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ABSTRACT 

 

As the impacts of climate change accelerate, the need for climate-smart agriculture—crops and systems 

with a high degree of productivity that are both resilient to a changing environment and reduce 35 

greenhouse gas emissions—will only increase. Once a substantial source of calories in the Hawaiian 

Islands and elsewhere around the Pacific, Artocarpus altilis, or breadfruit, has been suggested as an 

agricultural product that meets these standards. Among its potentially climate-smart attributes, breadfruit 

has the potential to store carbon in its biomass, and accompanying farming practices such as co-cropping 

could potentially increase carbon storage within the soil. To begin to elucidate some of these attributes, 40 

this study explored the terrestrial carbon pools associated with breadfruit afforestation by 1) quantifying 

above-ground biomass (AGB), 2) extrapolating to landscape-scale impacts by reviewing the below-

ground biomass (BGB) and creating growth curves for breadfruit, and 3) conducting a cursory exploration 

of dead organic matter (litter) and soil organic carbon. The study followed guidelines and methods 

published in the scientific literature and carbon accounting documents to develop the allometry to 45 

describe AGB and growth of A. altilis over time, and based on this estimate, employed a root-to-shoot 

ratio to estimate BGB. We employed a standard sampling technique to estimate litter mass and its 

associated carbon content and developed a sampling design to describe total and hot water extractable 

soil organic carbon present within a subsection of the breadfruit orchard. This thesis’ primary contribution 

to the body of literature is the development of a novel allometric equation that describes AGB and carbon 50 

in terms of diameter at breast height (DBH) in A. altilis 𝐴𝐺𝐵 = −4.586 + 0.1635 × 𝐷𝐵𝐻 +  0.2229 × 𝐷𝐵𝐻2. 

Applying these equations approximately 10 years into an afforestation project each breadfruit tree 

contains approximately 90.2 kg Carbon in above- and below- ground biomass. In comparison, the litter 

sampling effort arrived at an estimated .538 kg Carbon per tree in the surface layer of litter and the soil 

carbon sampling showed no significant changes in soil carbon over the same timeframe. The thesis 55 

concludes that breadfruit has a significantly higher potential to sequester carbon compared to other 

annual staples, with most of the sequestration occurring in the treesʻ biomass. In combination with 

existing data supporting breadfruit’s ability to adapt to various climate change scenarios, we agree with 

the previous assessments that prioritize A. altilis as a climate-smart commodity. 

 60 
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CHAPTER 1. INTRODUCTION 180 

Globally, agricultural activities and associated deforestation account for an estimated 24% of 

anthropogenic greenhouse gas (GHG) emissions, and demand for land to support globalized food 

industry supply chains is a major driver of deforestation (Garnett 2013; Rockstrom et al. 2020). A central 

question for humanity will increasingly focus on how to build climate-smart food systems. As defined by 

the Food and Agriculture Organization of the United Nations (FAO), the three pillars of climate-smart 185 

agriculture are increasing agriculture productivity and incomes, adapting and building the resilience of 

people and agriculture systems in the face of climate change, and reducing or even eliminating 

greenhouse gas emissions (FAO 2021). 

This problem is not entirely dissimilar to the challenges faced by the early inhabitants of the remote 

Pacific Islands. As human populations on these islands grew, developing agricultural systems that 190 

provided adequate food and resources but that did not result in ecosystem collapse became matters of 

survival. Among the diverse agroecological strategies employed, forest management and arboriculture 

were critical, often dominant, forms of food and resource production that maintained the integrity and 

function of the ecosystem (Lincoln and Vitousek 2017; Lincoln, Haensel, and Lee 2023; Quintus et al. 

2019; Winter et al. 2018). Breadfruit – a long-lived tree that produces large fruits rich in complex 195 

carbohydrates – featured prominently in these forest management strategies, with Hawaiian cultivators 

developing a broad range of agroforestry systems prominently featuring breadfruit (Lincoln and 

Lagefoged 2014; Lincoln 2020a). 

Breadfruit, and breadfruit agroforestry, remain vastly understudied despite significant international 

recognition of the potential roles of the crop in developing climate-smart agriculture and addressing global 200 

hunger (Lucas and Ragone 2012) and demonstrated contributions to food system resilience (Berning et 

al. 2022). Breadfruit not only has the potential to sequester carbon in its biomass, but its cultivation often 

accompanies farming practices such as reduced- or no-tillage and cover- or co-cropping that can further 

increase carbon storage in other pools, such as soil carbon. For human nutrition, breadfruit supplies 

complex carbohydrates associated with a strong profile of vitamins, minerals, and amino acids (Jones et 205 

al. 2011; Needham, Jha, and Lincoln 2020; Lucas and Ragone 2012). From a social/economic 

perspective, tree crops need only be planted once, reducing annual farm labor and thereby enhancing 

farmer profits and quality of life. With proper management, breadfruit trees require little care, as weeds 

are largely controlled through shade and companion plantings that potentially reduce the need for 

pesticide usage – protecting the health of farmers and their families. Within the Pacific, breadfruit 210 

furthermore impacts biocultural restoration to support the restoration of cultural practices, knowledge, and 

equity (Langston and Lincoln 2018, Lincoln 2020b).  

Because of its potential role in climate-smart agriculture, breadfruit is a candidate for both formal and 

informal carbon market projects. In 2017, Hawai’i mandated that agricultural, aquacultural, agroforestry, 

and forestry projects, must satisfy a carbon registry’s approved carbon accounting protocols (Act 033, 215 
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SLH 2017). These protocols derive from science-based publications of governmental and non-

governmental organizations such as the International Panel on Climate Change (IPCC) and Verified 

Carbon Standard (VCS). However, carbon accounting protocols and the development of carbon market 

projects remain relatively incomplete, and protocols and methodologies do not yet exist to cover all 

situations. In particular, tropical and indigenous crops, including breadfruit, are understudied and poorly 220 

represented in existing protocols and models (Padulosi et al. 2002; Lincoln et al. 2018). Therefore, 

although the IPCC and not-for-profit organizations have developed the carbon project methodologies 

based on scientific methods, tailoring existing protocols and methodologies to a specific situation, such as 

breadfruit agroforestry, requires additional research.  

This thesis applies carbon accounting methodologies to develop quantitative data on the terrestrial 225 

carbon pools of Hawaiian breadfruit orchards, with an emphasis on the above-ground biomass (AGB) 

pool, and a cursory exploration of the below-ground biomass (BGB) pool, the soil organic carbon pool and 

the dead organic matter (litter) pool. This effort importantly contributes the first breadfruit-specific 

allometric equation to define AGB and informs future work and discussions of a potential role for 

breadfruit as a climate-smart crop, including the development of breadfruit-focused carbon projects.  230 
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CHAPTER 2. DEVELOPMENT OF A. ALTILIS ALLOMETRY AND CHARACTERIZATION OF ABOVE-245 

GROUND CARBON STORAGE IN HAWAI‘I 

2.1. Introduction  

Growing trees and vascular plants capture carbon from the air (from where?), assimilating it into their 

biomass. The rates of carbon assimilation vary widely by species and are further influenced by the 

growing conditions. Because it is most easily observed and measured, the above-ground biomass (AGB), 250 

which includes leaves, stems, branches, and bole, is often separated from the total biomass, which would 

also include the below-ground component (i.e., roots). The ability to quantify the AGB present in forests, 

agriculture and other systems is vital for effective carbon accounting (Goodman et al. 2014; Litton and 

Boone Kauffman 2008).  

Forestry science has developed methods to quantify the size of the AGB pool and describe changes in 255 

this pool over time. The most widely applied method for estimating tree biomass is allometry. At its 

foundation, allometry describes the ontological growth of individuals. There are two general definitions of 

allometry (Picard et al. 2015). The more restrictive definition employs a power model to describe the 

proportionality between relative increases in dimensions as the individual tree grows and develops, which 

is often employed in the field of biology, rooted in the concept of idealized physiological vasculature that 260 

underlies allometric scaling theory (West, Brown, and Enquist 1997). The less restrictive definition, and 

the definition used throughout this study, refers to an equation that describes the relationship between 

common forestry measurements and AGB (Stevens 2009). Looking at trees from a population 

perspective, the various dimensions of an individual tree relate statistically to each other. For example, 

diameter-at-breast-height (DBH) and AGB follow the same general relationship regardless of the size of 265 

the tree. DBH typically explains more than 95% of the variation in tree biomass, even in highly diverse 

forests (Brown 1997).  

The accuracy of an allometric equation depends on a number of factors, with an essential element being 

how diverse of a population one attempts to describe. The allometric relationships will clearly vary by 

species, but may also shift in response to climatic and site conditions, heterogeneity of growing 270 

conditions, and management effects (e.g. pruning). At one extreme, supreme accuracy (>99%) can be 

achieved for species and site-specific allometry of trees grown in uniform conditions, such as monotypic 

forestry plantations (Daba and Soromessa 2019). At the opposite extreme, generic equations can be 

developed to represent broad categories of trees and sites, such as broadleaf trees in tropical forests, in 

which average accuracy for any given individual may fall well below 80% (Chave et al. 2005).  275 

As an underutilized and understudied crop, no allometry has been developed specifically for breadfruit. 

