

COMPUTING AND BALANCING SWINE RATIONS

WILLIAMS I. HUGH and COY C. BROOKS

UNIVERSITY OF HAWAII COOPERATIVE EXTENSION SERVICE CIRCULAR 439

NOV 7 1969

CONTENTS

	Page
Characteristics of a Balanced Ration	3
Protein	3
Energy (Carbohydrate and Fat)	4
Vitamins	
Minerals	4
Water	4
Other Considerations	5
Ration Formulations	5
Example I	5
Example II	
Example III	8
Example IV	11
Special Considerations	14
Summary	14
Appendix	15

2

COMPUTING AND BALANCING SWINE RATIONS

WILLIAMS I. HUGH

State and Area Specialist in Swine

COY C. BROOKS

Animal Scientist, Hawaii Agricultural Experiment Station

Swine are not roughage-consuming animals in the sense that ruminants (cattle, sheep, goats) are. They have a simple stomach of relatively small capacity (2-gallon capacity in a 200-pound animal). However, since the pig is an omnivorous animal, it is able to eat and utilize feed ingredients of both animal and plant origin.

The nutritional needs of the animal are influenced by size, growth, gestation and lactation. A swine feeding program should therefore be comprised of rations designed for specific purposes. One type of ration will not serve all purposes. Types of rations that should be incorporated into a swine feeding program include:

1. Pre-starter) Birth to
2. Starter) 40 pounds weight
3. Grower	40 pounds to
	100 pounds
4. Finisher	100 pounds to
	market weight
5. Sow gestation	1

6. Sow lactation

o. Sow factation

CHARACTERISTICS OF A DESIRABLE RATION

Balancing swine rations is largely a matter of correcting the nutritional deficiencies of the feed ingredients used as energy sources (grains, cassava, and others), which are normally low in protein (quantity and quality) as well as in certain vitamins and minerals. To formulate rations that are nutritionally adequate and economical, it is necessary to know what the nutrient requirements of swine are (see Appendix, Tables 1-7) and which feed ingredients provide the best sources of the nutrients needed (see Appendix, Table 8).

In general, a swine ration must meet the nutritional requirements of the animal in terms of the nutrients discussed below in order to result in satisfactory performance.

Protein

Proteins are made up of amino acids. Twenty-two of these have been identified. Ten of these are essential in the ration of the pig since his body cannot produce them sufficiently to meet his needs for maintenance, growth, reproduction, and lactation. In formulating rations, consideration of protein quantity alone is not adequate. The requirement of essential as well as the total amino acids must be met. The pig has a specific requirement for each essential amino acid. The amino acids must be present in the proper amounts and in the correct ratio with each other

and

to obtain maximum performance. The exact need for each essential amino acid varies not only with age and rate of production, but with the level of total protein. The three amino acids most likely to be deficient or borderline in supply in most swine rations are lysine, tryptophan, and methionine.

Energy (Carbohydrate and Fat)

Most of the energy in swine rations is supplied by carbohydrates. Carbohydrates are composed of nitrogen-free extract (N.F.E.), the more digestible part, and crude fiber, the more indigestible portion. Fat is a more concentrated source of energy than carbohydrate. One unit of fat will supply about 21/4 times as much energy as one unit of carbohydrate. Energy values of feed ingredients are expressed in several ways, the most common being total digestible nutrients (T.D.N.) and digestible energy (D.E.). T.D.N. is obtained by adding together the digestible nutrients in the ration (protein. carbohydrate, and fat multiplied by 2.25). Digestible energy refers to the total amount of energy available in a feedstuff minus the nondigested energy that is lost in the feces. One pound of T.D.N. (measured by a digestion trial with the pig) is approximately equivalent to 2,000 kilocalories of D.E.

Vitamins

The important vitamins to consider since they may be deficient or barely adequate in swine rations are vitamins A and D, riboflavin, pantothenic acid, niacin, vitamin B_{12} , and choline. Some vitamins are stored in the pig's body (vitamins A and D and thiamine). Others are manufactured in the animal's body (vitamins K and C and biotin). The availability and need of vitamins by the pig may be affected by several factors. High intake of nitrates increases the need for vitamin A. The levels of calcium and phosphorus and their ratio influence the need for vitamin D. Most of the niacin in cereal grains is in a bound form and not available to the pig. The amino acids tryptophan and methionine may be used by the pig to produce the vitamins niacin and choline, respectively. Many vitamins, particularly A, E, and D, are unstable and will deteriorate under conditions of high temperature, humidity, long storage, rancidity, or in the presence of certain minerals.

Minerals

Of primary importance are the major minerals calcium, phosphorus, and salt (sodium and chlorine), and the trace minerals iron, copper, zinc, iodine, and manganese. There are many interrelationships among minerals that influence the availability of the mineral to the pig. To obtain proper calcium and phosphorus utilization, not only must there be an adequate level of each mineral and vitamin D, but also a suitable ratio the two. The calcium between requirements are 11/4 to 11/2 times the required phosphorus level. The level of calcium in the ration will have an effect on how the pig absorbs manganese, zinc, copper. Interrelationships iron. and affecting utilization exist between copper and zinc, copper and iron, cobalt and iodine, iron and cobalt, and iron and manganese. The form of these elements in the feed also may determine their availability to the animal.

Water

Depending upon climatic conditions and size of animal, pigs require about 2 to 3 pounds of water for each pound of air-dry feed consumed.

Other Considerations

All of the nutrients mentioned above have to be furnished in the correct proportions, levels, and form so as to correctly supply the requirements for the particular phase of production involved. In addition, a good ration has the following characteristics:

1. The ration must be palatable. To obtain its nutritional requirements from the ration, the animal must be willing to consume the ration readily. Fineness of grinding, amount of mineral in the ration, amount of fiber, kind of ingredient, and freshness of mixture all affect palatability.

2. A good ration often includes a variety of feeds. This helps prevent nutritional deficiencies as well as increase palatability. Variety of ingredients within a ration is not essential so long as the nutritional requirements are met. With the premixes of synthetic amino acids, mineral, and vitamin that are available, very simple rations are often successful.

3. A good ration should not contain foreign matter or "filler" materials that serve no particular purpose. Oat hulls, rice hulls, and sugarcane bagasse are examples of "filler" materials. These substances of high fiber content not only fail to supply nutrients, they may also lower the availability of nutrients from other sources.

4. Proper levels of ingredients should be used. Some feed ingredients give good results at low levels but poor results at high levels. Examples are cottonseed meal, tuna meal, and meat and bone meal.

5. Avoid feed ingredients that cause rancidity. Rancid feeds are not palatable and can result in the destruction of certain vitamins. Feed ingredients with high fat content can result in rancidity.

Rice bran, rice polish, dried or pressed copra, and fresh coconut meat are examples of feed ingredients with high fat content.

6. Avoid feed ingredients containing toxic substances. Examples are flourine in raw rock phosphate; selenium in grains grown on certain soils; gossypol in cottonseed meal; mimosine in *Leucaena leucocephala* ("koa haole," "ipil-ipil"); prussic acid present in certain varieties of cassava; trypsin inhibitor and methionine and cystine utilization depressant in raw soybeans; and glucoside present in hull and kernel of the seed of the cycad.

