Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Prevent Low-Quality Analytics by Automatic Selection of the Best-Fitting
Training Data

Cornelia Kiefer
GSaME
University of Stuttgart, Germany
cornelia.kiefer @ gsame.uni-stuttgart.de

Abstract

Data analysis pipelines consist of a sequence of
various analysis tools. Most of these tools are based on
supervised machine learning techniques and thus rely
on labeled training data. Selecting appropriate training
data has a crucial impact on analytics quality. Yet,
most of the times, domain experts who construct analysis
pipelines neglect the task of selecting appropriate
training data. They rely on default training data sets,
e.g., since they do not know which other training data
sets exist and what they are used for. Yet, default training
data sets may be very different from the domain-specific
input data that is to be analyzed, leading to low-quality
results. Moreover, these input data sets are usually
unlabeled. Thus, information on analytics quality is not
measurable with evaluation metrics. Our contribution
comprises a method that (1) indicates the expected
quality to the domain expert while constructing the
analysis pipeline, without need for labels and (2)
automatically selects the best-fitting training data. It
is based on a measurement of the similarity between
input and training data. In our evaluation, we consider
the part-of-speech tagger tool and show that Latent
Semantic Analysis (LSA) and Cosine Similarity are
suited as indicators for the quality of analysis results
and as basis for an automatic selection of the best-fitting
training data.

1. Introduction

In difference to data scientists, who oftentimes
write program code, domain experts use simplified
analysis toolkits such as RapidMiner [1] to construct
analysis pipelines from scratch. In an analysis pipeline,
various analysis tools are applied to the domain-specific
data consecutively. For example, an analysis pipeline
for the extraction of opinions from texts may consist
of a first analysis tool that annotates where a least
meaningful text unit such as a word begins and where
it ends (tokenizer’). A subsequent analysis tool in

URI: https://hdl.handle.net/10125/63868
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

Peter Reimann
GSaME IPVS
University of Stuttgart, Germany

H{CSS

Bernhard Mitschang

University of Stuttgart, Germany

this pipeline then adds information on the part of
speech of these tokens such as adjective, noun or verb
(’part-of-speech tagger’). Afterwards, a third analysis
tool adds information on opinions such as positive,
negative and neutral (’sentiment analysis tool’).

Most of the times, the domain expert who constructs
such an analysis pipeline does not know for each step
in the analysis pipeline which training data sets are
available and what these training data may be used
for. Thus, in many domain-specific analysis pipelines,
“out-of-the-box’ tools with default training data sets are
used. For example, news texts are used as default
training data for the tokenizer and part-of-speech tagger
analysis tools mentioned above. However, these default
training data sets are very different from the operational
input data sets of real industry and domain-specific use
cases. Thus, the use of default training data sets can
lead to low-quality analytics results.

Of course, it would be optimal to compile a
new labeled data set for each analysis tool and
domain-specific input data set. Yet, preparing labeled
training data sets is very time-consuming, expensive and
demands expert knowledge (e.g., see Ide et al. [2]).
Therefore, it is not realistic to have a "perfect’ training
data set for each analysis tool and domain-specific input
data set and oftentimes default training data sets are used
instead.

Moreover, the domain expert has no information
on the impact of selected training data on the quality
of analytics results. Traditional evaluation metrics
for supervised analysis tools such as accuracy rely on
labeled domain-specific input data [3]. Since labels
are oftentimes not available for domain-specific data,
information on analytics quality is not measurable with
evaluation metrics. Thus, no information on the quality
of analysis results is available to the domain expert who
constructs a domain-specific analysis pipeline. So, the
domain expert usually cannot verify and thus cannot
know, that the employment of default training data may
lead to low-quality analytics results.

In this paper, we suggest a method which adresses

Page 1036

this quality issue arising from non-fitting default training
data. In contrast to analytics as carried out by data
scientists, the methods only apply to analytics carried
out with simplified analysis toolkits such as Rapid Miner
and by domain experts who are not IT or data analytics
experts. Besides the focus on domain experts, our
method is crucial to many use cases, since domain
experts and ’citizen scientists’ make up the majority of
the users of simplified analysis toolkits. We furthermore
assume that the domain expert who constructs an
analysis pipeline based on simplified analysis tools
neglects the initial task of selecting the best fitting
training data available. The major reason is that s/he
often does not know which training data sets exist and
what they are used for.

Our main contributions comprise (1) a concept for an
assessment of the expected quality of analytics results
via a measurement of the similarity between operational
input data and training data. To this end, we suggest a
quality indicator based on similarity metrics. Depending
on the data type, similarity metrics for images, speech,
structured data or texts may be employed (see Section
3). Moreover, based on these similarity measurements
and based on a repository of available training data
sets, we suggest a method for (2) automatic selection
of the best-fitting training data for a given analysis
tool and operational input data set. Then, we present
(3) a prototypical implementation of these concepts.
Our method is exemplary integrated into the FlexMash
toolkit [4], which is a data processing and analysis
toolkit suited for domain experts with little IT skills. In
future, it may be easily integrated into other simplified
analysis toolkits such as RapidMiner. Finally, we
present an (4) evaluation of the concepts for textual data
and the part-of-speech tagger analysis tool. We examine
several text similarity metrics and find that the accuracy
of part-of-speech taggers can be crucially increased by
an automatic selection of the best-fitting training data
when compared to the accuracy of ’out-of-the-box’ tools
which employ default training data.

