX460 device of th&EWnit. Referring to Table
5.4, the computation speed within one GPU architectureeas@s proportionally to the number of
utilized devices. For example, a 1.99x speedup is measwateebn utilizing only one GTX460
device of the EVGA unit and using both devices. The speedttpifavhen doubling the number of
utilized devices on the GPU cluster is slightly smaller 2k,91.83x, 1.97x), which can be explained
by the difference in hardware configuration of the two GPUhaectures. While the two devices
of the consumer-level graphics card are incorporated ineo®PU unit, which is connected to the
motherboard via one PCI x16 slot, each GPU unit of the clust&iocated to a separate CPU node.
Hence, the increased communication latency reduces thputation speed .

Table 5.4. Speedup comparison matrix for 100,000 perforR@&dEV simulations. Speedup factor
is obtained as column value divided by row value.

) =)
o o) o o
(@) O o ﬁ i?
S S g (=} =} [=] Q ﬁ ﬁ
3 e 3 8 <] 8] 0] o
s s 2 s S s S 8 8
8 [- «© « © © (=} o
£ 5 g 8| 8| 8 8| %] %
= N = & e £ 51 ¢ ¢
é é ‘—1 — [< [ee] - [\
= 3 + < < < < <
3 S X S S S 5 5 5
g £ Q =) > =) =)) >
%) 7] O) @) @) @) @))
Simulink: 1xIntel W5590 CPU 1x 1.06x 33.81x 10728x | 20660x | 37898x | 74774x | 5596 | 11129x
Simulink: 4xIntel W5590 CPUY 0.94x 1x 31.91x 10150x | 19499x | 35770 | 70574x | 5282x | 10504 x
C/C++: 1xIntel W5590 CPU 0.03x 0.03x 1x 315% 605 x 1110x | 2190x | 164x 326x
CUDA: 1xTesla M2050 9.3-107°x | 9.8-107°x | 3.2-1073x 1x 1.92x 3.52x 6.95x | 0.52x | 1.03x
CUDA: 2xTesla M2050 4.8-1075x | 5.1-107°x | 1.6-1073x | 0.52x 1x 1.83x | 3.62x | 0.27x | 0.54x
CUDA: 4xTesla M2050 2.6-107%x | 2.8-1075% [9.0-107%x | 0.28x | 0.55x 1x 1.97x | 0.156x | 0.29%
CUDA: 8xTesla M2050 1.3-107%x | 1.4-107%x | 4.6-107*x | 0.14x | 0.28x | 0.50x 1x 0.07x | 0.15x
CUDA: 1xGeForce GTX460 | 1.8-107%x | 1.9-107%x | 6.1-1073x | 1.92x 3.69x 6.77x | 13.36x 1x 1.99

CUDA: 2xGeForce GTX460 | 8.9-107%x | 9.5-107°x | 3.1-1073x | 0.97x 1.85x | 3.41x 6.7% | 0.50x 1x

Chapter 5 Performance Evaluation 80

6000

5000

4000

3000

2000

Computation Time [ms]

1000

300

Number of Threads Number of Blocks

12000

10000

8000

6000

4000

Computation Time [ms]

2000

300

Number of Threads

Number of Blocks

(b) GeForce GTX460

Figure 5.9. Computation times for different degrees ofization of the GPU architecture. The
FCHEYV simulation for the benchmarking drive cycle is used asference kernel.

5.3.2 Device architecture

The computation speed of the Tesla M2050 device and the GeR&FX460 device are
investigated for various degrees of utilization in thedwling paragraphs. As mentioned in Section

Chapter 5 Performance Evaluation 81

5.2.1, the performance of a GPU is dependent on the desigthaneiploitation of the memory
hierarchy of the CUDA programming model. Therefore, eactJ@Rvice has an ideal mode of
utilization for a specific application. Fig. 5.9 illustratéhe computation times of both discussed
devices for various architecture utilizations. The FCHEMdation for the benchmarking drive
cycle is thereby used a reference kernel.

First, it is visible that the average computation time fbdalyrees of utilization is roughly
twice as fast for the Tesla M2050 device. Secondly, bothhgagxhibit plateaus of similar com-
putation times but differing degrees of utilization. Fottbdevices, the plateaus increase every 32
threads, which is equivalent to the maximum warp size of lowiits. If the number of threads in
a block is not a multitude of 32, the maximum occupancy of tifJGs not fully utilized. While
the width of the plateaus is identical for both devices, #rmagths in terms of number of blocks is
notably different. Generally, the plateau length decredselarger numbers of threads in a block.
The average plateau length of the Tesla M2050 GPU is appedgigntwice as long as the average
plateau length of the GeForce GTX460 GPU. This is due to tleewdion capacities of both de-
vices, since the Tesla M2050 incorporates 14 SMs and the 1IGef&T X460 7 SMs. And thirdly,
if the number of threads in a block is larger than 290, the adatfpn times are disproportionately
higher. This steep increase can be explained by the memodglnob the GPU architecture. Au-
tomatic variables declared in a kernel reside in registehéch provide very fast access. However,
the register space is limited for each SM. The larger the mnrobthreads in a block, the smaller
the number of registers available for each thread. If thésteigmemory is exhausted, additional
variables will instead be allocated to the local memory & @PU. Accessing local memory is
significantly slower, and the resulting memory latency ¢fi@re increases the overall computation
time.

The average computation times per simulation for differdegrees of utilizations are
presented in Fig. 5.10. Choosing larger block sizes gdgdraireases the overall computation
speed per simulation. On the other hand, determining thimapnhumber of threads is not as
trivial. The average computation time fluctuates like a saift wave when increasing the number
of threads. The computation time thereby peaks every 32dsréor both devices corresponding to
their maximum warp size. However, the amplitude of this flation is significantly larger for the
GeForce GTX460 since it incorporates less SMs to leveragevtitkload. Hence, achieving good
occupation levels is even more crucial for the consumesH&PU. Furthermore, the GTX460

possesses less registers per block. Larger numbers ofithiea block therefore have a greater

Chapter 5 Performance Evaluation 82

influence on the memory latency caused by the need to acakscti memory than for the Tesla
M2050 GPU.

Eau\

5 011

3

S 0.1 \ \ Iy

g RN

5 : ARONOORAREN

3005 LR

2 A A A R e

g 006 \\\‘\s‘\%‘\'\\\\\\\\\s‘s\\"s‘\“s\’\\\\‘@‘ /

2 AR RS
\\./// N X

g W ONJp X 150

2 0.03 X

300 400 Number of Blocks

Number of Threads

(a) Tesla M2050

0.15 —

o ©
[
w
1 !

il
ik
“‘&:13‘*‘1«’»:22».«*!«:‘:

0.12

z

\

@ \ i

g | \\V\

Fanl A AURTORAN

£ RN VANR

E i AR NIRRT NN AL i
_50> XY s}y,’t{‘{#

Number of Blocks

Number of Threads

(b) GeForce GTX460

Figure 5.10. Average computation time per kernel for déferdegrees of utilization of the GPU
architecture. The FCHEV simulation for the benchmarkirigedcycle is used as a reference kernel.

Chapter 6

Optimization Results

This chapter discusses results of the proposed optimizatiethodology for various ob-
jectives and is broken down into three sections. The firdi@edemonstrates the applicability of
the DCGT for large-scale optimization. A driving profile, iwh has been created from recorded
driving data, is assigned to this DCGT. The optimizatiorulssfor the DCGT-generated data are
then compared to the optimization results for the recora@ed. d-inally, advantages of DCGT-based
optimization over conventional optimization methods aentified and studied. In the second sec-
tion, a sensitivity analysis is performed to investigate/tsonall changes in driving style impact the
outcome of an optimization. Next, optimal designs for vasiariving profiles and various levels
of driver aggressiveness are determined and presentedeffitiency gains, in terms of fuel sav-
ings, are then computed for each designs relative to namaptlesigns. The last section examines
the influence of parameter uncertainties on the optiminatésults using the example of battery

degradation.

6.1 DCGT-Based Optimization

The FCHEV optimization is performed for three cases to itigate if the DCGT is appli-
cable to large-scale EV design optimization and to studpassible advantages over conventional

optimization methodologies.

e Case 1:10h of driving data recorded in the City and County of Honol(8% SNG, 38%
URB, 17% SUB, 11% RUR and 25% HIG): The drive cycles of the dathare sequen-
tially and repeatedly utilized by the inner loop of the op#iation routine until the lifetime

convergence criteria of 100,000km is met.

83

Chapter 6 Optimization Results 84

e Case 2:A stochastic driving profile created by analyzing the dataofease 1 according to
the proposed methodology of Sect. 3.1: The obtained stichmsameters are implemented
into the DCGT. The DCGT generates one stochastic drive dgckeach iteration of the inner

optimization loop until the overall mileage of all cyclescerds 100,000km.

e Case 3:A conventional approach of utilizing just one represewutatirive cycle: As described
by Austin et al. [38], characteristic driving pulses areestd from the recorded data set and
assembled to form a representative drive cycle as illesdrat Fig. 5.1. The drive cycle con-
sists of 2000 seconds of drive cycle data with an equivalentposition in terms of driving
scenarios to that of the recorded data set. The drive cycépeatedly used in the inner loop

of the optimization procedure until the overall mileageaigger than 100,000km.

Table 6.1. Results of the design optimization for cases aeBaaerage fuel consumption when the
obtained results are tested for the three different setewhd data: ((a) 10h of recorded real-world
driving data, (b) 10h of DCGT generated drive cycles, (c) mpmesentative cycle created from (a)
according to Austin et al. [38])

Design Parameter Casel Case2 Case3
Max. Motor Power 62kW 63kW 48kwW
Number of Fuel Cells 331 334 231
Battery Pack Capacity 6.3Ah 6.4Ah 4.7Ah

Avg. H> consumption for

objective cycle data of: Casel Case2 Case3
Case 1:10h recorded data 3.8% 3.89L 386L7
Case 2:10h DCGT data 3.8 3.83% 3.79#2

Case 3:Rep. cycle (Fig.5.1) 3.98- 3.98% 3.75;%

Table 6.1 shows the optimal component design for all thremagos. The proposed
designs for cases 1 and 2 are almost identiegt[84hp, 331, 6.3kWh]x2=[86hp, 334, 6.4kWh]),
which indicates that the DCGT provides a very good represent of the original driving profile
in all aspects. The DCGT power train design (case 2) is $jighbre powerful for all three design
parameters, which might be caused by high-frequency \glogcise at very high vehicle speeds,
that are not sharply constrained by the DCGT (Fig. 3.6).