7. A ration must be economical in terms of cost per pound of pork produced.

8. A ration should not have an adverse effect on the carcass. Soft pork may result from feeding soybeans, peanuts, rice bran, rice policy, and garbage. Soft pork may or may not be desirable depending upon consumer preference. The use of poor-quality fish meal at high levels may result in fishy flavor in pork.

RATION FORMULATIONS

The following are examples of ration formulations by the use of the "Pearson Square" or "Dairyman's Square" to determine how much energy and protein ingredients to use to make a feed mixture with a specified protein content.

EXAMPLE I

Use of a single energy source plus a commercial protein-mineral-vitamin supplement.

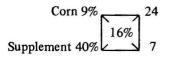
Compute a growing pig ration containing 16 percent protein from corn (maize) containing 9 percent protein and a commercial supplement containing 40 percent protein. Step 1. Draw a square.

Step 2.

In the center of the square, put the protein content (16%) desired in the final mixture.

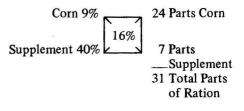
Step 3.

At the upper left-hand corner of the square, write "Corn" and its protein content (9%).


Step 4.

At the lower left-hand corner, write "Supplement" and its protein content (40%).

Corn 9%


Step 5.

Subtract diagonally across the square (the smaller from the larger) and enter the results at the corners on the right-hand side (16 - 9 = 7; 40 - 16 = 24).

Step 6.

The number at the upper right-hand corner gives the parts of corn (24), and the number at the lower right-hand corner gives the parts of supplement (7) needed to make a mixture containing 16% protein. Thus 24 parts of corn mixed with 7 parts of supplement gives 31 parts of feed with 16% protein.

Step 7.

To convert the figures above to percentages, divide 31 into 24 and multiply by 100%. The result, 77.4%, indicates the amount of corn that will be used in the ration.

$$\%$$
 Corn = 24 x 100% = 77.4%
31

% Supplement = $7 \times 100\%$ = 22.6%

The supplement portion would represent 22.6% (divide 31 into 7 and multiply by 100% or 100 - 77.4 = 22.6). Thus in a 100-pound 16% protein mix, there would be 77.4 pounds of corn and 22.6 pounds of supplement.

The above example is the simplest way to compute and balance a ration, using a single energy source combined with a commercial protein-mineral-vitamin supplement. A reliable commercial supplement contains sufficient levels of protein, minerals, and vitamins so that when mixed with the energy source (in this case, corn) according to recommendations, a complete ration will be obtained to adequately meet the animal's nutrient requirements. For a ration using several sources of energy together with a commercial supplement, the procedure becomes a little more involved. However, the basic principles of the "Square Method" is used.

EXAMPLE II

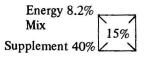
Use of several feed ingredients as energy sources plus a commercial protein-mineral-vitamin supplement.

Compute a feed mixture for gestating sows containing 15 percent crude protein from a mixture of corn (9% crude protein), dried cassava meal (1.4% crude protein), and rice bran (13.5% crude protein) and a commercial proteinmineral-vitamin supplement containing 40 percent crude protein. It will be assumed that the energy mixture to be used will be comprised of 50 percent corn, 25 percent cassava meal, and 25 percent rice bran. Before we can apply the "Square Method" it is necessary to establish the protein content of the energy mixture. This calculates to be approximately 8.2 percent crude protein [(50 x 9%) (25 x 1.4%) + (25 x 13.5%)]. We can now proceed as before.

Step 1. Draw a square.

Step 2.

In the center of the square, put the protein content (15%) desired in the final mixture.

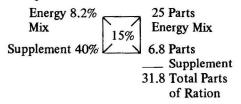

Step 3.

At the upper left-hand corner of the square, write "Energy Mix" and its protein content (8.2%).

Energy 8.2%	N 1
Mix	15%
	KN

Step 4.

At the lower left-hand corner, write "Supplement" and its protein content (40%).


Step 5.

Subtract diagonally across the square (the smaller from the larger) and enter the results at the corners on the right-hand side (15 - 8.2 = 6.8; 40 - 15 = 25).

Step 6.

The number at the upper right-hand corner gives the parts of energy mix (25), and the number at the lower right-hand corner gives the parts of supplement (6.8) needed to make a final mixture containing 15% protein. Thus, 25 parts of energy mix combined with 6.8 parts of supplement gives 31.8 parts of feed with 15% protein.

Step 7.

To convert the figures above to percentages, divide 31.8 into 25 and multiply by 100%. The result, 78.6%, indicates the amount of energy mix that will be used in the ration.

% Energy Mix =
$$25 \times 100\%$$
 = 78.6%
31.8

The supplement portion would represent 21.4% (divide 31.8 into 6.8 and multiply by 100% or 100 - 78.6 = 21.4). Thus in a 100-pound 15% protein mix, there would be 78.6 pounds of energy mix and 21.4 pounds of supplement. Corn would represent 50% of 78.5 pounds or 39.3 pounds, cassava meal would be 25% of 78.5 pounds or 19.65 pounds, and rice bran would constitute 25% of 78.5 pounds or 19.65 pounds. Thus the complete ration to provide a 15% protein ration will be:

Corn	39.30 lbs.
Cassava meal	19.65 lbs.
Rice bran	19.65 lbs.
Protein supplement	21.40 lbs.
Total	100.00 lbs.

In the case where a commercial protein-mineral-vitamin supplement is not available and the ration must be computed using basic feed ingredients, or where several sources of protein and/or energy are desired, the procedure becomes a little more complex. However, the same "square" principle can be used. In this situation, not only must we be concerned about the correct protein level, but we must also make sure that adequate levels of mineral (calcium, phosphorus, and salt, primarily) and vitamins are present in the final mixture. Certain guidelines can be used to determine approximate levels of feed ingredients to use. Table 9 in the Appendix can be used as a guide in establishing maximum levels of feed ingredients to add depending upon the phase of production concerned. Most complete swine rations require a standard addition of 0.5 percent salt (trace mineralized salt preferred). Where only protein from plants is used, then normally 1 or 2 percent dicalcium phosphate or steamed bone meal (calcium and phosphorus source) will need to be added. If vitamin premixes are available, then normally 0.25 to 0.50 percent will be added to the complete ration to ensure adequate vitamin levels.

EXAMPLE III

Use of a single energy source plus a single protein source.

Compute a growing pig ration containing 16 percent protein from corn containing 9 percent protein and soybean oil meal containing 44 percent protein. Since this mixture is comprised of a single energy source and a single protein source of plant origin, additional sources of calcium and phosphorus as well as salt are needed. A vitamin premix should be added if available.

Step 1.

The first step in balancing the ration is to determine what combination of the two main ingredients is needed to establish the correct protein level. As before, draw a square.

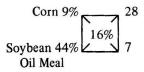
1	

Step 2.

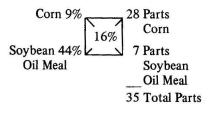
In the center of the square, put the desired protein content (16%) of the final mix.

Step 3.

At the upper left-hand corner of the square, write "Corn" and its protein content (9%).


Step 4.

At the lower left-hand corner write "Soybean Oil Meal" and its protein content (44%).


Step 5.

Subtract diagonally across the square (the smaller from the larger) and enter the results at the corners on the right-hand side (16 - 9 = 7; 44 - 16 = 28).

Step 6.

The number at the upper right-hand corner gives the parts of corn (28) and the number at the lower right-hand corner gives the parts of soybean oil meal (7) needed to make a mixture with 16% protein.

