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ABSTRACT

Robotic exploration in an enclosed, unknown, and unstructured environment such as a cave is

a challenging problem as the robots cannot directly communicate with any exterior facilities. In

such an environment, the robots need to perform Simultaneous Localization and Mapping (SLAM)

without any external supports, e.g., GPS, a prior map, wifi access points, and so on. To cope

with this situation, the proposed method establishes a decentralized multi-robot system forming

an ad hoc network. Each robot is deployed at the entrance of the environment and moves into

deeper areas while maintaining the distances to its neighboring robots to locally communicate with

each other. In this formation, they perform the decentralized cooperative localization and the

distributed submap building.

The decentralized cooperative localization enables the robots to localize themselves with respect

to the global reference frame by taking mutual measurements on a relative pose between the robots.

Communicating with neighboring robots, each robot updates its estimated location based on sensory

data about relative poses with respect to the neighbors and their estimated locations. To deal

with the overconfidence problem, which leads to inconsistent estimates due to cyclic updates, the

proposed method performs the conservative data exchange. When the robots pass their estimation

to each other, they reduce the confidence in their estimation by applying fractional exponents to the

probability distributions. As a result, the distributions become “smoother” with less intense peaks.

Thereby, the robots can avoid inconsistent amplification of confidence and update their estimation

based on each other’s information without the knowledge about the entire network topology.

The distributed submap building directs the robots to cooperatively build submaps, each of

which represents a small local area in the environment. Each robot builds a series of submaps along

its trajectory. When the robot detects that its neighboring robots enter the areas where submaps

were built previously and can no longer update the submaps by itself, it passes the submaps to

such robots so that the submaps can be used by the receiving robots. Thus, each of the robots

does not have to hold all the submaps that it has created from the beginning of the operation, and

hence can save the memory space for the mapping process.

Consequently, the robots can deliver consistent results of mapping and localization in a decen-

tralized manner while holding only the submaps associated with their local areas. The proposed

methods are implemented in Robot Operating System (ROS) and the protocols for the communi-

cation are also designed. For experiments, demonstration, and evaluation, the implemented system

is simulated using the Gazebo simulator.
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CHAPTER 1
INTRODUCTION

Robotic exploration in an enclosed environment without structured objects such as a cave is

one of the challenging problems in autonomous mobile robotics. Being surrounded by walls and

ceilings which hinder wireless communication, mobile robots cannot always access external facilities

such as GPS, access points to the ideal network, remote control, or any services to support the

robot’s navigation. This entails necessity of a higher level of autonomy; the robots in such an

environment must work independently. In addition, it is crucial to establish in-situ systems to

carry out tasks which are usually done by external facilities: localization of the robots, building

a map, and so on. In this situation, deployment of multiple robots may be advantageous over

single-robot navigation. A multi-robot system can serve the aforementioned services which used

to be provided by external facilities, e.g., establishing an ad hoc network to transfer data, working

as beacons for localization purposes, and so on. The system is also robust to failures of some

robots and efficient at finishing tasks within the given time; deployment of redundant robots covers

failures of some malfunctioning robots, and tasks can be achieved faster by being distributed to

or shared by multiple robots. However, a potentially complicated cooperation scheme of robots

would be required as it is based on local interactions due to the lack of an ideal network. Thus,

this area needs more sophisticated system than those applied to office environments, open fields,

or any conventional areas with idealized facilities.

Examples of this type of exploration can be found in extreme environments where people cannot

easily access. For instance, in the area of search and rescue, a partially collapsed building may be

too dangerous for people to get inside to search injured people. A damaged nuclear plant can be a

similar case. If there is a leak of radiation at critical levels, no human worker but a mobile robot can

get inside to work. Moreover, planetary exploration is another area of application. For example,

Mars is estimated to have lava tubes around its volcanoes [2, 3, 4, 5, 6, 7], which are important

as a source of scientific data and as a potential shelter for future astronauts from harsh conditions

on the surface. But those extraterrestrial caves are too distant and pose a risk if people directly

explore them without any prior knowledge about the internal environment. Robotic technologies

may shed light on such areas of application, providing viable solutions to the problems that they

are confronted with.

The environment under consideration in this study is characterized and assumed as being en-

closed, unknown, unstructured, three-dimensional, static, and in a large scale. The environment is

enclosed by walls and ceilings blocking access to the external resources or facilities such as GPS.

It is also unknown and unstructured; a robot cannot have a prior map of the environment or as-

sume specific structured landscapes such as flat floors. This characteristic leads to a problem of

simultaneous localization and mapping (SLAM), in which a robot needs to build a map and con-

1



currently localize itself in the map. Since the environment is unstructured, a robot needs to build

a three-dimensional map rather than floor plans or any other type of two-dimensional map. Unlike

streets where many moving objects exist, the environment here is assumed to be static. Finally, the

environment may be large. For example, a Martian lava tube may be larger than those on Earth

due to the smaller gravitational force on the red planet.