Therefore, estimates of AGB carbon are restricted to either using allometry for related species or applying 

generic equations describing general tree types. Only a single allometric study was identified for any 

member of the Artocarpus family (jackfruit, A. Heterophyllus; Santos Martin et al. 2010). Four relevant 
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allometric equations were identified that describe broadleaf trees in pantropical environments. However, 280 

the five equations vary widely—over 18-fold—in their estimation of biomass. While any indirect 

measurement of carbon is bound to have uncertainly, such substantial variation makes the application of 

allometry to breadfruit almost useless. To complicate matters, several of these equations rely on tree 

parameters such as wood and carbon density that are poorly described for the highly variable Artocarpus 

family and which typically have no published values for breadfruit, introducing even more error and 285 

uncertainty into the calculations. 

To support the application of breadfruit as a climate-smart commodity, this study investigates the above-

ground biomass and carbon content of that biomass. Specifically, the objectives of this section are to (1) 

use a non-destructive approach to characterize the volume in diameter-specific segments of A. altilis 

trees in Hawai’i; (2) use minimally destructive sampling to characterize variation in wood and carbon 290 

density as a function of branch diameter; (3) use destructive sampling to determine total leaf biomass as 

a function of terminal branch diameter; (4) incorporate measurement of tree architecture, wood/carbon 

density and leaf biomass into a mathematical model to determine total AGB; (5) use AGB of multiple trees 

to develop an allometric equation for A. altilis in Hawai’i; and (6) evaluate the accuracy of previously 

published allometric equations based on this study. 295 

2.2. Background on Allometric Equation Development 

A prominent method to develop allometric equations requires destructive sampling, in which the entire 

trees are measured, dissected into components, kiln-dried, and weighed to determine the total biomass of 

individuals. Destructive sampling relies on felling whole trees and submerging the component parts in 

water to obtain volumetric estimation. Most often, the trees will be partitioned into their individual parts 300 

(leaves, stems, branches, and boles) during this process so that general characterization of those 

categories can occur. After determining volume, the mass is dried in large kiln ovens to determine the 

total biomass of each tree part. Finally, average carbon density, which is not constant across plant parts 

or even parts of different sizes, is determined through combustion analyses. With these calculations in 

hand, researchers can calculate a total volume, biomass, and carbon biomass, and apply simple 305 

statistical regressions to determine a best fit allometric equation to represent specific species or sites 

(Dietze, Wolosin, and Clark 2008). This is an expensive and involved process that often results in small 

sample sizes and other types of errors. Therefore, crafting accurate and valid allometric equations can be 

challenging, particularly for small-scale farmers or underutilized species. A review of the literature found 

only one allometric equation for an Artocarpus species (jackfruit, A. Heterophyllus) that destructively 310 

sampled eight trees (Santos Martin et al. 2010).  

Because of the difficulties involved in the destructive sampling required to develop species- or site-

specific allometry, many allometric equations rely on large data sets to build equations that apply across 

classes of trees, sites, and/or conditions (Brown 1997; Chave et al. 2005) These generic equations exist 
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for practically all forests of the world (Brown 2002).1, 2 Prime examples of generic pantropical equations 315 

include the Brown (1997) and Chave et al. (2005) models. As one would expect, the more generalized an 

allometric equation is, the less accurate it can be for each individual within the group. For instance, Litton 

and Kauffman (2008) found that these equations tended to both under and overestimate the AGB of two 

prominent native Hawaiian species depending on the species and DBH. 

Several relevant allometric equations that could potentially be applied to breadfruit trees in Hawai‘i were 320 

identified (Table 1), however, the identified equations vary widely in their estimation of biomass and 

consequently carbon. To complicate matters, there is also substantial variation in reported tree attributes 

that are used within these equations, such as the wood density (Table 2).  

Table 1. Five previously published allometric equations to describe tree biomass (kg) that could 
potentially be applied to breadfruit trees in Hawai‘i, including four pantropical equations built 
from large global datasets and one equation specific to a related Artocarpus species.  

Description Source Equation 

Moist, pantropical 
1500–3500 mm/y precip 

Brown 
(1997) 

 𝐴𝐵𝐺 = 𝑒(−2.134+ 2.53×ln(𝐷)) 

Wet, pantropical 
>3500mm/y precip. 

Brown 
(1997) 

𝐴𝐵𝐺 = 21.297 − (6.953 ×  𝐷) + (0.74 ×  𝐷2) 

Moist, pantropical 
1500–3500 mm/y precip. 

Chave et al. 
(2005) 

ABG =  ρ ×  e{−1.499+[21.48 × ln(𝐷)]+[0.207 × (ln(𝐷))2]−[0.0281 × (ln(𝐷))3]} 

Wet, pantropical 
>3500/y precip 

Chave et al. 
(2005) 

ABG = ρ ×  e{−1.239+[1.98 × ln(𝐷)]+[0.207 × (ln(𝐷))2]−[0.0281 × (ln(𝐷))3]} 

Artocarpus 
heterophyllus 

Santos 
Martin et al. 

(2010) 
𝐴𝐵𝐺 = 0.065 ×  𝐷2.28 

D is diameter at breast height (cm) and ρ is wood specific gravity (g/cm3) 

 

Table 2. Reported wood density values of Artocarpus spp. From published sources 

Species (plant part) Source Density (g/cm3) 

Artocarpus elasticus Kenzo et al. (2009) .30 

Artocarpus spp. Kenzo et al. (2009) .43 

Artocarpus heterophyllus (avg) Santos-Martin et al. (2010) .45 

Artocarpus heterophyllus (branch) Santos-Martin et al. (2010) .51 

Artocarpus heterophyllus (twig) Santos-Martin et al. (2010) .52 

 325 
 
Non-destructive approaches seek to determine the volume of the tree through detailed measurements, 

which can be done manually or through imaging technologies. The manual process involves measuring 

all woody components of a tree in compartments (Figure 1). The elliptical diameter of the bole and each 

primary, secondary, tertiary, and quaternary branch is recorded at each 1m increment. Beginning at the 330 

 
1 The IPCC also aggregated significant stores of data into tables in their general guide to carbon 

measurement methodologies (“2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse 
Gas Inventories” 2019.) 
2 Some pantropical equations include height measurements, but often the pan-tropical equations exclude 

height because of the often-close relationship between height and diameter (Ketterings et al. 2001) and 
most inventory studies employ DBH and height for commercial trees (Litton and Kauffman 2008). 
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1.3m DBH mark the diameter is recorded as D1 and then following along the branch 1m later the second 

diameter is recorded as D2. The same procedure is repeated for the next 1m compartment using D2 as 

the starting point for the next compartment. The volume of each compartment is then often calculated 

using the truncated cone taper function or a simple conic function and the total volume of the tree is 

calculated as the sum of the volumes of the compartments (Kora et al. 2019). 335 

 

 

 
Figure 1. Schematic diagram of compartmentalizing tree measurements for the non-destructive 
sampling of tree volume. Taken from Picard, Saint-Andre, and Henry (2012). 340 
 

Non-destructive determination of tree volume can also be achieved through imaging technologies, in 

which scaled 3-D models can be used to digitally calculate the tree volume. This can be done with 

passive imaging such as photogrammetry (Bauwens et al. 2017) or active imaging such as LiDAR 

(Karpina et al. 2016). Depending on the species under investigation, the line of sight to the stems and 345 

trunk, which can be blocked by the leaves, can be problematic.3  

 
3 In preparation for this present study, we did an initial experiment with using photogrammetry to obtain an 
estimate of tree volume using structure-from-motion photogrammetry to generate a volumetric estimate; 
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In order to convert volumetric measurements to biomass and/or total carbon, measurements of wood and 

carbon density are needed. Wood and carbon density vary by species, age and environmental factors 

when examining separate trees (Burdon et al. 2004), but also vary within each tree, with different values 

for the different plant parts and even the same plant parts of different sizes. For instance, an increase in 350 

diameter is typically accompanied by a change in both the wood density (mass per unit volume) and the 

density of carbon within the wood (Picard, Saint-Andre, and Henry 2012). Typically, general wood/carbon 

densities are determined for classes of woody material through sampling and analysis. The volume of 

each woody type is then multiplied by the average density of that woody type to determine the total 

biomass and carbon density for each category.  355 

2.3. Methods 

2.3.1. Overview 

To develop an allometric equation for A. altilis in Hawai‘i and assess the appropriateness of other 

published allometric equations, this project collected detailed architectural measurements to estimate the 

total volume of standing unadulterated breadfruit trees, and collected wood and leaf samples from trunks 360 

and stems of various diameters. Between August 2020 and March 2023, 12 breadfruit trees of the cultivar 

ʻMaoliʻ were opportunistically sampled on Hawaiʻi Island. Detailed architectural data was collected in 

accordance with the procedures used in other minimally destructive study methods (Kora et al. 2019; 

Picard, Saint-Andre, and Henry 2012), in which diameter measurements were collected every 1m along 

all woody material of the entire tree. Wood samples were collected from branches of varying diameters 365 

from four trees and were used to calculate the wood density and carbon density, which were 

subsequently used to generate linear regression relationships against branch diameter. These 

relationships were integrated with the tree volume model for each individual segment based on the 

average stem diameter of each section in order to calculate total stem biomass and carbon. Foliar mass 

and carbon were obtained by collecting terminal branches of various sizes from eight trees. Leaf biomass 370 

was determined for all leaves on the branch and regressed against terminal branch base diameter. A 

simple mathematical model was created in Excel (Microsoft; Redman, WA) to integrate all measurements 

and calculate the total volume, biomass, and carbon associated with each tree. 