Step 7.

To convert the figures above to percentages, divide 35 into 28 and multiply by 100%. The result, 80%, indicates the amount of corn in the ration. Thus 80 pounds of corn mixed with 20 pounds of soybean oil meal will

$$\%$$
 Corn = $\underline{28} \times 100\%$ = 80.0%
35

% Soybean Oil Meal = $7 \times 100\% = 20.0\%$ 35

provide a 16% protein mix. This then meets the protein requirements and assumes that the amino acid requirements are also met. However, when untested combinations of ingredients are used, the total amino acid level should be checked against the pig's requirement, especially the three amino acids that are commonly deficient (lysine, tryptophan, and methionine).

Step 8.

Adjusting the mineral. The next step is to calculate how much calcium and phosphorus the corn and soybean oil meal contribute, then to make up the differences between these amounts and the recommended levels of these nutrients. The nutrient requirements table (see Appendix, Table 1) indicates that a 16% protein ration for growing animals weighing 44 to 77 pounds should 0.65% calcium and 0.50% contain phosphorus. The feed composition table (see Appendix, Table 8) shows that corn contains 0.02% calcium and 0.33% phosphorus. Soybean oil meal contains 0.32% calcium and 0.67% phosphorus. To calculate the amount of calcium and phosphorus contributed bv each ingredient, a worksheet similar to that shown in Figure 1 can be used for the necessary calculations. Thus, to calculate the amount of calcium and phosphorus supplied by the corn:

- (a) Multiply .02% calcium in corn x 80 pounds = 0.016 lb.
- (b) Multiply 0.33% phosphorus in corn x 80 pounds = 0.26 lb.

To calculate the amount of calcium and phosphorus in soybean oil meal:

- (a) Multiply 0.32% calcium in soybean oil meal x 20 pounds = .06 lb.
- (b) Multiply 0.67% phosphorus in soybean oil meal x 20 pounds = 0.13 lb.

The total amount of calcium and phosphorus supplied in the ration then is 0.076 pound calcium (.016 + .06) and 0.39 pound phosphorus (0.26 + 0.13). Since the calcium and phosphorus requirements are 0.65 and 0.50 pound, respectively, this means that 0.57 pound calcium (0.65 - 0.08) and 0.11 pound phosphorus (0.50 - 0.39) must be added to the ration.

Table 10 in the Appendix indicates some common supplemental sources of calcium, phosphorus, and trace minerals.

		Calculated Analysis				
Ingredient	Amount (Lbs.)	Protein (Lbs.)	Calcium (Lbs.)	Phosphorus (Lbs.)	Salt (Lbs.)	
Corn	80	7.20	.016	.26	-	
Soybean oil meal	20	8.80	.060	.13	-	
Corn Soybean oil meal Sub-Iotal	100	16.00	.076	.39	0	
Dicalium phosphate	0.9		. 27	.19		
Dicalium phosphate Limestone	1.0	-	.34	_		
Salt (trace mineraliz	ed) 0.5				.50	
Grand Lotal	1 02.4	16.0	.69	.58	.50	
Grand Jotal Nutritive requirement	-	16.0	.65	.50	.50	

Figure 1. Worksheet of a sample ration formulation using a single energy source plus a single protein source

The supplemented phosphorus need can be determined by dividing the amount of phosphorus needed (0.11 lbs) by the amount of phosphorus in 1 pound of the phosphorus supplement. If dicalcium phosphate is used, then 0.9 pound will need to be added to the ration $(0.11 \text{ lbs needed} \div 0.19 \text{ lbs in 1 lb.}$ dicalcium phosphate). The requirements for phosphorus are now met. The addition of 0.9 pound of dicalcium phosphate will also contribute .24 pound of calcium to the ration (0.9 x .27). This brings the total amount of calcium in the ration up to 0.32 pound. The ration is still short 0.33 pound of calcium to meet the requirements. If limestone is used, then the amount of limestone needed to supply this is calculated by dividing the need (.33) by the amount in 1 pound (.34) which equals 1 pound. Thus the addition of 1 pound of limestone will contribute 0.34 pound calcium. Now the calcium requirements are met.

The salt requirement is ½ of 1 percent of the ration. This can be met by adding ½ pound of trace mineralized salt. The use of trace mineralized salt will also satisfy the trace mineral requirements.

Similar procedures as outlined above can be used to establish levels of vitamins and other nutrients in the ration to compare with the requirements. To satisfy the vitamin requirements, the simplest procedure is to add 0.25 to 0.50 percent vitamin premix (or manufacturer's recommendation) to the ration.

With the addition of the mineral, salt, and vitamin mix to the ration, the total amount of the ration exceeds 100. This will have the effect of slightly reducing the percentage of protein. To maintain the 16-percent protein level, it will be necessary to adjust the total amount of corn and soybean oil meal. By making the slight adjustment of increasing the soybean oil meal by 1 pound to 21 pounds and reducing the corn by a corresponding 1 pound to 79 pounds, the total ration of 102.4 pound will analyse to 16 percent protein.

EXAMPLE IV

Use of several feed ingredients as sources for energy and for protein.

Formulate a sow gestation ration containing 15 percent protein. The feed ingredients to be used in the energy mix will be comprised of cassava meal, corn, and wheat middlings in the proportion of 50, 25, and 25 percent, respectively. It will be assumed that a standard amount of 10 percent coconut oil meal (copra meal), 5 percent tuna meal, and 5 percent meat and bone meal will be added to the ration as protein sources. Soybean oil meal is available to balance the ration for protein. Using the feed composition table (see Appendix, Table 8), it is noted that coconut oil meal (solvent) is comprised of 21.4 percent crude protein; tuna meal, 55 percent crude protein; and meat and bone meal, 51 percent crude protein. Consequently, 10 pounds of coconut oil meal will contribute 2.14 pounds of protein (10 x 21.4%) to the ration. Five pounds of tuna meal will contribute 2.75 pounds of protein (5 x 55%), and 5 pounds of meat and bone meal will contribute 2.55 pounds of protein (5 x 51%). The addition of these three protein sources will then contribute a total of 7.4 pounds of protein to the ration. Therefore, we need only 7.6 percent additional protein (15 - 7.4) from the energy and soybean oil meal portions of the ration. However, the energy sources and the soybean oil meal will now only comprise 80 percent of the ration. Thus, to obtain the desired protein level, we divide 80 into 7.6 to obtain 9.5 percent. Before we can apply the "Square

Method" it is necessary to establish the protein content of the energy mixture. This calculates to be approximately 7.2 percent crude protein $[(50 \times 1.4\%) + (25 \times 9\%) + (25 \times 17\%)]$. We can now proceed as before.

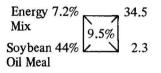
Step 1. Draw the square.

Step 2.

In the center of the square, put the protein content (9.5%) desired.

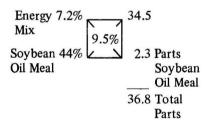
Step 3.

At the upper left-hand corner of the square write "Energy Mix" and its protein content (7.2%).



Step 4.

At the lower left-hand corner, write "Soybean Oil Meal" and its protein content (44%).


Energy 7.2% Mix Soybean 44% Oil Meal Step 5.

Subtract diagonally across the square (the smaller from the larger) and enter the results at the corners on the right-hand side (9.5 - 7.2 = 2.3; 44 - 9.5 = 34.5).

