
Democratization of Corporate IT using IS Architecture Representation
Framework (ISARF)

Kashif Saeed Anna Sidorova
University of North Texas University of North Texas

kashif.saeed@unt.edu anna.sidorova@unt.edu

Abstract

Democratization, digital and data transformation,
the need for responsible access to data and analytics
resources, and the emergence of cloud computing are
creating the need for understanding architectural
aspects of IT for technical and business users. The
combination of these trends, resulting in software-
defined hardware, has blurred the line between software
and hardware for IT developers. Similarly, the plug &
play nature of serverless computing has allowed
business users to manage their own cloud deployments.
In spite of the numerous benefits, the combination of
these new trends has created some challenges for IT
management, one of which is to make the enterprise
architecture more robust, accessible, and
understandable. We, utilizing the representation theory
and the theory of digital object, propose an IS
architecture representation framework (ISARF) as a
way to explain complex IT architectural concepts to
software developers, business users, and executives. We
posit that this framework can be utilized for the growing
need for democratization of IT.

1. Introduction

Digital transformation redefines the role of digital
objects in organizations by making them a critical
element in how organizations organize and present
themselves to customers in terms of business models,
processes, and services [1]. In the digital transformation
world, digital artifacts become defining characteristics
of products and services, and the defining force in the
design of business processes giving rise to so-called
product-IT [2]. Product-IT is considered the revenue
driver for organizations [2]. The management of
product-IT is focused on innovation and business
advantage, which requires fast turnaround and rapid
path to transform the business. In contrast, enterprise-
IT, in general, focuses on cost minimization, scalability,
efficiency, and reliability rather than innovation and

quick turnaround [2]. Product-IT developers and
business users work closely with the customers, which
requires them to not only understand the hardware and
enterprise architecture concepts [2], but also understand
the abstractions that the product provides to the
customers. Therefore, the development and
maintenance of product-IT relies on the democratization
of IT for the deeper understanding of IT artifacts,
enterprise architecture, components, integration, and
abstractions in product-IT.

Democratization of IT, defined as citizen access of
IT, is an emerging trend in information systems and
practitioner literature. In simple terms, democratization
of IT means making IT available to people, which can
happen at a personal or corporate level. We, in this
paper, focus on the democratization of IT at the
corporate IT level. We contend that corporate IT has
been democratizing IT to empower business users for
several years, although it is a newer trend in the
practitioner journals. For example, BI tools enable users
to create their own reports and dashboards [3], which
once used to be an IT responsibility. Similarly, analytics
users are allowed to partially manage their own data
discovery environments [4], which was once completely
managed by IT. We argue that the recent trends in cloud
computing, digital transformation, and data analytics are
the reason behind the emergence of democratization in
the practitioner journals. These emerging trends are
pushing IT management to further the level of
democratization that exists in IT.

The first trend is the IT investment in the adoption
of cloud computing. According to the SIM IT trend
study, the organizations surveyed, on average, delivered
44.8% of all IT services via cloud in 2019, up from
31.9% in 2016 [5]. Cloud computing allows
organizations to provision hardware using software,
often referred to as Infrastructure as Code (IaC) [6]. IaC
uses high-level coding to automate the provisioning and
customization of IT infrastructure. Traditionally,
hardware engineers managed the hardware
provisioning, whereas software developers were
responsible for solution delivery from the software

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 5821
URI: https://hdl.handle.net/10125/71326
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

mailto:kashif.saeed@unt.edu
mailto:anna.sidorova@unt.edu

perspective. The hardware-focused IT staff did not
generally deal with software development or
programming, whereas the software-focused IT staff did
not deal with hardware, scaling, and enterprise
architecture concepts. Thus, this divide between
hardware and software in IT, which existed for decades,
resulted in two silos – the software developers have little
to no knowledge of hardware, and the hardware
engineers have no in-depth knowledge of software
development.

The emergence of cloud computing has exposed this
divide between software and hardware. Cloud
computing allows provisioning hardware using software
by allowing developers to write code to automate the
provisioning of hardware. The rise of DevOps [7] and
the popularity of automation scripting tools like Ansible
[8]–[10] and Terraform [11], [12] are examples of
scripting tools used for automating and customizing the
software provisioned hardware. This divide between
hardware and software is creating a challenge for IT
management, and there is an unprecedented need to
cross-train resources in IT. There have been discussions
in the computer science literature to incorporate these
trainings at the corporate level [13], [14] and in
academia [15], [16], however, the IS literature has not
addressed this issue. We posit that the knowledge of
enterprise architecture, hardware, and solution
architecture, which once was limited to enterprise
architects and hardware-specific IT employees, is now
required for software developers and business users.

