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ABSTRACT

We prove various results connected together by the common thread of computability theory.

First, we investigate a new notion of algorithmic dimension, the inescapable dimension, which lies

between the effective Hausdorff and packing dimensions. We also study its generalizations, obtaining

an embedding of the Turing degrees into notions of dimension.

We then investigate a new notion of computability theoretic immunity that arose in the course of

the previous study, that of a set of natural numbers with no co-enumerable subsets. We demonstrate

how this notion of Π0
1-immunity is connected to other immunity notions, and construct Π0

1-immune

reals throughout the high/low and Ershov hierarchies. We also study those degrees that cannot

compute or cannot co-enumerate a Π0
1-immune set.

Finally, we discuss a recently discovered truth-table reduction for transforming a Kolmogorov–

Loveland random input into a Martin-Löf random output by exploiting the fact that at least one

half of such a KL-random is itself ML-random. We show that there is no better algorithm relying

on this fact, i.e. there is no positive, linear, or bounded truth-table reduction which does this. We

also generalize these results to the problem of outputting randomness from infinitely many inputs,

only some of which are random.
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CHAPTER 1
INTRODUCTION

Computability theory is concerned with the computational strength of mathematical objects,

usually viewed as infinite sequences of 0s and 1s (also called reals). For instance, given a listing of

all computer programs, consider the sequence K ∈ 2ω such that K(e) = 1 iff the eth program will

halt, and 0 otherwise. Alan Turing famously showed that K is not computable — one must either

prove that the program in question will (not) halt, or run it and hope that it does. But as an object

unto itself, we can ask many questions about K: what else can it compute? Is any regularity to

which of its entries are 1? In computability theory, we seek to answer such questions, and to develop

the necessary tools to do so.

One such tool that has been very effective in this study is Kolmogorov complexity. For a finite

string σ ∈ 2<ω, K(σ)1 is (essentially) the length of the shortest program whose output is σ. This

allows for elegant characterizations of randomness — for instance, a random sequence should be

as difficult to describe as possible, and so all of its initial segments should have high Kolmogorov

complexity.

This leads naturally to ‘effective’ versions of fractal dimensions from geometry. For instance the

effective packing dimension of X ∈ 2ω is

dimp(X) = lim sup
n∈N

K(X�n)

n

where X�n is the first n bits of X. In Chapter 2 we investigate a modification of this, the inescapable

dimension, where one takes infimums of supremums over computable (∆0
1) sets of natural numbers:

dimi(X) = inf
N∈∆0

1

sup
n∈N

K(X�n)

n
.

We then generalize further by considering oracles, i.e. non-computable reals. With an oracle A in

hand, we can consider the ∆0
1(A) sets, i.e. those computed by some program with access to the non-

computable information contained in A. For instance, the halting problem K can compute a random

sequence, which is necessarily not ∆0
1. Each oracle thus corresponds to a notion of dimension, and

1It is an unfortunate notational collision that K is both the halting problem, an infinite binary sequence, and
Kolmogorov complexity, a function from finite strings to naturals.
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we ultimately obtain an embedding theorem between the Turing degrees and the ∆0
1(A) dimensions.

We also prove corresponding results for generalizations of the complex packing dimension, which

was defined in [15].

In addition to what can be computed (possibly by an oracle), computability theory is also

concerned with weaker notions of computation. A set W is enumerable (or Σ0
1) if there is an

algorithm which lists its members in some order — if n ∈ W , we will eventually know it, but

until the program enumerates n, we can never be sure. Classical computability theory has much

to say about immune reals, those with no enumerable subsets (again, random sets provide an easy

example).

In Chapter 3, we explore a related notion that arose in the course of studying the Π0
1(A) dimen-

sions: that of a Π0
1-immune set (the Π0

1 sets are co-enumerable, their complements are Σ0
1). This

notion appears (though is not studied unto itself) in [55, 56, 57], in connection with sets of minimal

indices. We explore connections between this notion and previously studied immunity notions in

classical computability theory, and construct Π0
1-immune sets that fit into various computability the-

oretic hierarchies. Finally, we study the classes of sets that compute or co-enumerate no Π0
1-immune

sets, and make connections with notions of computational weakness. In the course of doing so we

obtain a result of independent interest, that the class of hyperimmune-free sets coincides with those

that compute no truth-table CEA set.

Finally in Chapter 4, we shine a small light on one of the biggest open questions in algorithmic

randomness: the Kolmogorov–Loveland randomness problem. While it is known that Martin-Löf

random (MLR) sequences are Kolmogorov–Loveland random (KLR), the reverse implication remains

open. Several partial results are known; for instance, if some X ∈ KLR is decomposed into its even

and odd entries X0 and X1, at least one Xi is Martin-Löf random [38]. This gives a weak equivalence

between the notions, as the reduction from KLR to MLR is non-uniform. Miyabe asked if this could

be strengthened to a uniform reduction [42], and this was answered in the affirmative in [25]. Here

we prove that this reduction is in a sense optimal for the following problem: what kind of algorithm

suffices to always output randomness given two inputs, an unknown one of which is random? We

also generalize this result to the setting of infinitely many inputs, an unknown one of which is known

to be random.

Material in Chapters 2 and 4 previously appeared in proceedings in Computability in Europe in
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2021 and 2022, respectively [26, 27].

1.1 Notation and Preliminaries

Our notation follows the standard texts in the fields of computability theory [51, 52] and algorithmic

randomness [11, 44].

The natural numbers are denoted ω, and contain 0. We will often make use of 〈·, ·〉, a fixed

computable bijective pairing function from ω2 to ω. Any such function should suffice, but to be

explicit, we use the Cantor pairing function: 〈x, y〉 = 1
2 (x+ y)(x+ y + 1) + y.

Strings are functions σ : {0, 1, . . . , n − 1} → {0, 1}, while reals are functions A : ω → {0, 1} (in

analogy to binary expansions of real numbers in [0, 1]). They are generally denoted by lowercase

Greek and capital Latin letters, respectively. We say σ � τ if, as sets of ordered pairs, σ ⊆ τ , and

similarly for σ ≺ A. The set of all strings of length n is 2n, and the set of all strings of any length

is 2<ω. The set of all reals is 2ω.

It is often convenient to write strings and reals as binary sequences, e.g. σ = 010. In this view,

each element of the sequence is a bit. We will write σi or σ_i to mean the sequence σ with the bit

i appended. Other strings or a real may be appended this way as well. The sequence of the first n

bits of a real A is written A�n.

We also use A to denote {n | A(n) = 1}. We denote complements with overlines, with the ambient

set as ω or 2ω taken to be clear from context. The complement of a real A is A = {n | A(n) = 0}.

Partial computable functions are indexed by e ∈ ω as ϕe, and their domains as We. These

functions are represented by Turing machines, which compute in steps s ∈ ω. We can similarly

define partial functions ϕe,s and We,s by only running ϕe for s steps on inputs n ≤ s. We say

ϕe,s(n)↓ (the computation halts) if there is a stage when the computation ϕe,s(n) has halted, and

ϕe(n)↑ if there is no such stage (the computation diverges).

We often view ϕe as enumerating a list of elements — we imagine all computations ϕe(n) being

run in parallel, with n being added to We,s when ϕe,s(n) is defined.

A function f is computable (or recursive) iff there is an e such that f = ϕe, and ϕe is total. In

the language of Turing machines, f is computable iff there is a Turing machine M that is guaranteed

to halt when run on any natural number input n.

A set X is computably enumerable (c.e.) if there is some e for which X = We. We also say X is

Σ0
1 if it can be written X = {x ∈ ω | (∃y ∈ ω)R(x, y)}, where R is a computable binary predicate.

3



These notions are equivalent.

A set is co-c.e. iff its complement is c.e., or equivalently if it can be written using a computable

predicate R as {x ∈ ω | (∀y ∈ ω)R(x, y)}. We thus write Σ0
1 and Π0

1 for the sets of c.e. and co-c.e.

reals, respectively, and ∆0
1 = Σ0

1 ∩ Π0
1 for the computable sets. In general, a Σ0

n set is one that can

be written {x ∈ ω | (∃y1 ∈ ω)(∀y2 ∈ ω) · · · (Qyn ∈ ω)R(x, y1, y2, . . . , yn)} for a computable n+ 1-ary

predicate R, where Q is ∀ if n is even, and ∃ otherwise. Similarly a Π0
n set is one that can be written

{x ∈ ω | (∀y1 ∈ ω)(∃y2 ∈ ω) · · · (Qyn ∈ ω)R(x, y1, y2, . . . , yn)}. In general ∆0
n = Σ0

n ∩Π0
n.

We very frequently give our functions access to an oracle X, and write ΦXe and WX
e in analogy to

ϕe and We. If ΦXe (n)↓, its use ϕXe (n) is the largest bit of X that is queried during the computation.

If for sets A and B, there is an e such that A = ΦBe , we say that A is Turing reducible to B,

written A ≤T B. We also say “B is above A” or “B bounds A”. If B ≤T A as well, we say A ≡T B.

This is an equivalence relation, whose equivalence classes are called Turing degrees.

We describe a Turing degree as having a certain property of reals iff it contains a real with that

property, i.e. “a c.e. degree” is one that contains a c.e. real.

For A ∈ 2ω, ∆0
1(A) = {B ∈ 2ω | B ≤T A} is the set of reals computed by A. Similarly

Σ0
1(A) = {B ∈ 2ω | (∃e ∈ ω) B = WA

e }, the set of reals enumerated by A (also called “A-c.e.”

sets). Π0
1(A) = {B ∈ 2ω | B ∈ Σ0

1(A)} is the sets of reals co-enumerated by A (also called “A-co-

c.e.”). Σ0
n(A) and Π0

n(A) are defined analogously. We may also refer to sets of strings as having an

arithmetic complexity by computably encoding strings as natural numbers.

The halting problem is ∅′ = {〈e, x〉 | ϕe(x)↓}. In constructions it will be useful that as an oracle,

the halting problem can settle any Σ0
1 or Π0

1 question.

The jump of A is A′ = {〈e, x〉 | ΦAe (x)↓}. Subsequent jumps can be abbreviated A(n).

Post’s theorem will often be used without mention: ∆0
n(A) = {B ∈ 2ω | B ≤T A(n−1)}.

When defining an algorithm ϕe or ΦXe , rather than writing out the precise Turing machine cor-

responding to our algorithm, we implicitly appeal to the Church–Turing thesis, that any “effectively

calculable” function is describable by a Turing machine.
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CHAPTER 2
ARITHMETICAL ORACLE DIMENSIONS

The first four sections of this chapter previously appeared in print in [26].

2.1 The Complex Packing and Inescapable Dimensions

Let K(σ) denote the prefix-free Kolmogorov complexity of a string σ ∈ 2<ω. We will not consider

other variants (such as plain complexity) in the sequel, so for notation we may drop ‘prefix-free’

and/or ‘Kolmogorov’. While prefix-free Kolmogorov complexity is not computable, it is at least

approximable from above in stages s, so let Ks(σ) ≥ K(σ) be such an approximation. For more on

Kolmogorov complexity, see [35].

Viewed this way [5, 37], the Hausdorff and packing dimensions are dual to one another:

Definition 2.1.1. The effective Hausdorff and packing dimensions of A ∈ 2ω are, respectively

dimH(A) = sup
m∈N

inf
n≥m

K(A�n)

n

dimp(A) = inf
m∈N

sup
n≥m

K(A�n)

n
.

Another notion of dimension was defined in previous work by Kjos-Hanssen and Freer [15]. Let

D denote the collection of all infinite ∆0
1 elements of 2ω.

Definition 2.1.2. The complex packing dimension of A ∈ 2ω is dimcp(A) = sup
N∈D

inf
n∈N

K(A�n)

n
.

This leads naturally to a dual notion, obtained by switching the order of inf and sup

Definition 2.1.3. The inescapable dimension of A ∈ 2ω is dimi(A) = inf
N∈D

sup
n∈N

K(A�n)

n
.

This is so named because if dimi(A) = α, every infinite computable collection of prefixes of A

must contain prefixes with K(A�n)/n arbitrarily close to α. For such a real, there is no (computable)

escape from high complexity prefixes. As Freer and Kjos-Hanssen show in [15],

Theorem 2.1.4. For any A ∈ 2ω, 0 ≤ dimH(A) ≤ dimcp(A) ≤ dimp(A) ≤ 1.

The expected analogous result also holds:

5



Theorem 2.1.5. For any A ∈ 2ω, 0 ≤ dimH(A) ≤ dimi(A) ≤ dimp(A) ≤ 1.

Proof. As the sets [n,∞) are computable subsets of N, dimi(A) ≤ dimp(A). For the second inequal-

ity, notice that for all m ∈ N and all N ∈ ∆0
1,

inf
n∈[m,∞)

K(A�n)

n
≤ inf
n∈N∩[m,∞)

K(A�n)

n
≤ sup
n∈N∩[m,∞)

K(A�n)

n
≤ sup
n∈N

K(A�n)

n
.

2.2 Incomparability

Unexpectedly, Theorems 2.1.4 and 2.1.5 are the best one can do — while the packing dimension of

a string is always lower than its Hausdorff dimension, any permutation is possible for the complex

packing and inescapable dimensions of a real:

Theorem 2.2.1. There exist A and B such that dimcp(A) < dimcp(B), but dimi(B) < dimi(A).

We first set up some definitions and notation.

For a real A, let us write A[m,n] to denote the string A(m)A(m+1) . . . A(n−1). For two functions

f(n), g(n) we write f(n) ≤+ g(n) to denote ∃c∀n f(n) ≤ g(n) + c. We write f(n) = O(g(n)) to

denote ∃M∃n0∀n > n0 f(n) ≤Mg(n).

Definition 2.2.2. A is Martin-Löf random1 iff n ≤+ K(A�n).

While this is not Martin-Löf’s original definition, it is an equivalent characterization due to

Schnorr [11].

Definition 2.2.3. Let S ⊆ 2<ω. A real A meets S iff some prefix of A is in S. A avoids S iff it has

a prefix σ such that no extension τ � σ is in S. S is dense iff every σ ∈ 2<ω has an extension τ ∈ S.

Definition 2.2.4. A real A is n-generic iff for every Σ0
n set S ⊆ 2<ω, A meets or avoids S.

Definition 2.2.5. A real A is weakly n-generic iff it meets every dense Σ0
n set S.

Finally, for a real A and n ∈ ω we use the indicator function 1A defined by

1A(n) =


1 if n ∈ A,

0 otherwise.

1We will not consider another notion of randomness until Chapter 4, so we may write ‘random’ to mean Martin-Löf
random when it is clear in context.
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Proof of Theorem 2.2.1. Let A be a weakly 2-generic real, and let R be a Martin-Löf random real.

Let sk = 2k
2

, kn = max{k | sk ≤ n}, and C = (01)ω. Define B(n) = R (n− skn) · 1C(kn).

Unpacking this slightly, this is

B(n) =


R (n− sk) , if sk ≤ n < sk+1 for some odd k,

0, otherwise.

In this proof, let us say that an R-segment is a string of the form B[s2m, s2m+1] for some m, and

say that a 0-segment is a string of the form B�[s2m+1, s2m+2) for some m. These are named so that

an R-segment consists of random bits, and a 0-segment consists of zeros.

Notice that by construction, each such segment is much longer than the combined length of all

previous segments. This guarantees certain complexity bounds at the segments’ right endpoints.

For instance, B has high complexity at the end of R-segments: for any even k ∈ N,

sk+1 − sk ≤+ K (B [sk, sk+1]) ≤+K(B�sk) +K(B�sk+1) ≤+ 2sk +K(B�sk+1).

The first inequality holds by Definition 2.2.2 because B [sk, sk+1] = R�(sk+1 − sk). The second

(rather weak) inequality holds because prefix-free complexity is subadditive: from descriptions of

B�sk and B�sk+1 we can recover B[sk, sk+1]. Finally, K(σ) ≤+ 2|σ| is a property of prefix-free

complexity. Combining and dividing by sk+1 gives

sk+1 − 3sk ≤+ K(B�sk+1)

1− 3 · 2−(2k+1) ≤ K(B�sk+1)

sk+1
+O

(
2−(k+1)2

)
as k →∞. (2.1)

Dually, the right endpoints of 0-segments have low complexity: for any odd k ∈ N,

K(B�sk+1) ≤+ K(B�sk) +K(B[sk, sk+1]) ≤+ 2sk + 2 log(sk+1 − sk).

The first inequality is again the weak bound that B�sk+1 can be recovered from descriptions of B�sk

and B[sk, sk+1]. For the second, we apply the 2|σ| complexity bound to B�sk, but also notice that

since B[sk, sk+1] = 0sk+1−sk , it can be recovered effectively from a code for its length. Combining
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and dividing by sk+1, we have

K(B�sk+1) ≤+ 2sk + 2(k + 1)2, and hence

K(B�sk+1)

sk+1
≤ 2−(2k+1) +O

(
2−(k+1)2

)
as k →∞. (2.2)

Now we can examine the dimensions of A and B.

Claim 1: dimcp(B) = 1.

Proof: Let Rn be the set of right endpoints of R-segments of B, except for the first n of them,

i.e. Rn = {s2k+1}∞k=n. Then the collection of these Rn is a subfamily of D, so that a supremum over

D will be at least the supremum over this family. Using (2.1), we find that

sup
N∈D

inf
n∈N

K(B�n)

n
≥ sup
n∈N

inf
s∈Rn

K(B�s)
s

≥ sup
n∈N

inf
s∈Rn

1− 3 · 2−(2s+1) = sup
m∈N

1− 3 · 2−(2m+1) = 1.