2.3.2. Woody Biomass Volumetric Estimation 

The major and minor diameters were measured and recorded every meter along the main trunk and all 375 

the branches of each tree, starting at the ground surface and each branch junction. For terminal 

measurements, the length of the final segment was recorded along with the branch diameter 5 

centimeters from the terminus. The major and minor elliptical diameters were measured using tree 

calipers to the nearest mm, and the length of each segment was measured with a cloth measuring tape to 

 
however, the broad leaves of A. altilis challenged development of an acceptable point cloud due to line of site 
issues. 
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the nearest cm. For each individual branch, the tree ID, branch number, and segment number were 380 

recorded.  

2.3.3. Wood Density and Carbon Content 

To determine wood and carbon density, “cookies,” or cross sections of branches, of various diameters 

were opportunistically collected where destructive sampling was possible. The volume of the wood 

cookies was determined using the water displacement method, and the samples were then oven-dried at 385 

100ºC until constant mass was achieved. Wood density for each cookie was then calculated by dividing 

dry mass by volume. Cross sections were drilled out of the cookies, and the dried samples were 

pulverized, encapsulated, and analyzed for total carbon concentration using an Elemental Analyzer. 

Wood and carbon density were regressed against the average radius of each cookie to describe wood 

density and carbon as a function of stem diameter.  390 

2.3.4. Foliar Biomass Estimation 

Forty branches of varying base diameters were harvested from trees, and the base and terminal diameter 

of each branch were measured and recorded. All leaves from each branch were removed at the base of 

the petiole, oven-dried and weighed. Regression analysis was used to explore the relationship between 

foliar biomass and terminal branch diameter. Half of the leaf samples were pulverized, encapsulated, and 395 

analyzed for total carbon concentration using an Elemental Analyzer.  

2.3.5. Statistical Analysis 

Linear and non-linear regressions were used to examine the relationship between parameters of interest. 

Analyses were conducted using JMP (SAS Institute; Cary, NC), with the coefficient of determination (r2) 

and probability values (P) used to describe the accuracy of the mathematical equations (Kora et al. 2019). 400 

A simple Excel model was used to combine all factors measured and compute total volume, biomass and 

carbon for each tree measured. For each branch segment measured, the volume was calculated based 

on a conic stem shape as described in Equation 1.  

Equation (1)   𝑉 =
𝜋(

𝐷𝑥
2

)2+ 𝜋(
𝐷𝑥+1

2
)2

2
 ×  𝐿 

Where V is the volume in cm3, Dx and Dx+1 are the diameter at the upper and lower bounds of the 405 

segment, and L is the length of the segment, all measured in cm.  

For each segment, the regression equations describing the relationship of wood density and carbon 

concentration were applied to the average diameter of the segment, so that total carbon density was 

considered a continuous function of branch diameter, as in Equations 2-4. 

Equation (2)   𝐶𝑤𝑔 =  𝑉 ∗ 𝜌 ∗ 𝐶% 410 
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Equation (3)   𝜌 = 𝑓(
𝐷𝑥+ 𝐷𝑥+1

4
) 

Equation (4)   𝐶𝑤% = 𝑓(
𝐷𝑥+ 𝐷𝑥+1

4
) 

Where Cwg is the total carbon mass of woody components in g, 𝜌 is the wood density in g/cm3, and Cw% is 

the woody carbon concentration.  

For each branch, total leaf biomass was calculated by applying the determined regression equation to the 415 

base diameter of each branch, with total carbon calculated as the product of leaf biomass and the 

average leaf carbon density, as in Equations 5 and 6. 

Equation (5)   𝐶𝑙𝑔  = 𝐶𝑙% ∗ 𝑀𝑙 

Equation (6)   𝑀𝑙 =  𝑓(𝐷𝑏) 

Where Clg is the total carbon mass of leafy components in g, Cl% is the average carbon concentration in 420 

breadfruit leaves, Ml is the biomass of the leaves in g, and Db is the base diameter of a terminal branch.  

Total woody and leaf biomass was calculated in Excel for each segment. In the case of leaves, the 

biomass was only calculated for “Segment 1” of each branch to capture the base diameter of each 

branch. Total tree biomass and total tree carbon were calculated as the sum of all individual woody 

segments and leaf components. This process is represented schematically in Figure 2. 425 

 

Figure 2. Conceptual diagram illustrating the simple spreadsheet model used in this study to 
calculate the total biomass and carbon mass of each tree.  

 

Total tree biomass and carbon were separately compared against tree DBH, and a non-linear regression 430 

fit was used to characterize the relationships.  
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2.4. Results 

2.4.1. Wood Density and Carbon Density 

Cross-section “cookies” from 37 branch samples ranging in average radius from 0.7375 cm to 16.625 cm 

were harvested and measured from four ʻMaoliʻ and one Ma‘afalaʻ tree. Wood density exhibited a 435 

generally linear increase with increasing radius of the branch/trunk (Figure 3). The relationship between 

wood density as a function of branch radius is fairly robust (r2 = 0.799). Although only a single ʻMa‘afalaʻ 

tree was sampled, the two cultivars do not appear to differ substantially. The relationship of wood density 

to average radius, shown in Equation 7, was used to replace the generic function outlined in Equation 3.  

Equation (7)  𝜌 = 0.188 + 0.01053 ×
𝐷

2
 440 

 
Figure 3. Linear regression of the dry wood density against the radius of 37 wood “cookies” 
opportunistically collected from ‘Ma’afala’ and ‘Maoli’ cultivars of breadfruit via destructive 
sampling. 
 445 

Percent Carbon (%C) was determined for the branch cross sections of the Maoli variety only. The mean 

for all samples was 44.8 %C with a standard deviation of 1.7 and standard error of 0.3. Percent carbon as 

a function of branch radius demonstrated a slight increase with branch diameter (Figure 4). Although the 

relationship appears to have some non-linear behavior, the application of various non-linear regressions 

only marginally improved the r2 values, due to the reasonably high variation in lower radius samples. The 450 
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linear relationship used to describe the carbon concentrations as a function of average radius, shown in 

Equation 8, was used to replace the generic function outlined in Equation 4. 

Equation (8)  𝐶𝑤% = 42.85 + 0.3126 ×
𝐷

2
 

 
Figure 4. Linear regression of percent carbon as a function of stem radius for 30 branch cross 455 
sections opportunistically collected from ‘Maoli’ breadfruit cultivars on Hawai‘i Island. 
 

In spite of differences in percent carbon by variety, bringing wood density and percent carbon into a 

carbon density function (gC/cm3) by average radius yields a highly significant (P<0.0001) relationship with 

a relatively more robust r2 (0.826). Describing varietal gC/cm3 yields a more robust r2 for both the 460 

Ma‘afalaʻ variety (r2 = 0.908) and for the Maoli variety (r2 = 0.858; Figure 5).  
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Figure 5. Linear regression of carbon density (gC/cm3) as a function of stem radius for 30 branch 
cross sections opportunistically collected from ‘Maoli’ breadfruit cultivars on Hawai‘i Island. 
 465 
 

 
2.4.2. Foliar Biomass 

Foliar biomass for 38 branches was determined and described as a function of stem diameter. The total 

number of leaves per terminal branch ranged from 4 to 14 with total dry weight ranging from 3.96 g to 470 

262.85 g. Dry foliar biomass was more strongly correlated with base stem diameter (Figure 6; r2 = 0.907) 

than top stem diameter (r2 = 0.819). The associated regression equation used to describe leaf biomass as 

a function of terminal branch base diameter, shown as Equation 9, was used to replace the generic 

function outlined in Equation 6.  

Equation (9)  𝑀𝑙 = −102.1 + 103.5 ∗
𝐷

2
 475 

Carbon percentage for the foliar biomass was determined for half (19) of the samples and found to have 

an average of 51.4% with a standard deviation of 1.14.  
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Figure 6. Foliar biomass as a function of terminal branch stem radius for 38 individual branches 480 
harvested from the ‘Maoli’ breadfruit cultivar on Hawai’i Island.  
 

2.4.3. Woody Biomass Volume 

Using the method described, volumetric measurements of the above ground woody components of 12 A. 

altilis ʻMaoliʻ trees from Hawai‘i Island ranging in DBH from 2.6 cm to 41.2 cm were determined. Using a 485 

simple spreadsheet model, the total woody biomass and foliar biomass were calculated for each tree, as 

surmised in Table 3. Total ABG for each tree was regressed against the measured DBH of those trees, 

demonstrating a robust non-linear relationship (Figure 7), which served as a preliminary allometric 

equation for breadfruit trees in Hawai‘i, described in Equation 10. 

Equation (10)  𝐴𝐵𝐺 = −4.586 + 0.1635 × 𝐷𝐵𝐻 + 0.229 × 𝐷𝐵𝐻2 490 

 

 

 

 

 495 
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Table 3. Woody, foliar, and total above-ground biomass for 12 breadfruit trees on Hawai‘i Island 
as determined through detailed architectural measurements and a simple spreadsheet model.  