Another trend that is driving the calls for
democratization of IT is the need for responsible access
to data and analytics resources, and the cloud
democratization of analytics and machine learning. The
plug and play nature of serverless computing has
enabled business users to build and deploy their own
solutions in cloud [17], which requires an understanding
of hardware and architectural concepts to effectively
manage the resources and maintain responsible access
to data.

 The aforementioned trends converge to a common
theme – making hardware and enterprise architectural
concepts more visible and understandable to developers,
product-IT, business users, and executives. Therefore,
we argue that IT architecture cannot be hidden as
separate from business architecture. This may be a new
call in the context of democratization of IT, cloud
computing, digital transformation, and user driven
analytics, however, enterprise architecture have been
used in the past by CIOs for making important decisions
[18]. It can, however, be argued that CIOs may have the
technical knowledge to understand the enterprise
architecture concepts. Can the current enterprise
architecture model explain the enterprise architectural
concepts, especially the different levels of abstractions,

to developers, product-IT, business users, and business
executives?

In a case study conducted in 2018 on the effects of
digital transformation on enterprise architecture [2], it is
found that current enterprise architecture is not optimal
for structuring product-IT. Additionally, the study [2]
reported limitations in the existing enterprise
architecture in representing business layers and
customer focused interfaces. We agree with the findings
in [2], in that, the existing enterprise architecture
frameworks neither provides details of the different
abstractions an IT artifact can provide for different
users, nor breaks the information to the level of digital
objects that make up the IT artifact. Lastly, the existing
enterprise architecture frameworks are not grounded in
IS theory, thus cannot explain the interplay between
social and technical phenomena that shape the
information systems in organizations. ISARF, on the
other hand, builds on the representation theory and the
theory of digital object, thus provides the socio-
technical theoretical grounding needed to explain
complex social and technical phenomena in information
systems. Moreover, ISARF not only provides the details
of different abstractions in an information system, it also
has the ability to tie the abstractions with the social
positioning of different IS users. Lastly, ISARF has the
ability to view the architecture from a micro as well as
macro level, which allows the users to skip the micro-
level details if they desire.

Given the growing need for democratization of IT,
the need for clearly articulating the business views and
abstractions for digital transformation, the upcoming
demand of business users deploying their own cloud
solutions, the need to cross-train IT staff in architectural
concepts, the broad-scale application of enterprise
architecture in IS, and the lack of theoretical grounding
of existing enterprise architecture frameworks, we
propose IS architecture representation framework
(ISARF) as a utility to make the IS architecture more
visible and understandable. We contend that ISARF
provides several advantages over the existing enterprise
architecture frameworks, especially in explaining
complex IT architectures to business users, executives,
and developers who do not have background in
hardware and IS architecture. While we are highlighting
the merits of ISARF, we are not suggesting that ISARF
is a replacement of the existing enterprise architecture
frameworks, at least as of yet. Such claims require
extensive empirical evidence and detailed evaluation of
the merits of each framework. Rather, we suggest that
ISARF provides several new benefits, and thus it can
serve as an additional utility for IT management to
succeed in today’s digital and democratized IT
landscape.

Page 5822

The paper proceeds as follows. The next section
discusses the use of representation theory and the theory
of digital object for the proposed IS architecture
representation framework. Here we discuss the theory
of digital object [19] and take the liberty to add some
details that are not explicitly defined in the theory of
digital object. Also, we use the structures defined in the
representation theory to propose the architectural layers
used in ISARF. Next, we provide the key propositions
and tenets of IS architecture representation framework.
Here we discuss the concept of architectural tiers and
artifact delineation. Next, we discuss the application of
ISARF to explain two information systems. We
conclude by discussing the generalizability of ISARF to
explain other information systems’ architecture.

2. Background

Weber and Wand [20] describe their view of
information systems in their discussion on the theory of
deep structure, often referred to as representation theory
in the IS literature, as: “We conceive of an information
system as an object that can be studied in its own right,
independently of the way it is deployed in its
organizational and social context and the technology
used to implement it” [8, Pg. 61]. Furthermore, “when
modeling an information system, we are not concerned
with the way it is managed in organizations, the
characteristics of its users, the way it is implemented,
the way it is used, the impact it has on such factors as
quality of working life or the distribution of power in
organizations, or the type of hardware or software used
to make it operational. Instead, we are concerned only
with information systems as independent artifacts that
bear certain relationships to the real-world system they
are intended to model. This view is not intended to
denigrate the importance of deployment and technology
issues to the successful development, implementation,
and use of information systems. Rather, we seek to show
that advantages accrue from decoupling the study of
these issues from the study of certain other properties
that can be identified when information systems are
conceived as independent artifacts." [21]