Claim 2: dimi(B) = 0.

Proof: Let Zn be the set of right endpoints of 0-segments of B, except for the first n of

them, i.e. Zn = {s2k}∞k=n. Similarly to Claim 1, we use (2.2) to obtain

inf
N∈D

sup
n∈N

K(B�n)

n
≤ inf
n∈N

sup
s∈Zn

K(B�s)
s

≤ inf
n∈N

sup
s∈Zn

2−(2s+1) = inf
m∈N

2−(2m+1) = 0.

Claim 3: dimcp(A) = 0.

Proof: For each N ∈ D and each natural k, the following sets are dense Σ0
1:

{σ ∈ 2ω : |σ| ∈ N and (∃s) Ks(σ) < |σ|/k]} .

As A is weakly 2-generic, it meets all of them. Hence sup
N∈D

inf
m∈N

K(σ�m)

m
= 0.

Claim 4: dimi(A) = 1.

Proof: For each N ∈ D and each natural k,

{σ ∈ 2ω : |σ| ∈ N and (∀s) Ks(σ) > |σ|(1− 1/k)}

is a dense Σ0
2 set. As A is weakly 2-generic, it meets all such sets. Hence inf

N∈D
sup
m∈N

K(A�m)

m
= 1.

8



2.3 Further Dimensions: (Non-)Collapse and Embedding

After considering supremums and infimums of ∆0
1 sets, it is natural to extend these definitions into

the arithmetic hierarchy. For full generality, we say that A is finite-to-one reducible to B iff there is

a total computable function f : ω → ω such that the preimage of each n ∈ ω is finite and for all n,

n ∈ A ⇐⇒ f(n) ∈ B.

Definition 2.3.1. Let B be a class of infinite sets that is downward closed under finite-to-one

reducibility. For A ∈ 2ω, define

dimisB(A) = inf
N∈B

sup
n∈N

K(A�n)

n
and dimsiB(A) = sup

N∈B
inf
n∈N

K(A�n)

n
.

Notice that for any oracle X, the classes of infinite sets that are ∆0
n(X),Σ0

n(X) or Π0
n(X) are

downward closed under finite-to-one reducibility, and so give rise to notions of dimension of this form.

We will label these Dn(X), Sn(X), and Pn(X) respectively, leaving off X when X is computable.

Interestingly, for fixed n, the first two give the same notion of dimension.

Theorem 2.3.2. For all A ∈ 2ω and n ∈ N, dimisΣ0
n
(A) = dimis∆0

n
(A).

Proof. We prove the unrelativized version of the statement, n = 1.

[≤] As ∆0
1 ⊆ Σ0

1, this direction is trivial.

[≥] As every infinite Σ0
1 set N contains an infinite ∆0

1 set N1, we have

dimisΣ0
1
(A) = inf

N∈S1

sup
n∈N

K(A�n)

n
≥ inf
N∈S1

sup
n∈N1

K(A�n)

n
≥ inf
N∈D1

sup
n∈N

K(A�n)

n
= dimis∆0

1
(A).

By a similar analysis, the analogous result for si dimensions is also true.

Theorem 2.3.3. For all A ∈ 2ω and n ∈ N, dimsiΣ0
n
(A) = dimsi∆0

n
(A).

What about the Π0
n dimensions? Unlike the Σ0

n case, these do not collapse down to their ∆0
n

counterparts, nor up to the ∆0
n+1 dimensions. Two lemmas will be useful in proving this. The first

(which was implicit in Claims 1 and 2 of Theorem 2.1.5) will allow us to show that an si-dimension

of a real is high by demonstrating a sequence that witnesses this.2 The second is a generalization

of the segment technique, forcing a dimension to be 0 by alternating 0- and R-segments in a more

intricate way, according to the prescriptions of a certain real. The constructions below proceed by

2The converse is not true — this is the content of Theorem 2.5.1.
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selecting a real that will guarantee that one dimension is 0 while leaving room to find a witnessing

sequence for another.

Lemma 2.3.4 (Sequence Lemma). Let B be a class of infinite sets downward closed under finite-

to-one reducibility, and let N = {nk | k ∈ ω} ∈ B.

(i) If lim
k→∞

K(X�nk)

nk
= 1, then dimsiB(X) = 1.

(ii) If lim
k→∞

K(X�nk)

nk
= 0, then dimisB(X) = 0.

Proof. We prove (i); (ii) is similar.

Form the infinite family of sets {Nm} defined by Nm = {nk | k ≥ m}. From the definition of the

limit, for any ε > 0 there is an l such that

inf
Nl

K(X�nk)

nk
> 1− ε.

As ε was arbitrary,

sup
m

inf
Nm

K(X�nm)

nm
= 1.

Thus as B is closed under finite-to-one reduction, the Nm form a subfamily of B, so that

sup
N∈B

inf
n∈N

K(X�n)/n = 1.

Definition 2.3.5. A real A is immune to a class B if there is no infinite member B ∈ B such that

B ⊆ A as sets. A is co-immune to a class B if its complement is immune to B. A is bi-immune to

B iff it is immune and co-immune to B.

We will often refer to these properties as B-immunity, co-B-immunity, and bi-B-immunity,

respectively. In the case that B = ∆0
1, we drop the B and simply say A is immune.

Definition 2.3.6. For reals A and B, A⊕B = {2k | k ∈ A} ∪ {2k + 1 | k ∈ B}.

Lemma 2.3.7 (Double Segment Lemma). Let X0 ∈ 2ω be such that X0 is co-immune to reals of a

class B, and set X = X0 ⊕X0. For all natural n, define kn = max{odd k | 2k2 ≤ n}. Let A be an

arbitrary real and let R be Martin-Löf random.

(i) If B = A
(
n− 2k

2
n

)
· 1X(kn), then dimsiB(B) = 0.

(ii) If B = R
(
n− 2k

2
n

)
· 1X(kn), then dimisB(B) = 1.
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Again, we will give a detailed proof of only the dimsiB result (though the necessary changes for

dimisB are detailed below). Unpacking the definition of B,

B(n) =


A (n− sk) if kn ∈ X

0 otherwise.

B is once again built out of segments of the form B [skn , skn+2] for odd k. Here a segment is a

0-segment if kn 6∈ X, or an A-segment if kn ∈ X, which by definition is a prefix of A. These

segments are now placed in a more intricate order according to X, with a value n being contained

in a 0-segment if X(kn) = 0, and in an A-segment if X(kn) = 1. With some care, this will allow us

to leverage the B-immunity of X0 to perform the desired complexity calculations.

Specifically, we want to show that for any N ∈ B, infN K(B�n)/n = 0. It is tempting to place

the segments according to X0 and invoke its B-immunity to show that for any N ∈ B, there are

infinitely many n ∈ N such that n is in a 0-segment, then argue that complexity will be low there.

The problem is that we have no control over where in the 0-segment n falls. Consider in this case

the start of any segment following an A-segment: n = skn for kn − 1 ∈ X0 and kn ∈ X0. We can

break A and B into sections to compute

K(A�n) ≤+ K(A�(n− skn−1)) +K(A[n− skn−1, n])

= K(B[skn−1, n]) +K(A[n− skn−1, n]) (kn − 1 ∈ X0)

≤+ K(B�n) +K(B�skn−1) +K(A[n− skn−1, n])

K(A�n) ≤+ K(B�n) + 4skn−1 (K(σ) ≤+ 2|σ|)

Even if n is the start of a 0-segment, if K(A�n) is high, K(B�n) may not be as low as needed for

the proof. Our definition of X avoids this problem:

Proof of Theorem 2.3.7. Suppose for the sake of contradiction that for some N ∈ B, there are only

finitely many n ∈ N with kn, kn−1 ∈ X, i.e., that are in a 0-segment immediately following another

0-segment. Removing these finitely many counterexamples we are left with a set N1 ∈ B such

that for all n ∈ N1, ¬[(kn 6∈ X) ∧ (kn − 1 6∈ X)]. As kn is odd, the definition of X gives that

bkn/2c ∈ X0. By a finite-to-one reduction from N1, the infinite set {bkn/2c}n∈N1 is a member of B

and is contained in X0, but X0 is immune to such sets.
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Instead it must be the case that there are infinitely many n ∈ N in a 0-segment following a

0-segment, where the complexity is

K(B�n) ≤+ K
(
B�snk−1

)
+K

(
B
[
snk−1

, n
])

≤+ 2snk−1
+ 2 log

(
n− snk−1

)
.

Here the second inequality follows from the usual 2|σ| bound and the fact that B
[
snk−1

, n
]

contains

only 0s. As 2k
2
n ≤ n, we can divide by n to get

K(B�n)

n
≤+ 2k

2
n−2kn

2k
2
n

+
2 log(n)

n
= 2−2kn +

2 log(n)

n
.

As there are infinitely many of these n, it must be that infn∈N K(B�n)/n = 0. This holds for every

set N in the class B, so taking a supremum gives the result.

The dimisB version concerns reals B constructed in a slightly different way. Here, the same

argument now shows there are infinitely many n ∈ N in an R-segment following an R-segment. At

these locations, the complexity K(B�n) can be shown to be high enough that supN K(B�n)/n = 1,

as desired.

With these lemmata in hand, we are ready to prove

Theorem 2.3.8. For all natural n there is a set A with dimsi∆0
n
(A) = 0 and dimsiΠ0

n
(A) = 1.

Proof. We prove the n = 1 case, as the proofs for higher n are analogous.

Let S0 be c.e. and co-immune set3, and let R be Martin-Löf random. Let S = S0⊕S0, and define

kn = max{k | 2k2 ≤ n}. Define A(n) = R
(
n− 2k

2
n

)
· 1S(kn), so that A is made of 0-segments and

R-segments.

As S is Σ0
1, the set of right endpoints of R-segments, M =

{
2k

2 | k − 1 ∈ S
}

is Π0
1. By construc-

tion limm∈M K(A�m)/m = 1 and thus the Sequence Lemma 2.3.4 gives that dimsiΠ0
1
(A) = 1.

As S is immune, the Double Segment Lemma 2.3.7 shows that dimsi∆0
1
(A) = 0.

The proof of analogous result for the is-dimensions is similar, using the same S0 and S, and the

real defined by B(n) = R
(
n− 2k

2
n

)
· 1S(kn).

Theorem 2.3.9. For all natural n there is a set B with dimis∆0
n
(B) = 1 and dimisΠ0

n
(B) = 0.

3These are also called simple sets, and were shown to exist by Post [48].
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It remains to show that the ∆0
n+1 and Π0

n dimensions are all distinct. We can use the above

lemmata for this, so the only difficulty is finding sets of the appropriate arithmetic complexity with

the relevant immunity properties.

Remark. In Chapter 3, we give a fuller account of Π0
1-immune sets and their properties. But for

the sake of keeping this chapter self-contained, we include the following definition and lemma now:

Definition 2.3.10. A real C is cohesive iff it cannot be split into two infinite halves by a c.e. set,

i.e. for all e either We ∩ C or We ∩ C is finite.

Lemma 2.3.11. For all n ≥ 1, there is an infinite ∆0
n+1 set S that is Π0

n-immune.

Proof. We prove the unrelativized version, n = 1. Let C be a ∆0
2 cohesive set that is not co-

c.e. (such a set exists by [18])4. As C is not c.e. it cannot finitely differ from any We, so for all e,

We \ C = We ∩ C is infinite. Hence if We ⊆ C, then by cohesiveness, We ∩ C = We is finite.

Theorem 2.3.12. For all n ≥ 1 there exists a set A with dimsiΠ0
n
(A) = 0 and dimsi∆0

n+1
(A) = 1.

Proof. This is exactly like the proof of Theorem 2.3.8, but S0 is now the Π0
1-immune set guaranteed

by Lemma 2.3.11.

Again, the analogous result for is-dimensions is similar:

Theorem 2.3.13. For all n ≥ 1 there exists a set B with dimisΠ0
n
(B) = 1 and dimis∆0

n+1
(B) = 0.

After asking questions about the arithmetic hierarchy, it is natural to turn our attention to

the Turing degrees. We shall embed the Turing degrees into the si∆0
1(A) (and dually, is∆0

1(A))

dimensions. First, a helpful lemma:

Lemma 2.3.14 (Immunity Lemma). If A �T B, there is an S ≤T A such that S is B-immune.

Proof. Let S be the set of finite prefixes of A. If S contains an infinite B-computable subset C, then

we can recover A from C, but then A ≤T C ≤T B.

Theorem 2.3.15 (si-∆0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B iff for all X ∈

2ω,dimsi∆0
1(A)(X) ≤ dimsi∆0

1(B)(X).

4We will also construct more explicit ∆0
2 \Π0

1 cohesive sets in Theorem 3.2.6.
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Proof. [⇒] Immediate, as ∆0
1(A) ⊆ ∆0

1(B).

[⇐] This is again exactly like the proof of Theorem 2.3.8, now using the set guaranteed by the

Immunity Lemma 2.3.14 as S0.

The result for is-dimensions is again similar:

Theorem 2.3.16 (is-∆0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B iff for all X ∈

2ω,dimis∆0
1(A)(X) ≥ dimis∆0

1(B)(X).

2.4 Weak Truth Table Reduction

We can push this a little further by considering weak truth table reductions.

Definition 2.4.1. A is weak truth table reducible to B (A ≤wtt B) if there exists a computable

function f and an oracle machine Φ such that ΦB = A, and the use of ΦX(n) is bounded by f(n)

for all n (ΦX(n) is not guaranteed to halt).

Theorem 2.4.2. If A 6≤T B, then for all wtt-reductions Φ there exists an X such that

dimsi∆0
1(A)(X) = 1 and, if ΦX is total, dimsi∆0

1(B)(Φ
X) = 0.

That is, Turing irreducibility of degrees implies wtt-irreducibility of si-dimensions. It will be

illuminating to consider a proof sketch first, to illustrate the ideas at play.

Proof Sketch: Fix a wtt-reduction Φ with use bounded by g(n). We wish to construct segments

[Λk,Λk+1] of length λk in ΦX based on use-segments [Lk, Lk+1] of length `k in X. That is, the Lk are

chosen so that each segment is much longer than those that have come before, such that g(n) ≤ Lk

for n ≤ Λk, and that λk+1 is much longer than Lk. These requirements are all computable, as g is.

For X, we fill use-segments in alternating fashion just as in the previous proof — even segments

are filled with 0, and odd segments are filled with 0s or Martin-Löf random bits according to what

S prescribes. We imagine Φ as an antagonist, trying to fill ΦX with as much complexity as possible

in the hopes of attaining a non-zero infimum on some B-recursive infinite set.

For the first segment, Φ only has access to 0s, so despite its best efforts it cannot push up

complexity at all. However, as soon as some use-segment is filled with random bits, Φ takes full

advantage of this, pushing complexity up as high as it likes (as the length of the segment provides

at least enough random bits to choose from). Once some randomness has appeared above, Φ can try

to access it when it is otherwise stuck with zeroes in the latest use segment — it still has access to
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the same random bits it has already used. But here the requirement that λk+1 is much longer than

Lk comes in: Φ tries to fill a tremendous number of entries with randomness, but only has access to

a small number of random bits. Despite Φ’s best efforts, the final complexity cannot be that high,

as Φ’s use is computable and we can hard-code these random bits for a small cost relative to the

number of bits in the segment.

Even in this worst-case scenario where Φ is playing against us, in a sense it can at best match

the pattern of the segments in ΦX to the pattern in X. Defining X via an A-computable, B-immune

set thus ensures that dimsi∆0
1(B)(Φ

X) = 0.

For the actual proof, we assume a general Φ with unknown (rather than antagonistic) motives,

and formally carry out the proof by contradiction:

Proof of Theorem 2.4.2. Let A 6≤T B, and let Φ be a wtt-reduction. Let f be a computable bound

on the use of Φ, and define g(n) = max{f(i) | i ≤ n}, so that K(ΦX�n) ≤+ K(X�g(n)) + 2 log(n).

For notational clarity, for the rest of this proof we will denote inequalities that hold up to logarithmic

(in n) terms as ≤log.

Next, we define two sequences `k and λk which play the role 2k
2

played in previous constructions:

`0 = λ0 = 1, λk = λk−1 + `k−1, `k = min
{

2n
2

| g(λk) < 2n
2
}
.

These definitions have the useful consequence that limk `k−1/`k = 0. To see this, suppose `k−1 =

2(n−1)2 . As g is an increasing function, the definitions give

`k > g(λk) ≥ λk = λk−1 + `k−1 ≥ `k−1 = 2(n−1)2 .

Hence `k ≥ 2n
2

, so that `k−1/`k ≤ 2−2n+1. As `k > `k−1 for all k, this ratio can be made arbitrarily

small, giving the limit.

A triple recursive join operation is defined by

2⊕
i=0

Ai = {3k + j | k ∈ Aj , 0 ≤ j ≤ 2}, A0, A1, A2 ⊆ ω.

Let S0 ≤T A be as guaranteed by Lemma 2.3.14, and define S =
⊕2

i=0 S0. Let R be Martin-Löf

random, and define X(n) = R (n− `kn) · 1S(kn), where kn = max{k = 2 (mod 3) | `k ≤ n}. This
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definition takes an unusual form compared to the previous ones we have seen in order to handle the

interplay between λk and `k — specifically the growth rate of g(n).

Claim 1: dimsi∆0
1(A)(X) = 1.