DBH Dry Wood Biomass (kg) Dry Leaf Biomass (kg) Total AGB (kg) 

Tree 1 10.9 11.971 3.851 15.822 

Tree 2 17.1 59.815 14.139 73.955 

Tree 3 2.6 .216 .177 0.393 

Tree 4 7.6 5.510 1.287 6.807 

Tree 5 35 232.102 36.394 268.496 

Tree 6 27.4 144.833 33.566 178.398 

Tree 7 41.2 350.608 31.811 382.419 

Tree 8 6.2 4.446 .854 5.300 

Tree 9 4.7 1.575 .324 1.899 

Tree 10 14.4 32.452 10.054 42.506 

Tree 11 26.9 124.470 30.854 155.324 

Tree 12 22.4 83.629 23.186 106.814 

 

 

 
Figure 7. Quadratic regression of total above ground biomass (AGB) against diameter at breast 500 
height (DBH) for 12 unadulturated breadfruit trees on Hawai‘i Island.  
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In comparison to previously published allometric equations, as shown in Figure 8 below, the relationship 

from this study aligned closely with the equation derived from the destructive sampling of jackfruit by 

Santos Martin et al. (2010) and is more conservative than all the pan-tropical equations except for the 505 

Chave Wet equation. 

 

 
Figure 8. Graphical comparison of the allometric equation determined in this study alongside four 
relevant pantropical allometric equations and the one published allometric equation identified for 510 
an Artocarpus species. The equation calculated in the present study closely aligns with the 
Santos Martin et al. (2010) for jackfruit, both of which are well below the four pantropical 
equations.  
 

 515 
2.5. Discussion 

Even within a single species, local variation can impact tree parameters and cause significant disruption 

to the fit of an allometric model. To effectively account for this local variation, sampling adequate trees to 

develop a tailored allometric equation is necessary, but not feasible for most operations. This study 

demonstrates that minimally destructive methods that incorporate wood and carbon density 520 

measurements can enable the development of allometric equations that approximate destructively 
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derived equations. The robust nature of the relationship was surprising, but this is perhaps because all of 

the trees sampled were from open areas where the trees could grow unadulterated and without 

competition.  

The results presented earlier demonstrate potential variation in wood density and carbon density. The 525 

application of wood and carbon density as a continuous function of branch diameter, as opposed to the 

more standardized approach of classifying woody material into types and applying average values, may 

improve estimates of total carbon, and should be explored further as a standardized method for carbon 

accounting. The incorporation of a continuous relationship was afforded because of the non-destructive 

methods employed, which required the tedious measurements of all branch diameters, as opposed to 530 

destructive sampling that tends to not record branch diameters throughout the entire tree. However, as 

imaging methods become increasingly improved and are applied more frequently the opportunity to do 

mathematical integration will also increase. Therefore, while some may argue that non-destructive 

sampling is less robust than complete destructive sampling of trees, here it is demonstrated that non-

destructive methods also afford new opportunities to improve the accuracy of total carbon calculations.  535 

Our resulting allometric equation aligns well with the only other equation published for an Artocarpus spp., 

suggesting the reality of Artocarpus AGB fall within this range. These values are considerably lower for 

the generic pan-tropical equations for broadleaf species. This makes sense, given that breadfruit is well 

known as a “light” wood, being used in traditional Polynesian culture for its lightness and ability to float. 

Breadfruit was therefore used to make fishing floats, the gunnels on canoes, and surfboards because of 540 

its characteristics. The “lightness” of the wood corresponds to a lower wood density and, accordingly, a 

lower carbon density on a per volume basis.  

We did not attempt to incorporate height or other canopy measurements, and Goodman et al. (2014) 

highlights that the influence of crown diameter and canopy characteristics have not been well studied nor 

incorporated into existing allometric equations (Goodman, Phillips, and Baker 2014). As trees grow and 545 

compete for access to light, a potentially significant relationship develops between crown expansion and 

AGB; once outside the confines of an understory trees tend to expend resources to grow more 

horizontally than vertically. This change in growth pattern may impact the accuracy of allometric 

equations that do not account for canopy architecture. These findings apply to the present analysis as 

breadfruit trees often grow in the open where exposure to more sunlight is often associated with larger 550 

canopies (Zhou et al. 2015). In addition to a larger canopy architecture, in general, open-grown trees 

often have more significant tapers, and higher bole specific gravity; these factors could lead to over or 

underestimates in AGB when using forest-derived allometric equations (Zhou et al. 2015). Future work 

could test the development of more sophisticated, non-destructive models that incorporate height and 

other aspects of canopy architecture in addition to sampling for differences in varieties, which may 555 

become particularly relevant when monitoring trees in orchard settings that are routinely pruned.  
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CHAPTER 3. GROWTH RATES OF A. ALTILIS AND LANDSCAPE SCALE CARBON IMPLICATIONS  

3.1. Introduction 

This chapter builds upon the allometry developed in Chapter 2 to further extrapolate outcomes across 560 

time and space. The development of the relationship between diameter at breast height (DBH) and total 

above-ground biomass (AGB) and carbon has implications at the landscape scale, particularly when 

considering potential carbon policies. Specific survey techniques are required when using allometry to 

estimate carbon at the stand or forest level (Picard, St. Andre and Henry 2012), and employing the 

allometric equation to explore biomass and carbon of a current A. altilis orchard lies beyond the scope of 565 

this project; however, the data collected here, when combined with growth data allows for the estimation 

of how much carbon is potentially contained within a given landscape at various points in the growth and 

development of planned agriculture projects over time. 

Additionally, a robust AGB allometric equation can potentially enhance the below-ground biomass (BGB) 

estimates. BGB allometry faces even more substantial challenges than the development of AGB 570 

allometry in that the tree’s entire root structure must be carefully excavated, weighed and measured in a 

manner similar to the destructive sampling required for the development of AGB allometric equations. 

Therefore, forestry and carbon projects often rely on root-to-shoot ratios to estimate the BGB based on 

the AGB estimate; better above ground allometry, such as the work from the previous chapter, may by 

extension, lead to a better estimate of below ground biomass. Mokany et al. (2006) built the standard 575 

reference table for root-to-shoot biomass after review of 786 estimates from 266 sources that 

characterized the root-to-shoot ratio from across the biomes of the earth. (Mokany, Raison, and 

Prokushkin 2006).4 By applying BGB estimates, it is possible to estimate the total A. altilis biomass and 

carbon associated with the active, vegetative portion of a tree.  

Furthermore, the rates of accumulation and total stocks of carbon can be estimated by relating the growth 580 

of breadfruit over time to the tree parameter that drives the allometry; that is, DBH. To continue to 

develop support for the application of breadfruit as a climate-smart commodity, this analysis applies the 

allometric equation developed previously to begin to develop a landscape scale estimate of carbon. The 

two objectives of this section of the thesis are to (1) develop a model of breadfruit growth in DBH over 

time; (2) use our growth and allometric equations to extrapolate the landscape-level carbon sequestration 585 

potential of breadfruit biomass by applying published BGB information and industry standards.  

 

 
4 When discussing terrestrial carbon pools, root shoot ratios are a method utilized by carbon accounting. 
However, more advanced concepts such as Total Below Ground Carbon Flux (TBCF) and Below Ground 
Net productivity (BNPP) better describe the flow of carbon through the terrestrial system. BNPP in 
particular better connects the carbon plants utilize in the root system to the development of soil carbon. 
Describing carbon pools are the focus of this thesis; therefore, the thesis will focus on root shoot ratio 
leaving discussions of BNPP for future work. 
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3.2. Background 

3.2.1. Describing Growth of DBH over time 590 

Developing equations to describe changes to tree diameter as the tree grows is one of the fundamental 

purposes of tree growth models; calculating this change over time is needed to estimate the 

accompanying biomass volume growth (Hann and Larsen 1991). As with biomass allometry, a variety of 

variables may be included in the DBH growth equation, such as canopy characteristics and height. Many 

of these decisions are based on the intended purpose of the equation. Growth equations have a variety of 595 

uses including estimating basal area per hectare and other stand characteristics. 

Environmental parameters are important in terms of plant growth, with a wide range of factors being 

influential in plant growth including temperature, soil type and fertility, rainfall and water availability, solar 

radiation, and many others (Cienciala et al. 2016). Typically, the most limiting factor is considered to 

define the rate of tree growth, and habitat modeling for breadfruit and other trees tends to take the 600 

approach of understanding the most limiting environmental parameter (Mausio, Miura, and Lincoln 2020) . 

However, different factors may be limiting across different time periods, both within annual cycles and 

across inter-annual variation (Yang et al. 2022). Typical protocols for determining tree growth rates 

involve measuring the desired tree parameters over time. However, space-for-time substitution may be 

used if trees of multiple ages are accessible to be measured.  605 

3.2.2. Belowground Biomass (BGB) 

As described earlier, a portion of the radiant energy intercepted by the plant is directed to above-ground 

biomass (AGB). In addition to above-ground allometry, trees and plants also dedicate a portion of their 

biomass below ground in accordance with a root-to-shoot ratio. Below-ground biomass (BGB) 

encompasses the biomass of live roots >2 mm diameter that includes the coarse roots of trees, shrubs 610 

and other living plants. Similar difficulties challenge the precise measurement of BGB that challenges 

AGB. Therefore, root-to-shoot ratios are frequently used to predict the structural biomass of the 

tree/forest that lies below ground (IPCC 2019). Table 4, taken from Chapter 4 of the 2019 IPCC 

Guidelines for National Greenhouse Gas Inventories, captures the work of Mokany et al (2006). 