Additionally, Weber and Wand distinguish between
three “set of characteristics of the information systems
object”, as “surface-structure”, “deep-structure”, and
“physical-structure” [20]. The surface-structure
represents the interface between the information system
and its users, for example the interactive dialogs used in
a system or the reports generated by a system are
referred to as surface-structure [20]. Deep-structure
represent the meaning of the real-world system the
information system models, or aims to model. For

example, how an accounting system processes and posts
the transactions to ledgers are deep-structure
characteristics of an information system [20]. Lastly, the
physical-structure of an information system represents
how technology is used to implement the system. For
example, the communication protocol or the data
allocation on mass storage are examples of the physical
structure [20].

Faulkner & Runde [19] theorize and define digital
object in a way that is particularly instrumental for
theorizing the IT architecture. According to the theory
of digital object, a digital object is an object that has a
bitstring as its component. Like all objects, a digital
object must possess two characteristics: one, they
endure – the state of persistence during their period of
existence, and two, they are structured – the quality of
maintaining their identity as an individual despite
containing distinct parts [19].

Digital object can be classified as material or non-
material. Material objects, like servers or computers,
have a physical mode of being, while non-material
objects, such as operating systems or software, do not
have a physical mode of being [7, Pg. 6]. Material
bearers can be accessed: “.. material bearers are vital to
practical engagement with nonmaterial objects: to be
accessed, a nonmaterial object must be borne on a
material object” [7, Pg. 9].

The theory of digital object does not explicitly
specify the following, but we would like to use the
examples used in [19] to add that material objects may
also need non-material objects to be utilized. As an
example, you need the operating system (non-material
object) to functionally utilize the resources on a server
(material object). A server or a computer by itself, is
nothing more than a box; one cannot even utilize the
hard drive(s) on the computer or the server without the
operating system (non-material object).

Additionally, we will also add that one material
object can be a bearer of multiple non-material objects.
Conversely, the material object can be utilized by
multiple non-material objects. As an example, one
server (material object) can have many operating
systems (non-material objects), and each operating
system (non-material object) can functionally utilize the
resources on the server (material object). For example,
a computer or a server can have Linux as well as
Windows as operating systems, and each operating
system will can functionally utilize the resources on the
server or computer. See figure 1 for details.

Page 5823

Figure 1. Non-material object(s) functional
utilization of material object

We would also like to add that the software, by itself,
is nothing more than a set of files or lines of code, which
without the hardware cannot be executed. Similarly, the
hardware, by itself, is like a metal (or plastic) box, which
without the operating system cannot be accessed. The
hardware and software, at least based on the technical
advances till date, are used together to provide any kind
of usable output.

Next, we present the IS architecture representation
framework. We posit that this framework provides the
theoretical grounding for IS architecture, and can serve
as a utility to democratize IT architectural concepts.

3. Presenting IS architecture
representation framework (ISARF)

ISARF takes the inspiration from the three structures
defined in the representation theory. While the
underlying views, assumptions, and premises1 of the
representation theory are different from our goal of
understanding the architecture of complex information
systems, we believe that the representation theory
provides a conceptual basis for IT architecture.
However, since the application of the three structures for
ISARF is fundamentally different from the use by
Weber, we rename the structures for the use of ISARF.
This is an intentional deviation because we believe that
the suggested new names are more relevant with the
current state of digital enterprise architecture.

We are appropriating the notion of three structures
(deep, physical, and surface) in the representation theory
for dividing the components of a complex IS
architecture into three tiers called core tier, abstraction
tier, and interaction tier, in the order from innermost to
the outermost. We define the core tier as the innermost
structure of the IT system or component, which may
include multiple layers of hardware and software
(including OS). Additionally, we define the abstraction
tier as the middle structure of the IT system or

component comprising of software (or API) that
represents the core tier. Lastly, we define the interaction
tier as the outermost structure of the IT system or
component that allows access to humans, software, or
hardware. Table 1 maps the ISARF tiers with
representation theory, digital objects, and IT artifacts.
Figure 2(a) and 2(b) represent the ISARF tiers, which
forms the foundational component of ISARF.