2The max. motor power is smaller than some of the power demeakisp Therefore, the power demand was constraint
to the max. motor power, which distorts the result by slightiducing the average fuel consumption.

Chapter 6 Optimization Results 85

N W
v o
[

{(a

)
T,]
15 ‘
g 7]
t u AM | m | h‘ m | ‘
1 | Il
5
o AL \l‘l”.\ﬂ L] i ’i h.‘ || ll\ “]
E ()
© 60k
5 1, | __max. motor power: 48kW
§40k—
s i
Ezok—_
]
s 0
i
> 20k

1(¢)
55 ——

critical system mode

T — T ——
0 5,000 10,000 15,000 20,000
Time [s]

Figure 6.1. Case 3 optimization results tested with 20,0ff0secorded drive cycle data. (a)
Recorded drive cycle displayed as speed vs time. (b) Dutlecyicthe proposed design. The
power demand exceeds the maximum power of the proposed atateveral occasions. (c) Battery
state-of-charge (d) Fuel cell stack power demand.

The second part of the table lists the average fuel consomfiir the three cases when
applied to each of the drive cycle data sets. As expectedivibiageH,; consumptions for cases 1
and 2 are very similar. Case 2 has a marginally higher consamfor all three data sets which can
be explained by the increased weight of the vehicle due ttatiger power train.

Looking at the results of case 3, one could assume that thpweed design is superior to
the results of cases 1 and 2. The case 3 power train is sigrilficanaller sized than its competitors
which leads to drastically reduced fuel consumption foleca$.75% vs. 3.95-L and3.98;L)

and a slightly reduced fuel consumption for case 1 and casdéofiever, the best solution is not

Chapter 6 Optimization Results 86

30

Speed [m/s]
a o NN
o v o w

o wn

max. motor power: 63kW

foa)
(=]
~

N
(=)
=~

N
o
=~

Vehicle Power Demand [W]
o

N
o
=~

[V
o

Battery SOC [%]
S
o

w
o

N
(=)
=~

@ [/

-
[
=~

-
o
=~

Fuel Cell Power [W]

%]
=

Figure 6.2. Case 2 (DCGT) optimization results tested witfo@0s of recorded drive cycle data. (a)
Recorded drive cycle displayed as speed vs time. (b) Dute @fdhe proposed design. The power
demand does not exceed the maximum power of the proposed. @)tBattery state-of-charge (d)
Fuel cell stack power demand.

necessarily the solution that achieves the best fuel ecgrimmrather the one the achieves the best
fuel economy while also completely satisfying the power dethand providing stable operation at
all times.

Fig. 6.1 provides performance data of case 3 when execute®0f000s of recorded
drive cycle data (objective of case 1). Evidently, this matesign is insufficiently dimensioned
for certain power demand peaks of the duty cycle which exd&tdV (Fig. 6.1(b)). Due to its
relatively small occurrence rate, this phenomenon carmtaedy be accounted for by a single drive

Chapter 6 Optimization Results 87

cycle. The lack of available motor power might be a criticesy shortcoming in driving situations
that require increased agility of the vehicle.

Fig. 6.1(c) and 6.1(d) show the battery state-of-chargetla@gower demand to the fuel
cell stack. It is apparent that the battery and the fuel ¢aliksare not sufficiently sized for driving
scenarios with an above average power demand, such as lghsydyi driving. The system enters a
critical mode of operation when the power demand is too higlafong period of time. During this,
the SOC drops rapidly to critical level, and the fuel celt&tes not powerful enough to compensate.
Apparently, the case 3 design cannot maintain this unstablée for a long period of time without
reaching critical component levels, which might cause alendpower-drop and possible damage
to the system.

Conversely, Fig. 6.2 demonstrates that the describedistaggues are taken into account
when preforming a stochastic DCGT-based optimization. mbeor (63kW) is sufficiently sized to
satisfy the power demand even for rare, above-average pmeedss. During busy highway driving,
the SOC of the batter pack drops to a lower level, but the pdessris compensated for by the fuel

cell stack. None of the system components reach criticaldev

6.2 Design Sensitivity Towards Peak Loads

All design parameters are restricted by functional coigaluring the optimization rou-
tine. If a proposed design does not meet all constraints giiininated as a possible solution. Some
constraints are compulsory conditions that need to bel&dfio guarantee stable operation of the
system. Other constraints are subjective restrictiongshwypically cannot be logically specified.
For single-objective optimization methods, the subjecgerception of the decision maker needs to
be quantified in order to define a distinct constraint. Thénuigation procedure will then provide
the best design solution for the choice of the decision makewever, the decision maker cannot
be certain that his constraint choice was ideal if he doestuoly the sensitivity between the con-
straint choice and the outcome of the optimization. Smalhgfes in constraints might significantly
better the fitness of the obtained soluti@ensitivity Analysits a methodology that helps the deci-
sion maker understand the relationship between his choitehe optimization outcome, therefore
enabling a better informed decision.

So far in this study, the functional constraints of the degigrameters have been set to
consistently fulfill the power demand for all possible sa@sin the lifetime of the vehicle. If just
one time in its lifetime the vehicle cannot meet the demamdchfoabove-average power peak, the

Chapter 6 Optimization Results 88

vehicle design is eliminated as a possible solution. Howdéwhe corresponding peak demand was
not caused by an essential driving maneuver, a potentiatig glesign solution might be dismissed.
The following case study investigates the sensitivity efaptimal design towards changes
in the intensity of power demand peaks. The basic drivinkg stfithe operator stays unchanged, but
occasional, above-average power demands are reducedrimtognitude. The operator can then
decide on the best trade-off between reducing the fuel copsan and decreasing the intensity of

some exceptionally demanding driving maneuvers.

80k
. 100% AP
. 99% AP
. 95% AP
. 90% AP
. 80% AP
. 60% AP

Maximum Peak Power

[}
o
=~

40k

O Ul WN -

AP

20k —

Y | Average Power Demand

Vehicle Power Demand [W]

-20k

— T T—T— T
0 5,000 10,000 15,000 20,000
Time [s]

Figure 6.3. Sensitivity analysis for 6 different power pediaracteristics. The magnitude of the
power peak is determined as the difference between avemger glemand and maximum power
demand.

Fig. 6.3 explains the approach of the proposed sensitititgtys The maximum power
demand in the lifetime of the vehicle is used as a referendefioe the maximum power intensity
dP, which is defined as the maximum power demand in the lifetifrewehicle minus the average

power demand.
AP(p,q) = max Py(t, p,q) — Fa(t,p, q) (6.2.1)

For the sensitivity study, an additional threshold cornstravhich is based od P, is introduced to

restrict the power peaks. The following 6 constraints avestigated:
e Case 1: 100%P

e Case 2: 99%P

Chapter 6 Optimization Results 89

e Case 3: 95%FP
e Case 4: 90%P
e Case 5: 80%P
e Case 6: 60%P

Since the power demand is a function of both the time and thigde@ectorg andq. dP is specific
for each solution candidate. Furthermore, to constrainptheer peaksdP needs to be known
from the beginning of the fitness evaluation. Therefore,mfaaimum and average power demand
need to be determined for each solution candidate duringpaioa lifetime simulation beforel P
can be derived. The fitness evaluation is then executed onetinte with the additional threshold
constraint applied.

The objective and methodology of case 2 in Section 6.1 is ageén employed for this

analysis.

Table 6.2. Optimal design, fuel consumption, and improvene fuel consumption for cases 1-6
of the sensitivity study.

Case 1: Case 2: Case 3: Case 4: Case 5: Case 6:
Design Parameter 1009\ P =99%AP 95%AP 90%AP 80%AP 60%AP
Max. Motor Power [KW] 63 62 60 56 51 40
Number of Fuel Cells 334 331 329 323 317 302
Battery Pack Capacity [Ah] 6.4 6.3 6.2 6.1 5.9 5.7
Avg. H> consumption [g/km] 3.86 3.85 3.83 3.79 3.71 3.54
Improvement in fuel consumption [%] O 0.3 0.8 1.8 4.0 9.0

Table 6.2 presents the results for the 6 evaluated casest ndtiseably, the maximum
motor power decreases proportionally with the reductiod®f SincedP is relatively large com-
pared to the average power demand, the motor efficiency eprehen decreasing the motor size
(Fig. 2.5). Therefore, the maximum rated load of the motooigyhly equivalent to the maximum
power demand in this example.

Furthermore, reducing the motor size decreases the weighe @ower train, which in
turn abates the power demand. As a result, the power demarits fuel cell stack and battery
pack decrease accordingly, which affects their optimahgizThe optimal battery capacity and the
optimal number of fuel cells both shrink by 12% if the maximuamoetor power is constrained to
60%7IP. Overall, the improvement in fuel consumption is insigrifit for small changes idP.

Chapter 6 Optimization Results 90

However, the fuel efficiency increases by 4% and 9% for 86%nd 60%/ P, respectively. While
efficiency gains of that magnitude are substantial, theyecarith noticeable restrictions on the
operator’s driving style.

6.3 Application and Driver-Specific Vehicle Design

One of the major advantages of the proposed optimizatiohadetogy is that a vehicle
can be optimized for specific applications and driving styl&enerally, commercial vehicles are
designed for a variety of driving scenarios, whereby sonie caght be more suitable for certain
driving environments than others. For example, smalles aaight be more efficient in busy city
traffic, while larger cars are usually more advantageouddstr highway driving. Nevertheless,
smaller cars typically feature a high enough level of magtion, which makes them suitable for
long distance highway driving. Thus, they can be considatedurpose vehicles with a preferred
application.

An all-purpose vehicle might perform well in terms of fueliegiency when used for a va-
riety of driving scenarios, but might be sub-optimal if th@pkcation range is limited. Application-
specific designs might be the better choice for driving peefihat are restricted in terms of their
driving scenarios. For example, in metropolitan areas,eseehicles might primarily be operated
in SNG and URB driving conditions. Knowing the cost of theioptto possibly use the vehicle for
more demanding driving scenarios is of interest, sinceghtiiave an impact on the driver’s choice
of vehicle type.