 615 
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Table 4. Root-to-Shoot ratios for tropical and subtropical climate zones based on Mokany et al. 
(2006). 

Ecological Zone Above Ground Biomass Ratio 

Tropical Moist Deciduous Forest AGB < 125 tons ha-1 .20 

AGB > 125 tons ha-1 .24 

Tropical Dry Forest AGB < 20 tons ha-1 .56 

AGB > 20 tons ha-1 .28 

Subtropical Humid AGB < 125 tons ha-1 .20 

AGB > 125 tons ha-1 .24 

Subtropical Dry AGB < 20 tons ha-1 .56 

AGB > 20 tons ha-1 .28 

 620 
 
3.3. Methods 

3.3.1. Tree Growth Evaluation 

To determine a growth equation for A. Altilis, DBH was measured for 208 trees where known or 

approximate ages could be supplied by the tree owners. Tree locations were recorded and used to 625 

extract the modeled habitat suitability of breadfruit based on geospatial modeling by Mausio et al. (2020). 

Mausio et al. (2020) used a fuzzy-set methodology based on the distribution of 1,200 naturalized 

breadfruit trees across the Hawaiian archipelago to create a habitat suitability score of 0-100 based on 

environmental parameters of rainfall, temperature, solar radiation, soil pH, and soil class. Their model was 

validated using production data from 56 producer sites across the state. Due to the relatively small 630 

sample size in this study, suitability scores were converted to categorical representations of breadfruit 

suitability as High (Suitability >81), Medium (70 < Suitability < 81), and Low (Suitability < 70).  

Linear and non-linear regressions were used to examine the relationship between tree age and DBH 

across all samples and by suitability class using JMP software (SAS Institute; Cary, NC), with the 

coefficient of determination (r2) and probability values (P) used to describe the accuracy of the 635 

mathematical equations (Kora et al. 2019). 

3.3.2. Extrapolation of Landscape-scale Carbon Sequestration in Breadfruit Biomass Over Time 

A growth equation is applied to determine projected tree DBH at 5, 10, 15, and 20 years. For 

extrapolations in this study, we employ the best-fit relationship between age and DBH for the high-

suitability classification, assuming that high-suitability sites would be preferentially developed for any 640 

large-scale projects. Using the allometric equation and %C model generated in the previous chapter, 

DBH is used to estimate AGB, as well as total above-ground carbon. From AGB, BGB is estimated based 

on the published root-to-shoot ratio, to which a generic carbon concentration is applied to estimate total 

below-ground carbon in the biomass. The summation of total above- and below-ground carbon will 

provide an estimate of total tree carbon at each timepoint. To move to the landscape scale, we use the 645 

Hawaii Ulu Cooperative’s guidelines of a planting density of 125 trees per hectare to create an estimate of 

total carbon stocks accumulated in the breadfruit biomass and the carbon dioxide equivalent. An exercise 
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of error propagation through the root mean square errors is conducted to understand the 95% confidence 

interval associated with the final estimates.  

3.4. Results 650 

3.4.1. Growth 

The DBH and age of 208 A. altilis trees from the Big Island of Hawaii were recorded, and habitat 

suitability was determined in ArcGIS by extracting the locational data from the suitability map generated 

by Mausio et al (2020). 95 Trees were Hawaiian variety and 113 were of the Maafala variety. Across all 

trees, the linear regression of diameter against age was indistinguishable between the two varieties, and 655 

subsequent analysis combined the two varieties. Trees were broken into suitability classes of High 

(n=38), Moderate (n=42), and Low (n=128). Using JMP software, we regressed DBH against age by 

applying suitability classification. Growth curves were best explained by a quadratic function (Figure 9) 

with the resulting equations presented in Table 5. 

 660 
Figure 9. Quadratic regression of DBH against age for 208 breadfruit trees on Hawai‘i Island as 
classified by habitat suitability.  

 
 

 665 



21 
 

Table 5. Equations describing the growth in DBH of 208 breadfruit trees on Hawai‘i Island 
classified by habitat suitability. 

Suitability Class Equation R2 RMS Error 

High DBH = 12.57+1.474(Age) – 0.007044(Age)2 .98 3.8 

Medium DBH = 5.766 + 1.471(Age) – 0.009793(Age)2 .96 3.6 

Low DBH = 3.308 + 1.066(Age) – 0.005585(Age)2 .89 3.3 

 

3.4.2. Landscape Scale Carbon Estimate 

Only the high suitability class was used for extrapolation, assuming that areas of high suitability would be 

preferentially developed for breadfruit industry, as noted in Equation 11. 

Equation (11)   𝐷𝐵𝐻 =  12.57 + 1.474(𝐴𝑔𝑒) –  0.007044(𝐴𝑔𝑒)2 670 

The growth formula was used to estimate DBH of trees at ages 5, 10, 15 and 20 years. The resulting 

DBH values were plugged into the allometric equation developed in the last chapter, as shown in 

Equations 12 and 13 below. 

Equation (12)   𝐴𝐺𝐵 = −4.586 + 0.1635 × 𝐷𝐵𝐻 +  0.2229 × 𝐷𝐵𝐻2  

Equation (13)  𝑘𝑔𝐶 = 2.25 − 0.8715 × 𝐷𝐵𝐻 + 0.1172 × 𝐷𝐵𝐻2 675 

A root-to-shoot ratio of 0.56 was applied to the resulting AGB using the generic conversion for dry-

subtropical environments as published by Mokany et al (2006) to estimate breadfruit BGB per tree over 

time, multiplied by a generic carbon concentration of 44.8%. To extrapolate to a per hectare basis we 

apply the industry standard of 50 trees per acre, or 125 trees per hectare based upon a 30-foot planting 

spacing and convert to the CO2 equivalent by multiplying by the ratio of molecular weight of carbon to 680 

Carbon Dioxide (44:12). The extrapolations are summarized in Table 6.  

Table 6. Extrapolation of diameter at breast height (DBH), above 
ground carbon (AGC), below ground carbon (BGC), and total 
carbon (Total C) stored in a single breadfruit tree based on the 
growth curve and allometric equation defined in this thesis.  

Age DBH 
(cm) 

AGC 
(kg/tree) 

BGC 
(kg/tree) 

Total C 
(kg/tree) 

CO2  
(mt/ha)  

5 19.76 39.2 9.2 48.4 22.2 

10 26.61 73.3 16.9 90.2 41.3 

15 33.10 115.0 26.3 141.2 64.7 

20 39.23 162.9 37.0 199.8 91.6 

 
 
3.4.3. Error Estimates  

The extrapolation in the previous section relies on multiple relationships, each of which has a degree of 685 

error associated with it. This includes our allometric equations and sub-relationships, the growth 

equations, and the generic BGB estimates applied.  
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In general, there are four major sources of error in estimating AGB including sample tree selection, tree 

measurement, statistical modeling and application of the statistical model (Cunia 1965). In this section, 

we will briefly describe the error associated with our statistical model. 690 

To develop our allometric model of A. altilis AGB we employed two sub-models: 1) the relationship of 

stem diameter to wood and carbon density and 2) the relationship of stem diameter to foliar biomass. 

These sub-models fed into the final allometric model. As described earlier, we did not begin with a 

geometrical argument as described elsewhere (Chave et al. 2005) but instead followed the methods 

outlined in Picard, St. Andre and Henry (2012). 695 

 

Table 7. Root Mean Square Error of Associated Models. Errors associated with the 
regression relationships that fed into the allometric equations as well as the final 

allometric equation. 

 Dry Density to 
(g) Stem 
Diameter (cm) 

Foliar Biomass (kg) to 
Bottom Stem diameter 
(cm) 

AGB (kg) 
to DBH 
(cm) 

DBH 
growth 
rate  

R2 .799 .904 .998 .98 

Root Mean 
Square Error 

.021 g/cm3 23.516 g 6.699 kg 
3.8 cm 

  
 
3.5. Discussion 

Utilizing tree age and habitat suitability, strong relationships between age and DBH were shown, 700 

suggesting that good predictions about growth rates across environments can be determined for 

breadfruit. Such relationships to habitat quality have been shown to relate to both the productivity and teh 

quality of the fruit produced (Erland et al, 2023; Needham, Jha, and Lincoln 2020). The growth rates were 

utilized in conjunction with our previously determined allometry, published root-to-shoot ratio, and industry 

standards to demonstrate a landscape-level prediction of carbon content within the biomass associated 705 

with breadfruit orchards. It is important to note that trees sampled for both the growth rates and the 

determination of AGB were unadulterated trees. This is unlikely for an orchard scenario, in which trees 

are generally pruned and otherwise actively managed. This could both increase (e.g. through fertilization) 

or decrease (e.g. through pruning) growth rates, and would likely decrease AGB (through pruning). 