Table 1 – ISARF mapping with representation
theory, IT Artifacts, and theory of digital object

IS
architecture
representation
framework

Representation
Theory

IT Artifact (Digital
Object) mapping

Core tier Deep Structure Hardware (Material
object)
Software (Non-
material object)
Operating System
(Non-material
object)

Abstraction
tier

Physical Structure Software (Non-
material object)

Interaction tier Surface Structure Human
Software or API
(Non-material
object)
Hardware (Material
object)

1“The Fundamental Premise: A physical-symbol system has the
necessary and sufficient properties to represent real-world meaning.”
“Working Premise 1: An information system is an artifactual
representation of a real-world system as perceived by someone, built
to perform information processing functions.”
“Working Premise 2: An information system is a state-tracking
mechanism for the real-world system it is intended to model.”
“Working Premise 3: A good information system is well
decomposed.” [20]

Figure 2a. Core, Abstraction, and Interaction tiers

Page 5824

Figure 2b. Core, Abstraction, and Interaction tiers

3.1. Artifact Delineation

The creation and use of abstract object(s) from IT
artifacts, which represent functional IT components
(digital objects), is a foundational concept in
understanding complex IT architectures. This
phenomenon, however, is not represented in the
traditional IT architecture design process. A traditional
IT architecture diagram represents the integration of IT
artifacts in an information system, without
appropriating the different social positions and
abstractions an IT artifact can take in an organization.

The concept of delineation is inspired by the
computer science concept of abstraction, which is
defined as simplifying something by hiding unnecessary
details [22]. The Merriam-Webster definition of
‘delineation’ is to ‘portray’ or ‘mark an outline of’
something. We liked the definition because we are
portraying the IT artifact by marking an outline for
specific type of users in the system. So, delineation is
abstracting an IT artifact and portraying it differently for
different types of users in a system. An abstraction
agent, generally a software, can create different
abstractions of an IT artifact to serve different purposes.
With this understanding, we define artifact delineation
as a process of creating abstract object(s) from one or
more artifact(s) using an abstraction agent. The
abstract object is created in the abstraction layer, where
it can endure for as long as allowed by the abstraction
agent. The abstraction layer can contain multiple
abstract objects created by one or many abstraction
agents. Moreover, the abstract object created by an
abstraction agent can be utilized as a component for
another process or system, with or without the inclusion
of the original artifact or the abstraction agent as
components of the process or system.

If we utilize the terminologies used in the theory of
digital object, artifact delineation can be rephrased as a
process of creating abstract object(s) (material or non-
material object) from one or more artifact(s) (material
or non-material objects) using an abstraction agent (non-
material object). The abstract object is created in the
abstraction layer (non-material object), where it can

endure as a digital object for as long as allowed by the
abstraction agent. The abstraction layer can contain
multiple abstract objects created by one or many
abstraction agents. Moreover, the abstract object
created by an abstraction agent can be utilized as a
component for another process or system, with or
without the inclusion of the original artifact or the
abstraction agent as components of the process or
system.

Let’s discuss a simple IS example to build on our
understanding. Let’s assume that the IT department
provided us a brand new laptop. The laptop, which is an
IT artifact, has resources like RAM, CPU, and hard disk,
which cannot be functionally utilized unless an
operating system is installed on the laptop. Let’s assume
that the IT department installed Windows 10 as the
operating system on the laptop. The operating system is
the abstraction agent which provides the abstraction of
the file system (the abstract object). Let’s assume that
you installed LINUX, another abstraction agent, on the
same laptop. LINUX will provide the abstraction of
another file system (abstract object) for the IT artifact
and the resources therein.

3.1.1. User view of abstraction

Users can access the inner tiers of the ISARF through
the interaction tier using a software, hardware, or a
combination of software and hardware. Users’ view of
abstraction, or more specifically, the components in the
core tier, including the original object, is controlled by
the abstraction agent and the access level defined within.
Different types of information systems users may have
different access levels. For example, a business user
may have read-only access to the components in the core
tier through an abstraction in the abstraction tier.
Alternatively, IT developers may have access to the core
tier through the abstraction tier that allows them to
access and modify the components in the core tier.
There can be different abstraction layers for different
kinds of users in the system, allowing users to view and
interact with different components in the system. For
example, a BI system may provide a management
console, an abstraction created by the BI tool
(abstraction agent), to be used by BI administrators.
Similarly, the same BI tool may provide a different
portal as an abstraction for the users to access their
reports. Additionally, the abstraction agent can abstract
an original object differently for different types of users.
For example, a BI tool, which is an abstraction agent,
can abstract a database table as a read-only table for a
BI developer, but abstracts the same table as a set of
objects for BI users who are responsible for creating
reports using the BI tool.