In the situation with properties described above, the use of multiple robots can be advantageous;

without using external facilities, they collaborate to localize themselves by exchanging their data

while executing their individual mapping tasks stably and quickly. For their collaboration, they

establish an ad hoc network. For localization, they exchange their estimated locations and use their

neighbors as landmarks to localize themselves. Through these interactions, each robot updates its

own location estimate based on the one from the other robot and sensory data about their relative

location. Meanwhile, each robot takes care of mapping of a local area by taking sensory data of the

surrounding environment. At some point of time, the robot saves the current map and starts to

build a new map. By repeating this process while moving, each robot holds a series of segmented

maps, or submaps, of the areas along the robot’s trajectory. The ad hoc network also serves to

transfer their submaps. When a robot enters a previously mapped area, the corresponding submap

may be passed to the robot to re-use and update it. While the global map needs to be built

at the end of the operation, the robots do not have to return to the original location to gather

their mapping data. They can pass their data through their ad hoc network. Thus, they do not

have to maintain the energy for a returning way. If the network is formed as a decentralized and

meshed network, the system can be robust to malfunctions of some member robots of the network.

For decentralized multi-robot exploration in an enclosed environment, several challenging problems

arise as described below.

Decentralization of Loop Closure: The multi-robot system working in an enclosed environment

raises the problem of decentralization of loop closure. In the case of single-robot exploration, when

the robot notices that it visits a previously mapped area by matching submaps, it realigns its

submaps and closes a loop of submaps. In the case of multi-robot system, however, a robot in

the system cannot always perform this loop closure since each one only has submaps of its local

area. They may collaborate to perform an equivalent task by cooperative localization; they localize

each other by serving as beacons or artificial landmarks and form a topological graph whose edges

represent mutual localization by a pair of robots. If the graph contains a loop, they can effectively

update their estimated locations and build submaps at more accurate estimated locations. However,

due to the inaccessibility for the robots to access the centralized system, they need to carry out such

a task only by interactions with their neighbors in a decentralized manner. Hence, the multi-robot

system must require a decentralized method to perform loop closure based on local interactions of

the robots.
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Overconfidence in Decentralized Cooperative Localization: Overconfidence, or cyclic up-

date, is the problem that a decentralized system gives inconsistent estimates by re-using duplicate

information. The mutual interaction for their localization may cause correlations among the robots’

estimates. Correlations roughly mean shared information in their estimates, so they need to remove

such duplicate information in the received data before using it. Otherwise, the robot would reuse

identical information as if it is totally new, leading to overconfidence. If the network does not

have a loopy route, a robot may keep track of correlations by monitoring what it passes to the

neighbors. However, if there is a loopy route, information may pass through other robots and go

back to the robot which sent the information, and it becomes impossible for the robot to recognize

the correlated portion in the received information.

Timing of Map Segmentation: Segmentation of a map entails the problem of deciding when to

start building a new submap. When each of the multiple robots builds submaps of the local area, it

needs criteria to decide the timing to save the current submap and start to build a new one. As the

robots keep moving, the timing of starting a new submap affects the size of the resulting submaps;

if the robots more frequently switch to a new submap, the submaps will be smaller whereas if they

switch less frequently, the submaps become larger. If a submap is too small, a robot will not be

able to effectively work for its individual SLAM since it will be difficult to localize itself in such

a small submap. On the other hand, if it is too large, the robot and its neighbor may be in the

same submap area and it cannot pass the submap to the neighbor since it is still working on the

submap. A heuristic solution to this problem was proposed for single-robot exploration [8], but the

multi-robot case was not discussed.

Detection of Entry to Areas Mapped by Other Robots: Without an external facility such as

the ideal network and centralized control unit, mapping by multiple robots has the problem of how

to detect when a robot enters an area that has already been mapped by another robot. Since the

robots do not know about the areas being mapped by each other, they need to exchange information

to decide if they should transfer their submaps to the neighbors. A robot may frequently ask its

neighbors if it enters the area being handled by some of them. However, it would increase the

network traffic, causing more power consumption. Thus, the robots need a protocol to tell whether

a robot enters other’s mapping area while keeping the number of interactions small.

Submap Transfer: A multi-robot system must resolve how a robot uses a submap that was

made by another robot, handling uncertainty of their locations. A robot receives a submap from

its neighbor once it is detected that the robot enters the corresponding area. However, the robot

cannot simply use the submap from its neighbor in the same way as those made by itself. As the
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submap is built based on the estimated location of the other robot, the robot receiving the submap

needs to take into account the uncertainty of the neighbor’s estimation. Otherwise, it would cause

inconsistent mapping results. Hence, there should be a scheme to fuse the received submap and

the estimated relative poses between the robots so they can import submaps from their neighbors

without creating inconsistent mapping.

In this study, we propose methods to generate consistent estimates of robots’ locations and

submaps for decentralized multi-robot SLAM, addressing the problems described above. We as-

sume that there is a base lander or a central unit holding mobile robots at the entrance of the

enclosed environment. Each robot is deployed from the initial location and starts localization and

mapping. The robots are assumed to maintain the distances to their neighbors while moving so

that they can dynamically form a meshed ad hoc network. The map is represented by a three-

dimensional occupancy map and the location is estimated by the particle filter. That is, each

particle holds a robot’s pose and a submap. The robots estimate their own locations based on

their individual SLAM or cooperative localization. The cooperative localization have the robots to

exchange their estimation and conduct measurements on their relative locations. After receiving

data from the neighbor, the robot updates its estimated location by resampling the particles based

on the neighbor’s estimated location and sensory data about the mutual location. To avoid over-

confidence, the robot deliberately increases uncertainty in its estimate and passes information with

the reduced confidence. Each robot starts a new submap when the estimated location tells it has

passed a specific distance from the point where the robot starts building the current submap. As

it continues, the robot will hold a series of submaps with appropriate sizes for error correction for

localizing submaps. While interacting with each other, the robots monitor their neighbors’ loca-

tions and pass their submaps to those robots that entered the corresponding areas. Once a robot

receives a submap from the other robot, it integrates the received submap to its own database,

considering the noises caused by the mutual localization.