Additionally, this study did not sample root material nor engage in a thorough assessment of the 710 

contribution of roots to the carbon estimate. Future work could also better describe how carbon 

percentage varies over time and by variety. This would make the carbon estimate more robust and could 

point to ways of better designing carbon projects. These are all activities that need to be considered in 

future work. However, this initial analysis demonstrates the potential to provide reasonably accurate 

assessments and predictions of breadfruit growth and carbon storage.  715 
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CHAPTER 4. SENESCENCED ORGANIC MATTER POOL (LITTER) 

4.1. Introduction 

Litter lies at the transition point in the flow of carbon in the terrestrial ecosystem between above-ground 720 

biomass and between a return of carbon to the atmosphere or incorporation into soil organic matter. Of 

the major broad categories of terrestrial carbon, the litter is among the most ephemeral, with residence 

times of some components as short as days. The uncertainties associated with estimates of the rate of 

transfer from dead organic matter to the soil organic carbon pool or emission back into the atmosphere 

are generally high (IPCC 2019).  725 

Because of the relatively small size, short duration, and highly variable kinetics of litter decomposition, the 

IPCC guidelines provide significant leeway to make assumptions or otherwise minimize the effort 

expended to quantify this pool and its associated flows (IPCC 2019). Further, IPCC guidelines highlight 

that the dead organic matter pool is not likely to fill a “key category role” meaning, that the category is not 

likely to have a significant effect on the total inventory (IPCC 2019).  730 

A carbon accounting methodology published by Verra—a non-profit and world leader in setting standards 

for carbon project accounting —continues the theme of minimizing the importance of the litter pool 

because of its small contribution. However, if project planners have reason to believe that the pool is 

significant, Verra drafted an Improved Agriculture Land Management methodology that describes 

methods for quantifying litter based on the Clean Development Mechanism. Based on how the carbon 735 

accounting standards approach this carbon pool, a first step is to assess the importance of this pool’s 

carbon contribution to the overall total Carbon of the system. The objective of this study is to provide a 

characterization of the significance of litter in the overall carbon accounting of breadfruit orchard systems.  

4.2. Background 

As described in the AGB estimate chapter, trees dedicate a species-specific amount of energy to biomass 740 

production in general, and leafy biomass in particular. For most species, senescence, or litterfall, is a part 

of a natural cycle of growth and development. Studies have characterized the litterfall rate for a number of 

Artocarpus spp. One study observed a litterfall rate of 13.76 kg/ha -1 (Das and Das 2010) in A. chama 

species, while another study observed approximately .5 Mg ha -1 in both A. heterophyllus and A. hisutus 

(Jamaludheen and Kumar 1999). In addition to the natural senescence process, breadfruit orchards 745 

would also need to account for annual pruning and associated management techniques. 

As litter falls, the rate at which it decomposes and transitions to other pools is highly dependent on litter 

characteristics such as carbon-to-nitrogen ratio and lignin content, and based on microclimate conditions, 

microbes, and earthworms under the canopy (Tangjang et al. 2015). 

 750 
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Table 8. Litter characteristics of Artocarpus spp. from published studies.  

Species Litterfall Rate 
(kg/ha-1) 

C:N Ratio Lignin 
Percentage 

(%) 

Author 

Artocarpus 
chama 

13.76 43.58 N/A Das and Das 
2010 

Artocarpus 
heterophyllus 

N/A 32.44. N/A Das and Das 
2010 

Artocarpus 
heterophyllus 

N/A 27.65 17.48 Tangjang et 
al. 2015 

Artocarpus 
heterophyllus 

N/A N/A 15.18 (Isaac and 
Nair 2006) 

Artocarpus 
hisutus 

N/A N/A 28.7 (Isaac and 
Nair 2006) 

Artocarpus 
heterophyllus 

~500 N/A 17.9 Jamaludheen 
and Kumar 

1999 

Artocarpus 
hisutus 

~500 N/A 31.4 Jamaludheen 
and Kumar 

1999 

 

Anecdotally, agroforestry farmers in India report that Artocarpus spp leaves decompose more slowly than 

other trees in the agroforestry system because of their thickness and large size (Ashesh 2010). This fits 

with findings that the decay rate for wild jackfruit (A. hisutus) is lower than for other tropical trees (Issac 755 

2004). Issac (2004) observed that A. hisutus decomposition was a first-order process with a half-life of 

9.45 fortnights, and that after 17 fortnights under the canopy, 95% of the litter material had decomposed 

(2004). In general, studies have described the decay of Artocarpus litter as a bi-phasic, first-order process 

with a decay constant (k) between 2 – 4 units of mass per time. However, this process remains poorly 

understood, and the specific kinetics of carbon flows into the soil carbon pool or back into the atmosphere 760 

are influenced by a number of difficult-to-quantify factors (IPCC 2019).5  

4.3. Methods 

As shown in Figure 9, to assess the standing litter stock, a 20 cm by 20 cm cardboard square was placed 

on the accumulated litter material under the canopy of six randomly selected trees at the Southern Turf, in 

Central Oahu, which is a commercial breadfruit orchard established in 2013. The four sites were situated 765 

randomly at the mid-canopy of each tree. Using a knife, the litter material within these four 20x20 cm 

squares were separated from the adjoining dead organic matter and collected into a paper sample bag. 

Measurements were also taken from the trunk of each tree to the edge of the litter field to estimate the 

total area associated with litter material. 

 
5 Further, a growing body of literature points to roots and soil microbial communities as the largest 
contributors to soil carbon, not AGB dead organic matter. 
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 770 

Figure 9. Illustration of the litter sampling, showing an example of the four 20 cm2 collection 
areas, with the dashed line representing a measurement of the radius of the litter field.  
 
At the lab, the harvested leaf and coarse woody material were dried at 60 °C, from which dry weights of 

the total harvested material were calculated. The dried dead organic matter material was separated into 775 

coarse woody samples and leaf material samples. These leaf and wood samples were homogenized 

separately with a ball mill (Retsch MM200 mixer mill; Retsch GmbH, Haan, Germany) to pass through a 

250-ml sieve, and the C and N concentrations were determined by oxidative combustion on an elemental 

analyzer (Costech ECS 4010 CHNSO Analyzer; Costech Analytical Technologies Inc., Valencia, CA, 

USA).  780 

4.4. Results 

4.4.1. Layer of Surface Litter Characteristics 

Samples and measurements of the layer of surface litter from six trees at Southern Turf in Central Oahu 

were collected. The mean layer of surface litter area was 19.84 m2 per tree, with a standard deviation of 

6.57 m2.  785 

4.4.2. Litter Mass and Carbon Percentage 

With four samples collected from each tree, a total of 24 litter samples were collected from six trees at 

Southern Turf. As described above, in the lab these samples were homogenized into leaf litter and wood 

litter samples for each tree and these samples were sent for total carbon analysis. Mean leaf litter mass 

per homogenized sample was 241.07 g with a standard deviation of 89.4 g, and mean wood litter mass 790 

per homogenized sample was 41.43 g with a standard deviation of 26.15 g. Due to lab error, the leaf litter 

sample from tree 1 was not analyzed. For this set of samples, the mean leaf litter carbon percentage was 

28.76% with a standard deviation of 3.33%, while the mean wood litter carbon percentage was 40.21% 

with a standard deviation of 2.55%. 
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Table 9. Litter characteristics associated with 6 trees sampled at 
Southern Turf breadfruit orchard on Oahu island. 

Tree DBH 
(cm) 

Area m2 Leaf 
Mass 
(g) 

Wood 
Mass 
(g) 

%C Leaf  %C 
Wood  

1 120 28.616 172.52 15.55 
 

42.57 

2 38.5 27.020 118.69 12.81 31.59 37.09 

3 42 18.343 224.61 28.08 29.76 37.91 

4 35 11.993 371.15 69.39 28.87 41.82 

5 40.25 17.549 286.65 51.98 24.12 38.9 

6 50 15.545 272.8 70.76 25.1 42.98 

 795 

4.4.3. Estimating Carbon per Tree and Hectare 

We can multiply the average leaf and wood litter mass by their respective average carbon concentration 

and scale to the average litter field dimensions to estimate the total carbon in the litter layer of an 

individual tree, which equates to 0.538 kgC/tree. This can be compared against the carbon stored in the 

biomass, which based on a 10-year orchard in the previous section is 90.2 kgC/tree, suggesting that the 800 

litter component equates to ˜0.6% of the carbon stored in the biomass in this situation. 

 
4.5. Discussion 

Although explorations into litter were limited, this exercise supports previous assertions that the standing 

litter pool is a relatively insignificant component of carbon in breadfruit orchards. In the simple case we 805 

present, carbon represents only 0.6% of the biomass of in the trees. Furthermore, the variation 

associated with the little layer was substantial, creating a large degree of error associated with this small 

contribution to the total carbon. As these trees were in the same orchard and subject to similar 

climatological and management techniques the variability should have been low, or perhaps it is more 

accurate to say that these conditions should represent relatively low variability of the system. It is 810 

therefore likely that under less standardized conditions the variability of the litter layer will be even higher. 

Although a more extensive study should be done to better quantify the contributions of litter, it is 

suggested that the litter component of breadfruit be ignored under the current state of knowledge.  