Step 6.

The number at the upper right-hand corner gives the parts of energy source (34.5) and the number at the lower right-hand corner (2.3) gives the parts of soybean oil meal needed to make a mixture of 9.5% protein.

Step 7.

To convert these figures above to percentages, divide 36.8 into 34.5 and multiply by 100% and divide 36.8 into 2.3 and multiply by 100%. This results in 93.7% and 6.3%, respectively. Thus, of the 80 pounds, 75 pounds will be energy source and 5 pounds will be soybean oil

Pounds of $= 34.5 \times 100\% \times 80\% = 75\%$ Energy Mix 36.8

Pounds of = $2.3 \times 100\% \times 80\% = 5\%$ Soybean 36.8 Oil Meal meal. The basic ration will then consist of:

Energy mix	75 lbs.
Soybean oil meal	5 lbs.
Coconut oil meal	10 lbs.
Tuna meal	5 lbs.
Meat and bone meal	5 lbs.

Cassava meal would represent 50% of 75 pounds or 37.5 pounds; corn would represent 25% of 75 pounds or 18.75 pounds; and wheat middlings would be 25% of 75 pounds or 18.75 pounds. Thus, the complete mix to provide a 15% protein ration would consist of:

Cassava meal	37.5 lbs.
Corn	18.75 lbs.
Wheat middlings	18.75 lbs.
Soybean oil meal	5.0 lbs.
Coconut oil meal	10.0 lbs.
Tuna meal	5.0 lbs.
Meat and bone meal	5.0 lbs.

Step 8.

Adjusting the mineral. The next step is to calculate how much calcium and phosphorus are contributed by the ingredients in the ration. Using the feed composition tables (see Appendix, Table 8) and the worksheet (Figure 2), it is sufficient calcium found that and phosphorus is supplied by these ingredients to meet the requirements. This is brought about primarily by the addition of tuna meal and meat meal. Thus, it is not necessary to add a supplemental source of calcium and phosphorus. One-half percent of trace mineralized salt should be added to meet the salt and trace mineral requirements. If available, a vitamin premix can be added levels recommended at by the manufacturer to ensure that vitamin requirements are satisfied.

	Calculated analysis					
Ingredient	Amount (Lbs.)	Protein (Lbs.)	Calcium (Lbs.)	Phosphorus (Lbs.)	Salt (Lbs.)	
Cassava meal	37.5	.52	.05	.06		
Com	18.75	1.69	.00	.06		
Wheat middlings	18.75	3.19	.02	,10		
Soybean oil meal	5.0	2.20	.01	.03		
Colonut oil meal	10.0	2.14	.02	.06		
Juna meal	5.0	2.75	.25	.15		
Meat meal	5.0	2.55	.53	.25		
Sub Istal	100.0	15.04	.88	.71		
Salt (trace minerale	ed.) .5				.50	
Grand Total	100.5	15.04	. 88	.71	.50	
Salt (trace minerale brand Iotal nutritive requireme	nte	15.0	.75	.50	.50	

Figure 2. Worksheet of a sample ration formulation using several feed ingredients as sources of energy and of protein

Special Considerations

Certain feeding practices may call for the use of protein-mineral-vitamin supplements rather than the use of complete feeds. Situations that would lend itself to the use of supplements include:

- 1. Garbage feeding.
- 2. Feeding the energy source *ad libitum* and separately from the protein source.
- 3. Feeding energy ingredients that may be difficult to use as a complete, uniform mix in the final ration because of their physical consistency. Examples of these ingredients would be chopped dried cassava, other root crops, tree crops.

Protein supplements can be mixed with the energy source to make a complete ration or they can be hand-fed in measured amounts each day in addition to the energy source, which can be fed *ad libitum*.

SUMMARY

All of the examples above show how to formulate complete rations. These

complete rations will meet the animal's nutritional requirements when this is the only ration fed, assuming that adequate amounts of the ration are consumed by the animal. Complete rations should not be diluted with any other feed ingredients after the initial formulation; otherwise, the nutrient requirements may not be met.

It is difficult to formulate a single supplement to meet the protein, mineral, and vitamin requirements for all ages of pigs. Most protein supplements formulated will approximate 35 to 40 percent protein. When fed with grains, depending upon the desired protein level of the final mix, the ratio of supplement to grain may vary from 1:3 up to 1:8 or 1:9. It is particularly important that the levels of minerals and vitamins be sufficiently high in the supplement so that the animal's requirements will be met in the final mix. Thus, if the supplement to be used is to be mixed with an energy source in the ratio of 1:4, the level of vitamins and minerals in the supplement should be four times the level of that of the final complete mix. Table 9 in the Appendix can be used as a guide in establishing levels of protein ingredients to incorporate into the supplement.

APPENDIX

(expressed in percentage of another per pound of total factor)								
	Full-fe	ed on cereal	grains	Full-fed on corn Full-fed on		Full-fed on whe	on wheat, barley, oats	
Liveweight, lb.	11-22	22-44	44–77	77–132	132-220	77-132	132-220	
Expected daily gain, lb.	0.7	1.1	1.3	1.6	2.0	1.5	1.8	
Protein and energy: Crude protein, % Total digest. nutrients, % Digestible energy, kcal.	22 80 1,587	18 80 1,587	16 75 1,496	14 75 1,496	13 75 1,496	15 70 1,406	14 70 1,406	
Inorganic nutrients: Calcium, % Phosphorus, % Salt (NaCl), %	0.80 0.60 0.50	0.65 0.50 0.50	0.65 0.50 0.50	0.50 0.40 0.50	0.50 0.40 0.50	0.50 0.40 0.50	0.50 0.40 0.50	
Vitamins: B-carotene, mg. Vitamin A, I.U. Vitamin D, I.U. Thiamine, mg. Riboflavin, mg. Niacin, ² mg. Pantothenic acid, mg. Vitamin B6, mg. Choline, mg. Vitamin B12, mcg.	$\begin{array}{c} 2.0\\ 1,000.0\\ 100.0\\ .6\\ 1.4\\ 10.0\\ 6.0\\ .7\\ 500.0\\ 10.0\end{array}$	1.6800.090.0.51.48.25.0.7408.07.0	1.2600.090.0.51.26.35.0.5.55.0	1.2 600.0 60.0 .5 1.0 4.5 5.0 - 5.0	1.2 600.0 60.0 .5 1.0 4.5 5.0 5.0	1.2600.060.0.51.04.55.0-5.0	1.2 600.0 60.0 .5 1.0 4.5 5.0 - 5.0	

Table 1. Nutrient requirements of growing and finishing swine $(expressed in percentage or amount per pound of total ration)^1$

1

From National Academy of Sciences Publication 1599 (1968), Nutrient Requirements of Swine. It is assumed that all the niacin in the cereal grains and their by-products is in a bound form and thus is largely unavailable. 2