Combining all, our methods and approaches will perform decentralized multi-robot SLAM in

an enclosed environment, addressing the aforementioned challenging problems as follows. For the

decentralization of loop closure, the cooperative localization performed by multiple robots can

achieve the equivalent effect of loop closure to correct accumulated errors when the robots form

a meshed network. This approach does not require a centralized system and it performs in a

decentralized manner. For the overconfidence in decentralized cooperative localization, it can be

addressed by deliberately reducing confidence in their estimates at each interaction. For the timing

of map segmentation, the robots independently decide the timing of map segmentation based on

the distance they moved. This allows decentralization of the process, and each of the robots can

keep the submap size small enough to transfer the submap to its neighbors and also large enough

to perform its individual SLAM. For the detection of entry to areas mapped by other robots, the
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robot can address the problem by checking the neighbors’ locations. The robot decides if they

are entering its previously mapped areas and send the corresponding submaps. For the submap

transfer, once receiving a submap from its neighbor, the robot can integrate the submap into its

own SLAM process by starting a new segment in which it performs localization and mapping on

the transferred submap. Finally, these approaches are tested in robotic simulations.

1.1 Contributions

This dissertation has the following contributions to the field of autonomous mobile robotics:

• A consistent data exchange method for decentralized cooperative localization,

• Development of mathematical models of the data exchange,

• Development of the proposed method using a nonparametric filter,

• Development of a framework for segmenting a map into submaps for multi-robot navigation,

• Development of a framework for transfer and incorporation of submaps between multiple

robots, and

• Implementation of the proposed algorithms in a robotic simulation.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 first reviews existing approaches in

a few application areas, which give fundamental ideas for the enclosed environment exploration.

Then, the environment and hardware characteristics are discussed so that higher-level control can

be modeled based on the physical assumptions. After that, it will present an overview of our

approach to the multi-robot exploration in an enclosed environment, showing that it is described

as a mobile ad hoc network and modeled based on the probability theory. Finally, it will be

shown how they can be described as a probabilistic model. Chapter 3 describes the decentralized

cooperative localization by a group of robots which establish a meshed ad hoc network to cooperate.

In this chapter, the overconfidence problem is introduced and the proposed method is presented to

address this problem, followed by two-dimensional simulation results. Chapter 4 presents a version

of the proposed method using a nonparametric filter so that it can be applied to occupancy map-

based SLAM. It describes how particles are processed to perform the confidence reduction. It also

shows two-dimensional simulation results. Chapter 5 describes the process of submap building by

each robot and submap transfer to deliver a submap to other robots. It provides details about

occupancy map-based SLAM and describe how it is modified to perform segmentation and submap

transfer. Chapter 6 focuses on the integration of the decentralized cooperative localization and the

distributed submap building. It also discusses how the robots actually send and receive data by
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interacting with each other. After protocols for the interactions are introduced, a three-dimensional

simulation is presented, including the system descriptions and environment model. Finally, this

dissertation is concluded in Chapter 7 with a summary of this study and a discussion of future

work.
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CHAPTER 2
MODELING THE PROBLEM OF MULTI-ROBOT

EXPLORATION

When a robot explores autonomously in an environment where external supports are rarely

available, the exploration problem is composed of three parts: Mapping, Localization, and Plan-

ning [9, 8]. Especially, mapping and localization are grouped as a crucial problem domain, so called

Simultaneous Localization and Mapping (SLAM), because of their inter-dependency: mapping re-

quiring the robot’s location and localization requiring the map where the robot is situated. In the

probability theory, a system can be modelled as a Dynamic Bayesian Network (DBN), where each

node represents a state at a specific time point and each edge represents a conditional probability

density function. The SLAM problem is modeled as a DBN and can be solved by the Bayes filter,

which estimates the unknown states based on the sensor readings. If we consider multiple robots

as a decentralized system, this framework can be applicable to multi-robot exploration as well: the

multi-robot SLAM problem, modeled as a DBN for the entire system. If the system is decentralized,

the DBN needs to be decomposed into parts, each of which represents a subproblem that a single

robot solves.

In this chapter, the problem in multi-robot navigation in an enclosed environment is modeled.

After reviewing related work, the environment and robot hardware, which are assumed for the

problem, are discussed. It is followed by a discussion of the multi-robot system as an ad hoc network.

Then, the assumed multi-robot system is modeled based on the probability theory, and the multi-

robot SLAM problem is decomposed into subproblems, while taking into account interdependence

of the subproblems.

2.1 Related Work

Existing work for multi-robot systems and hardware designs give an insight to develop a model of

the multi-robot exploration. This section reviews existing approaches where robots explore in an

unstructured environment in a few aspects such as hardware designs, networking among the robots,

modeling by the probability theory, and so on.