Personal driving style is the second major influence on teedonsumption of the vehi-
cle. Aggressive drivers accelerate harder on a more fredussis and tend to drive faster. Vehicles
for aggressive drivers need to be capable of providing gxdveer for rapid maneuvers even in de-
manding situations, such as fast highway driving. For dsiveith lower levels of aggressiveness,
smaller power trains might be sufficient and thus are moreieffi. The driver'devel of aggres-
sivenesss classified into three categories in this study:

e LOW (below-average acceleration, decelleration, cruisiregedpand velocity noise frequen-
cies)

e MEDIUM (average acceleration, decelleration, cruising speedvatocity noise frequen-
cies)

Chapter 6 Optimization Results 91

°
~

——MEDIUM
- HIGH
- LOW

o

w

@
T

Probability
o o
O
T a2

o
[
T

0.051 e

. h L I} R
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Acceleration (URB) [m/sz]

Figure 6.4. Probability function for acceleration in anamtenvironment for three different levels
of aggressiveness (low, medium, and high)

e HIGH (above-average acceleration, decelleration, cruisiegapand velocity noise frequen-

cies)

Fig. 6.4 explains how different levels of aggressivenessraplemented into the DCGT
on an example of the acceleration probability during urbavird). The probability functions for
acceleration, deceleration, cruising speed, and velogitye are the key functions for the charac-
terization of a driving style. The probability curves ardftglul along the positive direction of the
abscissa to increase the level of aggressiveness, andtijtordecrease the level of aggressiveness.

In this section, the optimal power train designs for fiveatiéint driving profiles are com-
pared. Four of the investigated profiles are applicatiae#ie profiles, which are limited to certain
types of driving scenarios. The fifth profile is an all-purpgsofile, that incorporates all possible
driving scenarios. Three different levels of driver aggiesness are assigned to each of the five
driving profiles to study the impacts of driving styles on thahicle’s design.

e Case 1:Vehicle operated solely in busy stop-and-go traffic: 100%6SN

e Case 2: Vehicle operated in stop-and-go traffic and normal urbaffi¢cra50% SNG, 50%
URB

e Case 3:Vehicle operated solely in non-busy urban traffic: 100% URB
e Case 4:Vehicle used solely for highway driving: 100% HIG

e Case 5:All-purpose vehicle equally used for all possible drivirggsarios: 20% SNG, 20%
URB, 20% SUB, 20% RUR, 20% HIG

Chapter 6 Optimization Results 92

In total, 15 driving profiles (5 cases x 3 level of aggressags) are created and applied
to the DCGT. The proposed optimization routine is then etastfor each profile with a vehicle
lifetime of 100,000km. Table 6.3 lists the optimal compdrgires and fuel consumptions for each

driving profile.

Table 6.3. Optimal component sizing and fuel consumptionvésious driving profiles and levels
of driver aggressiveness

Level of Driver Design Parameter & 50% SNG 20% SNG/URB/
Aggressiveness Fitness 100% SNG 50% URB 100% URB 100% HIG SUB/RUR/HIG
Max. Motor Power [kW] 14 14 14 27 26
LOW Number of Fuel Cells 88 130 116 254 253
Battery Pack Capacity[Ah] 3.17 3.46 3.81 5.56 5.34
Avg. H, consumption [g/km]| 0.75 0.73 0.72 211 1.52
Max. Motor Power [kW] 14 15 15 42 39
MEDIUM Number of Fuel Cells 116 144 152 317 254
Battery Pack Capacity [Ah] 4.37 4.81 4.86 6.73 6.82
Avg. H, consumption [g/km]| 1.11 1.07 1.04 2.99 2.25
Max. Motor Power [kW] 29 29 28 83 77
HIGH Number of Fuel Cells 163 186 172 480 364
Battery Pack Capacity [Ah] 6.90 6.84 6.58 9.94 9.94
Avg. H, consumption [g/km]| 2.26 1.80 1.34 5.17 3.82

Several key findings can be drawn from the obtained resuitst, Ehe average fuel con-
sumptions vary greatly between different applicatiodg{;Z-..2.11/Z-) and different levels of
aggressivenes$).(/57Z-..2.26;Z-). Note that an aggressive driver consumes almost three tase
much fuel during SNG traffic as a driver with a low level of agggiveness. Furthermore, HIG driv-
ing more than doubles the fuel consumption of a vehicle coathto URB driving. Interestingly,
the fuel consumption rates for SNG driving and URB driving af similar magnitude.

The second key finding is that the optimal component siziggicantly depends on
the the application range of the vehicle. The driving prefiler cases 1, 2, and 3 have similar
specifications in regards to motor power and battery capatibwever, the fuel cell stacks sizes
are slightly smaller for pure SNG driving. This can be expdai by the ratio of overall stopping
time to overall driving time, which is typically higher folN& traffic due to the increased number
of stops. If the overall stopping time increases, the awe@ver demand to the fuel cell stack
decreases. In the proposed vehicle model, the fuel celk ssaatilized as a power source with

Chapter 6 Optimization Results 93

slow dynamic characteristics. Hence, the power demandeduél cell stack is similar to the
average power demand of system, while the battery pack acsaffer. Since SNG driving has
a high ratio of stopping time to driving time compared to urlokiving, the power demand to the
fuel cell stack is relatively small. The fuel cell stack cdmerefore be of smaller size. On the
contrary, the case 4 and case 5 driving profiles requirefgignily more propulsion than the SNG
and URB driving profiles. RUR and HIG driving distinguish theelves from inner-city driving
through higher speeds and longer driving periods. In stiwrtyehicle operates mostly at high power
levels during these driving scenarios. Additionally, drtymaneuvers, such as quick accelerations,
require exponentially more vehicle power if the vehicleespes already high. Therefore, the higher
the average speed during a driving scenario, the largerabessity for a strong power train.

Third, the optimal component sizing has a considerably aid@ecy on the driving style.
The overall power demand increases exponentially with¢belaration rate. Aggressive drivers ac-
celerate quicker and more frequently than drivers with loereels of aggressiveness. Furthermore,
the average cruising speed of a vehicle is typically higbemiore aggressive driver. To combine
both statements, an aggressive driver not only accelehigesehicle faster than a non-aggressive
driver, he also accelerates to higher speeds. Hence, aggresceleration is exponentially more
demanding than mild acceleration. Accordingly, powemsanust be exponentially more powerful
for higher levels of driver aggressiveness.

The fourth finding concerns the relationship between theimax motor power and the
ratio between the average and the maximum speed of a drigemgasio. looking at Fig. 2.5, the
maximum motor efficiency lies between 50% and 80% of the rltad. If the vehicle is mainly
operated at power levels that are significantly smaller dwaasional power peaks, the optimal rated
load of the motor is approximately equivalent to maximum podemand. The motor efficiency
curve does not have a significant influence on the optimizatiahis case. However, if the power
demand frequently reaches levels closer to the maximum posak, the motor efficiency begins to
have an influence on the optimization results. The motorisiteen determined so that the average
power demand of the driving scenario is close to the mostieffienotor load. For example, case
4 naturally has a high ratio between average power demandaronum power demand. For an
aggressive driver, the ideal maximum motor power is deteeohito be 83kW. Case 5, on the other
hand, incorporates the driving profile of case 4 with a sh&2086. The other 80% of its driving
profile, however, decreases the ratio between average @mwlenaximum power to a much lower

level relative to case 4. Despite having to fulfill the samguireements during highway driving as

Chapter 6 Optimization Results 94

case 5, the optimal motor power size is determined to be 79W6h is close to the maximum
power peaks.

Lastly, the optimal capacity of the battery pack appearstddiermined according to the
most demanding driving scenario of a driving profile. Fotange, the optimal battery capacities of
case 5 are very close to those in case 4. Highway driving taio&r the most demanding scenario
for an all-purpose vehicle. As mentioned before, the baperck is used as an energy buffer in the
power train and therefore serves mainly to compensate dosient power demand peaks. Since
highway driving generates the largest fluctuations in posenand, the battery pack needs to be

sufficiently dimensioned to account for these power odimites.

6.3.1 Optimization efficiency

To examine the efficiency gains achieved by application aivedspecific optimizations,
the obtained vehicle designs are cross-tested for all attieing profiles. In this section, each
of the 15 results of Table 6.3 is tested for 100,000km of dgvilata for each of the 15 driving
profiles, which were used to obtain the results. Table 6.4vshthe average fuel consumption
and the difference as a percentage of fuel consumption leetée® optimal designs and the tested
designs. Several interesting conclusions can be drawntfiemesults.

First, significant improvements in fuel consumption candig@eved if the power train de-
sign is optimized towards the application. For example,tdoke, which is designed for aggressive
highway driving, consumes nearly three times as much hyalrafyiring non-aggressive stop-and-
go traffic than a vehicle specifically optimized for that ppsp. Moreover, an all-purpose vehicle
for aggressive drivers uses 2.5 times as much fuel duriraxedl city driving than an optimized
counterpart. Even within the same level of driver aggressgs, the potential fuel savings are sig-
nificant. If all-purpose vehicles are solely used for drivin an urban environment, they consume
up to 60% more fuel than an optimized vehicle for the samerdyistyle.

Secondly, individual drivers can achieve substantial &aalings if they are willing to
relax their driving style. As found before, the power demaadd thus the component sizing,
increases exponentially with the level of aggressivenéfsan aggressive driver of an all-purpose
vehicle reduces his level of aggressiveness fhigh to low, potential fuel savings of up to 55% are
achievable using the same vehicle.