	Full-	fed on cere	al grains	Full-fed o	on corn	Full-fed on wheat	, barley, oats
Liveweight, lb.	11-22	22-44	44-77	77-132	132-220	77-132	132-220
Expected daily gain, lb.	0.7	1.1	1.3	1.6	2.0	1.5	1.8
Total air dry feed requirements, lb.	1.3	2.7	3.7	5.5	7.7	5.5	7.3
Protein and energy: Crude protein, lb. Total digest. nutrients, lb. Digestible energy, kcal. ¹	.29 1.0 2,100	.49 2.2 4,370	.60 2.8 5,610	.77 4.1 8,250	1.0 5.8 11,550	.83 3.9 7,750 1	1.0 5.1 0,320
Inorganic nutrients: Calcium, gm. Phosphorus, gm. Salt (NaCl), gm.	4.8 3.6 2.9	8.1 6.3 6.1	10.2 8.5 8.4	12.5 10.0 12.5	17.5 14.0 17.5	12.5 10.0 12.5	16.5 13.2 16.6
Vitamins: B-carotene, mg. ² Vitamin A, I.U. Vitamin D, I.U. Thiamine, mg. Riboflavin, mg. Niacin, mg. ³ Pantothenic acid, mg. Vitamin B ₆ , mg. Choline, mg. Vitamin B ₁₂ , mcg.	2.6 1,300 132 0.8 1.8 13.2 7.8 0.9 660 13.2	4.4 2,200 250 1.4 3.8 22.5 13.8 1.9 1,125 18.8	4.4 2,200 340 1.9 4.4 23.8 18.7 1.9 	6.5 3,250 312 2.8 5.5 25.0 27.5 - 27.5	9.1 4,550 437 3.9 7.7 35.0 38.5 	6.5 3,250 312 2.8 5.5 25.0 27.5 - 27.5	8.6 4,300 412 3.6 7.3 33.0 36.3 - 36.3

Table 2. Nutrient requirements of growing and finishing swine (amounts per animal per day)

Requirements are based on the assumption that 1 pound of T.D.N. has 2,000 kcal. of digestible energy.
 Carotene and vitamin A values are based on 1 mg. of B-carotene equaling 500 I.U. of biologically active vitamin A. Vitamin A requirements can be met by carotene or vitamin A or both.
 It is assumed that all the niacin in the cereal grains and their by-products is in a bound form and thus is largely unavailable.

	Bred gilts and sows	Lactating gilts and sows	Boars-young and adult
Liveweight range, lb.	240-350	310-440	240-400
Protein and energy:		×	
Crude protein, %	14	15	14
Total digestible nutrients, %	75	75	75
Digestible energy, kcal.	1,500	1,500	1,500
Inorganic nutrients:			
Calcium, %	0.75	0.60	0.75
Phosphorus, %	0.50	0.40	0.50
Salt (NaCl), %	0.50	0.50	0.50
Vitamins:			
B-carotene, mg.	3.7	3.0	3.7
Vitamin A, I.U.	1,860	1,500	1,860
Vitamin D, I.U.	125	100	125
Thiamine, mg.	0.6	0.5	0.6
Riboflavin, mg.	1.9	1.5	1.9
Niacin, mg.	10.0	8.0	10.0
Pantothenic acid, mg.	7.5	6.0	7.5
Vitamin B ₁₂ , mcg.	6.3	5.0	6.3

Table 3. Nutrient requirements of breeding swine (expressed in percentage of amount per pound of total ration)

			Breeding swi	ne, liveweight c	lass	
	Bred gilts	Bred sows	Lactating gil	ts Lactating sov	vs Young boars	Adult boars
Liveweight, lb.	240-350	350-550	310-440	440-550	240-400	400-550
Expected daily gain, lb.	0.8-1.0	0.3-0.7	_	_	0.6-1.0	-
Total air dry feed requirements, lb.	4.4	4,4	11.0	12.0	5.5	4.4
Protein and energy: Crude protein, lb. Total digestible nutrients, lb. Digestible energy, kcal.	.62 3.3 6,600	.62 3.3 6,600	1.65 8.2 16,500	1.82 9.1 18,150	.77 4.1 8,250	.62 3.3 6,600
Inorganic nutrients:						
Calcium, gm.	15.0	15.0	30.0	33.0	18.8	15.0
Phosphorus, gm.	10.0	10.0	20.0	22.0	12.5	10.0
Salt (NaCl), gm.	10.0	10.0	25.0	27.5	12.5	10.0
Vitamins:						
B-carotene, mg.	16.4	16.4	33.0	36.3	20.5	16.4
Vitamin A, I.U.	8,200	8,200	16,500	18,150	10,250	8,200
Vitamin D, I.U.	550	550	1,100	1,210	690	550
Thiamine, mg.	2.8	2.8	5.5	6.0	3.5	2.8
Riboflavin, mg.	8.2	8.2	16.5	18.2	10.3	8.2
Niacin, mg.	44.0	44.0	88.0	96.8	55.0	44.0
Pantothenic acid, mg.	33.0	33.0	66.0	72.6	41.3	33.0
Vitamin B_{12} , mcg.	27.6	27.6	55.0	60.5	34.5	27.6

Table 4. Nutrient requirements of breeding swine (amounts per animal per day)

Amino	Growing pi	gs weighing	T7:	Bred sows
Acids	11-22 lbs.	44-77 lbs.	Finishing pigs	and gilts
Arginine ²	0.37	0.20	0.15	
Histidine	0.27	0.18	0.14	0.20^{2}
Isoleucine	0.76	0.50	0.35	0.43
Leucine	0.90	0.60	0.40	0.66^{2}
Methionine ³	0.80	0.50	0.32	0.35
Phenylalanine ⁴	0.79	0.50	0.32	0.52^{2}
Threonine	0.70	0.45	0.27	0.42
Tryptophan	0.18	0.13	0.09^{2}	0.08^{2}
Valine	0.65	0.50	0.28	0.46
Lysine	1.20	0.70	0.50	0.49

Table 5. Essential amino acid requirements of swine (expressed as percentage of the diet)¹

¹ From National Academy of Sciences Publication 1599 (1968), Nutrient Requirements of Swine, and University of Illinois Circular 866, Balancing Swine Rations. ² This level is adequate; the minimum requirement has not been established.

³ Cystine can satisfy 40 percent of the need for methionine.
 ⁴ Tyrosine can satisfy 30 percent of the need for phenylalanine.

Mineral element	Requirement (mg./lb. diet)	Toxic level (mg./lb. diet)		
Copper	2.7 ¹	113 ²		
Iron	36.3 ¹	2,270		
Iodine	0.1	_		
Magnesium	181 ¹	—		
Manganese	9.1	1,814		
Zinc	9.1 23 ³	907		
Selenium	0.5	2.3		

Table 6. Trace minerals for swine

Baby pig requirement. Toxic symptoms have been obtained on a few occasions. Higher levels may be needed if excess calcium is fed.

Table 7. Recommended antibiotic le	antibiotic levels
------------------------------------	-------------------

	Pig weight lb.	Antibiotic level gm.
		Per ton of complete feed
Baby pigs	10 25	40 40
Growing pigs	50	10-20
Finishing pigs	100-200	10
Therapeutic level		100-200 ¹
		Per ton of supplement
Supplement to be fed free choice with grain		50-100

If pigs are in very poor condition and will not eat, antibiotic can be given in drinking water.