2.1.1 Robot Designs for 3D Navigation in an Enclosed Environment

An enclosed and unstructured environment can be found in several areas of application: search

and rescue, robotic inspection, and extraterrestrial cavern exploration. These areas have common

characteristics of the target environment, and related approaches and technologies to solve their

problems can be found.
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Search and Rescue: In disastrous situations such as earthquake, infrastructures are damaged and

buildings sometimes collapse, trapping people inside. Search and rescue is a crucial application area

as robots can help a rescue team by directly entering the dangerous environment to search victims.

Due to the damaged structure and scattered objects on the floor, the ground is not necessarily flat

or even, and Unmanned Aerial Vehicle (UAV) or Micro Aerial Vehicle (MAV) navigation has been

proposed in order to search in an environment where ground-based robots such as rovers cannot

easily enter [10, 11, 12, 13, 14, 15, 16, 17].

Due to the GPS-denied environment, many approaches mainly use sensors which do not rely

on external supports. A laser scanner or lidar is commonly used to generate an occupancy map.

Bachrach et al. proposed aerial robot navigation using a lidar along with an Inertial Measurement

Unit (IMU) and a camera [10]. Since their sensors do not rely on external facilities such as GPS,

their robot can work in a deeper indoor environment where GPS signals are usually not available.

Their approach assumed the environment to be structured to the extent that the robots can gen-

erate a three-dimensional map by projecting two-dimensional maps generated by a 2D lidar at the

corresponding altitudes. This assumption limits the application of the method only in a struc-

tured environment with walls which are intact enough to give information about the floor plan.

Kohlbrecher et al. also used a lidar to develop a SLAM system which estimates a six-degree pose of

an aerial robot [11]. Similarly, they assumed that the horizontal layout of the indoor environment

does not change so significantly when the robot moves vertically. Based on this assumption, the

robot builds two-dimensional maps for each floor plan. This simplification lets the system navigate

only using an IMU and lidar performing two-dimensional SLAM at multiple stories of a building.

Thus, these apporaches indicate that a lidar needs to assume the environment to be structured

unless the robot has additional source of sensory data.

In addition to the use of laser scanners, an RGB-D or depth camera provides another way to

construct a map of the environment. Bi et al. used an RGB-D or depth camera in development

of their aerial robot which visually searches victims [14, 15]. Their navigation system is similar

to Kohlbrecher’s; the robot uses an IMU and lidar to perform two-dimensional SLAM. However,

they also used an RGB-D camera so that they can additionally build a three-dimensional map. The

RGB-D camera is also used for SLAM. Perez-Grau et al. employed an RGB-D camera for their UAV

navigation for search and rescue, where the UAV is tele-operated but partially self-controlled to

safely navigate inside a building [17]. Based on the data provided by the RGB-D camera, the robot

performs visual odometry and localizes itself in the generated map. Comparing with a lidar, these

approaches using a RGB-D camera can construct a three-dimensional map even in an unstructured

environment.

A regular camera is also simply used for localization, but with some assumptions. Tomic et al.

used down-looking stereo cameras to localize their aerial robot for urban search and rescue [12].

In their work, they introduced components of the entire mission: detection of a target building,
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search for an entrance, entry of the building, and retrieval. They focused on the last two steps

since they require the robot to navigate without GPS; the robot must only use a lidar scanner,

an IMU, and a camera. In this situation, they proposed localization by tracking features on the

ground detected by the cameras. Likewise, Liu and Nejat implemented vision-based localization

for their semi-automatic multi-robot navigation in search and rescue [13]. By detecting features

in an image captured by the robot’s camera, the robot generates 3D point clouds and localizes

itself by matching with the previously gained point clouds. The environment is assumed to have

abundant landmarks so that the robot can find enough features to match point clouds. Moreover,

for the retrieval step, Martinez et al. applied a scene-matching approach for their aerial robot [16].

The robot saves images from the camera while it is flying through the environment. Hence, when

it goes into a deeper area of the environment, the robot holds a series of images along its path.

Once it decides to retrieve, it compares the current view with the stored image data so as to

localize itself. These methods, by using the image data, allow the robot to quickly localize itself

and navigate through the entire environment, but they assume the environment contains abundant

distinguishable landmarks. The view of each local area needs to be different enough to recognize.

While an optical camera may be used to track the robot’s velocity by tracking features of the texture

of the environment, it may not be applicable to localization in an unstructured environment where

a specific landmark is hard to be found such as in a cave.

In terms of communication, they usually assume the robots are wirelessly connected to the

external facilities or networks. While external facilities are unavailable, communication between

the robots is idealized and access points are assumed to be accessible for the robots at any location.

They are generally tele-operated or partially dependent on a human operator as mentioned in some

work above [13, 16, 17].

In summary, aerial robots are generally used for search and rescue due to the uneven ground,

and they are equipped with laser ranging sensors, an IMU, and cameras so that they can navigate

without using GPS. The environment is assumed to have a few characteristics which may not be

available in a completely unstructured environment such as a natural cave. As the environment is

usually a collapsed building or structures, they assume there are enough landmarks for a camera to

detect and distinguish so that the robot can tell where it is located in the environment. In addition,

the communication is assumed to be idealized; the robots can communicate with the base station

or human operators in the most situations.

Robotic Inspection: Facilities and infrastructures are inspected regularly for their maintenance.

However, some of them are too dangerous for human workers to get inside. Robotic probes and

systems have been proposed for this purpose [18, 19, 20, 21, 22, 23].