Proof: As N = {`k}k∈S is an A-computable set, by the Sequence Lemma 2.3.4 it suffices to show

that limk∈S K(X�`k)/`k = 1. For `k ∈ N ,

K(X�`k) ≥+ K(X[`k−1, `k])−K(X�`k−1) (subadditivity)

≥+ K(R�(`k − `k−1))− 2`k−1 (k ∈ S)

≥+ `k − `k−1 − 2`k−1 (R is Martin-Löf random)

K(X�`k)

`k
≥+ `k − 3`k−1

`k
= 1− 3

`k−1

`k
.

which gives the desired limit by the above.

Claim 2: If ΦX is total, dimsi∆0
1(B)(Φ

X) = 0.

Proof: Suppose N ≤T B. By mimicking the proof of Lemma 2.3.7, we can use the B-immunity

of S to show that there are infinitely many n ∈ N such that g(n) is in a 0-segment following two

0-segments. For such an n, define a = kg(n), so that a− 2, a− 1, a 6∈ S. As g(n) < `a+1, to compute

ΦX�n, it suffices to know X�`a+1. By assumption, X[`a−2, `a+1] contains only 0s, so a program that

outputs X�`a−2 followed by 0s until the output is of length n will compute X�`a+1. Thus

K(ΦX�n) ≤+ K(X�`a−2) + 2 log(n) ≤log 2`a−2.

As g(n) > `a, by the definition of `a, n > λa. Dividing by n, we find that

K(ΦX�n)

n
≤log 2`a−2

λa
=

2`a−2

λa−1 + `a−1
<

2`a−2

`a−1
.

As there are infinitely many of these n, it must be that infn∈N K(ΦX�n)/n = 0. This holds for

every N ≤T B, so taking a supremum gives the result.

Remark. We only consider si-dimensions for this theorem, as it is not clear what an appropriate

analogue for is-dimensions would be. The natural dual statement for is-dimensions would be that

for all reductions Φ there is an X such that dimis∆0
1(A)(X) = 0, and either ΦX is not total or

dimis∆0
1(B)(Φ

X) = 1. But many reductions use only computably much of their oracle, so that ΦX
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is a computable set. This degenerate case is not a problem for the si theorem, as its conclusion

requires dim∆0
1(B)(Φ

X) = 0. But for an is version, it is not even enough to require that ΦX is not

computable: consider the reduction that repeats the nth bit of X 2n− 1 times, so that n bits of X

suffice to compute n2 bits of ΦX . Certainly ΦX ≡wtt X, so that ΦX is non-computable iff X is. But

K(ΦX�n)

n
≤+ K(X�

√
n)

n
≤+ 2

√
n

n

for all n, so that dimp(Φ
X) = 0, and hence all other dimensions are 0 as well.

2.5 Failure of the Converse of the Sequence Lemma

Recall the Sequence Lemma for the inescapable dimension:

Lemma 2.3.4. If there is an N ∈ ∆0
1 such that lim

n∈N

K(X�n)

n
, then dimi(X) = 0.

It is important to note that this is not a characterization of the inescapable dimension. It is

possible that no single computable set witnesses complexity going all the way to zero (even as an

infimum), while complexity < ε can always be computably witnessed.

Theorem 2.5.1. There is a real with dimi(Y ) = 0 such that for any N ∈ ∆0
1, lim

n∈N

K(Y �n)

n
6= 0.

Proof. For strings σ, say that σ is the `(σ)th element of the lexicographic order of 2<ω.

Define sk = 2k
2

, kn = max
{
k ∈ ω : 2k

2 ≤ n
}

, and let R be Martin-Löf random. For each k, let

Ak = {kn | n ∈ ω}, and define Rk by replacing the nth 1 in Ak with the nth bit of R.5 For n ∈ ω,

let σn be the string such that kn = 〈m, `(σn)〉 for some m. Finally define

Y (n) =


R|σn|(n− skn) σn ≺ R

R(n) σn 6≺ R

That is, start with a random R, and build a “semirandom” string but replace bits n such that σn ≺ R

with bits from R|σn|. For notation, call the bits Y [skn , skn+1] a σn-segment, where kn = 〈m, `(σn)〉.

Claim 1: dimi(Y ) = 0.

Proof: To the nearest integer, Ak�n contains n/k 1s. So as Ak is computable, to describe Rk�n it

suffices to know the first n/k bits of R. Hence K(Rk�n) ≤+ K(R�n/k) ≤+ 2n/k.

5In the notation of Definition 3.2.5, Rk = R⊕Ak ∅.
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Fix a σ ≺ R. Following the derivation of Equation (2.2) in the proof of Theorem 2.2.1, the right

enpoints n of sufficiently large σ-segments have6 that K(Y �n)/n ≤ |σ|. As σ is computable, these

large enough right endpoints form a computable set Nσ. Thus

dimi(Y ) = inf
N∈∆0

1

sup
n∈N

K(Y �n)

n
≤ inf
σ≺R

sup
n∈Nσ

K(Y �n)

n
≤ inf
σ≺R

sup
n∈Nσ

n

n|σ|
≤ inf
σ≺R

1

|σ|
= inf
n>0

1

n
= 0.

For notation, let τn be the lexicographic predecessor of σn.

Claim 2: For any ε > 0, for large enough n, if K(Y �n)/n < 1− ε, then σn ≺ R or τn ≺ R.

Proof: For contraposition, let n be in a σ segment following a τ segment such that σ, τ 6≺ R (so that

both segments are filled with random bits). Let s` be the right endpoint of the longest semirandom

segment of Y �n. By the definition of n, kn ≥ `+ 1, so n ≥ skn ≥ s`+1 > s`.

K(Y �n) ≥+ K(Y [s`, n])−K(Y �s`) property of Kolmogorov complexity

= K(R[s`, n])−K(Y �s`) definition of Y

≥+ K(R�n)−K(R�s`)−K(Y �s`) property of Kolmogorov complexity

As R is Martin-Löf random, K(R�n) ≥+ n. For any string σ, K(σ) ≤+ 2|σ|. Therefore

K(Y �n) ≥+ n− 4s`

K(Y �n)

n
≥ 1− 4

s`
s`+1

+O(1/n)

≥ 1− 2−2`+1 +O(1/n)

For any ε, this can be made to be greater than 1− ε for sufficiently large n.

Claim 3: There is no computable set N such that lim
n∈N

K(Y �n)

n
= 0.

Proof: Suppose towards a contradiction that such an N exists. Let ε > 0. By Claim 2 and the

convergence of K(Y �n)/n, let M be large enough that for n > M , K(Y �n) < εn and one of σn or

τn is a prefix of R. Note that as τn <lex σ, by looking at longer σm and τm we can decide which of

σn or τn is a prefix of R.

6As in Equation (2.2), this is technically up to a vanishing error term, which we leave off here for notational clarity.
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Suppose σn ≺ R infinitely often. Write k for kn and σ for σn for ease of notation. We have that

|σ|−1(n− sk) ≤+ K(R�|σ|−1(n− sk)) ≤+ K(R|σ|�(n− sk)) = K(Y [sk, n]) ≤+ K(Y �n) < εn.

The first inequality follows from our definition of Martin-Löf randomness. For the second, m bits of

Rk can be used to recover m/k bits of R by looking at every kth bit. The equality is the definition

of Y , and for the penultimate inequality, skn can be obtained computably from n. The final strict

inequality is by hypothesis. Rearranging slightly, |σ|−1n ≤+ εn+ |σ|−1sk.

We can also compute

sk − 2sk−1 ≤+ K(R�sk)−K(R�sk−1) ≤+ K(R[sk−1, sk]) = K(Y [sk−1, sk]) ≤+ K(Y �n) < εn.

Here the first inequality uses the definition of Martin-Löf randomness, and the K(σ) ≤+ 2|σ| com-

plexity upper bound. The second inequality is a property of prefix-free Kolmogorov complexity, and

the equality is the definition of Y . Finally sk−1 and sk can be computed from n, for the penultimate

inequality. Rearranging, sk ≤+ εn+ 2sk−1.

Combining the rearranged inequalities, we have that

|σ|−1n ≤+ εn+ |σ|−1sk ≤+ εn+ |σ|−1(εn+ 2sk−1),

so that a bit of algebra gives

|σ|−1n(1− ε− 2sk−1/n) ≤+ εn.

As n > sk, 2sk−1/n is less than 2sk−1/sk = 2−2k+2. So

|σ|−1n(1− ε− 2−2k+2) ≤+ εn.

As n increases, so does kn, so by shrinking ε, 1 − ε − 2−2k+2 can be made as close to 1 as needed.

This forces |σn|−1 < ε, so that N computes arbitrarily long prefixes of R. As N is computable,

given M we can recover arbitrarily long prefixes of R, and hence R.

If instead σn ≺ R only finitely often, then for large enough n, τn ≺ R. So “shift” the τn somewhat:

define N̂ = {skn − 1 | n ∈ N}. By definition, coinfinitely many σn ≺ R, so R ≤T N̂ ≤T N .
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In either case, R is now computable, a contradiction.

2.6 The Recursively Bounded Π0
1 Case

Recall Theorem 2.3.15: A ≤T B iff for all X ∈ 2ω,dimsi∆0
1(A)(X) ≤ dimsi∆0

1(B)(X). We would like

to establish a similar “if and only if” theorem for Π0
1 dimensions:

Conjecture 2.6.1. A ≤T B iff for all X ∈ 2ω,dimsiΠ0
1(A)(X) ≤ dimsiΠ0

1(B)(X).

However, there is a central difficulty in adapting the proof: the notion of reals immune to Π0
1(B)

sets. Before considering a different setting to avoid this problem, note that we at least get a weak

result fairly easily:

Theorem 2.6.2. If for all X ∈ 2ω,dimΠ0
1(A)(X) ≤ dimΠ0

1(B)(X), then A ≤T B′.

Proof. dimsi∆0
1(A)(X) ≤ dimsiΠ0

1(A)(X) ∆0
1(A) ⊆ Π0

1(A)

≤ dimsiΠ0
1(B)(X) hypothesis

≤ dimsi∆0
2(B)(X) Π0

1(B) ⊆ ∆0
2(B)

dimsi∆0
1(A)(X) ≤ dimsi∆0

1(B′)(X) relativized Post’s Theorem

Hence by Theorem 2.3.15, A ≤T B′.

Definition 2.6.3. The principal function of an infinite set A = {a0 < a1 < a2 < · · · } is defined by

pA(n) = an. For a string σ, pσ(n) is the position of the nth 1 in σ, and undefined otherwise.

Definition 2.6.4. A string X ∈ 2ω is (A-)computably bounded if its principal function pX is bounded

above by some (A-)computable function f (for all n, pX(n) ≤ f(n)).

Write Σ̂0
1(A) for the A-computably bounded A-c.e. sets, and similarly Π̂0

1 for the A-computably

bounded A-co-c.e. sets. We are motivated to consider these sets by the following observation:

Theorem 2.6.5. For all A ∈ 2ω, Σ̂0
1(A) = Σ0

1(A).

Proof. The ⊆ inclusion is by definition. For ⊇, we prove the unrelativized version.

Define X = We, so Xs = We,s. If X is computable, its principal function is computable. If

X is not computable, it is infinite, so for each n, let s(n) be the least stage when |Xs(n)| ≥ n.

For all s, elements are never removed from Xs, only added, so that pXs(n) ≤ pXs+1(n). Thus

pX(n) ≤ max{Xs(n)}, a computable function.
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Thus the dual notion to Σ0
1 could equally well be taken to be Π0

1 or Π̂0
1, depending on the setting.

In fact, the two yield distinct notions for dimension. We prove this for the non-relativized, si- case:

Theorem 2.6.6. There exists an X such that dimsiΠ0
1
(X) = 1 and dimsiΠ̂0

1
(X) = 0.

Proof. The template of Theorem 2.3.8 works here, now using a hypersimple set7.

In this setting, obtaining separation results is as easy as it was for Π0
1 dimensions:

Theorem 2.6.7. There exists X with dimsiΠ̂0
1
(X) = 1 and dimsi∆0

1
(X) = 0.

Proof. Follow Theorem 2.3.8 using a simple but not hypersimple set8 S0.

Theorem 2.6.8. There exists X with dimsiΠ̂0
1
(X) = 0 and dimsi∆0

2
(X) = 1.

Proof. Since Π̂0
1 ⊆ Π0

1, this is a corollary of the n = 1 case of Theorem 2.3.12.

Lemma 2.6.9 (Π̂0
1 Immunity Lemma). If A �T B, there is a Π̂0

1(B)-immune S ≤T A.

Proof. Let S be the set of prefixes of A. Suppose S contains a B-co-c.e. set C that is B-computably

bounded by f . To compute A(n) from B, compute f(n) and co-enumerate C. The computably

bounded condition guarantees that there will be at least n distinct σi ∈ C less than f(n) which are

never enumerated out, so we can run the co-enumeration until the strings of size |σ| < f(n) form a

linear order under ⊆. As C ⊆ S, these σi are distinct prefixes of A, so they have different lengths.

Hence the longest is at least n bits long, giving A(n). Now A ≤T B. Contrapose.

This lemma allows us to establish the following, the desired analogue Theorem 2.3.15:

Theorem 2.6.10 (Π̂0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B iff for all X ∈

2ω,dimsiΠ̂0
1(A)(X) ≤ dimsiΠ̂0

1(B)(X).

Proof. [⇒] Immediate, as Π̂0
1(A) ⊆ Π̂0

1(B).

[⇐] Just as in Theorem 2.3.15, using Lemma 2.6.9 to provide the appropriate immune set.

7A c.e. set with hyperimmune (Definition 3.3.2) complement. Every non-computable c.e. degree contains one [8].
8Such sets can also be found in every non-computable c.e. degree [60]
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CHAPTER 3
Π0

1-IMMUNITY

3.1 The Motivating Conjecture

While the new Π̂0
1 setting seems to be the correct dual to Σ0

1 for our dimension results, it is instructive

to examine the difficulty in proving results for the Π0
1 case. The desired theorem is

Conjecture 3.1.1 (Π0
1 Embedding Theorem). A ≤T B iff for all X ∈ 2ω, dimsiΠ0

1(A)(X) ≤

dimsiΠ0
1(B)(X).

To prove this in a manner analogous to Theorem 2.3.15, we would need to have

Conjecture 3.1.2 (Π0
1 Immunity Lemma). If A �T B, there is an S ∈ Π0

1(A) such that S is

Π0
1(B)-immune.

We could cast doubt on the theorem by disproving the lemma, but a priori this would only show

that this particular proof technique is flawed: the theorem could be true while the lemma is false.

Fortunately, this is not the case:

Theorem 3.1.3. Conjecture 3.1.1 and Conjecture 3.1.2 are logically equivalent.

Proof. Define the statements

X : A ≤T B

Y : (∀X ∈ 2ω) dimsiΠ0
1(A)(X) ≤ dimsiΠ0

1(B)(X), and

Z :
(
∀S ∈ Π0

1(A)
) (
∃C ∈ Π0

1(B)
)
C ⊆ S,

so that the theorem is X ⇔ Y , and the lemma is ¬X ⇒ ¬Z. We wish to show

(¬X ⇒ ¬Z)⇔ (X ⇔ Y ).

It’s clear that X ⇒ Y . In the presence of the Immunity Lemma 2.3.14, we can prove the embedding

theorem by the usual construction, so (¬X ⇒ ¬Z)⇒ (Y ⇒ X). Thus to prove their equivalence, it
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suffices to show (Y ⇒ X)⇒ (¬X ⇒ ¬Z). Tautologically, this is ¬X ⇒ (Z ⇒ Y ). In fact, Z ⇒ Y :

Z ⇔
(
∀S ∈ Π0

1(A)
) (
∃C ∈ Π0

1(B)
)
C ⊆ S

⇒ (∀X ∈ 2ω)
(
∀S ∈ Π0

1(A)
) (
∃C ∈ Π0

1(B)
)

inf
n∈S

K(X�n)

n
≤ inf
m∈C

K(X�m)

m

⇒ (∀X ∈ 2ω)
(
∀S ∈ Π0

1(A)
)

inf
n∈S

K(X�n)

n
≤ sup
M∈Π0

1(B)

inf
m∈M

K(X�m)

m

⇔ (∀X ∈ 2ω) sup
N∈Π0

1(A)

inf
n∈N

K(X�n)

n
≤ sup
M∈Π0

1(B)

inf
m∈M

K(X�m)

m

⇔ (∀X ∈ 2ω) dimsiΠ0
1(A)(X) ≤ dimsiΠ0

1(B)(X)

Z ⇒ Y

The full lemma can be viewed as a relativization of the following statement:

If A is not computable, A co-enumerates a Π0
1-immune real.

This motivates our study of Π0
1-immunity.

3.2 Π0
1-Immunity and Cohesiveness

As mentioned in Section 2.3, Π0
1-immunity (see Definition 2.3.5) is closely related to cohesiveness

(see Definition 2.3.10). Here we will expand on exactly how.

Definition 3.2.1. A coinfinite c.e. set M is maximal iff for all indices e, if M ⊆ We, then We is

finite or We \M is.

This definition comes from considering c.e. sets as a lattice under set inclusion, modulo finite

differences: a maximal set in the sense above is a maximal element of this lattice.

The following characterization is also commonly used as a definition:

Theorem 3.2.2. An infinite c.e. set M is maximal iff its complement is cohesive.

Proof. [⇒] As M is c.e., all We ∪M are c.e. as well. As M is maximal and a subset of We ∪M ,

either We ∪M = We ∩M is finite or (We ∪M) \M = We ∩M is.