Thirdly, the drawback of optimizing a power train towardea@pplication is that it might
lead to a limited application range of the vehicle. This fivglis illustrated in Table 6.4, where most

entries of the lower triangular matrix are empty. Powernsaivhich are optimized for less demand-

Chapter 6 Optimization Results 95

ing driving profiles, are oftentimes not capable of fulfiflithe requirements of more demanding
driving profiles. Either the total power demand is largenttiee maximum rated load of the motor,
or the fuel cell stack and the battery pack are not capableafiging a sufficient power output
over a required time range. In both cases, the power trainsotionatch the required functional
constraints. Hence, if application flexibility is a desigitarion for the optimization of a power
train, the exact requirements need to be represented byitiregdorofile during the optimization.
Finally, a smaller and lighter power train does not necdygskrad to a more efficient
vehicle. For example, the optimal motor and fuel cell stazk for all-purpose vehicles (case 5) is
noticeably smaller than for highway vehicles (case 4), avttieir battery sizing is of a similar di-
mension. Nevertheless, if all-purpose vehicles are tdstezhse 4 driving profiles, the average fuel
consumptions increase by up to 7%. The fuel cell stack andhtiter are predominantly operated

at non-optimal efficiency levels, which outweighs the adagas of reduced vehicle weight.

Table 6.4. Fuel efficiency matrix for the designs of Tabletés3ed for 5 different driving profiles with 3 different ldgef aggressiveness.
The first line of each entry is the average fuel consumptiof-inthe second line is the difference in fuel consumption nedab the optimal
design. If a tested design cannot fulfill the demand of theiralyi profile, its entry is set to “n/a”.

Level of Driver Low MEDIUM HIGH
Aggressiveness
T FCHEV optimized for ' 50% SNG! ! ! 20%URB/SUB ! 50% SNG ! ' 20%URB/SUB ! 50%SNG ! ! 20%URB/SUB
FCHEV tested for T | 100% SNG| 50% URB 100% URB 100% HIE RUR/MIG 100% SNIG 50% URB 1QIRB ; 100% HIG| RUR/HIG 100% SNG 50% URB 100% URB 100% HJG RUR/HIG
100% SNG 075 1076 1 077 1 100 1 1.00 082 1 08 1 107 . 132 . 126 113 1 1141 011 212 | 1.90
b | | | | | | | | | | | |
+0.00% | +1.33% ' +267% | +33.33% +33.33% +9.33%! +14.67% +8R.67 +76.00% | +68.00% +50.67% | +52.00% +46.67% +182.67% +188.33
0.73 1073 1073 | 080 | 093 076 | 079 | 080 | 114 | 112 1.02 | 100, 908 | 190 | 1.70
50% SNG/ 50% URB | | | | | | | I |
+0.00% 1 +0.00% | +0.00% | +9.59% | +27.40% +411%, +8.22% +9.59% 6.1686 | +53.42% +30.73% | +36.99% +21.92% +160.27% +132.88%
777 e e e B e g
Low 100% URB 0.75 1076 1072 ' 080 ! 085 074 1 075 ' 076 ' 100 ' 103 092 ! 0921 208 !176 ' 157
0
+4.17% | +556% | +0.00% | +11.11% +18.06% +2.78%' +417% +5.56% 51.30% | +43.06% +27.78% | +27.78% +13.89% +144.44% +118.06%
100% HIG na | nia | nia L 211 212 n/a | na nma . 234 , 228 227 | 228, 2.21 | 295, .75 2
b
nia | nja ! nja | +0.00% | +0.47% na 1 nla | na i +10.90% +8.06% +7.58% 0698 | +4.74% | +39.81% 1 +30.33%
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O DR At PN A A S PR It U DU o MU PR SRR gt SO Y BNt Mt TS AU R ettt AT IS S
n/a ' n/a ' nla ' 1.60 ' 152 n/a ' nla ' nla ! 165 ! 1.73 167 ! 1.68 ! nla ! 250! 36 2.
20% SNG/URB/SUB/RUR/HIG ! ! ! ! ! ! ! ! ! ! ! !
n/a EY Y . +5.26% |, +0.00% n/a | n/a | n/a | +8.55% +13.82% +9.87% 0.53% , n/a | +64.47% , +55.26%
100% SNG 124 1119 1 114 | 160 1 128 111 1 113 1 115 1 158 . 151 135 | 1351 512 1244 | 218
b | | | | | | | | | | | |
+11.71% | +7.21% | +2.70% | +44.14% +15.32% +0.00%! +1.80% +3.60% +42.34% ! +36.04% +21.62% | +21.62% +12.61% +119.82% +96.40%
1.18 1112 | 1.08 | 157 Lo121 1.09 | 107 , 107 |, 143 | 1.40 125 | 126, 611 230 | 2.03
50% SNG/ 50% URB | | | | | | | | | , I |
+10.28% 1 +4.67% 1 +0.93% | +46.73% +13.08% +1.87%: +0.00% +0.00% +33.64% 1 +30.84% +16.82% 1 +17.76% +8.41% 1 +114.95% +89.72%
,,, U e st s R A i S A A i
MEDIUM 100% URB 1.11 1110 ' nla 1128 ! 115 105 ' 104 ' 104 ' 139 ! 132 119 ! 120! 110 ' 210 1188
) +6.73% | +5.77% | nla | +23.08%, +10.58% +0.96% | +0.00% +0.00% 6B98. | +26.9% +14.42% | +1538% +5.77% | +101.92% +80.77%
nla | nla | nla | nla | nia n/a I nfa 1 na 1 299 | 321 nfa 1 nfa 1 na | 369 | 3.49
100% HIG | I I I I I | | | | | |
n/a i n/a ! n/a H n/a ! n/a n/a | n/a ! n/a ' +O'OO%L +7.36% n/a ! n/a " n/a ! %.4114-16.72%
n/a | nfa | nla . nla | nla n/a | nla | nla \ 235 | 225 na | na | na | 317 2.78
20% SNG/URB/SUB/RUR/HIG | | | | | | | | | | | .
n/a nfa | nla \ nla | nla n/a | nla \ nla I +4.44%, +0.00% nfa nla na +940.89+23.56%
n/a " nia " na ' nia " nia nWa 1 na | na | 254 1 246 226 ' 2281 na | 338 314
100% SNG | | | | | | | | | | | |
n/a | nla | na \ nia \ nla n/a \ na | na | +12.39% +8.85% +0.00% +0.88% a n/ | +49.56% | +38.94%
na | nla | nla | nia | na na \ na , na . 191 , 199 181 | 180 na | 2.75 | 2.68
50% SNG/ 50% URB | | | I I I | | | | | |
n/a 1 nfa 1 nla 1 nla 1 nla n/a 1 nla 1 nla ! +6.11%! +10.56% +0.56% +0.00% a n/ 1 +52.78% ' +48.89%
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, cotoooJreo oo e oo e e e et T) TR TR e L TRe PR TR
HIGH 100% URB n/a ' nla ! nla ! 1.60 ' 140 n/a ' na ' na ' 169 | 155 144 143 ! 134 ! 230! 13 2
0
n/a | n/a | nla | +19.40% , +4.48% n/a . na | na , +26.12% +15.67% +7.46%+6.72% | +0.00% | +71.64%, +58.96%
n/a 1 nfa K n/a i n/a | n/a n/a N n/a) n/a) n/a i n/a n/a | n/a h n/a | 5.17 5.42
100% HIG | | | | I I I | | | | |
n/a | nla | nfa | nfa | nia n/a | na | nla | n/a ! n/a n/a ' na | na +0.00% +4.84%
nla | nia | nla | nia \ nla n/a | nia | na I na | na na | na | na | 417 | 3.82
20% SNG/URB/SUB/RUR/HIG | | | | | | | | I I I |
n/a i nfa Y i nla I nla n/a i nla i nla I n/a I n/a n/a | nfa na +9.16% +0.00%

synsay uoneziwndo 9 Jadey)d

96

Chapter 6 Optimization Results 97

6.4 Impact of Battery Degradation

This section discusses the impact of battery degradatidheooptimization results, which
is particularly interesting for two reasons. First, thegmsed optimization methodology has the
unique capability of simulating and including lifetime edts in an optimization routine. Second,
the implemented battery degradation model is subject tetanbal uncertainty, since the battery’s
degradation mechanisms have not been fully understoodlf/¢hhe degradation of a battery has
progressed further than was predicted at the end of thele&hliéetime, the power train might reach
a critical system state. It is therefore of interest to ustderd the effects of different degradation
behaviors on the optimal component design in order to détermeasonable safety margins. The
following sections examine the discussed problem for tweesa The first case investigates the
impact of 5 different degradation curves with similar iaitdlegradation rates but different lifetimes.
The second case examines the impact of four degradatioeswith different initial degradation
rates but equivalent lifetimes.

Both cases are tested for an all-purpose vehicle (20% SN%, 2BB, 20% SUB, 20%
RUR, 20% HIG) with a medium level of driver aggressivenessamoverall lifetime of 100,000km.

The elimination constraint for a maximum capacity fade d¥28 removed from the optimization
methodology for this study.

6.4.1 Case 1: Different lifetimes, similar degradation ra¢s

100

80

= 60
2
‘S
n
a
S 40 c
—<~ Curve 1: Shortened lifetime 1 \ \ '\‘\
—-»— Curve2: Shortened lifetime 2 \ \ \
20 - —e— Curve3: Normal lifetime Y 'S * »
] —=- Curve4: Extented lifetime 1 \ \ \ \\
—-- Curve5: Extented lifetime 2 \ \ \ \
\ \
\

T T T T T T T T T T T T T T T T
0 200 400 600 800

Number of Cycles

Figure 6.5. Sensitivity analysis for 5 different degradatturves with similar initial degradation
rates but different lifetimes.

Chapter 6 Optimization Results 98

Table 6.5. Optimal component sizing, lifetime degradatiod average fuel consumption for curves
1-5.

Design Parameter &

Fitness Curvel Curve?2 Curve3 Curve4 Curveb
Max. Motor Power [KW] 39 39 39 37 37
Number of Fuel Cells 257 255 254 245 240
Battery Pack Capacity [Ah] 7.17 6.97 6.82 6.74 6.68
Avg. H, consumption [g/km] 2.26 2.25 2.25 2.23 2.22
Degradation at 100,000km [%] 12.0 8.2 6.1 4.6 3.8

Fig. 6.5 illustrates the 5 different degradation curvesn@rad for case 1, and Table 6.5
provides the results of the optimization.

None of the examined batteries reached the critical captadie of 20% or more at the
end of the vehicle’s lifetime. The maximum degradation i861fr curve 1 and the minimum
degradation is 3.8% for curve 5. Hence, all batteries allersta state with relatively low degra-
dation rates at the end of their lifetimes. A sufficient safetargin therefore exists if the modeling
uncertainties only concern the lifetime prediction of tladtéry.