The situation is similar to that of search and rescue: an indoor environment which can be

expected to be structured. However, robotic inspection has a different characteristic in terms of
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communication such as a lack of access to the ideal network since the inspection areas are not the

spaces where people usually work or live. Burri and Nikolic et al. developed a MAV inspection of

a thermal power plant boiler [18, 20]. The aerial robot estimates its motion by using its forward-

looking stereo camera and an IMU. As the environment is dark, it also uses LEDs to light up the

space so that the camera can detect objects and features. Nagatani et al. designed and tested

robotic probes for inspection of a damaged nuclear plant [19]. Their robots are ground-based with

crawlers for locomotion. They are controlled by a human operator working outside, and they create

three-dimensional map using lidar. They tested their robots in the actual nuclear plant in Japan

which was destroyed by the earthquake in 2011. To overcome the difficulty of communication due

to the radiation, their robots relay data to their neighbors. One of the robots is tethered by a

cable which leads to the human operator. This tethered robot transmits signals to other robots

wirelessly so that they can perform short-ranged wireless communication. Ozaslan et al. proposed

their UAV navigation system for tunnel-like facilities [21, 22]. Addressing the problem of GPS-

denied environment, they use an IMU, cameras, and lidars for localization. Given a pre-defined

map of the facility to inspect, a human operator provides way points and the robot autonomously

follows these specified positions. Faria et al. developed an aerial robot for inspection of marine

facilities such as oil well stations [23]. Like Ozaslan’s work, the environment is also GPS-denied due

to the robot’s operations underneath the facility. Their work uses RGB-D cameras to build three-

dimensional occupancy map and autonomously chooses unexplored areas as the next destinations.

Like search and rescue, robotic inspection has a similar situation: aerial robots being advanta-

geous for the uneven ground, and a lack of access to external localization facilities such as GPS. On

the other hand, there are unique environmental features. It may be lenient in terms of mapping;

a prepared map is generally available unlike search and rescue, where damaged buildings may be

different from their floor plans. However, since the environment is not necessarily a space where

people usually work, access points of the network are less likely available, leading to a more severe

communication limitation. As a result, they generally designed a single aerial robot to fly through

the environment without communicating with anything and come back to the original location in

order to provide the collected data. This type of approach does not require communication during

the operation. Nevertheless, it is supposed to be a single-robot exploration, leading to the limited

scale of area to explore.

Planetary Exploration: Beyond the Earth, underground and cavern environments will be one

of the new frontiers in future space exploration. Through a series of manned and unmanned lunar

missions, underground voids of the Moon have been confirmed to exist and they are expected to

be large basaltic conduits known as lava tubes created after melted pahoehoe lava oozed-out of

the consolidated ground [24, 25, 26, 27, 28, 29, 30]. Similarly, based on the findings by the Mars

orbiters such as Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter, the red planet
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is also estimated to have subsurface cavern structures [2, 3, 4, 5, 6, 7, 31]. Martian subsurface

void spaces have been drawing attention in terms of two major objectives because of its stable and

long-lasting structures [32]. First, caves could be the areas potentially preserving biosignatures.

Some of the potential lava tubes could have existed in the ancient time when the Martian surface

was said to be covered with liquid water. Even after Mars lost its surface water, the caves could

have sheltered surviving micro-organisms for a long time, even up to today. The second significance

is of practical usage: extraterrestrial underground structures may be used as potential shelters for

future astronauts [25]. The walls of caves protect the internal environment from hazardous features

on the surface. Besides, the smaller gravity force makes the Martian caves larger than those on

the Earth. This natural shelter could be used as a base for the future manned mission. With a

particular condition, a cave could have water ice inside [6], which could be precious resources for

activities of the astronauts. Since it is risky to send human beings into unknown subsurface areas

from the beginning, it is beneficial to send robotic probes to confirm the stability and safety in the

environment. In fact, for exploration in the subsurface world of Mars, robotic missions have been

proposed in the last decades [33, 34, 35, 36, 37, 38, 39, 40, 41].

The specific characteristics of this exotic underground environment affected the designs of robot

hardware and systems. Unlike the previous application areas, Martian lava tubes are extremely

remote and unknown: there are several minutes of communication delay and a spacecraft cannot

observe the environment as it is enclosed and isolated by the ground surface. In addition, the

landscape is totally unstructured and dark; it is hard to assume that there will be abundant

landmarks enough to identify individual locations by a camera. Dubowsky et al. proposed a

mission conducted by a very large group of “Microbots,” tiny jumping spherical robots [33, 35,

36]. A group of the robots are launched from the base lander, and they are supposed to move

one kilometer by hopping to the cave entrance and explore inside for 500 meters. They also

designed detailed hardware and tested fuel consumption. The redundancy of the large robot group

stabilizes the entire system. Malfunctioning or broken robots can be replaced with other healthy

members, and the group continues working without interruption. Lange and Seeni introduced a

carrier rover in which those microbots are stored [37]. As the rover reached a cave entrance, the

robots are released and deployed into the inside. In their discussion, they characterized Mars cave

exploration as follows: unknown structure, smaller gravity, harsh temperature, needs of internal

communication, and navigation in the dark. For these conditions, they emphasized the advantage

of deploying microbots carried by a main rover to minimize the risk of mission failure. There is

also an approach of a heterogeneous robot group, in which robots have different hardware designs

or functionalities. Husain et al. developed a heterogeneous robot team, composed of 2D mapping

robots, a 3D modeling robot, and a sampling robot [38]. The comprising robots are all ground-

based. The mapping and modeling robots are wheeled, and the sampling robot is a crawler. In their

demonstration, a pair of 2D mapping robots generates a floor plan of the interior structure and a
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3D modeling robot creates detailed models of the environment. Based on the acquired information,

a sampling robot utilizes its drilling instrument to sample the ground material. Although their

approach focused on activities in a cave, the terrain was assumed to be lenient enough for the

ground-based robots to move.