[⇐] Suppose M ⊆We for some e. By cohesiveness, either We ∩M is finite or We ∩M = We is.

Notice that as cohesive sets are not required to be co-c.e., the reverse direction of this theorem

connects cohesiveness to only part of our definition of maximality. Indeed cohesive sets are either

co-maximal or Π0
1-immune:
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Theorem 3.2.3. Let A be an infinite set such that for all e, if A ⊆We, then We is finite or We\A is.

Then A is c.e. iff A is maximal, and A is not c.e.1 iff A is Π0
1-immune.

Proof. The first biconditional is the definition of maximality. We prove the second in cases:

[⇒] If We ⊆ A, A ⊆We. As A is not c.e., |We \A| =∞. Instead, We is finite.

[⇐] As ∆0
1 = Σ0

1 ∩Π0
1, Π0

1-immune sets are immune. By definition, immune sets are not c.e.

We will use the following corollary so often that it deserves to be called a lemma:

Lemma 3.2.4. Cohesive sets are not co-c.e. iff they are Π0
1-immune.

Nevertheless, every cohesive degree is Π0
1-immune. To prove this, we need a new piece of notation.

Recall Definition 2.3.6:

Definition 2.3.6. A⊕B = {2k | k ∈ A} ∪ {2k + 1 | k ∈ B}.

This replaces the nth even bit with the nth bit of A, and similarly the nth odd bit with the nth

bit of B. There is nothing special about the even and odd numbers here, we could generalize to an

arbitrary set X:

Definition 3.2.5. A⊕X B = {pX(n) | n ∈ A} ∪ {pX(n) | n ∈ B}.

Now the nth 1 in X is replaced with the nth bit of A and the nth 0 in X is replaced with the

nth bit of B. It will be useful to notice that A⊕X B = A⊕X B and X = ω ⊕X ∅.

Theorem 3.2.6. Every cohesive set C has a Π0
1-immune subset D ≡T C.

Proof. If C is not Π0
1, then it is itself Π0

1-immune by Lemma 3.2.4. So assume C is Π0
1.

Define D = C ⊕C ∅. By definition D = {pC(n) | n ∈ C}, so that D = {pC(pC(n)) | n ∈ ω}.

Note that as C is cohesive, it is infinite and coinfinite.

As C is infinite, D is infinite by definition. Notice D ⊆ C, so that D ∩ C = D is also infinite.

As C is coinfinite, D ∩ C = (C ⊕C ω) ∩ (ω ⊕C ∅) = C ⊕C ∅ is infinite by definition.

As C is cohesive, the above shows that D and D cannot be c.e., so in particular D is not co-c.e.

As D is an infinite subset of a cohesive set, it is itself cohesive. By Lemma 3.2.4, D is Π0
1-immune.

To see that D ≥T C, fix an index e with C = We, and write Cs = We,s. Then Ds = Cs ⊕Cs ∅ is

a ∆0
2 approximation of D. As above, Ds = {pCs(pCs(n)) | n ∈ ω}. To keep track of the kth element

1If this notion of “a non-c.e. that has has no c.e. supersets” does not have a name, we suggest the neologism
neximal, so called because in the setting of enumerable sets, it is the characterizing property of maximal sets, but
here emphasizing sets that are not enumerable.
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of Ds, define movable markers mk (for the direct sum over C), and let mk,s be the location of mk

at stage s. The placements of the markers can be tracked in stages:

- At stage 0, the markers are set to mk,0 = k for all k.

- At stage s+ 1, if n is removed from Cs+1, then for all k ≥ n, put mk,s+1 = mk+1,s.

In this framework, {mk,s}s∈ω = Cs, so that Ds = {mk,s | k ∈ Cs}.

Let ns = pDs(n), the nth element of Ds. By definition, this is always some element with a

marker mk on it, so it can only increase as stages run, whether because the markers move right, or

because for some ` < k, ` ∈ Cs but ` 6∈ Cs+1 (so that at stage s, the first k markers contain the first

n elements of Ds, but at stage s+ 1 one of them leaves Ds+1). So the ns are non-decreasing: once

the first n bits of Ds agree with D, at no later stage do they disagree.

To decide if x ∈ C, let s be the first stage when xs = pD(x). By construction some marker

mk = xs, so necessarily k ≥ x. At this stage, markers m` with ` ≤ k never move again, meaning

elements ` ≤ k are never again enumerated out of C. Thus Cs correctly approximates C up to k, so

as k ≥ x, Cs(x) = C(x). As D can find this stage s, D ≥T C.

Corollary 3.2.7. Every cohesive degree contains a Π0
1-immune real.

3.3 Other Immunity Notions

Cohesiveness is a very strong property, implying a tower of immunity notions. It is natural to wonder

where Π0
1-immunity falls in this tower, both in terms of degrees and individual reals. For instance,

every Π0
1-immune real is immune (as ∆0

1 ⊆ Π0
1), but the existence of co-c.e. immune sets means the

converse does not hold.

One slight strengthening of immunity is hyper immunity:

Definition 3.3.1. If f, g : ω → ω, then f dominates g if for all but finitely many n, g(n) < f(n).

If f does not dominate g, then g escapes f , i.e. there are infinitely many n such that g(n) > f(n).

Definition 3.3.2. A set A is hyperimmune iff its principal function pA escapes every computable

function.

The question of which degrees are (not) Π0
1-immune and (not) hyperimmune is ultimately unin-

teresting, as it merely hinges on whether a degree is below ∅′. Every non-computable ∆0
2 degree is

hyperimmune [41], but every degree outside ∆0
2 is Π0

1-immune:
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Theorem 3.3.3. S(X) = {σ ∈ 2<ω|σ ≺ X} is not Π0
1-immune iff X ∈ ∆0

2.

Proof. Notice that any infinite subset of S(X) suffices to compute X.

If there is an infinite We ⊆ S(X), then X ≤T We ≤T ∅′. Similarly if X 6<T ∅′, then no Π0
1 set

computes X, so every infinite subset of S(X) is not ∆0
2, let alone Π0

1.

The observation that S(X) ≡T X immediately gives two useful corollaries:

Corollary 3.3.4. Every non-∆0
2 degree contains a Π0

1-immune real.

Corollary 3.3.5. Every real that computes no Π0
1-immune set is ∆0

2.

The question of which sets are (not) Π0
1-immune is much more interesting; despite its close

relationship to cohesiveness, Π0
1-immunity does not imply most immunity notions. In fact this can

be witnessed at a level even weaker than hyperimmunity, recently studied by Astor [3, 4]:

Definition 3.3.6. The upper density of A is ρ(A) = lim sup
n→∞

|A�n|/n. If for any computable permu-

tation π : ω → ω, the value of ρ(π(A)) is the same, this is the intrinsic upper density of A. Similarly

define lower density ρ and intrinsic lower density using lim inf. If the intrinsic upper and lower

densities of A are equal, they are its intrinsic density.

These definitions give rise to two new classes of reals: ID0, reals with intrinsic density 0, and

ILD0, for intrinsic lower density 0. Their place in the hierarchy of immunity notions is shown in

Figure 3.1. To see that intrinsic density and Π0
1-immunity are incomparable notions, we will make

use of the following definitions:

Definition 3.3.7. A function f is dominant iff it dominates every computable function.

Definition 3.3.8. A real A is dense immune iff its principal function pA is dominant.

Theorem 3.3.9. There is a ∆0
2, dense immune set whose complement is Π0

1-immune.

Proof. Let f(n) be a ∅′-computable dominant function. Without loss of generality, assume f(n+1) >

f(n) > n for all n. Define A =
{
pWe

(f(e)) :
∣∣We

∣∣ ≥ f(e)
}

.

The f(e)th 1 of any real is necessarily at least f(e). So to determine if A(n) = 1, ∅′ can first find

all e such that f(e) < n. As f(n) > n, there will only be finitely many such e. For these indices, ∅′

can then compute ϕe(k) for all k ≤ n, to determine if pWe
(f(e)) = n. Altogether, A ≤T ∅′.

If pWe
(f(e)) = n, then A(n) = 1. By definition, pA lists these values pWe

(f(e)) in increasing

order. Then for all n, pA(n) = pWk
(f(k)) for some k ≥ n (the nth input such that this function is

defined), and pA(n) = pWk
(f(k)) ≥ f(k) > f(n). As f is dominant, so is pA.
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Cohesive

��

not Π0
1 // Π0

1-immune

��

q-Cohesive

""

Π0
1

{{
Dense Immune

��

// Hyperimmune

��
ID0 // ILD0

��
Immune

Figure 3.1: The graph of implications between immunity notions considered in this section. Note
that certain implications only hold when the reals under consideration are (not) Π0

1. Implications
not proven here are taken from [4].

Finally if We is infinite, then We has an f(e)th element n, so that by construction A(n) = 0.

Thus A is Π0
1-immune.

Corollary 3.3.10. There is a ∆0
2, Π0

1-immune set with intrinsic density 1.

Proof. As Astor shows in [3], dense immune reals have intrinsic density 0. So taking A to be as in

Theorem 3.3.9, A has intrinsic density 1 and is Π0
1-immune.

Theorem 3.3.11. In the non-computable ∆0
2 degrees, there are reals of every combination of being

(not) Π0
1-immune and having intrinsic lower density (greater than) 0.

Proof. Cohesive reals have intrinsic density 0, so Lemma 3.2.4 gives two cases. Corollary 3.3.10 gives

a third, leaving only the case of a non-Π0
1-immune real with intrinsic lower density greater than 0,

for which any non-immune real suffices.

We can use the same reals to prove

Corollary 3.3.12. In the non-computable ∆0
2 degrees, there are reals of every combination of being

(not) Π0
1-immune and (not) cohesive.

Altogether, there is no general relationship between Π0
1-immunity and any of the notions con-

sidered above. But in the case of non-Π0
1 reals, we have that cohesiveness implies Π0

1-immunity. A
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reasonable question arises: does this implication hold for any weaker cohesiveness property? One

natural candidate is q-cohesiveness:

Definition 3.3.13. A set is quasicohesive (q-cohesive) iff it is the union of finitely many cohesive

sets.

Classically, being q-cohesive implies many other commomly considered immunity properties, such

as (strong) hyperhyperimmunity, or ((finite) strong) hyperimmunity (see Figure 1 of [4]). In fact in

the co-c.e. case, q-cohesiveness even implies dense immunity, so the following theorem rules out a

host of possibilities:

Theorem 3.3.14. There is a q-cohesive set that is neither Π0
1-immune nor Π0

1.

Proof. Let C be any Π0
1 cohesive set. Every infinite set has a cohesive subset (see Exercise III.4.17 in

[46]), so there is a cohesive C2 ⊂ C. Every subset of C2 is also cohesive, and there are uncountably

many such subsets D. They are in bijection with the collection of all sets C ∪ D, so there are

uncountably many of these as well. There are only countably many Π0
1 sets, so there must be some

D such that Q = C ∪D is not Π0
1. As C is not Π0

1-immune, neither is Q.

Of course, this result gives no hint whatsoever as to where such a Q might live — perhaps

with an additional restriction, not being Π0
1 is enough to guarantee Π0

1-immunity. Motivated by

Theorem 3.3.11, we show that being ∆0
2 is not a sufficient restriction.

Lemma 3.3.15 (Lachlan [33]). If A is a coinfinite c.e. real with no maximal superset, then A′′ >T ∅′′.

Theorem 3.3.16. There is a ∆0
2 q-cohesive set that is neither Π0

1-immune nor Π0
1.

Proof. Let C be a Π0
1 cohesive set. As C is c.e., it has an infinite computable subset D, so that D

is infinite and coinfinite. As D′′ ≡T ∅′, by Lemma 3.3.15 D has a maximal superset M . Thus M is

a cohesive subset of D, and hence of C. Let C2 = {pM (n) | n is even or pM (n) ∈ Wn} ⊆ M . As ∅′

can compute pM and every We, C2 is ∆0
2.

If n is even, then pM (n) ∈ C2, so C2 is infinite. If n is odd, pM (n) ∈ C2 iff pM (n) 6∈ Wn, so C2

disagrees with every Π0
1 set. Infinite subsets of cohesive sets are cohesive, so as C2 ⊂ M ⊂ D ⊂ C,

it is cohesive and disjoint from C. Thus C ∪ C2 is q-cohesive and disagrees with every Π0
1 set, and

so is also not Π0
1. But it has the Π0

1 subset C, so it is not Π0
1-immune.
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3.4 Π0
1-Immunity Below ∅′: Highness and Lowness

It is not hard to construct a Π0
1-immune set below ∅′ — as we will see below, there are lown and

highn examples for every n, even properly so for n > 1.

3.4.1 Lowness

Definition 3.4.1. A is lown iff A(n) ≤T ∅(n). For n = 1 we omit the subscript.

Definition 3.4.2. A family of sets D = {De}e∈ω is uniformly ∆0
2 iff {〈x, e〉 | x ∈ De} ≤T ∅′.

Theorem 3.4.3. For any uniformly ∆0
2 family D, there is a low D-immune real.

Proof. We will build such a real A in segments a0 � a1 � · · · ≺ A by forcing the jump under certain

constraints. This follows a proof originally by Spector [54], as presented in [46] (Proposition V.2.21).

Index the elements of D as D0, D1, D2, . . . Begin with a0 = ∅, and a list containing only 0. At

stage s−1, we have built a finite string as−1, and have a finite list of indices e providing constraints.

At stage s, add s to the list and force the jump: ask ∅′ if there is an extension τ � as−1 such that

Φτs (s)↓. There are two cases to consider:

1. If a suitable extension τ exists, then for each e on the list, run a ∅′-computable check to find the

least ne ∈ De ∩ [|as−1|, |τ |), if such values exist. Where they do, set τ(ne) = 0 to diagonalize

against De, then remove e from the list. If this causes Φτs (s)↑, make the following query to ∅′:

Does there exist a τ � as satisfying all τ(ne) = 0 such that Φτs (s)↓?

As there are at most s restrictions at this stage, this is a Σ0
1 question. If such a τ exists, check

again with the remaining e on the list, repeating this process until either:

a. Some extension τ is found which meets all the restrictions imposed by indices on the list.

Set as+1 = τ .

b. The restrictions cause every possible extension τ to have Φτs (s)↑. In particular as as

currently defined has this property, so leave it be.

2. If no suitable extension exists, consult the list: if |as−1| is in any De for e on the list, append

a 0 to as−1 and remove those e from consideration. Repeat this search-and-append process

until the list is empty or the next bit is in none of the remaining De, at which point append

a 1 and call this string as+1.
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Define A =
⋃
s∈ω as. To see that A is infinite, note that infinitely many indices e code for machines

that never halt, so the second case occurs infinitely many times, each time adding a 1 to A.

For D-immunity, let De be infinite. It is added to the list at stage e, so all n ∈ De ∩ [|ae−1|,∞)

could be used to diagonalize. As |De| =∞, this set is non-empty, so the diagonalization works and

De 6⊆ A.

Finally for lowness, as D is uniformly ∆0
2, each stage of the construction requires finitely many

queries to ∅′, so A ≤T ∅′. In addition, e ∈ A′ iff Φaee (e)↓, so ∅′ computes A′.

This theorem actually proves slightly more:

Corollary 3.4.4. For any uniformly ∆0
2 family D, there is a low 1-generic D-immune set.

Proof. For any index e, the above A forces the jump at stage e, so A is 1-generic [22].

Finally the desired theorem is a corollary.

Corollary 3.4.5. There is a low 1-generic Π0
1-immune set.

Proof. The Π0
1 sets for a uniformly ∆0

2 family:
{
〈x, e〉 | x ∈We

}
≤T ∅′.

There are other, stronger lowness notions; for instance this technique can be improved to produce

a superlow Π0
1-immune set. We will do so in Theorem 3.5.21.

Finally, Corollary 3.4.5 gives another way in which Π0
1-immunity differs from cohesiveness:

Corollary 3.4.6. The real constructed in Corollary 3.4.5 is Π0
1-immune, but not cohesive.

Proof. Cohesive sets are not low [6].

3.4.2 Highness

Just as we adapted a proof of Spector in Theorem 3.4.3, we could apply the same modification to a

proof of Sacks. While we will do this this to construct a high bi-Π0
1-immune in Section 3.6, earlier

results give several less involved proofs.

Definition 3.4.7. A is highn iff A(n) ≥T ∅(n+1). For n = 1 we omit the subscript.

Theorem 3.4.8 (High Domination Theorem [36]). A is high iff A computes a dominant function.

Theorem 3.4.9. There is a high Π0
1-immune set.
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Proof. The set in Theorem 3.3.9 is Π0
1-immune and computes a dominant function (namely its own

principal function). By Theorem 3.4.8, it is high.

It is a well-known theorem of Martin [36] that the high c.e. degrees are exactly those containing

a maximal (and hence co-cohesive) real. In fact slightly more is true:

Theorem 3.4.10 (Jockusch [18]). Every high degree contains a cohesive real.

Corollary 3.4.11. Every high degree contains a Π0
1-immune set.

Proof. Combine Theorem 3.4.10 and Corollary 3.2.7.

3.4.3 lown, highn, and Intermediate Sets

As a warmup, we present another theorem along the lines of Theorem 3.4.9. We will make use of

the B = ∅ case of Definition 3.2.5, so note that A⊕X ∅ = {pX(n) | n ∈ A}. That is, the nth 1 in X

is replaced with the nth bit of A.

Theorem 3.4.12. There is a high, incomplete, Π0
1-immune set.