· ····										Comm	only Used in	Swine Ka	uons*						
	Dry		Energy		Protein			Amino			Carbohydrat	te			Mineral		Vi	tamins	
Feed Ingredient	Matter %	T.D.N. %	Dig. E. Kcal/lb.	Crude %	Dig. %	Lysine %	Meth. %	Cystine %	e Tryp. %	Fiber %	N.F.E. %	Fat %	Ash %	Ca. %	Р. %	Rib. mg./lb.	P.A. mg./lb.		Choline mg./lb.
Barley	89	72	1400	11.6	8.2	.53	.18	.18	.18	5.0	68.2	1.9	2.4	.08	.42	.9	2.9	26.1	468
Corn Yellow, #2 Dent	89	82	1640	9.0	7.1	.18	.09	.09	.09	2.0	73.1	3.9	1.1	.02	.33	.6	1.1	12.0	244
Corn	07	70	1410	8.1	5.8	16	00	00	08				1.1			.0			
and Cob Meal	87	70	1410			.16	.08	.08	.08	8.0	66.1	3.2	1.6	.04	.27	.4	1.8	7.2	160
Millet Grain	90 80	66	1317	12.0	8.8	-	-		-	8.0	62.9	4.8	3.2	.05	.28	.7	3.4	23.9	359
Milo (Sorghum)	89	78	1570	11.0	7.8	.27	.09	.18	.09	2.0	71.6	2.8	1.7	.04	.29	.5	5.2	19.4	308
Oats	89	65	1300	11.8	9.9	.36	.18	.18	.18	11.0	58.5	4.5	3.2	.10	.35	.7	5.9	7.2	488
Rice-Rough	89	57	1140	7.3	5.5	.27	.15	.10	.12	9.0	66.4	1.9	4.5	.04	.26	.5	4.0	13.8	450
Rice-White, Polished	89	86	1720	7.3	6.2	.27	.27	.09	.09	.4	80.4	.4	.5	.03	.12	.3	1.5	6.4	412
Rye	89	75	1500	11.9	9.6	.45	.18	.18	.09	2.0	71.8	1.6	1.7	.06	.34	.7	3.1	.5	
Wheat	89	80	1600		11.7	.45	.18	.18	.18	3.0	70.0	1.7	1.6	.05	.36	.5	5.5	25.7	377
Rice Bran	91	74	1480		10.2	.50	.24	.10	.10	11.0	40.5	15.1	10.9	.06	1.82	1.2	10.7	138.0	570
Rice Polishings	90	89	1780		10.3	.50	.20	.10	.10	3.0	54.0	13.2	8.0	.04	1.42	.8	26.5	242.0	594
Wheat Bran	89	57	1142	16.0	12.2	.60	.10	.30	.30	10.0	52.8	4.1	6.1	.14	1.17	1.4	13.2	95.0	499
Wheat Middlings (Wheat, Flour By-product)	89	73	1460	17.0	15.0	.60	.10	.20	.20	2.0	63.0	3.6	2.5	.08	0.52	.7	6.2	23.9	490
Wheat Mill Run (Wh. Mixed Feed)	90	72	1440	15.3	12.2	.50	.40	.20	.20	8.0	57.5	4.0	5.2	.09	1.02	1.1	6.0	51.0	446
Bakery Waste-Dried	91	100		10.9	10.0	_	-	-		.7	64.7	13.7	1.6	_	—		_		_
Cassava Meal	86	63	_	1.4	1.0		_	-	-	3.1	78.6	.6	2.0	.13	.15		_	_	-
Copra-Dried	90	123	-	7.2	5.4	-		—	- 1	4.7	14.8	61.3	2.1						
Copra-Pressed	89	98	_	14.0	10.5		—	-	_	8.1	29.6	34.6	3.6	.15	.45	_	_	_	_
Fats, Oils, Tallows	100	199	3990	0	0	0	0	0	0	0.1	0	100.0	0	0	0	0	0	0	0
Garbage (Wet)	15	17	295	3.0	2.4			<u> </u>	_	.7	3.0	5.7	1.5	.10	.06	_	_	-	_
Molasses-Cane	75	56	1120	3.2	0	-	-	_	-	0	63.6	.1	8.1	.89	.08	1.5	17.4	15.6	398
Pineapple Bran	86	65		3.8	.6	-	_	-	_ 1	20.0	58.5	1.7	2.6	.16	.15	-		-	-
Sweet Potato Meal	88	63	_	7.9	6.0	_		-	1	4.0	69.5	1.7	3.5	.10	.15		_	_	
Sugar-Crude	99	96	1816	0.8	0	0	0	0	0	4.0	09.5	-	-	.20	.03	_		_	_
Cassava Root	33	26		1.1	0	_	_		_	1.4	28.8	.3	1.0	.20	.03			_	_
Irish Potato Root	22	20	392	2.2	1.6	_	_	_	_		28.8 18.3		1.0	.03	.00	.1	2,9	5.0	_
Sweet Potato Root	32	26	-	1.6	.2	-	-	_	_	.7 1.9	26,7	.1 .4	1.1	.01	.03 .04	 -	-	-	-

Table 8. Analysis of Feedstuffs

Commonly Used in Swine Rations*

	Dry	I	Energy	I	Protein		A	mino A	Acids		Carbohyc	irate			Mineral		Vi	itamins	
Feed Ingredient		T.D.N. %	Dig. E. Kcal/lb.	Crude %	Dig. %	Lysine 1 %	Meth. (%	Cystine %	Tryp. %	Fiber %	N.F.E. %	Ash %	Ca. %	Ca. %	Р. %	Rib. mg./lb.	P.A. mg./lb.		Choline mg./lb.
Taro Root	28	18		1.5	1.0	-	_	_	-	.6	24.2	.1	1.2	.02	.07	—	-	-	-
Coconut Meat-Fresh	54	73		4.4	3.3	—	-		-	5.5	6.5	36.0	1.0	-		-	_	—	—
Blood Meal	91	61	1220	80	62	6.9	.9	1.4	1.1	1.0	2.8	1.6	5.6	.28	.22	.7	.5	14.3	344
Meat and Bone Meal	94	65	1300	51	45	3.5	.7	.6	.2	2.2	2.6	9.5	29.1	10.6	5.1	2.0	1.7	21.7	995
Shark Meal	91	71	1422	72	66.2	_	.8	-	-	.5		2.5	13.5	3.5	1.9	3.1	4.1	28.8	1660
Tuna Meal	87	69	1377	57.3	52.7	6.2	1.7	1.0	.9	1.0	.9	8.9	19.0	5.3	3.1	3.6	3.6	27.0	1300
Skim Milk-Dried	94	86	1720	33.5	32.8	2.8	.8	.5	.4	.2	51.8	.9	7.6	1.3	1.0	9.1	15.3	5.2	648
Buttermilk-Dried	93	77	1540	32	29.8	2.4	.7		.5	0	45.2	5.8	9.6	1.3	.9	14.1	13.7	3.9	822
Coconut Oil Meal (Expeller)	93	76	1529	20.4	14.9	.5	.3	.2	.2	12.0	47.2	6.6	6.9	.2	.6	1.4	3.0	11.3	418
Coconut Oil Meal (Solvent)	92	71	1420	21.4	15.5	-	-	-	-	15.0	48.3	1.8	5.6	.17	.6	6.0	-	—	-
Cottonseed Meal-41% (Expeller)	94	67	1337	41	35	1.7	.6	.8	.6	12.0	30.4	4.3	6.2	.16	1.2	2.3	6.4	18.0	1264
Cottonseed Meal-41% (Solvent)	92	61	1224	41	35	1.7	.6	.8	.6	12.0	31.9	1.4	6.2	.16	1.2	2.3	6.4	17.9	1300
Peanut Oil Meal (Expeller)	92	86	1714	46	43	1.3	.6	.7	.5	11.0	23.6	5.9	5.7	.17	.57	2.4	21.9	76.8	765
Peanut Oil Meal (Solvent)	92	77	1549	47.4	44.5	2.3	.4	-	.5	13.0	25.9	1.2	4.5	.2	.65	5.0	24.1	77.3	909
Soybean Oil Meal 44% (Expeller)	90	79	1580	44	39.5	2.7	.8	.6	.6	6.0	29.8	4.7	5.7	.27	.63	1.4	6.4	13.8	1215
Soybean Oil Meal 44% (Solvent)	89	75	1500	45.8	41.7	2.9	.6	.6	.6	6.0	30.5	.9	5.8	.32	.67	1.5	6.6	12.2	1247
Soybean Oil Meal Dehulled (Solvent)	90	77	1548	50.9	46.3	3.2	.7	.7	.8	2.8	29.7	.8	5.6	.26	.62	1.4	6.6	9.8	1255
Sunflower Oil Meal (Expeller)	93	71	1416	41	33.7	2.0	1.6	-	-	13.0	24.6	7.6	6.8	.43	1.0	_	_	_	-
Alfalfa Meal–Dehydrate	d 93	32	652	17.9	8.3	.8	.2	.4	.4	24.3	38.9	3.0	9.0	1.33	.24	5.6	13.6	20.8	690
Buttermilk-Liquid	9	9.1	_	3.5	3.3	_	_		÷	0	4.5	.6	.8	.14	.08	.7	2.1	.6	
Skim Milk-Liquid	9.5	8.7	_	3.6	3.4	-	-		-	0	5.1	.1	.7	.13	.10	.9	1.6	.5	
Whey-Liquid	6.7		-	.9	.8	_	-	–	-	0	5.0	.1	.7	.10	.10	.1	2.4	.4	_