Cavern or subsurface exploration of Mars is the next step for the future missions of planetary

exploration. It has been analysed and discussed from different perspectives. Whittaker analyzed

Martian subsurface exploration based on steps of the entire mission denoted as “vantage points:”

orbital, flyover, surface, pit descent, and subsurface [40, 42]. The orbital step is carried out by a

spacecraft releasing a lander from an orbit of the planet. The flyover step is taken by the released

lander. Once the lander steps on the ground, it releases a rover or any ground-based robot. This

robot takes care of the surface step by heading for the entrance of the cave. Then, a descending

robot is responsible for the pit access/descent, which is the process to enter the internal structure

while solving the specific navigational problems. Cave Hopper is quite a simple approach where

the robot directly jumps into a pit hole [40]. As it was designed for caves of the Moon, whose

gravitational force is small enough to jump, it may not be applicable to the Martian surface. Finally,

the subsurface step is operated to explore the unknown cavern environments. Whittaker addressed

several potential problems in the subsurface exploration: rough terrain, shortage of power supply,

and limitation of communication. Fink et al. proposed “Tier-Scalable Reconnaissance,” which is

composed of multiple levels of exploration including ground, aerial and underground, and multiple

agents controlled by their own [41]. In this approach, a base rover launches multiple robotic probes,

and they perform their work on their own decision. The conventional type of robotic exploration

using a single, remotely controlled, huge rover could not always work for exploration in risky areas

such as lava tubes and caves; a minor malfunction of a local part could affect the entire system. A

closed space prevents a rover from communicating with a remote pilot. The redundant and flexible

approach could alleviate the situation by covering potential system failures.

In addition to frameworks of robotic exploration in a Martian cave, several hardware designs of

aerial robots have been proposed. Arizona State University developed ball-like flying robots named

Pit-bot to collaboratively explore Lunar and Martian lava tubes [34]. A group of the ball robots

are launched from a base rover and explore in a cave. Each robot is equipped with thermal rockets

or thrusters. The main thruster is equipped on the bottom, and the altitude control thrusters are

near the top. As a group of the robots, they map the environment in a decentralized way [43]. Each

individual robot appears as a ball-shaped marker in an image. They detect each other by their

stereo camera and measure distances based on triangulation. The hopping mode with optimized

fuel consumption has been materialized, and it is planned to develop the hovering mode in order to

construct a 3D panoramic image. Meanwhile, Astrobotic Technology announced that they planned

to develop a propulsive flying robot for exploration in Martian lava tubes [44]. The robot is to

hop by spring struts and fly by thrusters. For scientific exploration, the robot will use compressed
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atmospheric gas as propellant in order to avoid contamination of the environment by exhausted

gas. The single-robot control system was designed based on information theory [45, 46]. They also

announced that they developed and tested their flyer in a glacier cave in Iceland [47, 48]. The design

is purely intended for cavern exploration; it uses only ranging sensors such as 3D lidar scanner for

navigation without a camera. Moreover, the Asteroid and Lava Tube In Situ Resource Utilization

(ISRU) Prospecting Free Flyer Project proposed their development of a small flyer which will be

used for resource utilization in unstructured environments [49]. Although their primary target

location is asteroids, lava tubes were also addressed as one of the possible destinations. The

robot has four thrusters using cold gas propulsion. They mentioned the usability of multiple small

flyers for their maneuverability, accessibility to the target location, and redundancy. Unlike those

propulsive flying robots, the Jet Propulsion Laboratory (JPL) has been developing a rotary-winged

robot which will fly in the Martian atmosphere [50]. It is a coaxial helicopter as a flying probe

to Mars. They tested their rotor-craft design in a pressure chamber to simulate its performance

in the Martian environment, and it was finally deployed as Ingenuity helicopter with Perseverance

rover, which landed on Mars in 2021 [51]. This project demonstrated the possibility to use a

propeller-based aerial robot in the Martian atmosphere at some altitude.

In short, planetary exploration has less assumptions than the previous application areas. In

addition to lacking GPS and access points to the ideal network, the environment is completely

unstructured and unknown. Moreover, due to the nature of the remote exploration, the operation

is required to be done in limited time. To address these limitations, multi-robot exploration is

proposed so that the robots can establish their ad hoc network and cooperatively process their

tasks. Flying robots for a thinner atmosphere are also being designed and proposed so that they

can explore in an three-dimensional space of a planetary cave.