Proof. Let L be the set constructed in Corollary 3.4.5. By relativizing a construction of Sacks [49]

to L, we can obtain an H with L <T H <T L
′ ≡T ∅′ and H ′ ≡T L′′ ≡T ∅′′, so that H is high and

incomplete2. As L is Π0
1-immune and H ⊕L ∅ ⊆ L, H ⊕L ∅ and hence L⊕ (H ⊕L ∅) are Π0

1-immune.

Now we can compute

H ≤T L⊕ (H ⊕L ∅) ≤T L⊕H ≤T H <T ∅′

to see that L⊕ (H ⊕L ∅) ≡T H is incomplete and high.

This techinique of combining a set with a highness/lowness property with a Π0
1-immune set can

be used to show the existence of Π0
1-immune degrees into every level of the high/low hierarchy. To

that end, we work with psuedojumps Je(A):

Definition 3.4.13. Je(A) = A⊕WA
e .

The usual way to populate the high/low hierarchy uses a finite extension argument under ∅′, so

it may be possible to adapt it to produce Π0
1-immune sets by adapting that proof (via the same

modifications we made to Spector’s proof that there is a ∆0
2 1-generic in Theorem 3.4.3). But it is

easier to demonstrate Π0
1-immune sets Turing equivalent to Je(A):

2By the upward closure property in [20], this is actually enough.
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Definition 3.4.14. Pe(A) = A⊕
(
WA
e ⊕A ∅

)
.

Lemma 3.4.15. For any index e, if a real A is Π0
1-immune, then so is Pe(A).

Proof. It suffices to show that the second summand is Π0
1-immune, so notice WA

e ⊕A ∅ ⊆ A.

Lemma 3.4.16. For any index e, Pe(A) ≡T Je(A).

Proof. We must show that A⊕
(
WA
e ⊕A ∅

)
≤T A⊕WA

e and WA
e ≤T A⊕

(
WA
e ⊕A ∅

)
.

The first inequality follows by definition. For the second, WA
e (n) = (WA

e ⊕A ∅)(pA(n)).

Lemma 3.4.17. There is a computable f such that for all indices e and sets B, Pf(e)(B) >T B

and Pe(Pf(e)(B)) ≡T B′.

Proof. In [23], this is shown for Je in place of Pe. So apply Lemma 3.4.16.

Theorem 3.4.18. There are Π0
1-immune degrees in every proper level Hn+1 \Hn and Ln+1 \Ln of

the high/low hierarchy.

Proof. We perform two dovetailing induction steps, following [39]. For the first, suppose for some

index e and all reals X, [Pe(X)(n) ≡T X(n) and Pe(X)n−1 6≡T X(n−1)]. Then for an arbitrary X,

we can use Lemma 3.4.17 with B = Pf(e)(X) and apply this induction hypothesis to obtain

X(n+1) ≡T (X ′)(n) ≡T Pe(Pf(e)(X))(n) ≡T Pf(e)(X)(n), and

X(n) ≡T (X ′)(n−1) ≡T Pe(Pf(e)(X))(n−1) 6≡T Pf(e)(X)(n−1).

Thus for all X, Pf(e)(X)(n) ≡T X(n+1) and Pf(e)(X)(n−1) 6≡ X(n).

For the second induction, suppose the conclusion of the first: that for an index e and all reals X,

[Pe(X)(n) ≡T X(n+1) and Pe(X)n−1 6≡T X(n)]. Then a similar computation shows that for all X,

Pf(e)(X)(n+1) ≡T X(n+1) and Pf(e)(X)(n) 6≡ X(n). Note that this is the first induction hypothesis,

with f(e) as the index.

Now to populate the high/low hierachy, it suffices to start with an index i and a low, Π0
1-immune

L that satisfies one of the induction hypotheses. Then L(n) = ∅(n), so that in this case the induction

steps become

“if X is properly lown, then Pf(e)(X) is properly highn”, and

“if X is properly highn, then Pf(e)(X) is properly lown+1”.
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Let i be a uniform index for the jump, i.e. for all X,WX
i = X ′. Using i in Lemma 3.4.17,

X ′ ≡T Pi(Pf(i)(X)) ≡T Ji(Pf(i)(X)) = Pf(i)(X)⊕WPf(i)(X)

i = Pf(i)(X)⊕ Pf(i)(X)′ ≡T Pf(i)(X)′

for all X. Again by Lemma 3.4.17, Pf(i)(X) >T X, so that i satisfies the first induction hypothesis.

We constructed a low, Π0
1-immune L in Corollary 3.4.5, so using e = i and X = L populates the

high/low hierarchy: Pf2n+1(i)(L) is properly lown while Pf2n+2(i)(L) is properly highn.

Finally we consider the intermediate sets, i.e. those A such that for all n, ∅(n) <T A
(n) <T ∅(n+1).

Theorem 3.4.19. There is a Π0
1-immune set of intermediate degree.

Proof. As the function f in Lemma 3.4.17 is computable, it has a fixed point e for which We = Wf(e),

and hence Pe(A) = Pf(e) as operators. The lemmata give that the operator Pe commutes with the

jump, as

Pe(A
′) ≡T Pe(Pe(Pf(e)(A))) ≡T Pe(Pf(e)(Pe(A))) ≡T Pe(A)′,

so that Pf(e)(A
(n)) = Pf(e)(A)(n). Thus for our low Π0

1-immune set L,

∅(n) ≡T Ln <T Pf(e)(A
(n)) <T Pe(Pf(e)(L

(n))) ≡T L(n+1) ≡T ∅(n+1).

Replacing Pf(e)(L
(n)) with Pf(e)(L)(n) between the inequalities gives the result.

3.5 Π0
1-Immunity below ∅′: The Ershov Hierarchy

3.5.1 Definitions and Lemmata

Having obtained results in the ‘vertical’ stratification of ∆0
2 sets, we turn our attention ‘horizontally’

to examples in the Ershov hierarchy. This statifies ∆0
2 reals by how many ‘mind changes’ it takes

to build them. For instance, a c.e. set We can only change its mind about an element x once, from

x 6∈ We,s to x ∈ We,s+1. More formally, these mind changes are tracked by ∆0
2-approximations, as

in the Shoenfield Limit Lemma:

Lemma 3.5.1 (Shoenfield [50]). A real A is ∆0
2 iff there is a computable function f : ω2 → ω (called

a ∆0
2-approximation) such that for all x, lim

s→∞
f(x, s) = A(s).

Definition 3.5.2. A ∆0
2 real A is n-c.e. iff there is a ∆0

2-approximation f for A such that for all x,

f(x, 0) = 0 and |{s ∈ ω | f(x, s) 6= f(x, s+ 1)}| ≤ n.
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Notice that in this framework, the 1-c.e. sets are exactly the c.e. sets, via f(x, s) = We,s(x).

Beyond the finite n, we also have the ω-c.e. sets:

Definition 3.5.3. A ∆0
2 real A is ω-c.e. iff it there is a ∆0

2-approximation f for A and a computable

function g : ω → ω such that for all x ∈ ω, |{s ∈ ω | f(x, s) 6= f(x, s+ 1)}| ≤ g(x).

Definition 3.5.4. A set is properly α-c.e. if is α-c.e. but not λ-c.e. for any λ < α.

The following well-known results will be useful. They can be strengthened to iff [13], but we will

only need (and hence prove) one direction.

Lemma 3.5.5. If C is 2k-c.e., then there exist c.e. sets A0 ⊇ B0 ⊇ · · · ⊇ A2k−1 ⊇ B2k−1 such that

C =
⋃
i≤k

(Ai −Bi).

Proof. Let C be a 2k-c.e. set with ∆0
2-approximation f . For notation, given a natural n let

Mn = {s ∈ ω | f(n, s) 6= f(n, s + 1)}. Define c.e. sets Ai = {n ∈ ω : |Mn| ≥ 2i + 1}, and

Bi = {x ∈ ω : |Mn| ≥ 2i+ 2}. Clearly these Ai and Bi are nested as desired. Then

x ∈ C ⇔ lim
s→∞

f(x, s) = 1

⇔ ∃t ∀s ≥ t f(x, s) = 1

⇔ ∃i x ∈ Ai ∧ x 6∈ Bi

x ∈ C ⇔ x ∈
⋃
i≤k

(Ai −Bi)

Corollary 3.5.6. If C is (2k + 1)-c.e., it is the union of a 2k-c.e. set and a c.e. set.

Proof. If C is (2k + 1)-c.e. via the ∆0
2 approximation f , let A = {x ∈ ω : |Mx| ≤ 2k}. This is

almost all of C, but will not include those x such that |Mx| = 2k + 1. The set B of these elements

is enumerable, so C = A ∪B.

We can also change 2k to ω in the statement and proof of Lemma 3.5.5 to obtain

Lemma 3.5.7. If C is ω-c.e., there are c.e. sets A0 ⊇ B0 ⊇ · · · ⊇ A2k−1 ⊇ B2k−1 such that

C =
⋃
i∈ω

(Ai −Bi).

With these lemmata in hand, we will now assume n-c.e. and ω-c.e. sets are of the above forms.
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3.5.2 2n-c.e. sets

Corollary 3.5.6 shows that for odd n, n-c.e. sets cannot be Π0
1-immune, as they have a c.e. subset,

and so fail to be immune. We might hope to make use of Lemma 3.2.4, but a result of [1] nixes this:

Theorem 3.5.8. For all n, if an n-c.e. set is cohesive, it is Π0
1.

Instead, we can use major subsets:

Definition 3.5.9. A ⊆∗ B iff A ∩B is finite.

Definition 3.5.10. Let B ⊆ A be c.e. sets. B is a major subset of A, written B ⊂m A, iff

|A−B| =∞ and for all e, A ⊆∗ We ⇒ B ⊆∗ We.

Lemma 3.5.11 (Lachlan [34]). Every non-computable c.e. set has a major subset.

Theorem 3.5.12. If B ⊆ A are c.e. sets and A 6∈ ∆0
1, then A−B is Π0

1-immune iff B ⊂m A.

Proof. [⇒] Π0
1-immune sets are infinite, so |A−B| =∞. If A ⊆We, then We ⊆ A, so that We ∩B

is a Π0
1 subset of A−B, and thus finite. Immediately B ⊆∗ We.

[⇐] Let We ⊆ A − B. Then We ⊆ A, so A ⊆ We. Thus B ⊆∗ We, so as We ⊆ B, it must be that

We is finite.

Theorem 3.5.13. A 2n-c.e. set X =
⋃n
i=1 (Ai −Bi) is Π0

1-immune iff i ≤ n, Bi ⊂m Ai and Ai 6∈ ∆0
1.

Proof. [⇒] For all i, (Ai − Bi) ⊆ X, so as X is Π0
1-immune, so is Ai − Bi. So by Theorem 3.5.12,

Bi ⊂m Ai and Ai 6∈ ∆0
1.

[⇐] Let We ⊆ X. As X ⊆ A1 and B1 ⊂m A1, We ⊆∗ B1. So We ∩ B1 is finite, and hence so

is We ∩ (A1 − B1). Thus We ⊆∗
⋃n
i=2 (Ai −Bi). This is a subset of A2, so we can repeat this

reasoning to get that only finitely many elements of We are in A2 −B2, and indeed in any Ai −Bi.

As We = We ∩X =
⋃n
i=1

(
We ∩ (Ai −Bi)

)
and each of these terms is finite, We is finite.

3.5.3 ω-c.e. Sets and Superlowness

For ω-c.e. sets, while the proof of the reverse direction can no longer rely on there being finitely

many terms in the union, the forward direction works just fine:

Theorem 3.5.14. If an ω-c.e. set X =
⋃
i=1(Ai −Bi) is Π0

1-immune, then for all i, Bi ⊂m Ai.

Proof. For all i, Ai −Bi ⊆ X is Π0
1-immune, so Bi ⊂m Ai and Ai 6∈ ∆0

1 by Theorem 3.5.12.
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But do any properly ω-c.e. Π0
1-immune reals exist? In fact, we found one earlier:

Theorem 3.5.15. There is a properly ω-c.e., Π0
1-immune real D.

Proof. Let M be a maximal set, so that C = M is Π0
1 and cohesive. Then let D = C ⊕C ∅. Theo-

rem 3.2.6 shows that D is Π0
1-immune, and clearly Ds(x) = f(x, s) = (Cs ⊕Cs ∅)(x) is computable.

As discussed in the proof of Theorem 3.2.6, the nth element of Ds only changes when some m ≤ n

leaves C. So D is ω-c.e. via the computable bound g(x) = x.

As D is Π0
1-immune, by Lemma 3.2.4 it is not Π0

1. As D ⊆ C, D is cohesive, so by Theorem 3.5.8,

D is not n-c.e. for any n.

The ω-c.e. sets are closely tied to another notion of computational weakness, superlowness, which

is essentially lowness for a stronger notion of oracle reduction.

Definition 3.5.16. A is truth-table reducible to B (written A ≤tt B) iff B computes A via a total

Turing reduction, i.e. A = ΦB and for all X ∈ 2ω and n ∈ ω, ΦX(n) is defined.

The following minor lemma goes back to Post (a stronger, unrelativized result is proven in [48]).

Lemma 3.5.17. For all A ∈ 2ω, A ≤tt A′.

Proof. Let e be an index for a oracle program that, on input n, halts iff its oracle contains n. Define

ΦXi (n) = 1 iff 〈e, n〉 ∈ X. This is clearly a total reduction, and by definition ΦA
′

i = A.

The name “truth-table reduction” derives from an equivalent definition (that we will use later,

see Definition 4.1.4). For more on this (and a proof of the following lemma), see section 3.8.3 in [52].

Definition 3.5.18. A is superlow iff A′ ≤tt ∅′.

Lemma 3.5.19. A is ω-c.e. iff A ≤tt ∅′.

Corollary 3.5.20. Superlow sets are ω-c.e.

Proof. If A is superlow, A ≤tt A′ ≤tt ∅′ by Lemma 3.5.17. By definition, ≤tt is transitive, so

A ≤tt ∅′. Apply Lemma 3.5.19.

As superlowness implies lowness, we adapt the technique of Theorem 3.4.3 to build a superlow

real G that is immune to uniformly ∆0
2 families. By Corollary 3.5.20, with a little care we can get

another example of a properly ω-c.e. Π0
1-immune real.
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Theorem 3.5.21. For every uniformly ∆0
2 family D, there is a superlow, D-immune, 1-generic real.

Proof. Let D = {De}e∈ω be a uniformly ∆0
2 family. Let f(〈x, e〉, s) be a ∆0

2-approximation for

{〈x, e〉 | x ∈ De}, and define fe,s(x) = f(〈x, e〉, s).

Build such a real A in segments a0 � a1 � · · · ≺ A as in Theorem 3.4.3. There are two types of

requirements to be met:

Je : ΦAe (e)↓ or (∃σ ≺ G)(∀τ � σ)Φτe (e)↑

Ne : If De is infinite, then De 6⊆ A.

We will write Xe to mean an arbitrary requirement of either type. Order the requirements in

decreasing order of priority as J0 < N0 < J1 < N1 < · · · .

Begin at stage 0 with a0 = ∅. At each stage of the construction, give some requirement attention

as defined below. Do this in such a way that over the course of the construction, each requirement

receives attention infinitely often.

At stage s + 1, we have defined a finite string as. When giving a requirement Xe attention at

this stage, simulate all Φasi,s(i) for i ≤ e. Define us+1 = max{ϕasi (i) | i ≤ e and Φasi,s(i)↓}. Let σs+1

be the shortest prefix of as longer than e, us+1, and any n mentioned by Ni for i < e (see below).

Then do as follows, depending on the type of requirement:

Je requirements

(i) Search reverse lexicographically for a τ � σs+1 of length |as|+ s such that Φτe,s(e)↓.

(ii) If such a τ is found, set as+1 = τ .

Ne requirements

(i) If there is a least n ∈ [|σs+1|, s+ 1] such that fe(n, s+ 1) = 1, set as+1(n) = 0.

Verification: Inductively assume that there is a stage s when Xe is given attention when all lower

priority Xi < Xe requirements have been satisfied, so that they never again make changes to A. As

they never act again, σt = σs for all later stages t when Xe is given attention. As higher priority

requirements never act again and lower priority requirements cannot interfere with Xe, it suffices to

show Xe eventually meets its requirement at some stage t ≥ s.

Claim: Every Je meets its requirement.

Proof: Suppose there exists an extension τ � σs such that Φτe (e)↓. At each stage when Je is given

attention, it searches for such an extension, so as Je is given attention infinitely often, there is a
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large enough stage t such that some τ � σs is found and at = τ .

If no such extension exists, then whenever Je is given attention, it makes no change to σs.

In either case, A � σs and Je meets its requirement.

Claim: Every Ne meets its requirement.

Proof: Suppose De is infinite, so that there is a least n greater than |σs+1| such that n ∈ De. At

some stage t ≥ s when Ne is given attention, Ne sets at(n) = 0. At all subsequent stages, Ne never

changes another bit of A, so it meets its requirement.

Claim: A is 1-generic and D-immune.

Proof: Every Je and Ne requirement is met, respectively.

Claim: A is superlow.

Proof: Define g(e, s) = 1 iff Φase,s(e)↓, so that e ∈ A′ iff lims→∞ g(e, s) = 1. The only times g(e, s)

changes are when Je is injured, whereupon it changes at most twice: first to 0, if Φase,s(e)↑, then to

1 if Je finds an extension which causes the computation to converge. As there are 2e requirements

that can change the value of e, at most 22e − 1 injuries can occur. Thus A′(e) changes at most 22e

times, so A′ is ω-c.e. By Lemma 3.5.19, A′ ≤tt ∅′.