First we motivate our method with an use case
scenario (Section 2). In Section 3, we outline related
work, before we present our concept in Section 4. Then,
we describe evaluation results for textual data sets and
the part-of-speech tagger (POS-tagger) analysis module
in Section 5. Finally, we conclude our work (Section 6).

2. Use Case

As a sample use case, we consider a team leader
in industry who is responsible for a production line.
He wants to get information on frequent reasons for
downtimes on the production line. To this end he has

named entities, e.g. part of
persons and errors speech)
\\ part of speech \ / named
\ \ M/ entities
S— Language Named
Identifier & Z(ggér - Entity
o Filter

Recognizer ’ ok T
Stanford or:erationa]
’ output data

%

t;p;erational
input data

‘ Tika > ‘ CRF
Language-
‘ detecto|> ‘ ieircie;y)fron

H Language

Identifier H TNT

Figure 1. Sample analysis pipeline for textual
industry data with concrete examples for
‘out-of-the-box’ analysis tools such as Tika

access to a data set with a free text field on causes and
actions related to machine downtimes as well as to a
simplified data analysis toolkit such as RapidMiner [1]
or FlexMash [4]. He starts to build an analysis pipeline
from scratch. In doing so, he employs many simplified
“out-of-the-box’ analysis tools which rely on default
training data sets such as news texts.

In Figure 1, we illustrate a sample analysis pipeline
build by the domain expert for his use case. The industry
data with free-text information on causes and actions
related to machine downtimes is the operational input
data to the analysis pipeline. The texts are analyzed
by consecutive analysis modules. The domain expert
decides to annotate the language of each text in a first
step by the Language Identifier. He filters the data
and only uses free texts with the language annotation
’German’ in the next steps. Then a part of speech such
as verb, noun or adjective is assigned to each word by
the POS-tagger. Finally, named entities such as persons,
errors and machines are recognized automatically by the
Named Entity Recognizer (NER).

For each step in the pipeline, various
“out-of-the-box’ implementations and tools exist.
For example, Tika [5], Language-detector [6] and
Language Identifier [7] can be employed in automatic
identification of the language. Various out-of-the-box
implementations for the POS-tagger module exist, e.g.,
CREF [8], Perceptron [8] and TNT [9]. Tools for NER
exist in the Stanford tool collection [10] as well as in
OpenNLP [11]. To our domain expert moreover internal
pre-trained models for NER are available. The domain
expert applies the analysis tools ’out-of-the-box’ with
default settings and default training data.

Thus, without the method suggested in this paper,
the domain expert employs default and oftentimes
non-fitting training data leading to low-quality results,

Page 1037

without even knowing about the issue. For example,
non-fitting news texts are employed as training data
by Tika (Language Identifier) and CRF (POS-tagger).
We suggest a method to prevent low-quality analytics
resulting from non-fitting training data by measuring
automatically how good the training data (e.g., news)
and operational data set (e.g., industry data) fit together
and by automatically selecting the best-fitting training
data set available.

3. Related Work

We suggest to employ the similarity of operational
and training data as quality indicator. Wang and Strong
[12] define data quality as “fitness for use by data
consumers”. We extend this definition and state that
data also needs to be fit for use by analytical processing
tools (cf. Kiefer [13]). Many data quality frameworks
and quality indicators for structured data exist (e.g.,
Sebastian-Coleman [14]). However, data quality
frameworks and quality indicators for unstructured data
are demanded, but only first conceptual indicators are
suggested by Batini and Sonntag [15, 16]. Executable
quality indicators for unstructured data are missing. In
Section 5.5, we investigate if text similarity correlates
with the expected accuracy, and thus if text similarity
may serve as a new quality indicator for textual data sets.

Our approach is based on similarity metrics. Several
such metrics exist that are applicable to various types
of data, such as database tables, images, videos and
text (see Shirkhorshidi et al. [17], Mielke [18], Fuentes
et al. [19] and Section 5.4). In our evaluation, we
focus on textual data and thus employ text similarity
metrics. Text similarity metrics play a crucial role
in many research areas. For example, they are
employed in automatic plagiarism detection [20] and
automated assessment of student exams [21]. To the
best of our knowledge, no previous work employs such
similarity metrics as quality indicator based on the
automatic measurement of the similarity between input
and training data in analysis pipelines.

Moreover, we suggest to employ the similarity
between operational and training data for the automatic
selection of the best-fitting training data. In the machine
learning community, automatically creating, improving
and enriching training data for a specific analysis
purpose, is a heavily discussed topic. Many works
termed as ’training data selection’ try to reduce the
size of the training data without (drastically) affecting
the quality in a negative way. For example, Wang et
al. present an approach for support vector machines
[22]. They show that, while they reduce the size of
the training data set, accuracy does not deteriorate.