Since we only sampled trees of one age, and at one site, the correlations across time and space that 

were conducted for tree biomass are not possible. Future work could aim to connect the standing litter 815 

pool to the size (e.g. DBH) of the tree, and to the environment to better capture total dynamics of these 

pools. Future work could also incorporate decomposition kinetics and parse the fraction of carbon that 

returns to the atmosphere and the part that becomes incorporated into the soil carbon pool through the 

particulate fraction or through the work of nematodes and other insects. 
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CHAPTER 5. SOIL CARBON POOLS WITHIN A BREADFRUIT ORCHARD IN CENTRAL OAHU 820 

OXISOL POST-PLANTATION LAND USE 

 

5.1. Introduction 

In addition to the carbon contained in the underground biomass, the BGB contributes fine root litter and 

root exudates that drive contributions to the soil organic matter pool and associated microbial 825 

communities. Soil organic matter forms as microorganisms decompose both the above- and below-

ground biomass to fuel the production of organic compounds (Cotrufo et al. 2013). These organic 

compounds may become stable in soils to various degrees through association with minerals, be 

biodegraded and return to the atmosphere as carbon dioxide or leached from the system.  

These complex biological processes occur within the constraints of soil texture, structure, and 830 

classification. Many soil characteristics, including parent material, clay minerology, and the presence of 

aluminum or iron oxides impact the size and stability of the soil organic carbon pool at equilibrium. While 

the nuanced microbial ebb and flow remains less defined, it is well established that some soil 

classifications will hold more carbon than others (Paustian et al. 2019).  

This complex interaction of mineralogy and biology occurs across geological time scales and also 835 

underlies soil carbon’s notorious heterogeneity. For the State of Hawaiʻi, the volcanic origin of the soils 

challenges the situation further as soils such as Andisols and Oxisols do not fit neatly into existing models 

of soil carbon. For example, the IPCC lists standard estimates for soils such as Andisols at 70 tons C per 

hectare (IPCC 2019); however, studies of Andisols from the Island of Hawaii found approximately 300 to 

500 tons C per hectare (Crow et al. 2018; Barančíková, Makovníková, and Halas 2016). This discrepancy 840 

underscores the need for further work in understanding soil carbon dynamics within the Hawaiian Islands. 

We sampled a breadfruit orchard situated on former intensive plantation agricultural lands in central Oahu 

to explore how conversion to breadfruit orchard may be affecting soil carbon stocks. The Oxisol soils were 

pineapple plantations until the 1990s and farmed with intensive inputs and soil disturbance methods. After 

two decades of fallow, the land was planted with over 500 breadfruit (A. altilis) trees in 2014, established 845 

with funding from the Hawai‘i Department of Agriculture; under the Specialty Crop Block Grant trees were 

planted at two different densities to explore the effects of spacing on breadfruit production and orchard 

management. As a preliminary exploration of the potential for breadfruit to contribute to soil organic 

matter, the hot water extractable and total carbon pools were quantified within the two spacing regimes of 

the orchard. Interpretation of the results is discussed based on current literature. 850 
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5.2. Background 

5.2.1. Hot Water Extractable Carbon 

A full discussion of the models of the interactions of the soil microbial community with soil mineralogy in 855 

soil carbon dynamics lies beyond the scope of this thesis. However, because of its strong correlation with 

soil microbial biomass, HWEC has been recommended as a measure of short-term changes in soil 

organic carbon, and representative of carbon that is readily available to microbes which can, in turn, form 

mineral-associated carbon that is stable in soils for a longer timeframe. This characteristic of HWEC 

makes it a sensitive early indicator of changes to SOC owing to the effects of A. altilis agriculture or other 860 

land use changes (Ghani, Dexter, and Perrott 2003).  

5.2.2. Equivalent Soil Mass 

This study will employ the Equivalent Soil Mass (ESM) method to obtain the most accurate description of 

soil carbon. In soils heavily impacted by agricultural land use and management practices, it is necessary 

to appropriately account for the compaction effects on soil bulk density. Not taking compaction into 865 

account can lead to biased estimates of soil carbon (Melone et al. 2021). In areas or situations where 

there is reasonable reason to believe that changes in land management will impact soil compaction, the 

ESM method can more accurately play a role in answering questions about changes to soil carbon owing 

to the change in land management practice (Wendt and Hauser 2013). 

5.3. Methods 870 

5.3.1. Site Description 

Sampling was conducted at Southern Turf in Mililani, Central O‘ahu. The site has a long history of 

intensive pineapple agriculture until the mid-1990s. Although much of this site is used as an active grass 

turf farm, a portion of the site was dedicated to an A. altilis trial planting trial approximately nine years 

ago. The site is dominated by highly weathered Oxisol soil. Oxisols are known for their low activity 875 

mineralogy and their general lack of fertility (U.S. Department of Agriculture). According to the Climate 

and Rainfall Atlas of Hawaii, the site receives 750-1350 mm of rainfall each year and a mean annual air 

temperature of 20 – 22°C. 

5.3.2. Sampling Description and Lab Work 

Within an approximately 80m x 20m subsection6 of the orchard, we leveraged an existing planting density 880 

trial to establish a split-plot design with two replicates (Figure 10). The main treatment is row-spacing: 

wide (30ft) versus narrow (15ft) spacing of breadfruit trees. The split plot examines location: under the 

breadfruit canopy and the open (grassed) areas between the plantings. At each sampling point, soils 

 
6 Carbon accounting methodologies call for the sampling design to be based on terrain and site features. In the case 
of this relatively level field, no obvious features of the geography demanded a wider sampling area.  
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were sampled using a core of known volume by depth: shallow (0-30cm) and deep (30-60cm), or as deep 

as possible. This will result in a total sampling of 8 trees (4 in each spacing regime), 16 points (8 trees 885 

plus their corresponding between tree sampling), and 32 samples (16 shallow and 16 deep samples). 

This sampling design is depicted in the figure below. Samples were taken with a 2.54 cm diameter drill bit 

attached to a power drill and the soil was collected into a bucket with a hole in the bottom to effectively 

capture the drill spoil with minimal contamination from soil outside the sample site.  

 890 

Figure 10. Schematic of the experimental design used to sample soils within an experimental 
breadfruit orchard that consists of two planting densities with wide (30 feet) and narrow (15 feet) 
spacing. The replicated block design sampled soils under the tree canopy and between the tree 
rows in both spacings, with soils sampled in a shallow (0-30cm) and deep (30-60cm) subsample.  

 895 

Samples were immediately taken back to the lab for analysis. Total wet weight was recorded, and the 

samples were homogenized and subset. One subset was used to determine moisture content by 

obtaining the wet weight, and then determining the dry weight after soils were oven-dried at 60 ºC for 48 

hours. A second subset was sieved to 2mm, oven-dried at 60 ºC, pulverized and encapsulated for total 

carbon analysis via an elemental analyzer. A third subset was sieved and used to conduct cold and hot 900 

water extractions to determine water-extractable carbon. Samples were first shaken in 20°C deionized 

water for 30 min, centrifuged, and the supernatant solution filtered through 0.45 µm membrane filters. 

Soils were then shaken in 80ºC deionized water for 16 hours, and similarly treated as the cold-water 

extractable samples. The extracts were subsequently sampled for carbon concentration.  

The design described above supports the statistical analysis of variation and comparison of means 905 

between main plots (wide vs. narrow) split plots (breadfruit vs. grass) by depth class. Treatment means 

and variance were compared using ANOVA, with statistical differences between groups determined with 

the Tukey means comparison. Because of the small sample size, this design will only detect relatively 

large differences focused within this area of the breadfruit orchard.  
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5.3.3. Equivalent Soil Mass (ESM) 910 

To calculate the soil mass represented by a soil sample depth layer (DL) in terms of Mg ha−1, we will 

divide the dry sample mass (recorded in grams) by the area sampled by the probe or auger, which is the 

cross-sectional area of its inside diameter and will calculate ESM as outlined in the equations below. 

If D is expressed in mm, then the mass of the soil in Mg ha−1 in each depth layer is calculated as:  

Equation (14)   𝑆𝑜𝑖𝑙𝑀𝑎𝑠 =  
𝑚𝑎𝑠𝑠

𝑎𝑟𝑒𝑎
 =

𝑆𝑎𝑚𝑝𝑙𝑒 𝑀𝑎𝑠𝑠

(𝜋×
𝐷

2
)2

 × 10000  915 

The organic carbon (OC) mass in kg ha−1 is the product of its soil mass and OC concentration. 

Equation (15)   𝑂𝐶𝑀𝑎𝑠𝑠 = 𝑆𝑜𝑖𝑙𝑀𝑎𝑠𝑠 × 𝑂𝐶𝑐𝑜𝑛𝑐   

5.4. Results 

5.4.1. Soil Mass 

The soil was heavily compacted. Owing to the level of compaction, samples focused on two layers, 920 

shallow and deep, with the deep sample reaching just over 50cm. Based on the dry weight of the sample 

as calculated in the laboratory, the weight of each sample was converted from grams (g) to megagrams 

(Mg) and based on the probe diameter (2.54 cm), these results were converted to Mg per hectare.  