Page 5825

3.1.2. Multi-layered IT architecture

IT architecture is often complex and can include
multiple layers of hardware and software working
together. Though the database architecture shown in
Figure 4 is rather simplistic, you can still see the multi-
layered nature of IT architecture from this example. For
example, the core tier in Figure 4 contains the storage
layer, the database server layer, the OS, and the DBMS
software layer. Similarly, the abstraction tier contains
multiple layers of abstractions created by different
abstraction agents. Almost every IT system will have
layers of software, hardware, and APIs working
together. Complex IT systems may contain components,
which are independent IT systems by themselves. For
example, an ERP or a CRM system has DBMS, which
is a separate information system by itself, as a
component in the architecture. In spite of the complexity
of the IT system, the atomicity of digital object and the
utility of the three tiers inspired by reference theory
allow ISARF to break down complex IT systems into
components arranged in the core, abstraction, and
interaction tiers. Thus, ISARF makes it easier for
software developers, business users, and business
executives to understand the architecture of complex
information systems.

3.1.3. IT solutions involving multiple systems

Complex IT solutions involve multiple IT systems
working together. These systems work together as the
components of the larger IT system. As an example, AI
systems comprise of components that can handle
ingesting data from structured and unstructured data
sources, processing data (data cleansing, merging,
analyzing), and storing data. Solutions involving AI
integrate these components to get the results they need.
The individual components making up the complex IT
system may be individual information systems, which
communicate with one another using APIs through the
interaction tier, as depicted in figure 3. These APIs,
depending upon the user and API access level, may have
access to the components in the abstract and core tiers
of the system they are integrating with.

Figure 3. IT Solution involving multiple
systems

Another example of different information systems
working together as component of a larger information
system is a data warehouse implementation. A data
warehouse implementation uses a database management
system, an integration system (ETL), and a BI system.
The users of such complex information systems may not
have the visibility or the understanding of the different
components of the information system. The users of
such complex information systems generally, but not
always, appropriate the system based on the component
they interact with. For example, if the data warehouse is
not loaded properly, the users may see this as a BI
system problem, even though the BI system is only
reflecting the data that is available in the data
warehouse. Similarly, an example of one information
system interacting with the components of another
information system is the access and ability of ETL
developers to read and write to the database system
through the ETL interface, which is possible because the
credentials used to connect to the database system have
read and write privileges to the database system.

In spite of the complexity and the number of
information systems working as components of a larger
information system, we posit that ISARF provides the
atomicity to explain the component as well as the system
as a whole.

4. Application of IS architecture
representation framework (ISARF)

In this section, we apply IS architecture
representation framework to a few examples to test its
generalizability. We discuss DBMS architecture and
computer virtualization using ISARF.

4.1. Use Case 1: Using ISARF to explain DBMS
Architecture

We use database management system (DMBS) as
the first example to explain information systems
architecture using ISARF. We highlight that the DBMS
architecture discussed in this example is vendor
agnostic.

Page 5826

Figure 4. DBMS Architecture explained using
ISARF

Figure 4 represents the multi-layered nature of
database architecture. The core tier consists of the
storage, the server(s), the operating system, and the
database management system (DMBS). From an IT
artifact perspective, the core tier contains both hardware
and software, whereas from the digital object
perspective, it contains both material and non-material
objects. ISARF provides the flexibility of multiple
abstraction agents, creating different abstractions in the
abstraction tier. In our example, operating system serves
as an abstraction agent to build the filesystem
abstraction layer, whereas DBMS serves as another
abstraction agent to build abstraction layer 2 and 3.
Abstraction layer 3, which contains database views, uses
the tables in abstraction layer 2 as the objects it abstracts
from. This shows the multiple tiers of abstraction, that
is, the database tables are abstract objects representing
the data in storage (data files), whereas views are built
on top of tables. It is also worth noting that an
abstraction layer can have multiple objects – for
example, there can be many tables and multiple views
in the abstraction layer 2 and 3 respectively.

Additionally, many abstract objects can be created
from one artifact, and one abstract object can be
abstracted from many artifacts or abstract objects. In the
example shown in figure 5, DBMS creates two abstract
objects ‘Table 1’ and ‘Table 2’ from ‘Data File 1’, both
residing in the same abstraction layer. DBMS also
creates another abstraction layer, abstraction layer 3,
which contains views. ‘View 1’, another abstract object
in the abstraction layer 3, abstracts from ‘Table 1’,
‘Table 2’, and ‘Table 3’, all of which are abstract objects
themselves. This example represents multiple levels of
abstraction in information systems.

Figure 5. Association between Original
Objects and Abstracted Objects

Table 2 below maps the components of the DMBS
architecture to ISARF tiers, delineation components,
digital objects, and IT artifacts. Moreover, table 3 maps
the abstract objects in the delineation process to the
abstraction agent they were created by, the IT artifacts
they represent, and the kind of the digital object the IT
artifact represents.