Work on ’instance selection’ tries to compile perfect
training data with respect to runtime and accuracy on
an instance level [23]. Traditional instance selection
methods rely on labeled operational data, which in our
setting is not available. Moore and Lewis select training
data on an instance level for building a language model
[24]. Here, the selection is based on a pre-compiled
in-domain model. Several approaches moreover extend
labeled training data sets by means of unlabeled data.
Axelrod et al. adapt training data sets for statistical
machine translation systems to new domains [25]. Li
et al. adress semi-supervised text classification [26].
Blum et al. suggest a co-training approach combining
labeled and unlabeled data for the classification of web
pages [27]. In ’transfer learning’, a predictive function
is learnt from training data of one domain and then
adjusted to a new domain by transferring knowledge
from the source domain to the new domain [28]. All of
these approaches are different from our method, since
they assume that the initial training data set was already
chosen or is composed, e.g., by means of ’instance
selection’. They build up on initial training data or
mining models, e.g., in terms of improving performance
or coverage. The initial step of selecting training data
is often neglected by domain experts. In difference to
existing works, our approach adresses the first task of
analysts of selecting the best training data available. In
contrast to working upon already selected training data,
we focus on impeding failures by domain experts who
employ out-of-the-box analysis tools to build analysis
pipelines from scratch and neglect the initial training
data selection task.

4. Method to Prevent Low-Quality
Domain-Specific Analytics

We start this section with a formalization of analysis
pipelines, since our concept is to be applied to all
elements within such pipelines based on supervised
machine learning tools (Section 4.1). Then we go on by
describing a training data and mining model repository,
which builds the basis for our concept (Section 4.2).
Finally, we describe our concept in Sections 4.3 and 4.4.

4.1. Data Analysis Pipelines

In this section, we give a formalization of analysis
pipelines that are based on supervised analysis modules.
In Figure 2, we present a sample formalization of an
excerpt of an analysis pipeline. Concrete examples
for these formalizations are given in Figure 1. The
operational data o is read and then analyzed by
consecutive analysis modules my. Each analysis
module has a corresponding description, annotation

Page 1038

Am,

c dmn ‘4 A’
emy, N\ [
‘ ["]> operational
) e output data
‘ E[mn]z

. ,;» dml
,’,/ ‘ €[m,4] \
o e W €lma,
‘ e[m1]3

Figure 2. Sample formalized excerpt of an analysis
process based on supervised machine learning
modules.

type and several executable implementations. To
indicate the affiliation of pipeline elements to the
analysis module we add a subscript my to each
corresponding element. The module description d,,},
is the name of the analysis module mj, which we
add for easy comprehensibility. For example, module
descriptions such as ’Optical Character Recognition’
(OCR), ’speech-to-text’, 'POS-tagger’ and ’Named
Entity Recognizer’ exist. A module m; adds labels of
type an,; to the operational data, where a,,; denotes
one label type. A Named Entity Recognizer for
example adds labels of type named entity. Further
examples of label types are ’character’, ’language’,
“part of speech’ and 'named entity’. Moreover, several
executable implementations / analysis tools €lmy],, are

possible for each module my. For example, various
concrete implementations of POS-taggers exist (e.g., see
section 5.1). The result of the analysis pipeline is the
operational data set now enriched with annotations. Our
concept is applied to each supervised-learning-based
step separately, e.g., in an analysis pipeline as illustrated
in Figure 2. Hence it is furthermore applicable to more
complex, also non-sequential workflows.

4.2. Training Data and Mining Model
Repository

To enable access to the raw training data sets, we
introduce the concept of a training data repository.
The training data sets are labeled with different label
types (see Section 4.1). Several training data sets may
be available for the same label type, and all of these may
be stored in the repository. For example, several training
data sets with annotations of type ’part of speech’ are
available, which are suitable training data sets for a
POS-tagger module (see Section 5.1).

Fast processing could furthermore be ensured by
linking pre-trained mining models to the training data

sets stored in a mining model repository. This
repository would need to contain the training data sets,
information on the label types and available mining
models. A similar repository was already suggested in a
patent by Sas Institute Inc [29] and may serve as a more
detailed conceptual basis.

4.3. Measure the Similarity Between Input
and Training Data: Fit of Training Data
as Quality Indicator (FiT)

Operational input data sets from real use cases do not
come with labels for text analysis modules. For these
data sets, no accuracy values are calculable. Thus, the
quality of many analysis steps in domain-specific text
analysis pipelines is usually not known. For example, if
a domain expert analyzes an industry data set without
labels, he cannot determine the accuracy of a OCR,
speech-to-text or POS-tagger module. Nevertheless, if
the similarity metric and the accuracy correlate, the
similarity metric can be used as a quality indicator that
informs the data analyst on how well the operational
data and the used training data fit together. This goes
along with the definition of data quality as “fitness
for use by data consumers” in Wang and Strong [12].
Pointing at this definition, we denote the “similarity
between input and training data” by “fit of training
data” and suggest it as a new indicator for the quality
of data within analytics pipelines. In Section 5 we
discuss evaluation results, which show that this indicator
correlates positively with accuracy.