Despite the small differences in degradation, changeserogtimal power train design
are observable. The optimal battery capacity for the battéth the shortest lifetime is 7% larger
than for the battery with the longest lifetime. Due to ther@xiweight of a larger battery pack,
the motor and the fuel cell stack must be correspondinglyenpawerful. The difference in fuel

efficiency between the worst case and the best case is 2%.

6.4.2 Case 2: Equivalent lifetimes, different degradatiomates

Fig 6.6 shows the four degradation curves for case 2, an@ Babllists the corresponding
results. The curves range from a constant degradationaatesgtrly no degradation until the end of
the battery life.

Compared to case 1, the impact on the power train designngisant for some of the
examined curves. The simulations for curve 1 and curve 2iderably exceed the critical capacity
fade of 20%. To ensure sufficient power supply at the end olvétecle’s lifetime, the capacity
of the battery pack must be significantly larger than wasaithitrequired. For example, the initial
capacity of the battery pack for curve 4 is 43% larger thanititel capacity for curve 1. The

Chapter 6 Optimization Results

99

100 —rrg s e
4N~ T T e
\\\\\\\\\ .._\.\. ’~~.__\~
1 el e LY
e S \
1 T~y T -
- e TN
.B:' 1T~ T
> 601 TN .~
= 1 S ~..
S ~._ S
o s e,
(9] 40 ‘\.\~\~ \\\
\\ \\
1 |-~=-curve1:Slowerinitial degradationrate| S N
| | —Curve2:Normaldegradationrate | TN N
20 | | —#-Curve3: Faster initial degradation rate “\-\ .
—-e&--Curve4: Constant degradationrate | N 5 Y
\~\~\ ‘\
.
0 +——1—v—"——T1—T""T——
0 100 200 300 400 500 600 700 800 900
Number of Cycles

Figure 6.6. Sensitivity analysis for 4 different degradatcurves with different initial degradation

rates but equivalent lifetimes.

Table 6.6. Optimal component sizing, lifetime degradatiod average fuel consumption for curves

1-4.

Design Parameter &

Fitness Casel Case2 Case3 Case4d
Max. Motor Power [KW] 39 39 38 40
Number of Fuel Cells 253 254 236 221
Capacity Battery Pack [Ah] 6.60 6.82 7.57 9.44
Avg. Hs consumption [g/km] 2.23 2.25 2.28 2.45
Degradation at 100,000km [%] 0.9 6.1 25.2 42.1

optimal fuel cell stack size decreases for larger batteckpaespite the increased weight of the

battery. Since the battery pack acts as an energy buffegasing its capacity might further reduce

the peak load of the fuel cell stack. Hence,

smaller fuelstaltks are sufficient to fulfill the power

demand. Nevertheless, the average fuel consumption sesdry up to 10% for vehicles with larger
battery degradation rates due to the increased vehicleniveigesulting design.

Chapter 7

Conclusion

7.1 Summary

Large-scale optimizations of EVs have previously been tmoplex to address without
fundamental simplification. Simplified vehicle models amlimization objectives address com-
putational limitations but typically reduce the accuraegrsatility, and thus the reliability of the
results. To overcome these limitations, it was proposegtmnize the power train design of elec-
tric vehicles on graphics processing units. The achievedpcational speedup allowed for the
removal of common simplifications to the model and optimaraprocedure. The extended, novel
approach broadened the objective of the EV optimizationthacefore increased the significance
of the results.

Vehicle Model

To test the proposed methodology, a discrete, backwatkdrAganodel of a FCHEV was im-
plemented in three different programming environmentsjcivlare CUDA for GPU program-
ming, C/C++, and Matlab/Simulink. The power train of the FEHincorporates a PEMFC stack,
Lithium-ion battery pack, motor, and EMC. The power demanthée power train is calculated by a
vehicle dynamics model. During long simulation runs, adrgttlegradation model determines the
capacity fade according to the lifetime usage of the batteastly, an energy management strat-
egy was proposed, which is easily optimized towards an egjdin by means of only two design

parameters.

Drive Cycle Generation
A novel methodology to parameterize drive cycles was pteserThe proposed method is uti-

100

Chapter 7 Conclusion 101

lized to stochastically analyze drive cycles or an entiieimly profile. Probability functions were
obtained for each parameter of a recorded set of drive cyatle drhe obtained parameter results
were then implemented into a drive cycle generation softvt@ol that is capable of producing an
unlimited amount of drive cycles based on the charactesisif the original data set. Due to the
modular concept of the approach, it is possible to manualjysa the drive cycle parameters ac-
cording to the desired objective of the optimization. It veaewn that the generated drive cycles
are a very good representation of the original drive cyateseims of frequency spectra, speed
distribution, acceleration distribution, load charaistiizs, and occurrence probabilities. In addi-
tion, the new methodology was tested with a multi-parameesign optimization of a fuel cell
hybrid vehicle simulation. It was proven that the resultsanfoptimization with generated drive
cycles are almost identical to the results of an optimiratiith the original data set. Furthermore,
the proposed methodology enhances conventional optimizatethods by including entire driving
profiles rather than single DCs into the objective functibhis extension, along with high accuracy
probability functions, accounts for uncertainties in driy patterns and for lifetime effects, such
as component degradation. Moreover, concerning assuddrgystem stability while minimizing
overall fuel consumption, the optimization results witk tiroposed methodology are found advan-
tageous to conventional single-cycle optimization sgigte The stochastic approach accounts for
nearly all variations of the underlying driving profile. lomrast, single-cycle optimizations are
limited to a narrow selection of driving pulses. Hence, @bdriving situations may be overlooked

when optimizing with just one drive cycle.

GPU-Based Optimization Methodology

In recent years, GPUs have emerged as an extremely costiaffarchitecture for high perfor-
mance computing. Furthermore, they have been successfidlg for many applications of gen-
eral purpose computing. Meta-heuristic optimization gthms have been implemented on GPUs
with significant speedups compared to sequential CPU cangputhis dissertation utilized recent
developments in computer science and computational haedtwaadvance modern optimization
methodologies for engineering systems.

A two-level optimization methodology was proposed for séngnd multi-GPUs to deter-
mine the optimal design of EVs and FCHEVs. The methodologysists of two genetic algorithm
optimization routines executed in two loops, an outer loog an inner loop. The outer loop finds
the optimal component design parameters, and the innedptimizes the energy management for

each drive cycle. The nested framework of the proposed dation corresponds to the CUDA pro-

Chapter 7 Conclusion 102

gramming model, where a grid contains multiple blocks, aacheblock contains multiple threads.
The population of the outer GA is represented by blocks ardothpulation of the inner GA by
threads. To minimize computation time, the operators ofrther GA are executed on the GPU in
a fully parallel manner.

The optimization framework is generic and is therefore igpple to other vehicle archi-

tectures and different engineering systems with only minodifications.

Performance Results

Computation times were compared for the implementationU& for single and multi-GPUs,
then C/C++ and Matlab/Simulink using standard CPU archites. The CUDA code on a GPU-
cluster with 8 devices performed more than 70,000 time®fakian Matlab/Simulink and more
than 2,000 times faster than the sequential C/C++ code. Hweslowest of the tested GPUs, a
consumer-level GeForce GTX460, outperformed the C/C+4ampntation by factor 164x.

It was found that the choice of population sizes has a sigmifiinfluence on the con-
vergence rate. To decrease the computation time, the gagrukizes should also be selected in
correspondence to the CUDA programming model to maximig@ttupancy of the GPUs. Futher-
more, it should be considered that the nested frameworleajptimization procedure exponentially
increases the influence of population sizes on the conveegerte. Therefore, determining the op-
timal population sizes for the outer and the inner loop waskaed to be an essential procedure

before the actual optimization.

Optimization results

Chapter 6 proved that lifetime optimization based on dgvimofiles significantly improves the
quality of the obtained results. While single-cycle opfiation cannot account for all possible
situations, the simulation range of lifetime optimizatisnlarge enough to account for nearly all
stochastic variations. Hence, the optimization resultewggnificantly improved in terms of quality
and accuracy over conventional methodologies.

It was also found that if a driver exhibits noticeable reduts in peak aggressive driving
situations, the component sizes of the power train can heeslj thus increasing the fuel efficiency
by up to 9%.

Coupling the effects of differing levels of aggressivenadth various driving profiles led
to optimal results for each pairing, which were then comgiamereveal relative fuel efficiencies and

limitations. It was found that operating a car with an optied power train design matched for its

Chapter 7 Conclusion 103

application and driver could lead to fuel savings of neafM@%. However, such optimal designs
may not be applicable for all applications.

Finally, an sensitivity analysis using varying paramet#tthe battery degradation models
revealed significant effects on the optimal design. Theat#jion rate was the critical parameter
for determining proper sizing of components. Due to its gisesnature, understanding the effects

of the degradation rate is crucial to prevent insufficiedidsigned components.

7.2 Contributions

Proof of Applicability

The applicability of simulating and optimizing complex émgering systems on the par-

allel computing architectures of GPUs was demonstrateth@example of a FCHEV.

Increase in Computation Speed

Computational speedup factors of more than 2,000x and @%,@@re achieved over a
sequential C/C++ implementation and the Matlab/Simulinki®nment, respectively.

Improved EV Optimization Strategy

Conventional EV optimization strategies had been limitgccbmputational constraints
and therefore had been requiring simplifications of thenojatition’s objective and the correspond-
ing objective function (system model). On grounds of the fwevious contributions, the need
for most simplifications was removed. As a consequence, ikeplifications were identified and

replaced by novel, more accurate methodologies. The follplists these novel approaches:

Lifetime Simulation
Instead of using just one drive cycle as input data for theaibje function, the entire lifetime
of the vehicle can now be simulated. The increased simulatinge allows for the inclusion

of the following features to the optimization procedure:

— Application and Driver-Specific Design
Lifetime simulation enables accountability for all podsilriving scenarios, driving
patterns, driving maneuvers, and driving styles, even wittall probabilities of oc-
currence or a chronological order assigned. It therefdoevalfor a greatly improved
application and driver-specific design optimization.

Chapter 7 Conclusion 104

— Component Degradation
Lifetime simulations within an optimization routine allsvior consideration of lifetime

effects, specifically component degradation.