Table 2. DBMS architecture explained using
ISARF

Compone
nts

(IT)
Artifact

Digital
Object

ISAR
F tier

Delineatio
n
component

Storage Hardware Material
bearer of
Non-
Material
Objects

Core
tier

Not part of
this
delineation

Data Files
in Storage

Files Non-
material
Object

Core
tier

Artifact (to
be
abstracted)

Server(s) Hardware Material
Object

Core
tier

1 Not part
of this
delineation

Operating
System

Software Non-
material
bearer of
Non-
material
Objects

Core
tier

Abstraction
Agent

DBMS Software Non-
material
bearer of
Non-
material
Objects

Core
tier

Abstraction
Agent

File
System

Software Non-
material
bearer of
Non-

Abstra
ction
tier

Abstract
Object

Page 5827

material
Objects

Database
Tables

Object Non-
material
Object

Abstrac
tion tier

Abstract
Object

Database
Views

Object Non-
material
Object

Abstrac
tion tier

Abstract
Object

Note: 1 If the database architecture shown in Figure 4
uses virtual server(s), the virtual server(s) will represent
abstract objects created by an abstraction agent
(Hypervisor), which is not part of the database system.

Table 3. DBMS architecture components explained
using ISARF

Abstract
Object

Abstraction
Agent

 (IT)
Artifact

Artifact Object
Type (digital
object)

Tables DBMS Data
Files in
Storage

Material Object

Views DBMS Tables Non-material
Object

File
System

Operating
System

Server(s) Material Object

4.2. Use Case 2: Using ISARF to explain
computer virtualization architecture

We use computer virtualization as our second use
case for testing ISARF. Computer virtualization,
generally referred to as ‘virtualization’, is defined as
provisioning hardware (virtual machines or VMs)
through software [9]. Figure 6 represents the
architecture of computer virtualization explained using
ISARF. Additionally, table 4 maps the components of
the virtualization architecture to ISARF tiers,
delineation components, digital objects, and IT artifacts.

Hypervisor, a software that represents the
abstraction agent, creates multiple virtual machines
representing the abstract objects in the abstraction layer
marked as ‘abstraction layer 1’. The physical server
represents the artifact, the original object which is used
by the abstraction agent for creating the abstract objects.
These virtual machines exist in the abstraction tier,
where they can endure as digital objects. More
importantly, the abstract object(s) (virtual machines)
created by an abstraction agent (Hypervisor) can be
utilized as a component for another process or system,
with or without the inclusion of the artifact (original
object, i.e. Physical server) or the abstraction agent
(Hypervisor) as components of the process or system.

Figure 6. Virtualization explained using ISARF

Table 4. Virtualization explained using ISARF
Componen
ts

(IT)
Artifact

Digital
Object

ISARF
tier

Delineation
component

Physical
Server

Hardware Material
Object

Core
tier

Artifact (to
be
abstracted)

Hypervisor Software Non-
material
bearer of
Non-
material
Objects

Core
tier

Abstraction
Agent

Virtual
Machine(s)

Software
provisione
d
Hardware

Non-
Material
bearer of
Material
and
Non-
Material
Objects

Abstrac
tion tier

Abstract
Objects

Operating
System

Software Non-
material
bearer of
Non-
material
Objects

Abstrac
tion tier

Abstraction
Agent

File System Software Non-
material
bearer of
Non-
material
Objects

Abstrac
tion tier

Abstract
Object

5. Implications, Generalizability, and
Conclusion

We, in this paper, have presented a generalizable
theoretical framework that can be used as a utility to
explain IS architectural concepts to software developers,
business users, and business executives. Digital
transformation, cloud computing, and business users’
need for analytics are pushing the democratization of IT
– a trend that requires software developers to provision
hardware using IaC [6], product-IT and business users
to understand the customer interfaces and

Page 5828

abstractions[2], and business users have to maintain
their own cloud services for analytics [17]. While the
existing enterprise architecture frameworks have
limitations in effectively presenting the business view
[2], ISARF provides an indispensable utility to
organizations in making their digital transformation and
democratization goals possible.

Moreover, enterprise architecture has played a key
role in information systems success. It has been used in
a variety of use cases, including but not limited to IT
executives and CIOs decision making [18], as a
framework for system quality analysis [23],
organizational benefits [24], IT alignment [25], business
value assessment [26], managing IT [27], and risk
management [28]–[30]. As compared to the traditional
enterprise architecture, we posit that ISARF provides
several distinct advantages. One, ISARF provides a
much more atomic and granular view to enterprise
architecture, which provides deeper understanding at the
digital object level. Two, ISARF is built using
representation theory and the theory of digital object,
which provides the theoretical grounding for the
framework. Three, ISARF uses the socio-technical
paradigm of information systems, which allows it to
represent different social positions a user can have.
Lastly, ISARF incorporates the concept of delineation,
which highlights the different kinds of socio-technical
abstractions in information systems architecture. Given
these distinct advantages of ISARF, we posit that
ISARF can be utilized in many IS applications including
the ones mentioned afore.