The domain expert works with an analysis toolkit
such as RapidMiner [1]. Here, the domain expert
can build analysis pipelines in a graphical user
interface. Therein, each analysis module is represented
graphically, e.g. by a carat or a circle. This graphic
representation may be highlighted with a green or red
colour, thus indicating high or low quality. With
our approach, this quality judgement may be based
on the similarity of the operational and the training
data. Each concrete analysis tool €[m,], comes with
metainformation on the training data set it employs as
default. This default training data set can be retrieved
from the repository described in Section 4.2. Then it’s
similarity to the operational data set may be measured.
Since similarity and accuracy correlate positively (see
Section 5.5), the module may moreover be highlighted,
e.g., with colours corresponding to quality levels. Thus,
the analyst is informed and moreover may react directly
on quality issues, e.g. by changing the analysis tool
or training data set employed. These steps may be
performed for each (supervised learning) module in the
analysis pipeline (1) before they are actually carried

Page 1039

out and (2) without need for labels in the operational
data. This impedes failures and moreover saves time and
resources in the construction of domain-specific analysis
pipelines.

4.4. Automatic Selection of the Best-Fitting
Training Data (SeT)

Besides giving feedback on the quality, the
best-fitting training data available may be automatically
selected from the training data repository, to improve
analytics quality. Here, various training data sets may
be available with the same label type. These may be
retrieved from the repository. We denote the result with
Rr,, . We moreover denote a training data set which is
in a certain set of available training data sets Rka ,1.e.,
which has label ay,, , by t[umk]z_. Based on these notions,
we illustrate the selection method for a sample module
mg in Figure 3. In the first step, all training data sets
with the appropriate label for the module are selected
from the training data repository, i.e., RTm2 is calculated
(see step(1) in Figure 3). In the example illustrated in
Figure 3, six possible training data sets exist which have
labels of type a,,, and thus could be used by ms. Then,
the similarity is calculated for each pair of o and t[am2],~
(see step(2) in Figure 3). In the last step, the training
data set Ham,); with the highest similarity to o is chosen.
In the example given in Figure 3, Fam,], has the highest
similiarity 0.65 and is thus selected as the training data
set.

In Formula 1, we show the selection function. For
each training data in the set of all available training data
sets Rr,, , the score function sim(t,0) is calculated,
i.e., the similarity metric sim is applied to the training
data and the operational data. Then, the t; which
maximizes this score function is selected.

arg max sim(t, o) (1
tGRka

After the most similar training data set is selected
from the set of available training data sets, the concrete
implementation €lmal g maybe needs to be re-executed

using the selected training data set. Based on a mining
model repository (see Section 4.2), instead of generating
a new mining model, which might take too long,
analysis pipelines can be directly equipped with the
corresponding pre-compiled mining models.

5. [Evaluation of the Concept for Textual
Data and the POS-Tagger Module

While the general concept is applicable to various
data types, in the remainder of this work we focus

on textual data. For textual data it is especially hard
to create perfectly fitting training data (see Ide et al.
[2]) and thus text analysis pipelines may benefit from
selecting the most similar training data set available.
We evaluate our concept for a text analysis module
which is present in almost any text analysis pipeline: the
POS-tagger.

We start this section with a description of the
POS-tagger module. We continue by describing the
data sets used. Then, we outline our prototypical
implementation and describe the selection of relevant
text similarity metrics. Finally, we detail the evaluation
results.

5.1. A Text Analysis Module: the
Part-of-Speech Tagger

A part-of-speech tagger (POS-tagger) automatically
assigns a part of speech, such as verb, adjective,
noun, to each word in a text. Consider the following
sample sentence together with the part of speech
tags as assigned by the NLTK POS-tagger (CRF):
Can/verb welpronoun automatically/adverb select/verb
the/article optimal/adjective training/noun data/noun
punctuation mark

A POS-tagger module relies on training data.
Several training data sets with manually assigned labels
exist, see the next section. For the evaluation of our
concept, we employ three high quality, feature-rich
and heavily used implementations of the POS-tagger
module:

* CRF POS-tagger [8]
* Perceptron tagger [30]
e TNT tagger [9, 31]

The evaluation scripts are available on GitHub,
together with the prototype (see Section 5.3). The
quality of a POS-tagger is determined by comparing
the tags predicted by the system (by the tagger) with
manually annotated labels. The standard metric for
measuring the quality of a tagger is it’s Token Accuracy
(ACC, cf. Manning [32]). Token Accuracy in percent is
given in Equation 2.

correct POS tags in tagged data)

(
A =
ce (# total POS tags in tagged data)

*100

2

5.2. Data Sets used in the Experiments

We conduct our experiments on 18 data sets from
different domains, such as news, prose, reviews,

Page 1040

\/ Training data repository | Step (1):
select all training
data sets with

labels of type a

Vot e

my

Analysis module description ‘ >

Step (2): calculate
similarity for all
T possible pairs
. operational
’ o input data

< Step (3): select the
[am,]] training data set with the
\\/ highest similarity to o
N i
Executable] Label ¢ Training |
implementation type N/ data :

//'\/t[

read remove
data stopwords

| '
(Hamg1,)
(e
Nk

g

Figure 4.

am, .
calculate text select most kY
similarities similar \\v/

Similarity
Score

Processing pipeline for the prototypical implementation for SeT. For FiT the last processing step is

not needed.

governmental texts, humorous texts, tweets and chat
posts. 14 of the data sets are part of the huge 'Brown
corpus collection’ which contains 1.15M tokens and
consists of data sets of different genres such as religion,
mystery and reviews. Furthermore, a subset of the Penn
Treebank (news), the CONLL 2000 data set (news), a
Twitter corpus and a data set with chat posts is used in
the experiments. The Twitter corpus was taken from
Gimpel et al. [33], all other data sets are taken from
the collection of corpora which comes with NLTK [34].
All of the data sets come with manually annotated part
of speech tags and are freely available. Thus, in our
evaluational setting, we are able to calculate the Token
Accuracies and, furthermore, all evaluation results are
reproducible.