Lemma 3.5.22. The collection E of all n-c.e. reals is uniformly ∆0
2.

Proof. For all e ∈ ω, decompose e as 〈n, ~x〉, where ~x = 〈x0, . . . , xn−1〉. Let fe(y, s) = 1 iff

y ∈ (· · · ((Wx0,s ∩Wx1,s) ∪Wx3,s) · · · ) ∪Wxn−1,s

if n is odd, and · · · ∩Wxn−1,s if n is even. Define Ee = {y | lims→∞ fe(y, s) = 1}. The Ershov hier-

archy contains exactly the Boolean combinations of c.e. sets [13], which this enumeration exhausts.

Finally the halting problem computes every c.e. and every co-c.e. set, so E is uniformly ∆0
2.

Corollary 3.5.23. There is a superlow, properly ω-c.e., Π0
1-immune, 1-generic real.

Proof. By Lemma 3.5.22, we can use E in Theorem 3.5.21. Every Π0
1 set is 2-c.e.

(
We = ω −We

)
,

so Π0
1 ⊆ E and the resulting real A is Π0

1-immune. For all n, A is immune to n-c.e. sets, so A is not

n-c.e. for any n. By Lemma 3.5.17, A ≤tt A′ ≤tt ∅′. By Corollary 3.5.20, A is ω-c.e.
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3.6 Bi-Π0
1-Immunity Below ∅′

So far, we have not encountered any bi-Π0
1-immune reals, and the obvious candidates are ∆0

3 at best

(for instance a Martin-Löf random relative to ∅′, which is bi-∆0
2-immune). To obtain ∆0

2 such reals,

we can extend the proof technique of Corollary 3.4.5:

Theorem 3.6.1. There is a ∆0
2 bi-Π0

1-immune. In particular there is a low, properly 1-generic,

bi-Π0
1-immune real.

Proof. In the proof of Theorem 3.4.3, whenever adding constraints to the list, add e to the list

twice, as (e, 0) and (e, 1) to handle Π0
1- and co-Π0

1-immunity, respectively. Rather than diagonalizing

against an index e by setting a certain bit to 0, we diagonalize against (e, i) by instead setting the

relevant bit to i.

Unlike the original proof, restrictions may now conflict, as they no longer all prescribe the same

value. To organize the construction, we give them a lexicographic priority ordering, so that lower

priority restrictions cannot interfere with bits assigned by higher priority requirements. The modified

procedure still forces the jump, ensuring 1-genericity and lowness, but we need to check that the

priority ordering ensures bi-Π0
1-immunity.

Suppose We is infinite, and for induction let s be a stage large enough that

- all (i, 1− k) < (e, 0) representing infinite Wi have been diagonalized against, and

- all (i, 1− k) < (e, 0) representing finite Wi have max
{
n ∈Wi

}
< |as|.

At this stage, all the diagonalizations that could interfere with the restriction imposed by (e, 0) have

been performed, so every n ∈ We ∩ [|as|,∞) could be used to satisfy the (e, 0) requirement. As We

is infinite, this set is non-empty, so some x will be found and (e, 0) will be removed from the list.

Similarly for (e, 1).

Finally if We is infinite, as (e, 0) is removed from the list, there is an n such that n ∈ A∩We, so

that We 6⊆ A. Similarly the removal of (e, 1) from the list ensures an n ∈ A ∩We, so that We 6⊆ A,

and A is bi-Π0
1-immune.

To obtain a high bi-Π0
1-immune set, we modify a proof of Sacks’ incomplete high degree [49], as

presented in [47] (Proposition XI.1.11).
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Theorem 3.6.2. There is an incomplete, high, bi-Π0
1-immune real.

Proof. Let A <T ∅′ be a Π0
1-immune real, and define an A-recursive bijection between ω2 and A by

composing the principal function of A with 〈·, ·〉: 〈x, t〉A = pA (〈x, t〉) . Fix an index j with W ∅
′

j = ∅′′.

We will use ∅′ to build a real B as a union of finite ∅′-computable partial functions fs, and ensure

that columns 〈x, t〉A encode W ∅
′

j,t(x) cofinitely often, so that by the Limit Lemma 3.5.1, A⊕B′ can

compute ∅′′.

First, some notation: say that σ ∈ 2ω is an i-usable extension of fs if σ and fs agree whenever

they are both defined, and if for x < i, σ obeys the restrictions 〈x, t〉A = W ∅
′

j,t(x) wherever fs(〈x, t〉A)

is not already defined.

Beginning with f0 = ∅, we can proceed in stages. At stage s+ 1 we have a finite partial function

fs and a finite list of restrictions (e, k) not yet diagonalized against, prioritized lexicographically.

Write bs for the longest initial segment of fs, i.e. |bs| is least such that fs(|bs|) is undefined.

- At odd stages s = 2d+ 1, add (d, 0) and (d, 1) to the list. Then pick the least i ≤ d that has

not yet been attended to3 (defined below), and that meets the condition

∃z ∃ i-usable extensions τ0, τ1 of fs such that Φτ0i (z)↓6= Φτ1i (z)↓.

Let τ be the extension whose computation disagrees with ∅′(z). Now consult the list: for the

highest priority (e, k) on the list, search for the least ni ∈Wi ∩ [|bs|, |τ | − 1]∩A. If such an ni

exists, set τ(ni) = k to diagonalize against Wi, then remove (e, k) from the list. If this causes

Φτ (z)↑ or Φτ (z) = ∅′(z), check again for τ0, τ1, and z meeting the above condition. Then

consult with the remaining (e, k) on the list, and repeat this process until either:

a. z, τ0, and τ1 are found that meet the restrictions and the condition. Again set τ to have

the computation that disagrees with ∅′, and attend to i by setting fs+1 = fs ∪ τ .

b. No z and i-usable extensions that meet the restrictions. Proceed to the next stage.

- At even stages s = 2d+ 2, for any x, t < s where fs(〈x, t〉A)↑, put fs+1(〈x, t〉A) = W ∅
′

j,t(x).

Claim: lim
t→∞

B(〈x, t〉A) = ∅′′(x).

Proof: Fix x. It suffices to show that cofinitely many t have 〈x, t〉A = W ∅
′

j,t(x). As diagonalizations

avoid A (and hence all 〈x, t〉A), the only times this equality could fail are when i-usable extensions

3We would ordinarily say the index has been “diagonalized”, but that terminology is already in use in this proof.
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τ code over 〈x, t〉A. But this can only happen when indices i ≤ x are attended to, as for i > x,

i-usable extensions preserve the coding. As each i is attended to at most once, there are at most x

values of t such that 〈x, t〉A 6= W ∅
′

j,t(x), as desired.

Claim: B <T ∅′ and ∅′′ ≤T B′.

Proof: By assumption, A ≤T ∅′. So for odd stages of the construction of B, ∅′ suffices to search for

i-usable extensions, check for ni ∈ Wi, and decide whether Φτi (z)↓. For even stages, ∅′ computes

the A-recursive 〈·, ·〉A and enumerates ∅′′. Altogether, B ≤T ∅′.

To see that the inequality is strict, fix e such that ΦBe is total. Let s be an odd stage large

enough that that for all x < e and t ≥ s, W ∅
′

j,t(x) = ∅′′(x), and such that for all indices i < e that

are attended to, this happens before stage s.

If we attend to e, then immediately ΦBe 6= ∅′, so suppose not, that for all x, the e-usable extensions

τ of fs such that Φτe (x)↓ all agree. Notice that any extension of fs that is a prefix of B is e-usable,

since we have chosen s large enough that attending to any remaining index cannot injure the relevant

〈x, t〉A columns, which for t > s are constant and equal to ∅′′(x).

Finally to compute ΦBe (x) it suffices to search for any e-usable extension τ of fs with Φτe (x)↓.

As A can compute all locations 〈x, t〉A, and since s is large enough that subsequent t have 〈x, t〉A =

W ∅
′

j,t(x) = ∅′′(x), A and fs is suffice to decide e-usability. As fs is finite, there is an index a such

that ΦBe = ΦAa ≤T A <T ∅′.

For highness, as A computes the encoding 〈·, ·〉A, by Lemma 3.5.1 ∅′′ ≤T A⊕B′ ≤T ∅′⊕B′ ≡T B′.

Claim: B is bi-Π0
1-immune.

Proof: Suppose (e, k) has that We is infinite, and for induction let s be a stage large enough that

- all (i, 1− k) < (e, k) representing infinite Wi have been diagonalized against, and

- all (i, 1− k) < (e, k) representing finite Wi have max
{
n ∈Wi

}
< |bs|.

At this stage, all the diagonalizations that could interfere with the restriction imposed by (e, k)

have been performed, so any n ∈ We ∩ [|bs|,∞) ∩ A could be used to satisfy said restriction. As

We ∩ [|bs|,∞) is an infinite Π0
1 set and A is Π0

1-immune, some n will be found and (e, k) will be

removed from the list. As in Theorem 3.6.1, the removal of (e, 0) and (e, 1) from the list guarantees

the bi-Π0
1-immunity of B.
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3.7 Randomness, Genericity, and Typicality

Here we connect Π0
1-immunity to several commonly studied notions in computability theory.

Definition 3.7.1. A real R is weakly n-random iff R is a member of all Σ0
n classes with measure 1.

Definition 3.7.2. A real G is weakly n-generic iff G meets every dense Σ0
n set of strings.

Definition 3.7.3. A real X is weakly n-typical if X is in every full measure Σ0
1(∅n−1) set.4

Weak n-typicality is mentioned in [24], albeit without a definition.

Notice that both weak n-randomness and weak n-genericity imply weak n-typicality, which

matches the intuition that generic strings and random strings are both “typical” reals. Indeed

a number of proofs about weakly 2-randoms are also true for weakly 2-typical reals. For instance,

relativizing a result of Jockusch (see Kurtz [31]) shows that weakly 2-randoms are bi-immune to ∆0
2

sets, so it follows that they are Π0
1-immune. In fact being weakly 2-typical suffices:

Theorem 3.7.4. Weak 2-typicality implies Π0
1-immunity.

Proof. Let Y ∈ 2ω be weakly 2-typical, let We be coinfinite, and consider

Ue = {X ∈ 2ω |We 6⊆ X}

= {X ∈ 2ω | (∃n 6∈We) n 6∈ X}

=
⋃

n 6∈We

⋃
|σ|=n

[[σ0]].

As ∅′ can decide n 6∈ We, this is a Σ0
1(∅′) class, and as We is coinfinite, µ(Ue) = 1. Now Y ∈ Ue, so

We 6⊆ Y . As this holds for every coinfinite e, Y is Π0
1-immune.

In fact by closely examining a result in [12], we can say more about weakly 2-typical reals:

Theorem 3.7.5 ([53]). Every weakly 2-typical real Y forms a minimal pair with ∅′. That is, if

X ≤T Y and X ≤T ∅′, then X is computable.

Proof. Let A be ∆0
2, with approximation At by the Limit Lemma 3.5.1. Let T be a weakly 2-typical

set and Φe a Turing reduction such that A = ΦTe . Notice that T is contained in the Π0
2 class

S = {X | ∀n∀s∃t > s ΦXe,t(n)↓ = At(n)}.

It cannot be that S has measure 0, as then T ∈ S, so µ(S) 6= 0.

4Equivalently, X is Kurtz random relative to ∅n−1 [31].
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Let r ∈ Q be such that 1
2µ(S) < r < µ(S), and select a finite set F ⊆ 2<ω with µ[[F ]] < µ(S)

and µ([[F ]] ∩ S) > r. For any n, we can search a finite G ⊆ 2<ω such that µ[[G]] > r, [[G]] ⊆ [[F ]],

and all σ, τ ∈ G have Φσe (n)↓= Φτe (n)↓. Such a set will exist, since µ([[F ]]∩S) > r, so this process is

computable. It cannot be that Φσ(n)e 6= A(n), as then µ([[F ]]∩S) ≤ µ([[F ]] \ [[G]]) < µ(S)− r < r.

This search shows that A is computable, so T computes no non-recursive ∆0
2 sets.

Corollary 3.7.6. Weakly 2-typical sets are not ∆0
2.

In a sense we have ‘upper bounds’ in the randomness and genericity notions for being guaranteed

to be Π0
1-immune. In fact this bound is tight for genericity — while there are Π0

1-immune sets that

are 1-generic but not weakly 2-generic (see Corollary 3.4.4), we’ll show now that there are also

1-generics that are not Π0
1-immune.

Definition 3.7.7. For a set A in a class C we say that I ⊆ N is C-indifferent for A if no matter how

we change bits of A at locations in I, the resulting real is still in C.

Let MLR and 1G be the classes of Martin-Löf random and 1-generic reals, respectively.

Theorem 3.7.8 (Figueira, Miller, Nies [14]). Every low R ∈ MLR has an infinite Π0
1 subset that is

MLR-indifferent for R.

Theorem 3.7.9 (Fitzgerald [7]). Every ∆0
2 1-generic G has an infinite Π0

1 subset that is 1G-

indifferent for G.

Theorem 3.7.10. There are 1-random and 1-generic reals that are not Π0
1-immune.

Proof. For a low random or ∆0
2 1-generic, let I be as given in Theorem 3.7.8 and Theorem 3.7.9.

Set all the bits of I to 1, so that the resulting real has I as a subset.

3.8 Reals That Can (Not) Co-Enumerate a Π0
1-Immune

Having studied Π0
1-immunity, we now return to Conjecture 3.1.2. In its unrelativized form, it says

Conjecture 3.8.1. The only reals that do not co-enumerate a Π0
1-immune set are computable.

While we do not settle this conjecture, we make substantial progress towards it. In particular,

our work in Section 3.5 allows us to eliminate many degrees from contention:
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Theorem 3.8.2. If A computes a c.e. B 6∈ ∆0
1, then A co-enumerates a Π0

1-immune real.

Proof. By Lemma 3.5.11, B has a major subset C. By Theorem 3.5.12, B − C is Π0
1-immune.

Since B ∈ ∆0
1(A) and C ∈ Σ0

1 ⊆ Σ0
1(A), both B and C are Π0

1(A), so that A co-enumerates

B ∩ C = B − C.

Corollary 3.8.3. If A computes a Martin-Löf random R, then A co-enumerates a Π0
1-immune real.

Proof. If A 6∈ ∆0
2, it computes (and hence co-enumerates) a Π0

1-immune set by Corollary 3.3.5.

If R is random and R ≤T A ∈ ∆0
2, then R ∈ ∆0

2. So R bounds a non-computable c.e. set [29].

We can strengthen Theorem 3.8.2 by relativizing:

Theorem 3.8.4. If A computes sets B and X such that B ∈ Σ0
1(X)−∆0

1(X), then A co-enumerates

a Π0
1-immune real.

Proof. As B is Σ0
1(X) − ∆0

1(X), relativizing Lemma 3.5.11 gives B a subset C ∈ Σ0
1(X) that is

X-major, i.e. if B ⊆ WX
e , then C ⊆∗ WX

e . Relativizing Theorem 3.5.12, B − C is Π0
1(X)-immune,

and so Π0
1-immune. Since B ∈ ∆0

1(A) and C ∈ Σ0
1(X) ⊆ Σ0

1(A), both B and C are Π0
1(A), so that

A co-enumerates B ∩ C = B − C.

The following lemmata allow us to restate this result quite cleanly:

Definition 3.8.5. A real A is computably enumerable in and above (CEA) if there is an X <T A

such that A is X-c.e. We also say A is CEA(X) for that X.

Lemma 3.8.6. For any real A the following are equivalent:

(i) For all B,X ≤T A, if B 6≤T X, then B 6∈ Σ0
1(X).

(ii) A computes no CEA B.

Proof. Certainly (i) implies (ii), as B >T X implies B 6≤T X. For the reverse, suppose (ii), and let

B,X ≤T A with B 6≤T X. As B ⊕X ≤T A, B ⊕X is not CEA(X). But X <T B ⊕X, so B ⊕X

must not be X-c.e. Trivially, X is X-c.e., so B must not be.

Corollary 3.8.7. If A is does not co-enumerate a Π0
1-immune real, then A bounds no CEA B.

The following lemma is well-known: for a proof, see Theorems 2.24.9 and 8.21.15 in [11].

Lemma 3.8.8. A computes a 1-generic G iff A computes a CEA B.
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Corollary 3.8.9. If A is does not co-enumerate a Π0
1-immune real, then A bounds no 1-generic G.

One possible way to improve this result would be to weaken the notion of genericity in the

conclusion to weak 1-genericity. However this merely yields a previous conjecture:

Conjecture 3.8.10. If A is does not co-enumerate a Π0
1-immune real, then A does not compute

any weakly 1-generic G.

Theorem 3.8.11. Conjecture 3.8.1 and Conjecture 3.8.10 are equivalent.

Proof. If the first conjecture holds, then as A is computable, it computes no immune set, and hence

no hyperimmune set. Weakly 1-generic sets are hyperimmune [32], so A bounds no weakly 1-generic.

If the second conjecture holds, then as hyperimmune degrees bound weakly 1-generic sets [32],

A does not compute any hyperimmune set. By Corollary 3.3.5, A is ∆0
2, and every non-computable

∆0
2 degree computes a hyperimmune real [41]. So A must be computable.