— Parameter and Modeling Uncertainty
Most physical models of engineering systems cannot be amurrepresented due to
a certain degree of parameter and modeling uncertainty.large simulation range of
lifetime simulations facilitates using stochastic reprgations of uncertain parameters

instead of average-assumed values.

Energy Management

A novel energy management control methodology for FCHEVs praposed, which deter-

mines an efficient power split based on preliminary driviregad The energy management
controller is optimized towards an application by meansndy dwo parameters and is there-

fore suitable for integration into expensive optimizatiountines.

Two-Level Optimization Routine

A two-level optimization methodology was developed for plogver train design of EVs. The
proposed methodology is specifically designed for bestopaidnce on GPU architectures.
The framework of the implementation is generic and can Hiedi for other optimization

problems with only minor modifications.

Stochastic Drive Cycle Generation

A drive cycle generation tool was developed to create inpité dor stochastic EV opti-
mizations with lifetime simulations. The tool distinguéshitself from other methods by operating
entirely non-deterministically in terms of data. Henceg sfiochastic properties of a driving profile
can either be determined from observed data or be manugiigtad according to the objective of

the optimization.

7.3 Future Work

Vehicle Model

The proposed optimization methodology has been tested gpathetical FCHEV model. The
optimization results of Section 6 are valuable findings foetier understanding of how to improve
the power train design for certain applications. Howeves, rmodel has not been validated and the

Chapter 7 Conclusion 105

findings thus cannot be considered universally applicaiteerefore, the next step is to upgrade or
replace the current FCHEV model with validated EV modelsasfous propulsion designs, such as
PHEVs or Battery Electric Vehicles (BEVs). Optimizatiorsuéis can then be used as a reference
and as general guidelines for the design of modern EV powérsir The integration of a vehicle
model into the optimization routine is straightforward daeghe code’s generic structure.

Battery Degradation

As mentioned in Section 2.3.1, the mechanisms of battersadetjon, especially under dynamic
loading and varying environmental conditions, are not welllerstood yet. Once reliable degra-
dation models for EV applications are available, they sthdnd incorporated into the optimization
routine. The relationship between capacity fade and agjdic and driver-specific utilization of the
battery can then be examined to facilitate a better undetstg of the optimal design requirements.

Optimization Algorithm

So far, only one GA (Section 4.3) has been tested with thegsexgb optimization methodology.
During the benchmark testing of Section 5.2.1, the GA exdibperformance deviations in relation
to its population size. GAs with varying population size8][8r different operator compositions
[13] might prove to be more efficient. It is also of interesstady and compare the performance of
other meta-heuristic algorithms, such as SA and ACO, whelieapto the proposed optimization

problem on a GPU architecture.

Other Fields of Application

The implementation framework of the proposed optimizatioatine is generic and can easily
be adapted to solve various optimization problems on the @tehitecture. Specifically, the opti-
mization of other engineering systems with similar fuel pelwer trains, such as unmanned aerial
vehicls (UAVs) or submarines, would require only minor nfamditions to the model. Mission pro-
files can then be used as stochastic input data for the olgdatiction, which would be analogous
to driving profiles for vehicles.

Considering the achieved speedup reported in Section pti&iaation problems, which
have long been considered too complex to be solved in a rebkotime frame, might now be
possible to be solved. Examples include traffic-signalrojiation for entire cities or combined
optimal design and control of smart grids.

Chapter 7 Conclusion 106

Dynamic Programming

The EMC of Section 2.5 provides results, which ensure safitctomparability of solution can-
didates for the FCHEV model. However, the proposed EM matlogy determines a good but not
necessarily optimal power-split. For other types of vaddckuch as ICE-HEVs with gear shifting,
EM control is more challenging. In these cases, near-opsoiations might be required to achieve
comparability of the candidates and thus convergence obpitienization routine. Dynamic pro-
gramming is an optimization technigue that is capable cfmieining the optimal power split. Xiao
et al. [97] have shown that dynamic programming is paratiddie and therefore well suited to the
GPU architecture. Hence, the potential performance gapoding dynamic programming for EM
optimization to GPUs should be investigated with regardg¢gossible application for large-scale

optimization.

Vo =

Vq

Ccl =

DPsat =

Appendix A

FCHEV Model Parameter

0.279 — 8.5 - 10 4(Ty. — 298.15) + 4.308 - 10~ °T},

In Pca — Psat + lln 0.1173 - (pca - psat) (A 0 1)
1.01325 2 1.01325 e
(—1.618 - 10~°T}. + 1.618 - 10—2)2(01;%73 + paat)? + (1.8 - 1074T. — 0.166)
(% + Poat) + (=5.8 - 1074y, + 0.5736) (A.0.2)
10 (A.0.3)

611 - 60.073-(chf273.15)72.93-10—4-(chfz73.15)2+9.81-(ch7273.15)371.9-10—9-(chfz73.15)4

(A.0.4)

107

Appendix B

Inner Algorithm

—#— Convergence Test 1
—>— Convergence Test 2
—— Convergence Test 3
—— Convergence Test 4
—=— Convergence Test 5
—&— Average Convergence
Convergence criteria (<94.16): 17 iterations
" T T T T T T . : . T

e L e S
5 10 15 20 25
Number of Iterations

98

97.5

[a]

97

Hid

96.5

of best ¢

96

Boss

95

H;

94.5

Ce b b b b b b by

94

Figure B.1. Convergence study of the inner GA with populasze 30.

98
—+— Convergence Test 1
—— Convergence Test 2
'_|97.5 7 —— Convergence Test 3
2 —— Convergence Test 4
o —=— Convergence Test 5
K 97 —&— Average Convergence
=
v 96.5
o
o]
w
2 -
Y 96
B95.5
g 957 Convergence criteria (<94.16): 8iterations
94.5
g
0 5 10 15 20 25

Number of Iterations

Figure B.2. Convergence study of the inner GA with populasze 50.

108

Chapter B Inner Algorithm 109

98
—#— Convergence Test 1
—*— Convergence Test 2
_97.5 7 —— Convergence Test 3
) —+— Convergence Test 4
—=— Convergence Test 5
K 97 —&— Average Convergence
E
v 96.5
o
]
o
b 96]
s
B95.5 1
95 o , .
o Convergence criteria (<94.16): 4 iterations
I
94.5
94 T T T T T
0 5 10 15 20 25

Number of Iterations

Figure B.3. Convergence study of the inner GA with poputasze 100.

95.2
—#— Convergence Test 1
—*— Convergence Test 2
— —— Convergence Test 3
o 95 —— Convergence Test 4
—=— Convergence Test 5
K —&— Average Convergence
294.8
o
o
]
o
e 94.6
5 94.
Yy
94.4 Convergence criteria (<94.16): 3 iterations
£94.2
94 7 T T T T T
0 5 10 15 20 25

Number of Iterations

Figure B.4. Convergence study of the inner GA with populase 200.

Appendix C

Outer Algorithm

100
1 —*— Convergence Test 1
—»— Convergence Test 2
—_ 4 —— Convergence Test 3
299 5 - —— Convergence Test 4
= —=— Convergence Test 5
< —&— Average Convergence
5
o 997
rl
@
o
w“
° 4
698.5
o 98
~
T
97.5
T T T T T T T
0 20 40 60 80 100

Number of Iterations

Figure C.1. Convergence study of the inner GA with poputatize 20.

100

—— Convergence Test 1
—>— Convergence Test 2

—_] —— Convergence Test 3

399 57 —— Convergence Test 4

8772] —— Convergence Test 5

L —&— Average Convergence

E:

o 997

rl

@

r

w“

° 4

898.5

o 98

N]

T

b X
1 AN
97.5 \H'—h'%(—x—x—x-
T T

T T T
0 20 40 60 80 100

Number of Iterations

Figure C.2. Convergence study of the inner GA with poputatize 30.

110

Chapter C Outer Algorithm 111

100
—— Convergence Test 1
—>— Convergence Test 2
—_ —— Convergence Test 3
399 57 —— Convergence Test 4
877 —— Convergence Test 5
K —— Average Convergence
E:
o 997
rl
@
r
w“
)
898.5
o 98
™]
T
975 T T e e
T T T T \I
0 20 40 60 80 100

Number of Iterations

Figure C.3. Convergence study of the inner GA with poputatize 50.

100
—+— Convergence Test 1
—*— Convergence Test 2
—_ —— Convergence Test 3
'299 51 —— Convergence Test 4
8-> —=— Convergence Test 5
< —— Average Convergence
E-
o 99
w]
v
o
-
° 4
6 98.5 | — 5)
1 Convergence criteria (<97.5): 93 iterations
O 987
£\
975 N N s eSS e TS She ek

T
0 20 40 60 80 100
Number of Iterations

Figure C.4. Convergence study of the inner GA with poputatize 80.

100

—+— Convergence Test 1
—*— Convergence Test 2

—_] —— Convergence Test 3

399 5 —— Convergence Test 4

g77 | —=— Convergence Test 5

K —— Average Convergence

E

o 997

a

o

o

w“

° 4

©98.5

] Convergence criteria (<97.5): 60 iterations

o 987

~

T

97.5

80 100

Number of Iterations

Figure C.5. Convergence study of the inner GA with poputatize 100.

Chapter C Outer Algorithm

112

e [q]

did

Figure C.6. Convergence study of the inner GA with poputatize 200.

date [g]

™

ion of best ¢

Figure C.7. Convergence study of the inner GA with poputatize 400.

date [g]

™

ion of best ¢

ion of best c

©
©
wn

Hz C

)
©°
w0

0
v}

98

97.5

—+— Convergence Test 1
—*— Convergence Test 2
] —— Convergence Test 3
J —— Convergence Test 4
—=— Convergence Test 5
—— Average Convergence

Convergence criteria (<97.5): 54 iterations

1 Pooe, \

T T T
0 20 40 60 80 100
Number of Iterations

—+— Convergence Test 1
—*— Convergence Test 2
] —— Convergence Test 3
J —— Convergence Test 4
—=— Convergence Test 5
—— Average Convergence

Convergence criteria (<97.5): 37 iterations

Number of Iterations

—+— Convergence Test 1
—*— Convergence Test 2
] —— Convergence Test 3
J —— Convergence Test 4
—=— Convergence Test 5
—— Average Convergence

Convergence criteria (<97.5): 33 iterations

P BRI B

0 20

Number of Iterations

Figure C.8. Convergence study of the inner GA with poputatize 800.