5.3. Prototypical Implementation

In this section we describe a prototypical
implementation of the concept explained in Section 4,
which we developed for a first validation. In Figure 4,
we illustrate the processing pipeline.

Several software frameworks implement text
similarity measures. We chose the DKPro Similarity
library [35], since it is open-source, actively developed
and easy to use. It is part of DKPro, a collection of

tools and programming libraries for Natural Language
Processing developed at the technical university in
Darmstadt, Germany. DKPro Similarity is based on
the Apache UIMA framework [36] which ensures easy
extensibility and scalability. We provide a standalone
prototypical implementation on GitHub [37]. At first,
the prototype reads data from two different folders
in the file system in txt format. One folder contains
the operational data set, e.g., in our use case the
industry data. The other folder contains all training data
sets available, e.g., annotated news, tweets and chat
data. Before measuring the text similarity, standard
preprocessing is executed: the texts are tokenized
(split into the least meaningful units such as words),
stopwords may be removed based on a stopword list.
We employ the standard stopword list in NLTK [38] and
all remaining words may additionally be normalized
to it’s lemma (=base form of the word). We checked
all evaluational results with and without stopword
removement and lemmatization, but the results do not
differ significantly. Then the resulting lists of tokens are
compared using the text similarity metric, e.g. Cosine
Similarity or LSA (see Section 5.4). In measuring
the FiT (see Section 4.3), the similarity between the
default training data set and the operational data set
is returned. A low value, e.g., caused by non-fitting

Page 1041

news texts employed as training data for the analysis
of operational industry data, is indicated to the domain
expert. In SeT (see Section 4.4), for each possible
pair of operational and training data, the text similarity
is calculated, the training data sets are ordered by
similarity and the most similar training data set is
selected. The name of the best-fitting training corpus
together with the score is returned as result. For
example, instead of news training data a related industry
data set or annotated tweets may be selected in the use
case scenario in section 2. We moreover package our
method as webservice and integrate it into the flexible
and easy-to-use data processing and analytics toolkit
FlexMash [4]. Analogously it may be integrated into
further analysis toolkits such as RapidMiner. Thus, our
method will be available to domain-experts who want
to build analysis pipelines from scratch.

5.4. Similarity Metrics for Textual Data Sets

Various similarity metrics for textual data exist.
They focus on different aspects such as string-based
similarity or semantic similarity. Further metrics
consider structural, phonetic or stylistic characteristics
of the texts. For an overview, we refer the reader to
Bér et al. [35]. Most text analysis modules employ
features which are semantic and string-based. Thus, we
focus on these two metric types and test 2-3 well-known
concrete metrics for each type (see Table 1). For the
task of quickly supporting the domain expert in the
construction of analysis pipelines the selection must
furthermore be fast. We test the performance of SeT (see
Section 4.4) based on our prototypical implementation
(see Section 5.3) with a PC with 64-bit system, Intel(R)
Core(TM) i7-6600U, 2.60 GHz, 2 cores and 16 GB
RAM. We calculate processing times for all 18 data
sets (see Section 5.2) and the experimental settings as
described in Section 5.6.

Two string-based metrics, GreedyStringTiling and
Levenshtein are not applicable to big data sets with
billions of characters. Time complexity is O(n?), hence
they result in out-of-memory errors after considerably
longer processing times of several 10-minutes. Yet,
with processing times of 16.7, 22.7 and 47.1 seconds,
Cosine Similarity, LSA and "WordNGramJaccard’ are
applicable. Thus, for a first evaluation of our concept,
we focus on the bold-faced metrics listed in Table 1.

5.5. Evaluation Results on the Automatic
Measurement of the Fit of Training Data
(FiT)

In this section, we examine if similarity is a suitable
quality indicator. Therefore, we will evaluate how good

sim(t, o) correlates with ACC(t, o, e), see Equation 3.
sim(t,0) ~ ACC(t,0,€) 3)

We employ all 18 data sets (see Section 5.2) and
compile all possible pairs of operational and training
data, where operational and training data are not the
same. Thus, we have 18%17=306 pairs of operational
and training data. The values for all pairs build two
data rows, one with the similarity metrics and one
with the accuracies. For each pair of operational
and training data, we check how good similarity and
accuracy correlate (as defined in Equation 3).