 Table 8. Analysis of Feedstuffs
 Commonly Used in Swine Rations*

*From United States-Canadian Tables of Feed Composition, National Academy of Sciences Pub. 1684; Feeds and Feeding, 22nd. ed., F. B. Morrison; Univ. of Hawaii feed composition data.

		<u></u>	%	of total ratio			% of	Remarks
	Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Remarks
96	Corn (Maize)	60	80	90	80	80		 High energy, low fiber, highly palatable. Yellow corn is not a dependable source of vitamin A. White corn has no vitamin value. Deficient in most essential amino acids particularly lysine and tryptophan. High lysine corn (Opaque-2) is higher in protein and in lysine and tryptophan. Low in calcium.
	Wheat	35	80	90	90	90		 Higher in protein content than corn (11-13%) Ground wheat has replacement value of 95-110% of corn. Should be ground coarsely or rolled for hogs as has a tendency to be less palatable if finely ground.
	Barley	25	80	90	80	80		 Higher in crude protein than corn (10-11%). Higher fiber con- tent (6%), lower in energy than corn. Ground barley has replacement value of 85-95% or corn. Should be ground or rolled for swine.
LC	Oats	0	20	20	40	20		 Higher in crude protein (11-12%) than corn. High in fiber (12%), low in ener- gy. Ground whole oats has replacement value of 80-85% of corn when limited to 25% of the ra- tion. Hulled or rolled oats has replace- ment value of 105-110% of corn.
	Milo (Sorghum)	35	70	80	70	70	_	 Crude protein con- tent of 10-11%. Ground milo has replacement value of 90-95% of corn. Some sorghums be- cause of higher tan- nin content are less palatable.

Table 9. Suggested maximum levels of ingredients to use in swine rations

		1		% of total rati	01		01 - F	1
	Ingredients	Starter	Grower	Finisher	Gestation	Lactation	% of Supplement	Remarks
	Rice	30	40	45	55	55	_	 Rough rice fairly high in fiber (9%). When finely ground, rough rice has 7585% feeding value of corn.
28	Rye	0	50	70	0	0		 Crude protein content of 11-12%. Lacks palatability. Ground rye has replacement value of 90% of corn when limited to 20% of corn. Possible contamination with ergot which may cause abortion.
	Rice Bran	0	20	20	55	20	_	 Crude protein of 12%. High in fat (11-12%) which is often rancid. Produces soft pork unless solvent ex- tracted. Worth 85% value of corn when restric- ted to 30% of the ra- tion.
								5. May cause scouring in young pigs.
	Rice Polish	0	30	50	50	50		 Crude protein of 12%. When limited to 30% of corn has feeding value of 120% of corn. Soft pork produced if it makes up more than 50% of ration. May cause scouring in young pigs.
29	Wheat Bran Wheat Mixed Feed (Millrun)	0	5	5	30	15	_	 Crude protein content of 14-16%. High fiber (8-10%) bulky. Bran has a mild laxative effect. Bran is palatable. Should not replace more than 10% of corn in ration for growing pigs.
	Wheat Middlings Wheat Pollard Wheat Shorts	5	30	30	20	20	_	 Crude protein content of 15-16%. When limited to 20% of ration, feeding value surpasses corn. Slightly lower in fiber than wheat bran and millrun.

Table 9 (Continued)	. Suggested maximum	levels of ingredients to	use in swine rations
---------------------	---------------------	--------------------------	----------------------

			9	of total ratio	on .		% of	
	Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Remarks
	Pineapple Bran	0	5	10	30	15	_	 High in fiber (18-20%), lower in energy. Reduces gain in growing pigs if fed at high levels.
30	Molasses (cane)	10	50	55	50	20		 High levels of molasses requires fibrous material in the ration to prevent scouring. Exact levels of molasses dependent upon price relationship with grains since growth rate will be less and feed per unit of gain will be greater. Handling of high molasses ration is more difficult. Primary value is as energy source with virtually no protein value.
	Garbage	0	½ to	bitum feeding I pound daily in supplement	ofa	0	—	1. Variable in compo- sition.
								 Best not to feed pigs less than 75 pounds on a high garbage di- et. Garbage should be cooked (disease pre- caution) and should not be diluted with water.
31	Bakery Waste— stale bread, cake, pastries, bakery crumbs.	30	40	45	40	40		 Generally considered similar in nutritional value to corn but dependent upon dry matter and fat content. Can replace up to 50% of grain for swine. Dried bakery waste may have to be moistened at feeding time.
	Root Crops –Irish potato –Sweet potato –Taro –Cassava (manioc)	0	cook grain than grain 50% If ro- (free upon 36-44	best results prived starchy room mix should room and should be to	ot crops to not be greater each part of uld not excee n. ed ad libitum depending -21bof a pplement sho	tation of ro- shoul d restri since are lo dry n and e	they	1. High in moisture (70-80%), low in protein and energy and deficient in vitamins A and D.