Now we turn to the case of computing no Π0
1-immune. Here we encounter a stark contrast

between c.e. and non-c.e. degrees. In the latter case, Π0
1-immune sets exist at every level of the lown

and highn hierarchies (Theorem 3.4.18). But in the former case, we have the following:

Theorem 3.8.12 (due to D. Turetsky [58]). Every low c.e. A computes no Π0
1-immune set.

We will need the iconic Recursion Theorem of Kleene [28] to prove this:

Theorem 3.8.13 (The Formal Recursion Theorem). For any total computable function f , there is

an index e such that ϕe = ϕf(e).

Or, in its more commonly used form:

Theorem 3.8.14 (The Informal Recursion Theorem). When defining a c.e. set, without loss of

generality we may assume we know the index of that set.

Proof of Theorem 3.8.12. Suppose A is a low c.e. set, and that B = ΦA is infinite. As A is low, the

Limit Lemma 3.5.1 gives a computable g such that for all n, lims→∞ g(n, s) = A′(n). We will build

a sequence of A-c.e. sets 〈V An 〉n∈ω, and by the recursion theorem we will assume we already know

their indices. As determining whether V An = ∅ is Σ0
1(A), there is a total computable function f such

that f(n) ∈ A′ ⇔ V An 6= ∅.

We will build a Π0
1 set C ⊆ B, meeting the following requirement for every e:
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Re: C contains an element greater than e.

To ensure C is Π0
1, we will only remove elements from it.

Strategy for Re:

(1) Wait for a stage s when there is some x > e with ΦAss (x) = 1 and x ∈ Cs. At such a stage,

choose the oldest such computation. Let σ ≺ As be the use of this computation. x and σ are

now our chosen element and use, respectively.

(2) Enumerate 0 into V σe , with use σ.

(3) Wait until one of the following occurs at some stage s:

(a) σ is no longer an initial segment of As. In this case, return to step 1.

(b) g(f(e), s) = 1. In this case, remove all elements y < x from C, except those elements

which have been chosen by an Ri-strategy for some i ≤ e, then proceed to step 4.

(4) Wait until some stage s when g(f(e), s) = 0 and σ is no longer an initial segment of As. While

waiting, begin running the Re+1-strategy. If g(f(e), s) = 0 occurs, discard x (it is no longer

chosen), terminate all Rj-strategies for j > e, and return to step 1.

The construction begins by starting the R0-strategy at stage 0, and proceeds from there.

Claim 1: For each e, Re eventually waits forever at step 4.

Proof: Induction on e. Suppose this holds for all i < e. As after some stage each Ri never again

returns from step 4 to step 1, eventually Re is never again terminated. As lims g(f(e), s) converges,

Re cannot pass through steps 3b and 4 infinitely often, so fix a stage s0 after which Re never again

returns from step 4 to step 1.

From stage s0 until the strategy returns to step 4, no elements are removed from C. By as-

sumption, B is infinite, so B ∩ Cs0 6= ∅. Fix the element of B ∩ Cs0 greater than e with oldest ΦA

computation. Call this element z, and let τ be the use of this true computation. As Re returns from

step 3a to step 1 when σ 6≺ As, this computation will eventually be the oldest, and so x = z will

chosen with use σ = τ ≺ A. Then at step 2, 0 is enumerated into V τe ⊆ V Ae . Thus V Ae 6= ∅, and so

lims g(f(e), s) = 1. Thus the strategy will eventually reach step 3b and so step 4, and so will wait

forever at step 4.

Claim 2: For each e, the Re-strategy’s final chosen element is an element of C.
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Proof: By construction, the chosen element x is an element of Cs at the stage it is chosen. No lower

priority strategy can remove x at a later stage, while no higher priority strategy will ever act again.

Claim 3: For each e, if the Re-strategy reaches step 4 with chosen element x and use σ ≺ A, then

the strategy waits forever at step 4 with this element.

Proof: By construction, if we reach step 4 at stage s, the there is some t < s with σ ≺ At. As A is

c.e., it can never move away from a true initial segment, so σ ≺ Ar for all r > t, and so we never

return to step 1.

Claim 4: For each e the Re-strategy’s final chosen element is in B.

Proof: Towards a contradiction, suppose we are waiting forever at step 4 with a chosen use σ 6≺ A.

By the contrapositive of the previous claim, all prior chosen uses were also not initial segments of

A. So by construction, V Ae = ∅, and so lims g(f(e), s) = 0. So we will eventually see what we are

waiting for at step 4, and will return to step 1, contrary to assumption. Now our final σ ≺ A, and

since B = ΦA and Φσ(x) = 1, it follows that x ∈ B.

Claim 5: If x ∈ C, it is the final chosen element of some strategy.

Proof: Suppose y is not a final chosen element of any strategy. Eventually all Ri-strategies with

i < y will have settled on their final element, while Rj-strategies with j ≥ y are not permitted to

choose y. So eventually there will be a stage after which y is never again chosen. When some large

strategy later reaches step 3b, y will be removed from C.

Note that by Corollary 3.8.7, every c.e. set co-enumerates a Π0
1-immune set, so Theorem 3.8.12

cannot be strengthened to settle Conjecture 3.8.1.

3.9 Other Lowness Notions

In this section we consolidate a number of results about lowness notions, with an eye toward their

relation to those those reals which cannot compute/co-enumerate a Π0
1-immune real. In doing so,

we define several new lowness notions related to highness, maximality, and domination, that arose

in the course of trying to prove Conjecture 3.8.1. Of independent interest is a new characterization

of the hyperimmune-free degrees as those that do not compute a truth-table CEA degree.5

5This result is claimed without proof in Kjos-Hanssen’s computability diagram [24].
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3.9.1 Definitions

Many of these have appeared in earlier sections, but we gather them here for convenience.

A is Π0
1-immune iff |A| =∞ and A has no infinite Π0

1 subset.

A bounds no member of a class C (BNC) iff for all C ∈ C, C 6≤T A.

A enumerates no member of a class C (Σ0
1BNC) iff for all C ∈ C, C 6∈ Σ0

1(A)

A co-enumerates no member of a class C (Π0
1BNC) iff for all C ∈ C, C 6∈ Π0

1(A).

A is lown iff A(n) ≡T ∅(n).

A is GLn iff A(n) ≡T (A⊕ ∅′)(n−1).

A is high iff A′ ≥T ∅′′.

A is Low(High) iff any high B has that (B ⊕A)′ ≥T A′′ (B is high for A).

A is Low(High c.e.) iff any high c.e. B has that (B ⊕A)′ ≥T A′′.

A is Low(Max) iff every maximal (high c.e.) degree contains an A-maximal set.

A is Low(Dom) iff every function f that dominates all ∆0
1 g also dominates all ∆0

1(A) h.

A is hyperimmune-free (HIF) iff any f ≤T A is dominated by a ∆0
1 function.

A is 1-generic (1G) iff it meets or avoids every Σ0
1 set of strings.

A is weakly 1-generic (W1G) iff it meets every dense Σ0
1 set of strings.

A is 1-random (1R) iff it is Martin-Löf random.

A is (tt)CEA iff there is a B <T A (resp. B <tt A) such that A ∈ Σ0
1(B).
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3.9.2 Proofs

1. Let A ∈ Π0
1BNΠ0

1IM, and let B be A-maximal. As B is A-cohesive and Π0
1(A), it is cohesive and

not Π0
1-immune. By Lemma 3.2.4, B is Π0

1, so B is Σ0
1. As Σ0

1 ⊆ Σ0
1(A), M is maximal.

Now let M be maximal, and suppose M ⊆ WA
e . As WA

e ⊆ M , a cohesive set, WA
e is cohesive

as well. Since WA
e ∈ Π0

1(A), it is not Π0
1-immune, and so must be Π0

1 by Lemma 3.2.4. Now

as WA
e is c.e., it is either cofinite or only finitely extends M . As WA

e was arbitrary, M is A-maximal.

2. Let B ∈ Σ0
1(A). B has an A-computable subset C, so C has an A-maximal superset M

by Lemma 3.3.15. By hypothesis M is c.e., so as M ⊆ C ⊆ B, B is not Π0
1-immune.

3. Certainly if A cannot enumerate a Π0
1-immune, it cannot compute such a set. But if A

can enumerate a Π0
1-immune B, it has an A-computable subset C which inherits Π0

1-immunity.

4. See Corollary 3.3.5. As there are ∆0
2 Π0

1-immune reals, the reverse implication fails.

5. This is the contraposition of Corollary 3.4.11. We constructed a low Π0
1-immune G in

Corollary 3.4.5, so the reverse implication fails.

6. Suppose A-maximal sets are ∆0
2, and let B ≤T A. Relativizing Lemma 3.3.15, there is

an A-maximal M with B ⊆ M . As M is ∆0
2, so is M , so as M ⊆ B, A computes no ∆0

2-immune.

Now as in Theorem 3.3.3, as S(A) is not ∆0
2-immune, A ∈ ∆0

2.

7. Suppose A-maximal reals are ∆0
2. Relativizing Corollary 2 of [60], there is an A-maximal M

with A⊕M ≡T A′, so that A⊕ ∅′ ≡T A′.

8. [⇒] Let A-maximal sets be ∆0
2. By 5, A is ∆0

2. By 7, A is GL1. So A′ ≤T A⊕ ∅′ ≤T ∅′.

[⇐] If A is low then any A-maximal set M has M ≤T A′ ≤T ∅′.

9. See Theorem 3.8.12.

10. Let A be Low(Max), and let H be a high c.e. set. By Martin [36], there is a maximal
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M with H ≡T M . As M is maximal, its degree contains an A-maximal real, so it is A-high.

11. If A is Low(High c.e.), then as ∅′ is a high c.e. set, it is A-high, so that (∅′ ⊕A)′ ≥T A′′.

12. If A′′ ≤T A′ ⊕ ∅′′ and B′ ≥T ∅′′, then (B ⊕A)′ ≥T B′ ⊕A′ ≥T ∅′′ ⊕A′ ≥T A′′.

13. This is well-known, see for instance Theorem 5.16 of [10]. This cannot be reversed, as

∆0
2 low2 degrees are hyperimmune or computable [41].

14. [⇒] If A is hyperimmune-free, then any f ≤T A is dominated by some computable

function. Any function that dominates all computable functions thus dominates f .

[⇐] If A is hyperimmune, some g ≤T A is not dominated by any computable function. Fix

an enumeration {fi}∞i=1 of the computable functions. Define Fi(n) = max{fk(n) | k ≤ i}, and

notice that if i < j then for all n, Fi(n) ≤ Fj(n). Each Fi is a computable function, so the hyper-

immunity of g guarantees the existence of an increasing sequence {ni}∞i=1 such that g(ni) > Fi(ni).

For n ∈ [ni, ni+1), define h(n) = Fi(n). Now for a fixed i and m ≥ ni, h(m) ≥ Fi(m) ≥ fi(m).

As i was arbitrary, h is dominant. But for all i, g(ni) > Fi(ni) = h(ni), so g escapes h infinitely

often and A is not low for domination.

15. The weakly 1-generic degrees are exactly the hyperimmune degrees (Corollary 2.10 of [32]).

16. See Lemma 3.8.8.

17. [⇒] Let A bound no weakly 1-generic. By 15, A is hyperimmune-free. Certainly A

bounds no 1-generic, so by 16, A bounds no CEA degree. Let X <tt B ≤T A with B 6≤tt X. Then

X is also hyperimmune-free, so B ≤T X ⇐⇒ B ≤tt X (see Theorem 8 of [19]). Thus B 6≤T X,

so as A bounds no CEA degree, B 6∈ Σ0
1(X). As X and B were arbitrary, A bounds no ttCEA degree.

[⇐] We adapt the proof that every 1-generic is CEA given in [21] (Theorem 2.24.9).

Define a total functional ΘX = {〈i, j〉 | i ∈ X ∧ 〈i, j〉 6∈ X}, so that for any X, ΘX ≤tt X. Note
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also that X is ΘX -c.e.

Let Φ be a total reduction, and let f(n) be a computable function bounding its use.

Let ρ ∈ 2<ω, and define i = 〈|ρ|, 0〉 > |ρ| so that for all j, ρ(〈i, j〉) is undefined6. Let σ � ρ

be of length at least f(i) such that |ρ|, i 6∈ σ and for all j, if n = 〈i, j〉 ≤ |σ|, then n ∈ σ. Finally

define τ = σ except i ∈ τ .

As σ and τ only disagree on i = 〈|ρ|, 0〉, but |ρ| 6∈ σ, τ , we have that Θσ(i) = Θτ (i) = 0, so that

Θσ = Θτ . Hence ΦΘσ = ΦΘτ , so either ΦΘτ (i) = 0 6= τ(i) or ΦΘσ (i) = 1 6= σ(i).

As ρ was arbitrary, {σ | ∃n < |σ| ΦΘσ (n) 6= σ(n)} is a dense Σ0
1 set of strings. Now any weakly

1-generic A meets this set, i.e. there is an n such that ΦΘA(n) 6= A(n). So Φ does not truth-table

compute A from ΘA, so as Φ was arbitrary, A 6≤tt ΘA.

18. See Corollary 3.8.7. To see that the reverse implication does not hold, consider a non-

computable, hyperimmune-free A. By 15 and 16, A bounds no CEA real. But A is necessarily not

∆0
2, so by 4, A computes (and thus co-enumerates) a Π0

1-immune set.

19. Every random R ∈ ∆0
2 computes a non-computable c.e. set [29]. To see that the re-

verse does not hold, every random R computes a fixed-point free function f : for all e, Wf(e) 6= We

[30]. By Arslanov’s Completeness Criterion [2], any Wi computes a fixed point free function iff

Wi ≡T ∅′. So every Wi <T ∅′ is CEA, but does not compute a random R.

6Here we are using that 〈x, y〉 ≥ max{x, y}, a property of the Cantor pairing function.
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CHAPTER 4
WHEN YOU HAVE TWO HAMMERS AND ONE OF

THEM WORKS

The material in this section (except Theorem 4.3.4) previously appeared in print in [27].

4.1 The Kolmogorov–Loveland Randomness Problem

A major open problem of algorithmic randomness asks whether each Kolmogorov–Loveland random

(KL-random) real is Martin-Löf random (ML-random). Recall that a real A is Martin-Löf random

iff there is a positive constant c so that for any n, the Kolmogorov complexity of the first n bits of

A is at least n− c, (that is, ∀n, K(Ai�n) ≥ n− c).

KL-randomness is most commonly defined using martingales, which we will not have cause to

consider here. In brief: A is KL-random iff no computable nonmonotonic martingale succeeds on

it. There is also a martingale characterization of ML-randomness — A is ML-random iff no c.e.

martingale succeeds on it. For more on this approach to the study of algorithmic randomness, see

sections 6.3 and 7.5 of [11].

Instead, we will examine a generalization of KL-randomness, motivated by the following result:

one can compute an ML-random real from a KL-random real [38] and even uniformly so [26]. This

uniform computation succeeds in an environment of uncertainty, however: one of the two halves

of the KL-random real is already ML-random and we can uniformly stitch together a ML-random

without knowing which half. Here we pursue this uncertainty and are concerned with uniform

reducibility when information has been hidden in such a way. Namely, for any class of reals C ⊆ 2ω,

we write

Either(C) = {A⊕B : A ∈ C or B ∈ C},

where A ⊕ B is as in Definition 2.3.6. For notation, we often refer to ‘even’ bits of such a real as

those coming from A, and ‘odd’ bits coming from B.

An element of Either(C) has an element of C available within it, although in a hidden way.

We are not aware of the Either operator being studied in the literature, although Higuchi and

Kihara [17, Lemma 4] (see also [16]) considered the somewhat more general operation f(C,D) =

(2ω ⊕ C) ∪ (D ⊕ 2ω), where A⊕ B = {A⊕B | A ∈ A and B ∈ B}.
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Definition 4.1.1. Let B and C be subsets of 2ω. B is Medvedev or strongly reducible to C, written

B ≤s C, iff there is a uniform reduction Φ such that for all B ∈ B, ΦB ∈ C. B is Muchnik or weakly

reducible to C iff for any B ∈ B, there is a reduction Φ such that ΦB ∈ C.

These partial orders induce degree structures on the subsets of 2ω, just as Turing reducibility

induces a degree structure on subsets of ω.

As MLR ⊆ KLR [43], KLR is trivially Medvedev reducible to MLR via the identity function. In

[26], Either is implicitly used to show the reverse, that MLR is Medvedev reducible to KLR. In fact

it shows something slightly stronger:

Definition 4.1.2. Let r be a subscript in Table 4.1, such as r = tt. Write ≤s,r to denote strong

reducibility using r-reductions, and ≤w,r for the corresponding weak reducibility.

Theorem 4.1.3. MLR ≤s,tt Either(MLR).

Proof. [26, Theorem 2] shows that MLR ≤s,tt KLR. The proof demonstrates that MLR ≤s,tt

Either(MLR) and notes, by citation to [38], that KLR ⊆ Either(MLR).

In fact, the proof shows that the two are truth-table Medvedev equivalent. A natural question

is whether they are Medvedev equivalent under any stronger reducibility.

Letting DIM1/2 be the class of all reals of effective Hausdorff dimension 1/2, Theorem 4.1.3 is a

counterpoint to Miller’s result MLR 6≤w DIM1/2 [40], since MLR 6≤s,tt DIM1/2 ⊇ Either(MLR).

Definition 4.1.4. Let {σn | n ∈ ω} be a uniformly computable list of all the finite propositional

formulas in variables v1, v2, . . . . Let the variables in σn be vn1 , . . . , vnd where d depends on n. We

say that X |= σn if σn is true with X(n1), . . . , X(nd) substituted for vn1
, . . . , vnd . A reduction Φ is

a truth-table reduction if there is a computable function f such that for each n and X, n ∈ ΦX iff

X |= σf(n).