As for future research, we can use ISARF in an
experimental setup to evaluate its effectiveness in
explaining different parts of the IS architecture to
different audiences. Moreover, a case study or
experiment can be conducted for the use of ISARF in
different organizations to evaluate its effectiveness in
explaining complex IS architectural concepts to
business users, executives, and software developers who
have no prior background in hardware or IS
architectural concepts. The goal of such case study or an
experiment would be to evaluate the possible added
value for the business that this framework can provide.
Additionally, a pretest-posttest experiment can be
conducted with software developers to help them
understand architectural concepts using the framework.

Lastly, IS researchers can explore several use cases
of ISARF in explaining technical components, system
architecture, integration of systems, and different levels
of abstractions for different users in an organizational
setup. IS research is often criticized for oversimplifying
or ignoring the system aspects of IT [31]. We contend
that ISARF can help IS research by highlighting the
system implementation details for systems like big data,
BI, ERP, CRM, etc. Additionally, complex IS

infrastructures involving serverless computing and
cloud computing can also be explained effectively using
ISARF. We argue that ISARF will not only allow IS
researchers to effectively present and explain different
information system abstractions, but also tie these
abstractions to different users in the organization, which
enables interesting discussions on socio-technical usage
and the design of user-specific interfaces in information
systems.

6. References

[1] M. E. Porter and J. E. Heppelmann, “HBR.ORG
SPOTLIGHT ON MANAGING THE INTERNET
OF THINGS How Smart, Connected Products Are
Transforming Competition,” 2014. Accessed: Sep.
22, 2020.

[2] K. Julia, S. Kurt, and S. Ulf, “How Digital
Transformation affects Enterprise Architecture
Management-a case study,” Int. J. Inf. Syst. Proj.
Manag., vol. 6, no. 3, pp. 5–18, 2018, doi:
10.12821/ijispm060301.

[3] S. K.-I. Management and undefined 2008,
“Business intelligence the self-service way,”
search.proquest.com, Accessed: Jul. 02, 2020.

[4] A. Ali-Eldin, M. Salem, and M. M. Zaghloul,
“Towards a Self-service Data Analytics Framework
Towards a Self-service Data Analytics Framework
General Terms,” Artic. Int. J. Comput. Appl., vol.
80, no. 9, pp. 975–8887, 2013, doi: 10.5120/13893-
1840.

[5] L. Kappelman, V. Johnson, … C. M.-M. Q., and
undefined 2020, “The 2019 SIM IT Issues and
Trends Study.,” search.ebscohost.com, Accessed:
Jun. 29, 2020.

[6] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero,
and D. A. Tamburri, “DevOps: Introducing
infrastructure-as-code,” in Proceedings - 2017
IEEE/ACM 39th International Conference on
Software Engineering Companion, ICSE-C 2017,
Jun. 2017, pp. 497–498, doi: 10.1109/ICSE-
C.2017.162.

[7] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,
“DevOps,” IEEE Softw., vol. 33, no. 3, pp. 94–100,
May 2016, doi: 10.1109/MS.2016.68.

[8] N. Singh, S. Thakur, … H. C.-2015 1st I., and
undefined 2015, “Automated provisioning of
application in IAAS cloud using Ansible
configuration management,” ieeexplore.ieee.org,
Accessed: Jul. 08, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/73750
87/.

[9] P. Masek, M. Stusek, J. Krejci, … K. Z.-… 22nd
conference of, and undefined 2018, “Unleashing
full potential of ansible framework: University labs
administration,” ieeexplore.ieee.org, Accessed: Jul.
08, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/84682
70/.

Page 5829

[10] L. Hochstein and R. Moser, Ansible: Up and
Running: Automating Configuration Management
and Deployment the Easy Way. 2017.

[11] Y. Brikman, Terraform: Up & Running: Writing
Infrastructure as Code. 2019.

[12] D. Ivanova, P. Borovska, and S. Zahov,
“Development of PaaS using AWS and Terraform
for medical imaging analytics ARTICLES YOU
MAY BE INTERESTED IN Scalable framework for
adaptive in-silico knowledge discovery and
decision-making out of genomic big data AIP
Conference,” aip.scitation.org, vol. 2048, p. 60019,
Dec. 2018, doi: 10.1063/1.5082133.

[13] M. Mazzara, A. Naumchev, L. Safina, A. Sillitti,
and K. Urysov, “Teaching DevOps in Corporate
Environments An experience report.” Accessed: Jul.
02, 2020. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-
030-06019-0_8.