Consider the following two concrete examples,
where a domain expert wants to build a text analysis
pipeline and immediately gets feedback on quality. In
the first example, the domain expert wants to analyze
newspaper texts such as the texts in the CoNLL data
set (see Section 5.2) with out-of-the-box text analysis
modules. The graphical representation of the module
turns green, thus indicating high quality. Operational
news text data such as the CoNLL data set and
out-of-the-box training data such as the Treebank data
set (news) are very similar (Cosine Similarity of 0.95).
In the second example, the domain expert wants to
analyze reviews with a text analysis module that was
trained on chat data. The graphic representation of
the module turns red, thus indicating low quality. The
reason is that operational review data and chat training
data are not similar (Cosine Similarity of 0.51).

In our experimental setting, we only employed data
sets with manually annotated labels for part of speech.
Thus, we can check if these quality judgements are
valid by comparing them to the accuracy values. The
accuracies may be calculated as shown in Equation
2. For the first example, Cosine Similarity is 0.95
and accuracy is 0.89. For the second example,
Cosine Similarity is 0.51 and accuracy is 0.56. This
indicates a high correlation between Cosine Similarity
and accuracy for these two value pairs. Beside looking
at single value pairs, the two complete data rows of
similarity and accuracy values may be compared by
calculating correlation metrics. We calculate spearman’s
rho, see Kaltenbach [43] using the implementation
which is part of the scipy package in python [44]. It
is applied to two data rows X and Y with n values:
X =uxy,..xp and Y = y1,...4y,. A positive value for
spearman’s rho implies that if x rises, y rises as well. A
negative tho value means that z and y correlate in the
opposite direction: when z rises, y falls.

In Table 2, we give spearman’s rho together
with the p-value for the similarity rows generated
by LSA, Cosine and *WordNGramJaccard’ and the
average accuracy of the executable implementations

Page 1042

Table 1. Relevant measures: Semantic and string-based text similarity measures

Type Concrete metric Time in seconds | Reference
Semantic Cosine Similarity 16.7 [39]
Latent Semantic Analysis (LSA) 22.7 [40]
*WordNGramJaccard’ 47.1 [39]
String-based GreedyStringTiling out-of-memory [41]
Levenshtein out-of-memory [42]

Table 2. Correlation of Text Similarity and Accuracy

Text Similarity Metric | Spearman’s tho | p-value
LSA 0,84 1,58¢~ %3
Cosine Similarity 0,80 1,52¢=99
"WordNGramJaccard’ 0,75 4,20e=°7

e, i.e. the POS-tagger (see Section 5.1). For
detailed result tables, which compare the similarity
metrics to the full distribution of training data sets
and corresponding accuracy values, see the GitHub
repository (see Section 5.3). Here we also list separate
values for each executable implementation tested. While
the POS-taggers have different overall accuracy levels,
for all three taggers the accuracy values do correlate with
text similarity.

The p-value represents the probability that a
non-correlating system produces data sets X and Y
with the specified spearman correlation (for details on
the p-value see Fisher [45]). The very low p-values
for all similarity metrics indicate that the calculated
correlations are valid and that it is very unlikely that data
with such correlations could be generated by chance.
The *"WordNGramJaccard’ metric and accuracy have a
solid positive spearman correlation. The Cosine and
LSA similarity metrics have a strong positive correlation
with accuracy.

5.6. Evaluation Results on the Automatic
Selection of Training Data (SeT)

In Section 4.4, we suggested to automatically select
the best-fitting training data within analysis pipelines
built by domain experts. Here, we present first
promising evaluation results with respect to this task.
To this end we again employ all 18 data sets (see
Section 5.2) and compile 18 experimental settings. Each
experimental setting consists of an operational data set
and a training data repository containing 17 disjunct
available training data sets.

For the experiments, for each operational data
set o and for each training data set t and for each
text similarity metric sim and for each executable
implementation e we perform the following steps:

* step (1): we calculate the text similarity sim(t, o)

e step (2): we train POS-tagger implementation e
with ¢ and test it on o (i.e., we calculate its *Token
Accuracy’, see Equation 2)

In Table 3, we report the gain in accuracy yielded by
our method. To this end, we compare the accuracies
we get with SeT with those for default training data
and with the worst selection that could be made by
the domain expert. We consider the accuracy values
for all 3 taggers and all 3 similarity metrics and
present the arithmetic means and the maximum values
in Table 3. The full distribution of possible results
across the different training data sets and taggers can
be found at GitHub (see Section 5.3). The POS-tagger
implementations used are listed in Section 5.1. While
the POS-taggers have different overall accuracy levels,
the accuracy of all three taggers is equally sensible with
respect to employing default, non-fitting or well-fitting
training data.

When compared with the worst selection which
could be made, a selection based on text similarity
improves accuracy by 26 %-points in average and by up
to 44. When compared with the out-of-the-box versions
of the taggers represented by the Treebank training
data set most heavily used in out-of-the-box POS-tagger
modules (see Marcus et al. [46]), improvements of
12 %-points in average and up to 27 were found.
While default training data, as often employed in
out-of-the-box modules, performs well compared to a
bad selection of training data, our method crucially
improves the quality of the POS-tagging text analysis
modules in both cases.