Table 9 (Continued). Suggested maximum levels of ingredients to use in swine rations

Table 9 (Continued)	. Suggested maximur	n levels of ingredients	to use in swine rations
---------------------	---------------------	-------------------------	-------------------------

	1		9	6 of total ratio	% of			
	Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Remarks
3	Continuation of Root Crops —Irish potato —Sweet potato —Taro —Cassava (manioc)							2. Generally, roo crops should not b fed at higher rat than 3-4 lb of root to 1 lb of grain When fed at thi rate, cooked starch root crops ar worth about 259 value of corn.
								3. Dry matter contair mostly carbohy drate (starch).
								 4. Starchy root crop should be cooked —Irish potatoes - add salt (2 lb pe 100 lb potatoes) t increase palatabi lity, but drain of water befor cooking. —Cassava – cookin eliminates prussi acid problem.
	Fruits Coconut Banana Breadfruit	0	Feedin	g recommend for root croj	lations similar	tation use of fresh fr should be	uits	1. Most fruits low in dry matter, energy and protein.
	—Papaya (paw-paw) —Avocado					restricted they are lo in dry mat and energy	ow tter	 2Coconut & bread fruit relatively high in dry matte (40-50%). -Avocado & bana na relatively low in dry matter (20-25%). Papaya low in dry matter (10%).
ç								 3. Coconut & avocade high in fat (36% and 16%). Avocado pro duces soft pork. Coconut produces hard pork.
								4. In Hawaii trials where papaya, ba nana and avocade have comprised 25-30% of total ra tion, value was 25-45% of grain mix ration.

			ç	% of total ratio	on		% of	
	Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Remarks
	Dehydrated or dried roots Cassava meal Sweet potato meal Irish potato meal		45	50	50	45	_	 Primarily used as an energy source. Low in protein. When limited to about one-third of total ration, have feeding value com- parable to grain.
34	Coconut Oil Meal (Copra)	10	30	30	25	25	50	 Crude protein content of about 20%. Medium quality protein. Lacking in palatability If cheaper in price then grain may be used as substitute for part of grain up to about 40% of grain portion.
	Cottonseed Meal	0	5	9	9	9	25	1. Normally available as 41% or 44% crude protein.
								 Gossypol toxicity problem-C.S.M. should not exceed 9% of complete ra- tion and level of gossypol in the total ration should not exceed 0.01% free gossypol. Low in lysine and marginal in isoleu- cine, threonine and tryptophan. Low in calcium.
	Peanut Oil Meal (groundnut Meal)	5	15	15	15	15	25	 Generally contains 45-50% protein. Low in lysine.
35	Alfalfa Meal Lucerne Meal	0	5	5	10	10	15	 Good source of car- otene (vit. A). High fiber (25%). Low palatability. Normally cannot justify as protein or vitamin source be- cause of cost and gain depression.
	Blood Meal	2	3	3	3	3	15	 Protein content about 80%. Liable to excessive heating or other damage during processing thus af- fecting available lev- els of amino acids, digestability and pa- latability.

Table 9 (Continued). Suggested maximum levels of ingredients to use in swine rations

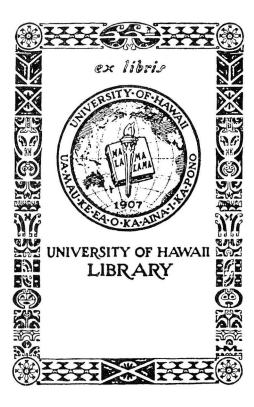
		9	6 of total ratio	% of			
Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Remarks
Tuna Meal	5	5	5	10	10	25	 Normally 50-60% crude protein. Variable quality.
Meat Meal Meat and Bone Meal Tankage	5	5	5	10	10		 Crude protein content of 45-60%. Variable quality—dependent upon amount of bone and connective tissue and processing method used. Low in tryptophan particularly, as well as in methionine and isoleucine. High in calcium and phosphorus. Good source of lysine, but improper processing may destroy or reduce availability.
Skim Milk—Dried	20	0	0	0	0	20	 Crude protein con- tent of 33%. Excellent protein quality.
					e in anger	a tan sati sati fati s	 Good source of B vitamins, calcium and phosphorus. Cost limitation.
Soybean Oil Meal	20	20	15	20	20	80	 Crude protein con- tent of 41-50%. Best vegetable pro- tein source for pigs. Marginal in methio- nine. When used as only source of protein, must be supple- mented with miner- als and vitamins.
Liquid Skim Milk Liquid Buttermilk	0	grain-vita- min-mineral mix plus one-half gallon	4-5 pounds of grain- vitamin- mineral mix plus ¾-1 gallon or 2 pounds of grain mix plus <i>ad libi-</i> <i>tum</i> (3½ gal rain to milk ely 1:2-3	grain mix plus milk at rate of 1 gallon per 1 1/5 pounds of grain mix	4 pounds of grain mix plus milk at rate of 1 gallon per 1 1/5 pounds of grain mix		 Liquid skim milk and buttermilk are similar in feeding value. For younger pigs particularly, milk should be consis- tently fresh, sour or preserved otherwise digestive upsets may occur. To pre- serve add ¾-1½ pints of formalin (40% solution of formaldhyde in water) to each 100 gallons of separated

Table 9	(Continued).	Suggested	maximum	levels of	ingredients	to use in	swine rations
I HOLO /	(Continued)		ander and a second				I DITALLY LUVIOLIN

In mediante		9	6 of total ratio	% of	Remarks		
Ingredients	Starter	Grower	Finisher	Gestation	Lactation	Supplement	Kemarks
Continuation of Liquid Skim Milk Liquid Buttermilk						8	 For maximum performance results, it is best not to feed to appetite. Exact levels of feeding dependent upon price relationship with grains. One gallon contains about one pound of dry matter. 100 pounds is equal in value to about 28 pounds of corn.
Liquid Whole Whey	0	2½ pounds of grain mix plus <i>ad libitum</i> (½-2 gals)	of grain mix plus ad libitum			-	 Lower protein than skim milk or butter- milk. More suitable for pigs weighing over 100 pounds. Feeding value about one-half that of skim milk. Similar feeding val- ue to corn when making up 25-30% of the ration.

Table 9 (Continued). Suggested maximum levels of ingredients to use in swine rations

•


*

		Ca %	P %
Calcium and Phosphorous Supplement Bone black Bone meal (steamed) Defluorinated phosphate rock Dicalcium phosphate		27 29 29 27	12.7 13.6 13.3 19.1
Calcium Supplement Limestone Oyster shell Coral rock		33.8 38.0 38.0	
Phosphorous Supplement Diammonium phosphate Sodium tripolyphosphate	8		22.3 25.3
Magnesium Magnesium sulfate	9.9% Mg.		
Manganese Manganese oxide Manganese carbonate Manganese sulfate	72.0% Mn. 48.0% Mn. 32.0% Mn.		
Iron Iron oxide Iron sulfate (ferrous)	70.0% Fe. 20.0% Fe.		
Iodine Calcium iodate Potassium iodide	60.0% I. 76.0% I.		
Cobalt Cobalt carbonate Cobalt sulfate Cobalt oxide	50.0% Co. 25.0% Co. 73.0% Co.		
Copper Copper oxide Copper sulfate Copper carbonate	80.0% Cu. 25.0% Cu. 53.0% Cu.		
Zinc Zinc oxide Zinc sulfate Zinc carbonate	80.0% Zn. 23.0% Zn. 52.0% Zn.		

Table 10. Sources of minerals

•

ł

Cooperative Extension Work in Agriculture and Home Economics College of Tropical Agriculture, University of Hawaii, Honolulu, Hawaii 96822 United States Department of Agriculture Cooperating C. Peairs Wilson, Director, Hawaii Cooperative Extension Service Distributed in Furtherance of the Acts of Congress of May 8 and June 30, 1914 CIRCULAR 439–NOVEMBER 1969