As shown in Figure 4.1, the next three candidates to strengthen the result (by weakening the

notion of reduction under consideration) are the positive, linear, and bounded truth-table reducibil-

ties. Unfortunately, any proof technique using Either will no longer work, as for these weaker

reducibilities, MLR is not Medvedev reducible to Either(MLR).
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4.2 The Failure of Weaker Reducibilities

When discussing the variables in a table σf(n), we say that a variable is of a certain parity if its

index is of that parity, e.g. n2 is an even variable. As our reductions operate on 2ω, we identify the

values X(ni) with truth values as 1 = > and 0 = ⊥.

4.2.1 Positive Reducibility

Definition 4.2.1. A truth-table reduction Φ is a positive reduction if the only connectives in each

σf(n) are ∨ and ∧.

Theorem 4.2.2. MLR 6≤s,p Either(MLR).

Proof. Let Φ be a positive reduction. By definition, for each input n, σf(n) can be written in

conjunctive normal form: σf(n) =
∧tn
k=1

∨mk
i=1 vf(n),i,k. We say that a clause of σf(n) is a disjunct∨mk

i=1 vf(n),i,k. There are two cases to consider:

Case 1: There is a parity such that there are infinitely many n such that every clause of σf(n)

contains a variable.

Without loss of generality, consider the even case. Let A = ω ⊕ R for R an arbitrary random

real. Each
∨mk
i=1 vn,i,k that contains an even variable is true. So for the infinitely many n whose

disjunctions all query an even variable, σf(n) =
∧tn
k=1> = >. As these infinitely many n can be

found computably, ΦA is not immune, and so not random.

Case 2: For either parity, for almost all inputs n, there is a clause of σf(n) containing only variables

of that parity.

Set A = R⊕∅ for an arbitrary random real R. For almost all inputs, some clause is a disjunction

of ⊥, so that the entire conjunction is false. Thus ΦA is cofinitely often 0, and hence computable,

and so not random.

Remark. The proof of Theorem 4.2.2 also applies to randomness over 3ω (and beyond). To see

this, we consider the alphabet {0, 1, 2} and let each p(j) be an identity function and ∨,∧ be the

maximum and minimum under the ordering 0 < 1 < 2.
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Reducibility Subscript Connectives
truth table tt any
bounded tt btt any
btt(1) btt(1) {¬}
linear ` {+}

positive p {∧,∨}
conjunctive c {∧}
disjunctive d {∨}
many-one m none

Table 4.1: Correspondences between reducibilities and sets in Post’s Lattice. Here + is addition
mod 2 (also commonly written XOR). Note that while a btt reduction can use any connectives, there
is a bound c on how many variables each σf(n) can have, hence if c = 1 the only connective available
is ¬.

d // p

  
1 // m

<<

//

""

c

<<

` // tt // T

btt(1)

<<

// btt

??

Figure 4.1: [45] The relationships between reducibilities in Table 4.1, which themselves are between
≤1 and ≤T . Here x→ y indicates that if two reals A and B enjoy A ≤x B, then also A ≤y B.

4.2.2 Linear Reducibility

Definition 4.2.3. A truth-table reduction Φ is a linear reduction if each σf(n) is of the form

σf(n) =
∑tn
k=1 vf(n),k or σf(n) = 1 +

∑tn
k=1 vf(n),k where addition is mod 2.

Theorem 4.2.4. MLR 6≤s,` Either(MLR).

Proof. We may assume that Φ infinitely often queries a bit that it has not queried before (else ΦA

is always computable). Without loss of generality, suppose Φ infinitely often queries an even bit it

has not queried before. We construct A in stages, beginning with A0 = ∅ ⊕ R for R an arbitrary

random real.

For the infinitely many ni that query an unqueried even bit, let vi be the least such bit. Then

at stage s+ 1, set vi = 1 if ΦAs(ni) = 0. Changing a single bit in a linear σf(ni) changes the output

of σf(ni), so that ΦA(n) = ΦAs+1(ni) = 1.

As these ni form a computable set, ΦA fails to be immune, and so cannot be random.
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4.2.3 Bounded Truth-Table Reducibility

Definition 4.2.5. A truth-table reduction Φ is a bounded truth-table reduction if there is a c

such that there are most c variables in each σf(n) (in particular we say it is a btt(c) reduction).

Theorem 4.2.6. MLR 6≤s,btt Either(MLR).

Proof. Suppose that Φ is a btt-reduction from Either(MLR) to MLR and let c be its bound on the

number of oracle bits queried. We proceed by induction on c, working to show that an X = X0⊕X1

exists with X0 or X1 ML-random, for which ΦX is not bi-immune.

Base for the induction (c = 1). As btt(1) reductions are linear, it is enough to appeal to Theo-

rem 4.2.4. But as a warmup for what follows, we shall prove this case directly. Let Φ be a btt(1)

reduction. Here ΦX(n) = fn(X(q(n)) where fn : {0, 1} → {0, 1}, q : ω → ω is computable, and

{fn}n∈ω is computable. (If no bits are queried on input n, let fn be the appropriate constant

function.)

If for infinitely many n, fn is the constant function 1 or 0, and the claim is obvious.

Instead, suppose fn is only constant finitely often, i.e. fn(x) = x or fn(x) = 1 − x cofinitely

often. Without loss of generality, there are infinitely many n such that q(n) is even. Let X = ∅⊕R,

where R is an arbitrary ML-random set.

As X(q(n)) = 0 and f(x) is either identity or 1−x infinitely often, there is an infinite computable

subset of either ΦX or ΦX so ΦX is not bi-immune.

Induction step. Assume the c− 1 case, and consider a btt(c) reduction Φ.

Now there are uniformly computable finite sets Q(n) = {q1(n), . . . , qdn(n)} and Boolean functions

fn : {0, 1}dn → {0, 1} such that for all n, ΦX(n) = fn(X(q1(n)), . . . , X(qdn(n))) and dn ≤ c.

Consider the greedy algorithm that tries to find a collection of pairwise disjoint Q(ni) as follows:

- n0 = 0.

- ni+1 is the least n such that Q(n) ∩
⋃
k≤iQ(nk) = ∅.

If this algorithm cannot find an infinite sequence, let i be least such that ni+1 is undefined, and

define H =
⋃
k≤iQ(nk). It must be that for n > ni no intersection Q(n) ∩H is empty. Thus there

are finitely many bits that are in infinitely many of these intersections, and so are queried infinitely

often. We will “hard code” the bits of H as 0 in a new function Φ̂.

To that end, define Q̂(n) = Q(n) \ H, and let f̂ be the function that outputs the same truth

tables as f , but for all n ∈ H, vn is replaced with ⊥. List the elements of Q̂ in increasing order as
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{q̂1(n), . . . , q̂en(n)}. Now if X ∩H = ∅, any qi(n) ∈ H have X(qi(n)) = 0, so that ΦX = Φ̂X , as for

every n,

f(X(q1(n)), . . . X(qdn(n))) = f̂n(X(q̂1(n)), . . . , X(q̂en(n)).

As Q and the fn are uniformly computable and H is finite, Q̂ and the f̂n are also uniformly

computable. As no intersection Q(n) ∩ H was empty, en < dn ≤ c. So Q̂ and the f̂n define a

btt(c − 1)-reduction. By the induction hypothesis, there is a real A ∈ Either(MLR) such that Φ̂A

is not random. Either(MLR) is closed under finite differences (as MLR is), so the set B = A \ H

witnesses ΦB = Φ̂A, and ΦB is not random as desired.

This leaves the case where the algorithm enumerates a sequence of pairwise disjoint Q(ni).

Say that a collection of bits C(n) ⊆ Q(n) can control the computation ΦX(n) if there is a way

to assign the bits in Cn so that ΦX(n) is the same no matter what the other bits in Q(n) are. For

example, (a ∧ b) ∨ c can be controlled by {a, b}, by setting a = b = 1. Note that if the bits in C(n)

are assigned appropriately, ΦX(n) is the same regardless of what the rest of X looks like.

Suppose now that there are infinitely many ni such that some C(ni) containing only even bits

controls ΦX(ni). Collect these ni into a set E. Let X1 be an arbitrary ML-random set. As there

are infinitely many ni, and it is computable to determine whether an assignment of bits controls

ΦX(n), E is an infinite computable set. For n ∈ E, we can assign the bits in Q(n) to control ΦX(n),

as the Q(n) are mutually disjoint. Now one of the sets

{n ∈ E | ΦX(n) = 0} or {n ∈ E | ΦX(n) = 1}

is infinite. Both are computable, so in either case ΦX is not bi-immune.

Now suppose that cofinitely many of the ni cannot be controlled by their even bits. Here let X0

be an arbitrary ML-random set. For sufficiently large ni, no matter the values of the even bits in

Q(ni), there is a way to assign the odd bits so that ΦX(ni) = 1. By pairwise disjointness, we can

assign the odd bits of
⋃
Q(ni) as needed to ensure this, and assign the rest of the odd bits of X

however we wish. Now the ni witness the failure of ΦX to be immune.
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4.3 Infinitely Many Hammers

It is worth considering direct sums with more than two summands. In this new setting, we first

prove the analog of Theorem 2 of [26] for more than two columns, before sketching the modifications

necessary to prove analogues of Theorems 4.2.2, 4.2.4 and 4.2.6.

Recall that a real A can be written as an infinite direct sum of columns A[i], A =
⊕ω

i=0A
[i],

where A[i] = {n | 〈i, n〉 ∈ A} for a fixed computable bijection 〈·, ·〉 : ω2 → ω.

Definition 4.3.1. For each C ⊆ 2ω and ordinal α ≤ ω, define

Some(C, α) =

{
α⊕
i=0

Ai ∈ 2ω

∣∣∣∣∣∃i Ai ∈ C
}
,

Many(C) =

{
ω⊕
i=0

A[i] ∈ 2ω

∣∣∣∣∣∃∞i A[i] ∈ C

}
.

Remark. As written, technically

n⊕
Ai is not the same real as

n⊕
A[i], but the two are equivalent

via a recursive bijection.

These represent different ways to generalize Either(C) to the infinite setting: we may know that

some possibly finite number of columns A[i] are in C, or that infinitely many columns are in C. If

α = ω, these notions are m-equivalent, so we can restrict our attention to Some(MLR, α) without

loss of generality:

Theorem 4.3.2 (due to Reviewer 2 of [27]). Some(C, ω) ≡s,m Many(C).

Proof. The ≤s,m direction follows from the inclusion Many(C) ⊆ Some(C, ω).

For ≥s,m, let B ∈ Some(C, ω) and define A by:

〈〈i, j〉, n〉 ∈ A ⇐⇒ 〈i, n〉 ∈ B.

Now A ≤m B by definition. Notice that for all i and j, A[〈i,j〉] = B[i]. As some column B[k] is

random, for all j, A[〈k,j〉] ∈ MLR. Thus A ∈ Many(C), so that Some(C, ω) ≥s,m Many(C).

In the case of C = MLR, this can be strengthened to a 1-equivalence.

Lemma 4.3.3 (Corollary 6.9.6 in [11]). If A =
⊕ω

i=0A
[i] ∈ MLR, then for all i, A[i] ∈ MLR.

Theorem 4.3.4. Some(MLR, ω) ≡s,1 Many(MLR).
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Proof. Again, ≤s,1 follows from subset inclusion.

For ≥s,1, let B ∈ Some(MLR, ω) and define A by:

〈〈i, j〉, n〉 ∈ A ⇐⇒ 〈〈n, j〉, i〉 ∈ B.

Again, A ≤1 B by definition. Now for all i and j, A[〈i,j〉] =
(
B[i]

)[j]
. Some column B[k] is random,

so by Lemma 4.3.3, its columns
(
B[k]

)[j]
are random for all j. Thus for that k and every j, A[〈k,j〉]

is random. Finally A ∈ Many(C) and Some(MLR, ω) ≥s,1 Many(MLR).

Remark. Theorem 4.3.2 can be improved to ≡1 for any C ⊆ 2ω that satisfies the following: for

all D ∈ ∆0
1 and A ⊕D B ∈ C, A ∈ C. This is one direction of van Lambalgen’s theorem [59] (the

so-called ‘easy’ direction — see [9] for more discussion of this in the context of randomness notions).

4.3.1 Truth-Table Reducibility

Recall that a real A is Martin-Löf random iff there is a positive constant c (the randomness deficiency)

so that for any n, K(Ai�n) ≥ n− c). Let Ks(σ) be a computable, non-increasing approximation of

K(σ) at stages s ∈ ω.

Theorem 4.3.5. For all ordinals α ≤ ω, MLR ≤s,tt Some(MLR, α).

Proof. Given a set A =
⊕α

i=0Ai, we start by outputting bits from A0, switching to the next Ai

whenever we notice that the smallest possible randomness deficiency increases. This constant c

depends on s and changes at stage s+ 1 if

(∃n ≤ s+ 1) Ks+1(Ai�n) < n− cs. (4.1)

In detail, fix a map π : ω → α so that for all y, the preimage π−1({y}) is infinite. Let n(0) = 0,

and if Equation (4.1) occurs at stage s, set n(s+ 1) = n(s) + 1, otherwise n(s+ 1) = n(s). Finally,

define A(s) = Aπ(n(s))(s).

As some Ai is in MLR, switching will only occur finitely often. So there is an stage s such that

for all larger t, A(t) = Ai(t). Thus our output will have an infinite tail that is ML-random, and

hence will itself be ML-random.

To guarantee that this is a truth-table reduction, we must check that this procedure always halts,
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so that the reduction is total.1 But this is immediate, as Equation (4.1) is computable for all s ∈ ω

and Ai ∈ 2ω.

4.3.2 Positive Reducibility

We say that a variable is from a certain column if its index codes a location in that column, i.e. nk

is from Ai if k = 〈i, n〉 for some n.

Theorem 4.3.6. For all α ≤ ω, MLR 6≤s,p Some(MLR, α).

Proof. Let ΦX be a positive reduction. Assume each σf(n) is written in conjunctive normal form.

We sketch the necessary changes to the proof of Theorem 4.2.2:

Case 1: There is an i such that there are infinitely many n such that every clause of σf (n) contains

a variable from Ai.

Without loss of generality, let that column be A0 = ω. The remaining Ai can be arbitrary, as

long as one of them is random.

Case 2: For all i, for almost all n, there is a clause in σf (n) that contains no variables from Ai.

In particular this holds for i = 0, so let A0 ∈ MLR and the remaining Ai = ∅.

4.3.3 Linear Reducibility

Theorem 4.3.7. For all α ≤ ω, MLR 6≤s,` Some(MLR, α).

Proof. We may assume that Φ infinitely often queries a bit it has not queried before (else ΦA is

always computable). If there is an i such that Φ infinitely often queries a bit of Ai it has not queried

before, the stage construction from Theorem 4.2.4 can be carried out with Ai standing in for A0,

and some other Aj ∈ MLR.

That case always occurs for α < ω, but may not when α = ω. That is, it may the the case that

Φ only queries finitely many bits of each Ai. Letting each Ai be random, these bits may be set to

0 without affecting the randomness of any given column, so we could set A0 ∈ MLR while other

Ai = ∅.
1This is not the definition usually used in this section, but instead Definition 3.5.16. As mentioned in Section 3.5.3,

it is equivalent to Definition 4.1.4.
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4.3.4 Bounded Truth-Table Reducibility

As btt(1) reductions are linear, Theorem 4.3.7 provides the base case for induction arguments in the

vein of Theorem 4.2.6. So we can focus our attention on the induction step:

Theorem 4.3.8. For all α ≤ ω, MLR 6≤s,btt Some(MLR, α).2

Proof. In the induction step, the case where the greedy algorithm fails is unchanged. Instead,

consider the case where the algorithm enumerates a sequence of pairwise disjoint Q(ni). If there is a

column Aj such that there are infinitely many ni such that some C(ni) containing only bits from Aj

controls ΦX(n), then we proceed as in Theorem 4.2.6: start with some other Ak ∈ MLR while the

remaining columns are empty. We can then set the bits in each Q(ni) to control ΦX(ni) to guarantee

that ΦX is not bi-immune. This only changes bits in Aj , not Ak, so the final A ∈ Some(MLR, α).

This leaves the case where for each Aj , cofinitely many of the ni cannot be controlled by their

bits in Aj . Here put A0 ∈ MLR and assign bits to the other columns as in Theorem 4.2.6.

2This statement of the theorem corrects a typographical error in [27].
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[30] A. Kučera. Randomness and generalizations of fixed point free functions. In Klaus Ambos-

Spies, Gert H. Müller, and Gerald E. Sacks, editors, Recursion Theory Week, pages 245–254,

Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. (Page 52)

[31] S. A. Kurtz. Randomness and Genericity in the Degrees of Unsolvability. PhD thesis, University

of Illinois at Urbana–Champaign, 1981. (Pages 42 and 42)

[32] S. A. Kurtz. Notions of weak genericity. The Journal of Symbolic Logic, 48(3):764–770, 1983.

(Pages 45, 45, and 51)

[33] A. H. Lachlan. Degrees of recursively enumerable sets which have no maximal supersets. The

Journal of Symbolic Logic, 33(3):431–443, 1968. (Page 28)

[34] A. H. Lachlan. On the lattice of recursively enumerable sets. Transactions of the American

Mathematical Society, 130(1):1–37, 1968. (Page 35)
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