Bibliography

[1] S.S. Rao.Engineering optimization: theory and practicé/iley-IEEE, 1996.
[2] J.S. Arora.Introduction to optimum desigrAcademic Press, 2004.

[3] K. Deb. Optimization for engineering design: algorithms and ex&spPHI Learning Pvt.
Ltd., 2004.

[4] J.T. Allison. Optimal partitioning and coordinationasions in decomposition-based design
optimization.Ph.D. Dissertation, University of Michigai2008.

[5] K. Deb. Multi-objective optimization using evolutionary algdmihs John Wiley and Sons,
2001.

[6] M.A. Roscher and D.U. Sauer. Dynamic electric behavimt apen-circuit-voltage modeling
of lifepo4-based lithium ion secondary batteridsurnal of Power Sourced496(1):331-336,
2011.

[7] USABC. Electric Vehicle Battery Test Procedures Manual, Revi@obepartment of Energy,
1996.

[8] M.J. Mawdesley, S.H. Al-Jibouri, and H. Yang. Genetigaithms for construction site layout
in project planning.Journal of Construction Engineering and Managemér8(5):418-426,
2002.

[9] H. Pham.Handbook of reliability engineeringBirkhuser, 2003.

[10] J.T. Alander. On optimal population size of geneticoaithms. InProceedings of the Com-
pEuro '92. Computer Systems and Software Enginegpages 65—70. IEEE, 1992.

[11] M.O. Odetayo. Optimal population size for genetic aitjons: an investigation. IhEEE
Colloquium on Genetic Algorithms for Control Systems Eeegiing pages 2/1-2/4. |IEEE,
1993.

113

Bibliography 114

[12] A.H. Wright. Foundations of genetic algorithms: 8th international wsitkp, FOGA 2005
Springer, 2005.

[13] M. Mitchell. An Introduction to Genetic Algorithms (Complex Adaptivet&ys) A Bradford
Book; Third Printing edition, 1998.

[14] S.N. Sivanandam and S.N. Deepatroduction to genetic algorithmsSpringer, 2007.

[15] G.E.P. Box and M.E. Muller. A note on the generation afdam normal deviatesAnnals of
Mathematical Statistic29(2):610-611, 1958.

[16] J.G. Digakajus and K. G. Margaritis. An experimentaldst of benchmarking functions for
genetic algorithmslinternational Journal of Computer Mathematjds79(4):403-416, 2002.

[17] H. H. Rosenbrock. An automatic method for finding theagest or least value of a function.
The Computer JournaB(3):175-184, 1960.

[18] D. Kirk and W.W. Hwu. Programming massively parallel processors: a hands-ornr@ggh
Elsevier, 2010.

[19] V. Salmasi. Control strategies for hybrid electric idds: evolution, classification, compari-
son, and future trend$EEE Transactions on Vehicular Technolo(5):2393-2404, 2007.

[20] H. Won and R. Langari. Fuzzy torgue distribution cohfar a parallel hybrid vehicle.The
Journal of Knowledge Engineerin@g9(1):4-10, 2002.

[21] L. Johannesson and B. Egardt. Approximate dynamicraragiing applied to parallel hybrid
powertrains.Proceedings of the 17th World Congress IEA@ges 3373—-3379, 2008.

[22] P. Rodatz, G. Paganelli, A. Sciarretta, and L. Guzzellyptimal power management of an
experimental fuel cell/supercapacitor-powered hybriticle. Journal of Control Engineering
Practice 13(1):41-53, 2005.

[23] P. Tulpule, V. Marano, and G. Rizzoni. Energy managerfamplug-in hybrid electric vehicles
using equivalent consumption minimisation strateggternational Journal of Electric and
Hybrid Vehicles 2(4):329-350, 2010.

[24] C.C. Lin, H. Peng, J.W. Grizzle, and J.M. Kang. Power agament strategy for a parallel
hybrid electric truck. IEEE Transactions on Control Systems Technaldf(6):839-848,
2003.

Bibliography 115

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

C.C. Lin, H. Peng, and J.W. Grizzle. A stochastic cogtoategy for hybrid electric vehicles.
Proceedings of the American Control Confereneages 4710-4715, 2004.

J.T. Allison, M. Kokkolaras, and P. Y. Papalambros. @kesting single-level formulations for
complex system design optimizatioASME Journal of Mechanical Desigh29(9):898—906,
2007.

J.T. Allison, M. Kokkolaras, and P. Y. Papalambros. iat partitioning and coordination
decisions in decomposition-based design optimizatlt®ME Journal of Mechanical Design
131(8):709-718, 2009.

R. Fellini, N. Michelena, P. Papalambros, and M. Sas@mimal design of automotive hybrid
powertrain systemsProceedings of the First International Symposium on Emrirentally
Conscious Design andinverse Manufacturipgges 400—405, 1999.

M.-J. Kim and H. Peng. Power management and design gatian of fuel cell/battery hybrid
vehicles.Journal of Power Sourced465(2):819-832, 2007.

D. Assanis, G. Delagrammatikas, R. Fellini, Z. Filigi,Liedtke, N. Michelena, P. Papalam-
bros, D. Reyes, D. Rosenbaum, A. Sales, and M. Sasena. Anipgtion approach to hy-
brid electric propulsion system desigrdournal of Mechanics of Structures and Machines
27(4):393-421, 1999.

B. Zhang, Z. Chen, C. Mi, and Y.L. Murphey. Multi-objéet parameter optimization of a
series hybrid electric vehicle using evolutionary alduoris. Proceedings of the IEEE Vehicle

Power and Propulsion Conferengaages 921-925, 2009.

W. Gao and S.K. Porandia. Design optimization of a pekralybrid electric powertrainPro-
ceedings of the IEEE Vehicle Power and Propulsion Confegreges 530-535, 2005.

D.W. Gao, C. Mi, and A. Emadi. Modeling and simulationadéctric and hybrid vehicles.
Proceedings of the IEEB5(4):729-745, April 2007.

X. Liu, Y. Wu, and J. Duan. Optimal sizing of a series hgbelectric vehicle using a hybrid
genetic algorithm. Proceedings of the IEEE International Conference on Aut@mnaand
Logistics pages 1125-1129, 2007.

A. Sciarretta and L. Guzzella. Control of hybrid eléctvehicles. IEEE Control Systems
Magazine pages 60-70, 2007.

Bibliography 116

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

V. Schwarzer and R. Ghorbani. Stochastic optimizatban energy management controller
for hybrid electric vehiclesProceedings of the 2010 World Electric Vehicle Symposiuch an
Exposition (EVS25pages 1-4, 2010.

V. Schwarzer and R. Ghorbani. New opportunities fogéascale design optimization of elec-
tric vehicles using gpu technologyProceedings of the IEEE Vehicle Power and Propulsion
Conference2011.

T.C. Austin, F.J. DiGenova, T.R. Carlson, R.W. Joy, K@&ianolini, and J.M. Lee. Charac-
terization of driving patterns and emissions from lightyduehicles in california. Technical
report, Sierra Research, Inc. (Prepared for CaliforniaR&sources Board.), 1993.

J. Lin and D.A. Niemeier. Estimating regional air qiyalehicle emission inventories: Con-
structing robust driving cycleslournal of Transportation Scienc87(3):330—-346, 2003.

E. Tazelaar, J. Bruinsma, B. Veenhuizen, and P. van a@ectd Driving cycle characterization
and generation, for design and control of fuel cell bu¥eésrld Electric Vehicle Journa3:1-8,
20009.

B.Y. Liaw and M. Dubarry. From driving cycle analysisuaderstanding battery performance
in real-life electric hybrid vehicle operatiodournal of Power Sourced74:76-88, 2007.

S. Shahidinejad, E. Bibeau, and S. Filizadeh. Sta#ttievelopment of a duty cycle for plug-
in vehicles in a north american urban setting using fleetrinfgion. IEEE Transactions on
Vehicular Technology59(8):3710-3719, 2010.

S. Yerramalla, A. Davari, A. Feliachi, and T. Biswas. 8&ding and simulation of the dynamic
behavior of a polymer electrolyte membrane fuel célburnal of Power Sourced 24:104—
113, 2003.

J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Pepplayd@®. R. Roberge. Performance
modeling of the ballard mark iv solid polymer electrolyteeficell. Journal of the Electro-
chemical Societyl42(1):1-8, 1995.

T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld. lyReer electrolyte fuel cell model.
Journal of the Electrochemical Society38(8):2234—-2342, 1991.

Bibliography 117

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. T. Pukrushpan, H. Peng, and A. G. Stefanopoulou. Glomiented modeling and analysis
for automotive fuel cell systemsJournal of Dynamic Systems, Measurement and Cantrol
126:14-25, 2004.

T. V. Nguyen and R. E. White. A water and heat managemesdaifor proton-exchange
membrane fuel cellsJournal of the Electrochemical Society40(8):2178—-2186, 1993.

J. Larminie and A. Dick. Fuel cell systems explainddhn Wiley and Son2000.

National Energy Technology Laboratory. Fuel cell haook (seventh edition)U.S. Depart-
ment of Energy2004.

O. Tremblay, L. A. Dessaint, and A. I. Dekkiche. A gewebattery model for the dynamic
simulation of hybrid electric vehicle®roceedings of the IEEE Vehicle Power and Propulsion
Conferencepages 284-289, 2007.

O. Tremblay and L. A. Dessaint. Experimental validataf a battery dynamic model for ev
applications.World Electric Vehicle Journal3:1-10, 2009.

B. V. Liaw, G. Nagasubramanian, R. G. Jungst, and D. Hudgddy. Modeling of lithium ion
cells a simple equivalent-circuit model approa&ulid States lonigsl74:835-839, 2004.

M. Dubarry and B. Y. Liaw. Identify capacity fading meatism in a commercial lifepo4 cell.
Journal of Power Sourced494:541-549, 2009.

P. Ramadass, R. White B. Haran, and B. N. Popov. Mathealahodeling of the capacity
fade of li-ion cells.Journal of Power Sourced23:230-240, 2003.