Commonly, the environment is assumed to have uneven terrains and it is recognized the usability

of aerial robots for the 3D navigation. A robot is generally equipped with laser ranging sensors

such as lidar, cameras, and an IMU. RGB-D cameras are also used to get point clouds representing

the terrain structure. Among the three application areas, search and rescue seems to assume the

most lenient environment where the network access is available. Robotic inspection assumes a

lack of access points of the ideal network and focuses on single-robot exploration, which does not

necessarily rely on the ideal network. Planetary exploration has the most severe situation where

the environment is unknown, unstructured, and possibly large. Addressing a lack of the ideal

network, high risks of failure, and large environments, it is suggested that multi-robot exploration

is advantageous.
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2.1.2 Multi-Robot System and a Network

As indicated in the aforementioned application areas, it is beneficial to use multiple robots in terms

of ability to build an ad hoc network: robustness by redundancy, and scalability of the group size.

Due to the lack of the ideal network, the multi-robot system needs to build their own network to

carry data. To build a multi-robot system communicating through their own network, there are

two major approaches: separate systems where robots interact with network nodes spread out in

the environment, and an integrated system of a group of robots which also perform as network

nodes.

Multiple Robots Interacting with Network Nodes: Separation of the two components —

mobile robots and network nodes — can simplify the navigation task into a graph search problem;

mobile robots navigate in a roadmap of stationary nodes directing them.

Batalin and Sukhatme proposed an approach to deploy markers into the environment to aid

the navigation of a mobile robot [52]. They introduced an algorithm for the coverage task, where

a mobile robot deploys and uses markers as sign posts in an environment. The markers keep track

on the directions where the robot explored in the past, and suggest the robot the desired direction

so that the robot can visit less explored areas. They applied a probabilistic navigation approach to

the sensor network which integrates the coverage task and the sensor network [53]. In the approach,

the robot does not perform mapping or localization. Instead, the network executes tasks to direct

the robot to the destination. Each network node has a probability that the robot is currently in

the proximity of the node so that the network provides a discrete probability distribution for the

robot’s location. Mapping is performed by deploying additional nodes and expanding the network

in the environment. As they extended the proposed method, Batalin and Sukhatme addressed two

problems: the coverage/navigation task and the deployment of sensor network [54]. Unlike their

previous work, the markers communicate with each other through two types of communication;

one is a long-range communication to pass data within the network and the other is a short-range

communication between the robots. Finally, they provided a theoretical analysis of their coverage

and sensor deployment algorithm, referring to their algorithm as the Least Recently Visited (LRV)

algorithm [55]. The environment is modeled as a graph of sensor nodes that the robot has deployed.

The LRV algorithm was proved to be complete on a finite graph. It was modeled as a search

algorithm to traverse the graph to cover the network based on the given information from the

visited nodes.

Gasparri et al. introduced two different algorithms for the coverage problem of multiple mobile

robots in sensor networks [56]. The problem is formulated as finding a path in a graph of sensor

nodes which can dynamically change and multiple robots are traversing the nodes so that they

cover the entire network. Both of the proposed algorithms are distributed so multiple robots

can cooperate without a centralized control. The first algorithm temporarily constructs paths for
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the robots and adjust them. The second one constructs an approximated Hamiltonian path and

partitions it so that each robot is assigned to the divided path. Thus, sensor nodes aid mobile

robots to navigate by providing a graph-based environment model.

Capitán Fernández et al. modeled and developed the problem of cooperation of sensory network

and mobile robots [57]. They addressed the preliminary problems to integrate the network and the

group of robots, such as localization of robots and sensors. The system is modeled as complementary

coordination between the sensor network and multiple robots; the robots provide mobility to sensors

by carrying and deploying them, and the sensors give the robots a functionality to pass data

across the system. In their work, the localization of nodes in the sensor network and the robots

are implemented using Received Signal Strength Indication (RSSI), which represents the signal

strength to estimate distances from other nodes. Range-only SLAM (RO-SLAM) is based only on

radio measurements of distances between nodes. Their system lets the sensor nodes process data so

the computational costs can be shared by both the sensor network and the robots. Their approach

is intended for a large-scale system of sensor networks and UAVs where the network is composed

of clusters of sensor nodes. Each cluster has a cluster head, a special node which can communicate

with the UAVs. The role of a cluster head is transferred among all nodes so that a specific node

does not significantly consume its energy. Additionally, the authors mentioned that the Bayesian

techniques used for their sensor fusion can be decentralized, and used the covariance intersection

(CI) algorithm to solve the problem of double-counting information. Nevertheless, the CI-based

method needs to assume that a probability distribution always follows a normal distribution.

Sauter et al. developed a method for aerial vehicles to increase the accuracy of localization with

respect to the targets spread in the environment [58]. The robots and targets individually hold RF

emitters and the robots receive the signals from the emitters. Based on the combination of Time

Difference of Arrival (TDOA) and RSSI, the robots acquire sensory measurements on the relative

distances to the other robots and to the targets. The robots deliberately move to areas where they

can increase the accuracy of the sensory data with respect to the targets and also that they can

cover as a large area as possible. They tested their approach in a simulation in which fixed-winged

robots fly in a space with the diameter of about 100 meters. In their simulation testing, they

reported the error in the localization with respect to the targets was in a few centimeters and the

errors in the localization with respect to other robots was in tens of centimeters, indicating that

the localization using static objects produces better accuracy than that using moving objects.