The mean sample soil mass in Mg ha-1 was found to be 2310.4 Mg/ha with a standard deviation of 639.9 

Mg/ha. A significant difference between the shallow and deep layer samples was observed, with the 925 

shallow layer found to have an average of 2787.7 Mg/ha, while the deeper samples averaged 1832.95 Mg 

ha-1. 

 

5.4.2. Hot Water Extractable Carbon 

There were no statistically significant differences found between interrow, canopy, wide or narrow soil 930 

samples at any depth. However, at both depths, there was consistently higher HWEC carbon found in the 

inter-row grassy area although the findings were not significant (Table 10).  

 

Table 10. Results from the hot water extractable carbon on 32 samples collected from Southern 
Turf breadfruit orchard, demonstrating slightly higher levels occurring in the inter row areas 
compared to areas under the breadfruit canopy.  

 Inter row mg C/kg soil Canopy mg C/kg soil 

Shallow Layer 176.73 147.54 

Deep Layer 94.15 86.69 

 
 935 
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5.4.3. Organic Carbon Heterogeneity 

In general, the results of this work show carbon homogeneity in this Oxisol, suggesting that the relatively 

short history of A. altilis agroforestry on the site has not significantly shifted the carbon dynamics. Depth 940 

was the most significant source of carbon percentage heterogeneity across the site, with the shallower 

sampled layer containing statistically significant higher percent carbon and higher cold and hot water 

extractable carbon. Additionally, samples taken from the narrower planting had a statistically significant 

higher carbon percentage, but this did not translate into any significant differences between hot water 

extractable carbon between the narrow and wide planted row samples. No statistically significant 945 

differences in carbon percentage were found between samples taken from underneath the canopy or in 

the grassy/interrow area at any depth. Although not statistically significant, the samples taken from the 

inter-row grassy area consistently registered higher carbon. This held for percent carbon and cold and hot 

water extractable carbon. All results are displayed in Table 11. 

Table 11. Results from hot water extractable and total soil carbon in 32 samples 
taken from Souther Turf breadfruit orchard on Oahu. Experimental design included 
comparing two planting densities (narrow and wide), the inter-row and beneath the 
canopy of breadfruit trees, and shallow (0-30cm) and deep (30-60cm) sampling.  

 Inter-row Canopy Narrow Wide 

Shallow % 
Carbon 

1.97% 1.62% 1.92% 1.68% 

Shallow Cold 
Water Extracted 
Carbon (mg/kg) 

69.65  67.73  75.35  62.02  

Shallow Hot 
Water Extracted 
Carbon (mg/kg) 

176.73  147.54  171.20  153.07  

     

Deep % Carbon 1.53% 1.34% 1.68% 1.19% 

Deep Cold Water 
Extracted Carbon 
(mg/kg) 

48.92  46.56  51.28  44.20  

Deep Hot Water 
Extracted Carbon 
(mg/kg) 

94.14  86.69  99.56  81.27  

 950 

5.5 Discussion 

As indicated in the introduction, the study design would only detect large differences in carbon quantity 

because of the relatively small sample size. Indeed, this study found a relatively homogenous soil carbon 

profile, and we could not conclude that breadfruit had a significant effect on soil carbon accumulation. 

However, this is a highly weathered Oxisol. Results may have been different in another soil that more 955 

readily forms soil organic carbon, such as an Andisol. The breadfruit orchard has not yet been in 

operation for a decade, and in this post-intensive agriculture, highly-weathered soil, carbon may simply 

accumulate more slowly.  
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HWEC is often an early indicator of changes to SOC. In this study, we found generally higher amounts of 960 

HWEC in the grassy inter-row area. These findings are in line with literature that attributes greater SOC 

accumulation to grasses as opposed to trees (Zhou et al. 2023; Wigley et al. 2020). The literature 

generally notes that within tropical soils, tree cover has been found to not explain SOC concentration 

(Zhou et al. 2023) and grasses have been found to trump trees in supporting soil carbon storage (Wigley 

et al. 2020). However, the focus of this study was heterogeneity within the A. altilis agriculture area and 965 

samples were not collected from nearby areas outside the A. altilis growing area; this study was not 

designed to compare SOC accumulation associated with grasses versus trees, and therefore, additional 

work is needed to more fully describe this relationship, and to better parse out the effects of breadfruit 

trees on soil organic carbon versus the effects of crops or grasses grown in the rows between trees. If 

properly elucidated, growing grasses or crops in the rows between trees is a potentially powerful way to 970 

increase the total amount of carbon stored per hectare by leveraging the carbon storage strengths of both 

trees (AGB) and grasses or other crops (soil organic carbon). Additionally, owing to the agricultural history 

of this site, future work will need to account for plastic used in the management of pineapple – the carbon 

figures noted above may unintentionally have incorporated plastic into the sample analyses. 

 975 

 

 

 

 

 980 

 

 

 

 

 985 
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CHAPTER 6. CONCLUSION 990 

6.1. Overview 

As a long-lived tree crop, intuitively A. altilis has significant potential as a climate-smart, carbon credit-

producing commodity. This study intended to apply a mix of carbon accounting methodologies and the 

scientific literature to develop quantitative data describing the terrestrial carbon pools of Hawaiian 

breadfruit orchards; specifically, the above-ground biomass (AGB) pool, the below-ground biomass (BGB) 995 

pool, the soil organic carbon pool and, the dead organic matter (litter) pool.  

In the AGB pool, this study collected the data to: 1) develop growth equations based on environmental 

suitability, 2) to describe a relationship between stem diameter and carbon density, and 3) describe the 

relationship between terminal stem diameter and foliar mass and finally 4) to develop an allometric 

equation that describes total AGB. Using a published root-to-shoot ratio this robust AGB estimate also 1000 

allowed us to estimate BGB. For this study, we also collected a suite of litter samples. Although the 

carbon methodologies tend to minimize the importance of this carbon pool, it is a part of the flow of 

carbon through the terrestrial landscape. Our findings here supported litter as quantitatively not a 

significant contributor of carbon storage. Finally, this study collected data on soil organic carbon, 

specifically looking for heterogeneity within the breadfruit orchard with an emphasis on hot water 1005 

extractable carbon (HWEC). We found generally higher amounts of carbon in the grassy interrow area 

than under the breadfruit trees directly and although our sampling design did not allow for a comparison 

to soil samples outside the orchard, this finding potentially points to inter-cropping as a strategy to 

maximize carbon storage per hectare. Additionally, in another potentially important finding for carbon 

project design, the narrow planting held significantly higher %C.  1010 

We now have a foundational level of data from which we can begin to address a potential “climate-

friendly” label for breadfruit. Much of this work lies beyond the scope of this current study, but included 

below is a rough outline of a way ahead to continue to build upon this work. 

6.2. The Way Ahead: A Carbon Project 

6.2.1. Carbon Accounting 1015 

The application of these findings may begin by employing the allometry developed here to develop a 

sampling plan for an active or planned breadfruit orchard, and the BGB, litter and soil methods could be 

used to complete the picture of total carbon. The Greenhouse Gas Protocol organization clearly 

delineates three scopes of emissions to consider when calculating an operation or product’s carbon 

footprint. A thorough carbon project would look at the emissions from both the perspective of a farmer, 1020 

and the perspective of businesses and organizations that sell breadfruit and value-added versions of the 

project. In this approach, Tons of CO2 stored per hectare is the starting point and Tons of CO2 would be 

subtracted based on activities involved in breadfruit cultivation that produce CO2. This could include 
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applying fertilizer, driving vehicles to harvest, and driving vehicles to market, in addition to many other 

potential categories. In the case of value-added products, we would have to account for the CO2 involved 1025 

in packaging, cold storage, and production.  

Farmers are driven by a broad range of values that influence their decision-making process (Lincoln and 

Ardoin, 2015, 2016). While the economics of carbon markets may not be significant enough currently to 

drive a farmer to adopt breadfruit as a crop, other value-laden decisions, such as environmental or 

cultural values, may. Similarly, the market and associated economics of breadfruit are driven by 1030 

consumption, with consumers equally driven by value-laden decisions (Lysak, Ritz and Henriksen 2019; 

Needham and Lincoln 2019). Therefore, while carbon markets may not be a substantial influence on 

farmer decisions at this time, it is possible to leverage other opportunities, such as consumer and farmer 

values to influence decision-making processes to promote the establishment of breadfruit production 

systems as a climate smart commodity.  1035 

6.2.2. Calories per acre 

Another important factor to consider is calories per acre; oftentimes when considering the carbon footprint 

of agricultural products, yields and effects to the food system are not incorporated into decision making. 

In the case of breadfruit, at conventional spacing, 50 trees are planted per acre. If each tree of the 50 

trees produces 300 pounds or 136,078 grams of breadfruit and each gram has approximately 102 1040 

calories, then each acre of planted breadfruit produces 693,997,800 million calories while also containing 

a significant amount of carbon. By subtracting the CO2 produced during breadfruit cultivation and during 

the value-added process, we’d be able to fit breadfruit into the literature which describes kg carbon 

emitted per 1000 calories. 

 1045 

Alongside the research on human health associated with breadfruit consumption and the projected 

resilience of breadfruit in the face of climate change, the work of this thesis in describing the carbon 

content of breadfruit agroforestry provides a solid measure of breadfruit as a climate-smart commodity. 

 

 1050 

 

 

 

 

 1055 
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