[14] M. Mazzara, A. Naumchev, L. Safina, A. Sillitti,
and K. Urysov, “Teaching devops in corporate
environments: An experience report,” in Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2019, vol. 11350 LNCS,
pp. 100–111, doi: 10.1007/978-3-030-06019-0_8.

[15] … C. J.-W. on S. E. A. of and undefined 2018, “A
Proposal for Integrating DevOps into Software
Engineering Curricula,” Springer, Accessed: Jul. 02,
2020. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-
030-06019-0_3.

[16] C. Jones, “A proposal for integrating devops into
software engineering curricula,” in Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2019, vol. 11350 LNCS, pp. 33–47,
doi: 10.1007/978-3-030-06019-0_3.

[17] Q. Pu, U. Berkeley, and S. Venkataraman, This
paper is included in the Proceedings of the 16th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’19). Shuffling, Fast and
Slow: Scalable Analytics on Serverless
Infrastructure Shuffling, Fast and Slow: Scalable
Analytics on Serverless Infrastructure. 2019.

[18] P. Johnson, M. Ekstedt, E. Silva, and L. Plazaola,
“Using enterprise architecture for cio decision-
making: On the importance of theory.” Accessed:
Jun. 26, 2020. [Online]. Available:
https://www.diva-
portal.org/smash/record.jsf?pid=diva2:509306.

[19] P. Faulkner, J. R.-M. Quarterly, and undefined
2019, “Theorizing the Digital Object.,”
search.ebscohost.com, Accessed: Jun. 25, 2020.

[20] Y. Wand and R. Weber, “TOWARD A THEORY
OF THE DEEP STRUCTURE OF INFORMATION
SYSTEMS.” Accessed: Jun. 25, 2020. [Online].
Available:

https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1
043&context=icis1990.

[21] R. W.-J. of I. Systems and undefined 1987,
“Toward a theory of artifacts: A paradigmatic base
for information systems research.”

[22] T. C. Ae and G. Shute, “Abstraction in Computer
Science,” Springer, 2007, doi: 10.1007/s11023-007-
9061-7.

[23] P. Närman, P. Johnson, and L. Nordström,
“Enterprise Architecture: A Framework Supporting
System Quality Analysis,” ieeexplore.ieee.org,
2007, doi: 10.1109/EDOC.2007.39.

[24] G. Shanks, M. Gloet, I. Asadi Someh, K. Frampton,
and T. Tamm, “Achieving benefits with enterprise
architecture,” J. Strateg. Inf. Syst., vol. 27, no. 2, pp.
139–156, Jun. 2018, doi: 10.1016/j.jsis.2018.03.001.

[25] R. V. Bradley, R. M. E. Pratt, T. A. Byrd, C. N.
Outlay, and D. E. Wynn, “Enterprise architecture, IT
effectiveness and the mediating role of IT alignment
in US hospitals,” Inf. Syst. J., vol. 22, no. 2, pp. 97–
127, Mar. 2012, doi: 10.1111/j.1365-
2575.2011.00379.x.

[26] M. Meyer, M. Helfert, B. Donnellan, and J.
Kenneally, “Applying design science research for
enterprise architecture business value assessments,”
in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012, vol. 7286
LNCS, pp. 108–121, doi: 10.1007/978-3-642-
29863-9_9.

[27] W. F. Boh and D. Yellin, “Using enterprise
architecture standards in managing information
technology,” J. Manag. Inf. Syst., vol. 23, no. 3, pp.
163–207, Dec. 2006, doi: 10.2753/MIS0742-
1222230307.

[28] H. Jonkers and D. A. C. Quartel, “Enterprise
architecture-based risk and security modelling and
analysis,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
2016, vol. 9987 LNCS, pp. 94–101, doi:
10.1007/978-3-319-46263-9_6.

[29] F. Innerhofer-Oberperfler and R. Breu, “USING AN
ENTERPRISE ARCHITECTURE FOR IT RISK
MANAGEMENT.” Accessed: Jul. 07, 2020.
[Online]. Available:
https://pdfs.semanticscholar.org/a41a/e6f15069246e
ca92fe02dd17505fcd881327.pdf.

[30] J. R. Getter, “Enterprise Architecture and IT
Governance A Risk-Based Approach,” 2007.
Accessed: Jul. 07, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/40768
25/.

[31] W. J. Orlikowski and C. Suzanne Iacono, “Research
Commentary: Desperately Seeking the ‘IT’ in IT
Research-A Call to Theorizing the IT Artifact,” Inf.
Syst. Res., vol. 12, no. 2, p. 121, 2001, doi:
10.1287/isre.12.2.121.9700.

Page 5830