P. Ramadass, A. Durairajan, B.S. Haran, R.E. White,Eatd Popov. Capacity fade studies
on spinel based li-ion cells. IMhe Seventeenth Annual Battery Conference on Applications
and AdvancedEEE, 2002.

A. Rao, G. Singhal, A. Kumar, and N. Navet. Battery mofigl embedded systems. In
Proceedings of the 18th International Conference on VLSliie IEEE, 2005.

S.J. Moura, D.S. Callaway, H.K. Fathy, and J.L. Steimpéct of battery sizing on stochastic
optimal power management in plug-in hybrid electric vedscl InProceedings of the IEEE
International Conference on Vehicular Electronics andeBafICVES pages 96-102. IEEE,
2008.

Bibliography 118

[58] O. Erdinc, B. Vural, and M. Uzunoglu. A wavelet-fuzzygic based energy management
strategy for a fuel cell/battery/ultra-capacitor hybrahicular power systendournal of Power
Sources194:369-380, 20089.

[59] O. Erdinc, B. Vural, and M. Uzunoglu. A dynamic lithiuron battery model considering the
effects of temperature and capacity fading.International Conference on Clean Electrical
Power, pages 383—-386. IEEE, 2009.

[60] M. Chen and G.A. Rincon-Mora. Accurate electrical battmodel capable of predicting run-
time and iv performancelEEE TRANSACTIONS ON ENERGY CONVERSIZIN2):504—
511, June 2006.

[61] A. Millner. Modeling lithium ion battery degradatiom electric vehicles. 12010 IEEE Con-
ference on Innovative Technologies for an Efficient andaRidiElectricity Supply (CITRES)
pages 349-356. IEEE, 2010.

[62] K. Honkura, K. Takahashi, and T. Horiba. Capacity-fagprediction of lithium-ion batteries
based on discharge curves analysisurnal of Power Source496(23):10141 — 10147, 2011.

[63] B. Markovsky, A. Rodkin, Y.S. Cohen, O. Palchik, E. LeW. Aurbach, H. J. Kim, and
M. Schmidt. The study of capacity fading processes of lifiatteries: major factors that
play a role.Journal of Power Source419-121(0):504 — 510, 2003.

[64] M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw. Capacitydapower fading mechanism
identification from a commercial cell evaluatialournal of Power Source465(2):566 — 572,
2007.

[65] T.Osaka, S. Nakade, M. Rajamki, and T. Momma. Influeda@apacity fading on commercial
lithium-ion battery impedancelournal of Power Source419-121(0):929 — 933, 2003.

[66] E.W. Weisstein.CRC concise encyclopedia of mathematicRC Press, 2003.

[67] A. Savitzky and M. J. E. Golay. Smoothing and differatibn of data by simplified least
squares proceduredournal of Analytical Chemistr\86(8):1627-1639, 1964.

[68] J. Fallows. New life for moore’s lawlhe Atlantic Monthly288(3):44—46, 2001.

[69] J.H. Holland. Adaptation in Natural and Artificial Systems: An IntrodustdAnalysis with
Applications to Biology, Control, and Artificial Intelligee University of Michigan Press,
1975.

Bibliography 119

[70] J.H. Holland. Adaptation in Natural and Artificial Systems: An IntrodustdAnalysis with
Applications to Biology, Control, and Atrtificial Intelligee, 2nd ed.Cambridge, MA: MIT
Press, 1992.

[71] S.Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Opiation by simulated annealin§cience
220(4598):671-680, 1983.

[72] V. Cerny. Thermodynamical approach to the travelingsaan problem: An efficient simu-
lation algorithm.Journal of Optimization Theory and Applicationts(1):41-51, 1985.

[73] V. Granville, M. Krivanek, and J.P. Rasson. Simulatethealing: a proof of convergence.
IEEE Transactions on Pattern Analysis and Machine Inteltige 16(6):652—656, 1994.

[74] M. Dorigo and L.M. Gambardella. Ant colony system: A peoative learning approach to the
traveling salesman problemEEE Transactions on Evolutionary Computatidi(1):53—-66,
1997.

[75] D. Dorigo and T. StuetzleAnt Colony OptimizationMIT Press, 2004.
[76] G. Danzig.Linear Programming and ExtensianBrinceton University Press, August 1998.

[77] J. Snyman. Practical Mathematical Optimization: An Introduction tcaBic Optimization
Theory and Classical and New Gradient-Based Algorithmgliag Optimization) Springer,
November 2005.

[78] S. Chapra.Numerical Methods for Engineers, 5th editioMcgraw-Hill Education, August
2008.

[79] J.F. Bonnans, J.C. Gilbert, C. Lenmarechal, and C.4aS@zabal.Numerical Optimization,
2nd edition Springer, 2006.

[80] J. Arabas, Z. Michalewicz, and J. Mulawka. Gavaps-aegieralgorithm with varying pop-
ulation size. InProceedings of the IEEE World Congress on Computationadlligence
volume 1, pages 73-78, 1994.

[81] www.nvidia.com.NVIDIA CUDA C Programming Guide, Version 4.2011.

[82] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stane J.C. Phillips. Gpu computing.
Proceedings of the IEE®6(5):879-899, 2008.

Bibliography 120

[83] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Hdag, J. Owens, M. Segal, M. Pa-
pakipos, and I. Buck. Gpgpu: general-purpose computatiographics hardwareProceed-
ings of the 2006 ACM/IEEE conference on Supercompufifgeé.

[84] M.J. Harris. Real-Time Cloud Simulation and RenderinBhD thesis, University of North
Carolina Technical Report TR03-040, 2003.

[85] J.C. Thibault and I. Senocak. Cuda implementation ofear-stokes solver on multi-gpu
desktop platforms for incompressible floiBroceedings of the 47th AIAA Aerospace Sciences
Meeting Including The New Horizons Forum and Aerospace &#kpo, pages 1-15, 2009.

[86] A.D. Stivala, P.J. Stuckey, and A.l. Wirth. Fast andwate protein substructure searching
with simulated annealing and gpuBMC Bioinformatics 11(446), 2010.

[87] Dimitri Komatitsch, Gordon Erlebacher, Dominik Gda@gkand David Michea. High-order
finite-element seismic wave propagation modeling with mmpadarge gpu clustedournal of
Computational Physic®29(20):7692-7714, 2010.

[88] M.Geveler, D. Ribbrock, D. Goddeke, and S. Turek. icatBoltzmann simulation of the
shallow-water equations with fluid-structure interactimm multi- and manycore processors.
Proceedings of Facing the Multicore Challen@310:92-104, September 2010.

[89] S. Harding and W. Banzhaf. Fast genetic programming BU& InGenetic Programming
pages 90-101. 2007.

[90] S.Harding and W. Banzhaf. Fast genetic programminggatificial developmental systems on
GPUs. InProceedings of the 21st International Symposium on HiglfolR@ance Computing
Systems and Applicationgage 2. IEEE Computer Society, 2007.

[91] K. L.Fokand T.T. Wong. Evolutionary computing on consr graphics hardwaréntelligent
Systems, IEER22(2):69-78, 2007.

[92] S. Harding and W. Banzhaf. Distributed genetic progrdng on gpus using cuda. In Jos L.
Risco-Martn and Oscar Garnica, editordPABA’'09: Proceedings of the Second International
Workshop on Parallel Architectures and Bioinspired Algoms (WPABA 2009pages 1-10,
20009.

Bibliography 121

[93]

[94]

[95]

[96]

[97]

P. Pospchal, J. Jaro, and J. Schwarz. Parallel genlgiicitam on the cuda architecture.
In Applications of Evolutionary ComputatiphNCS 6024, pages 442—-451. Springer Verlag,
2010.

Y. Sato, N. Hasegawa, and M. Sato. Gpu accelerationudolsu solution with genetic opera-
tions. InProceedings of the 2011 IEEE Congress on Evolutionary Coatipn (CEC) pages
296-303, 2011.

P. Pospchal, J. Schwarz, and J.Jaros. Parallel gealgticathm solving 0/1 knapsack problem
running on the gpu. Ii6th International Conference on Soft Computing MENDEL®RO01
pages 64-70. Brno University of Technology, 2010.

T.V. Luong, N. Melab, and E.G. Talbi. Gpu-based islanddal for evolutionary algorithms.
In GECCO '10: Proceedings of the 12th annual conference on (eaed evolutionary com-
putation pages 1089-1096, Portland, Oregon, USA, 7-11 July 20104 AC

S. Xiao, A.M. Aji, and W.C. Feng. On the robust mappingdghamic programming onto a
graphics processing unit. Proceedings of the 15th international Conference on Patahd
Distributed Systempages 26—33, 2009.

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	Problem Description and Scope of the Research
	Dissertation Outline

	Vehicle Model
	Vehicle Dynamics Model
	Component Weight Functions

	Fuel Cell Stack Model
	Cell Voltage Model
	Stack Model

	Battery Model
	Battery Degradation

	Motor Efficiency
	Energy Management
	Programming Environments
	CUDA
	C/C++
	Matlab/Simulink

	Drive Cycle Generation
	Modular stochastic drive cycle generation
	Drive Cycle
	Driving Scenario
	Driving Pulse
	Pulse Modules
	Probability Functions

	Tool Validation

	Large-Scale Optimization on GPUs
	Optimization in Engineering Design
	FCHEV Optimization Problem
	Optimization with Genetic Algorithms
	Population Initialization
	Selection
	Crossover
	Mutation
	Termination
	Convergence Testing

	FCHEV Optimization Methodology
	Cardinality of the Search Space

	GPU Implementation

	Performance Evaluation
	Hardware Configuration
	Algorithm Performance
	Inner Loop GA
	Outer Loop GA
	Overall Performance
	Section Findings

	Hardware Benchmarking
	Computing Architecture
	Device architecture

	Optimization Results
	DCGT-Based Optimization
	Design Sensitivity Towards Peak Loads
	Application and Driver-Specific Vehicle Design
	Optimization efficiency

	Impact of Battery Degradation
	Case 1: Different lifetimes, similar degradation rates
	Case 2: Equivalent lifetimes, different degradation rates

	Conclusion
	Summary
	Contributions
	Future Work

	FCHEV Model Parameter
	Inner Algorithm
	Outer Algorithm
	Bibliography