A possible problem of machine learning models is
that they overfit to the training data. This may lead
to bad generalization and worse performance on new
unseen test data. This overfitting problem is, e.g.,
adressed by a compilation of ’universal’ training data
sets. These are a better basis for machine learning
models which need to be able to generalize well. In our
method, though, we select a specific training data set for
each specific input data set anew and do not want to be
able to generalize. Nevertheless, in future experiments,
special attention needs to be given to universal training

Page 1043

Table 3. Gain in Accuracy (ACC) in %-points with the suggested SeT method compared to a default and worst
selection of training data

Accuracy Gain by SeT compared to
applying a default training corpus

Accuracy Gain by SeT compared to
the worst selection of training data
that could be made

arithmetic maximum arithmetic maximum
mean value mean value
12 27 26 44

data sets and whether specific training data sets as would Acknowledgments

be selected by our method excel universal training data
in terms of accuracy or not.

6. Conclusion and Future Work

Domain experts without IT / data analytics
background build analysis pipelines from scratch. In this
paper, we provided a concept that prevents low-quality
analytics within these analysis pipelines. This concept
employs the similarity between input data and training
data as quality indicator and automatically selects the
best-fitting training data. Thus, it prevents the domain
expert from employing non-fitting default training
data or wrongly selected training data that lead to
low accuracies. In the first part of this work, we
presented our concept, which is based on a training data
repository and similarity metrics. While the concept
presented is applicable to various data types, we focused
on unstructured textual data in a first prototypical
implementation and evaluation. To this end, we made
a choice of useful text similarity metrics and presented
evaluation results for the POS-tagger module present
in most text analysis pipelines. The results are very
promising. First, we showed that the similarity metrics
Cosine Similarity and LSA correlate positively with
the evaluation metric *Token Accuracy’. Thus, Cosine
Similarity and LSA may be used as quality indicators.
Finally, we showed evaluation results with respect to
the automatic selection of best-fitting training data. The
method leads to higher accuracies of POS-tagger tools
without any additional effort for the domain expert.

In future work, we will consider additional analysis
modules, conduct more experiments with respect to
the automatic selection of training data and adress
the implementation details for the training data (and
model) repository. Moreover, methods such as ’instance
selection’ and ’transfer learning’ (see Section 3) should
be investigated and made available to domain experts
in easy-to-use analytics toolkits. Finally, we will
explore the potential to expand the concept to other
application domains such as employing it within the
teaching process.

The authors would like to thank the German
Research Foundation (DFG) for funding the project
in the Graduate School of Excellence advanced
Manufacturing Engineering (GSaME). Moreover, we
would like to thank Andreas Laukart for crucial
implementation work and Pascal Hirmer, Manuel Fritz
and Holger Schwarz for important comments.

References

[1] RapidMiner.
com/.

[2] N. Ide and J. Pustejovsky, Handbook of Linguistic
Annotation. Springer Netherlands, 2017.

[3] M. Hossin and M. N. Sulaiman, “A Review on
Evaluation Metrics for Data Classification Evaluations,”
International Journal of Data Mining & Knowledge
Management Process, vol. 5, pp. 01-11, 2015.

[4] P. Hirmer and M. Behringer, “FlexMash 2.0 - Flexible
Modeling and Execution of Data Mashups,” in RMC,
2016.

[5] Apache Tika - a content analysis toolkit.
https://tika.apache.org/.

[6] Language-detector. Available at https://github.
com/optimaize/language—-detector.

[71 DKPro Core. Available at https://dkpro.
github.io/dkpro—-core/.

[8] Source code for nltk.tag.crf. Available at
http://www.nltk.org/_modules/nltk/
tag/crf.html.

[9] Source code for nltk.tag.int. Available at
https://www.nltk.org/_modules/nltk/
tag/tnt.html.

[10] Stanford CoreNLP — Natural language software.
Available at https://stanfordnlp.github.
io/CoreNLP/.

[11] Apache OpenNLP. Available at https://opennlp.
apache.org/.

[12] R.Y. Wang and D. M. Strong, “Beyond Accuracy: What
Data Quality Means to Data Consumers,” J. Manage. Inf.
Syst., pp. 5-33, 1996.

[13] C. Kiefer, “Assessing the Quality of Unstructured Data:
An Initial Overview,” in Proceedings of the LWDA (Ralf
Krestel, Davide Mottin, and Emmanuel Miiller, eds.),
CEUR Workshop Proceedings, (Aachen), pp. 62-73,
2016.

Available at https://rapidminer.

Available at

Page 1044

(14]

[15]
[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

L. Sebastian-Coleman, Measuring Data Quality for
Ongoing Improvement: A Data Quality Assessment
Framework. Burlington: Elsevier Science, 2013.

C. Batini and M. Scannapieco, Data and Information
Quality. Cham: Springer International Publishing, 2016.

D. Sonntag, “Assessing the Quality of Natural Language
Text Data,” in GI Jahrestagung, pp. 259-263, 2004.

A. S. Shirkhorshidi, S. Aghabozorgi, and T. Y. Wah,
“A comparison study on similarity and dissimilarity
measures in clustering continuous data,” PloS one,
vol. 10 0144059, no. 12, 2015.

J. Mielke, “A phonetically based metric of sound
similarity,” Lingua, vol. 122, no. 2, pp. 145-163, 2012.

D. Fuentes, R. Bardelii J. A. Ortega, and
L. Gonzalez-Abril, “A similarity measure between
videos using alignment, graphical and speech features,”
Expert Systems with Applications, vol. 39, no. 11,
pp.- 10278-10282, 2012.

O. Hourrane and E. H. Benlahmar, “Survey of plagiarism
detection approaches and big data techniques related
to plagiarism candidate retrieval,” in Proceedings of
the 2Nd International Conference on Big Data, Cloud
and Applications, BDCA’17, (New York, NY, USA),
pp. 15:1-15:6, ACM, 2017.

R. Ziai, N. Ott, and D. Meurers, “Short answer
assessment: Establishing links between research
strands,” in Proceedings of the 7th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA7), (Montreal, Canada), Association
for Computational Linguistics, 2012.

J. Wang, P. Neskovic, and L. N. Cooper, “Training data
selection for support vector machines,” in Advances in
Natural Computation (L. Wang, K. Chen, and Y. S. Ong,
eds.), (Berlin, Heidelberg), pp. 554564, Springer Berlin
Heidelberg, 2005.

J. Olvera-Lépez, J. Ariel Carrasco-Ochoa, J. F
Martinez-Trinidad, and J. Kittler, “A Review of
Instance Selection Methods,” Artif. Intell. Rev., vol. 34,
pp. 133-143, 2010.

R. C. Moore and W. Lewis, “Intelligent selection of
language model training data,” in Proceedings of the
ACL 2010 Conference Short Papers, ACLShort *10,
(Stroudsburg, PA, USA), pp. 220-224, Association for
Computational Linguistics, 2010.

A. Axelrod, X. He, and J. Gao, “Domain adaptation
via pseudo in-domain data selection,” in Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’11, (Stroudsburg, PA,
USA), pp. 355-362, Association for Computational
Linguistics, 2011.

Y. Li and J. Ye, “Learning Adversarial Networks
for Semi-Supervised Text Classification via Policy
Gradient,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD 18, (New York, NY, USA),
pp- 1715-1723, ACM, 2018.

A. Blum and T. Mitchell, “Combining labeled and
unlabeled data with co-training,” in Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory, COLT’ 98, (New York, NY, USA), pp. 92-100,
ACM, 1998.

S. J. Pan and Q. Yang, “A survey on transfer
learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

(29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

[44]

(45]

[46]

R. C. Chengwen and S. C. Tideman, Model repository.
Available at https://patents.google.com/
patent/US6920458B1/en.

Source code for nltk.tag.perceptron. Available at
http://www.nltk.org/_modules/nltk/
tag/perceptron.html.

T. Brants, “TnT: A Statistical Part-of-speech Tagger,”
in Proceedings of the Sixth Conference on Applied
Natural Language Processing, ANLC ’00, (Stroudsburg,
PA, USA), pp. 224-231, Association for Computational
Linguistics, 2000.

C. D. Manning, “Part-of-speech tagging from 97% to
100%: Is it time for some linguistics?,” in Computational
Linguistics and Intelligent Text Processing (A. F
Gelbukh, ed.), (Berlin, Heidelberg), pp. 171-189,
Springer Berlin Heidelberg, 2011.

K. Gimpel, N. Schneider, B. O’Connor, D. Das,
D. Mills, J. Eisenstein, M. Heilman, D. Yogatama,
J. Flanigan, and N. A. Smith, “Part-of-speech Tagging
for Twitter: Annotation, Features, and Experiments,”
in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2, HLT
"11, (Stroudsburg, PA, USA), pp. 42-47, Association for
Computational Linguistics, 2011.

NLTK Corpora. Available at http://www.nltk.
org/nltk_data/.

Daniel Bir, Torsten Zesch, and Iryna Gurevych, “DKPro
Similarity: An Open Source Framework for Text
Similarity,” in Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics,
(Stroudsburg, USA), pp. 121-126, 2013.

Apache UIMA. Available at https://uima.
apache.org/.

training-data-selection. Available at
https://github.com/kieferca/
training-data-selection.

NLTKs list of english stopwords. Available at https:
//gist.github.com/sebleier/554280.

C. D. Manning, P. Raghavan, and H. Schiitze,
Introduction to Information Retrieval. — New York:
Cambridge University Press, 2008.

T. K. Landauer, P. W. Foltz, and D. Laham, “An
Introduction to Latent Semantic Analysis,” Discourse
Processes, vol. 25, no. 2-3, pp. 259-284, 1998.

M. Wise, “String similarity via greedy string tiling
and running karp—rabin matching,” Unpublished Basser
Department of Computer Science Report, 1993.

V. L. Levenshtein, “Binary codes capable of correcting
deletions, insertions and reversals,” Soviet Physics
Doklady, vol. 10, p. 707, 1966.

H.-M. Kaltenbach, “Hypothesis testing,” in A Concise
Guide to Statistics (H.-M. Kaltenbach, ed.), pp. 53-75,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

scipy.stats.spearmant. Available at https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.spearmanr.html.

R. A. Fisher, The design of experiments. Oxford,

England: Oliver & Boyd, 1935.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
“Building a Large Annotated Corpus of English: The
Penn Treebank,” Computational Linguistics - Special
issue on using large corpora, no. 2, pp. 313-330, 1993.

Page 1045