Separation into multi-robot and networking systems may simplify a navigation problem into a

path finding problem in a network graph. However, there is an assumption that network nodes

are deployed over the environment. If they are not initially deployed, the robots require to spread

them while they are moving. In that case, it requires a scheme for the robots to install network

nodes into the environment.
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Multiple Robots Working as Network Nodes: If the robots also work as network nodes,

they can build a network just by entering into the environment. As each robot plays the role of a

network node, the system can be considered as an ad hoc network whose nodes can dynamically

change their locations, thereby changing the network topology.

For example, robots can be viewed as an ad hoc network when they individually perform SLAM

but also locally share some data with neighboring robots. Chen et al. presented cooperative graph

SLAM [59]. In their work, each robot performs graph SLAM, finding features in the environment

and estimating the locations of the features and its trajectory. The trajectory is represented with

a series of way points through which the robot has passed. The robots can share a part of way

points so that they can improve their graph SLAM. As they use graph SLAM, the robots need to

always estimate the entire trajectories, which could grow as they keep exploring the environment.

Unlike graph SLAM, online SLAM does not have this issue as it estimates only the current location.

Furthermore, if the robots use online SLAM, they will only need to pass their estimate of the current

location, instead of that on the entire trajectory.

Cunningham and Dellaaert proposed the distributed feature-based SLAM by a group of UAVs

which communicate with each other, performing online SLAM [60]. It is based on Distributed Data

Fusion (DDF). While the robots perform SLAM locally, they also share their temporary results

with neighbors to improve each member’s performance. Their idea is based on the decentralized

sensor network developed by Nettleton [61], Makarenko and Durrant-Whyte [62], and Makarenko

et al. [63]. Nettleton developed distributed estimation algorithms running in a sensor network

composed of UAVs and ground-base stations [61]. In the approach, every state is estimated by an

information filter. While each platform or UAV maintains its own pose estimate, individuals in the

network communicate with each other to build and share a global feature-based map. To identify

the commonly shared information among the individuals to eliminate over-confidence, the network

is formed in a tree structure, where they can easily store and track the common information for

each channel. While the proposed method is supposed to work in a tree-structured network so that

a node sees the same data only once, the author also mentioned a network in arbitrary topology

and addressed the problem of duplicated information. In that case, there is a possibility that

the same information appears again through another channel, leading to overconfidence. Several

possible measures were presented: tagging each item of sensory data, spanning the network into

a tree dynamically, and use of Covariance Intersection (CI) update to generate more conservative

estimates.

Makarenko et al. introduced the Active Sensor Network (ASN) as a generalized framework

for distributed information gathering [63]. The system combines information from multiple com-

ponents distributed over the environment, generates actions of the components to maximize the

information gain, and also reconfigures the network topology. Two decentralization principles are

addressed: no central control and no knowledge about the global network topology. In addition,
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the decentralized approach accommodates three abilities: scalability, robustness, and modularity.

The design concept focuses on services rather than components. Services include localization, sens-

ing, data fusion, communication with the network, and so on. Components are implemented to

provide these services. A physical entity such as a robot and a human can have more than one

component. In their work, Makarenko and Durrant-Whyte presented the Bayesian decentralized

data fusion (BDDF) [62]. The system estimates the locations of landmarks or spacial configurations

in the environment. An estimate is represented by a probability distribution over the state space,

and the distribution is inferred from sensory data based on the Bayesian theorem. Nodes in the

network can exchange their data to refine their estimation. A node extracts new information from

the distribution of the other node by subtracting the common information that they share. This

framework could cause overconfidence if there is cyclic networks in the system. So the nodes must

maintain the acyclic topology of the network by restricting it to a tree structure.

In summary, multiple robots navigating in an enclosed environment need to build an ad hoc

network to communicate with each other. There are two major approaches to establish an ad hoc

network: interacting with separately deployed network nodes, and performing as moving network

nodes. If the robots interact with network nodes separately deployed in the environment, the

navigation problem is simplified as the path finding in the network graph. The robots can also

communicate with each other through the network. However, as the environment is unstructured,

the robots need to deploy network nodes while moving in the environment. On the other hand,

if the robots can form a network by directly communicating with each other, they do not need to

deploy additional network nodes, while the network topology dynamically changes as the robots

are acting as network nodes that move in the environment.

In both approaches, the problem of cyclic updates, or overconfidence, needs to be addressed in

a decentralized system. This problem appears when a pair of data are fused without considering

shared information, or correlations, in them. If the robots strictly form a tree network, which never

contains a cyclic route, they can track correlations in the information which a robot receives from

its neighbors. However, this topology restriction requires control over the entire system so that

the network guarantees to have no cyclic route and it becomes hard to decentralize the system.

Covariance Intersection (CI) applies a specific method to combine information from multiple sources

and it can fuse data without knowledge of correlation, allowing the system to be fully decentralized,

although it requires additional assumptions such as parameterized representation of the probability

distribution, which limits the application area.

2.1.3 Exploration Model Based on Probability and Information Theories

Robotic exploration is composed of three interdependent problems: localization, mapping, and

planning [9]. Planning is the problem of deciding an action to gain the maximized information
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from the environment, and it is crucially affected by localization and mapping [64]. While this

dissertation focuses more on localization and mapping, it is worth discussing how the planning

problem has been addressed in the past as it can give an insight for tackling the localization and

mapping problems.

Candidate plans are sampled and evaluated using specific criteria on the current results of

localization and mapping. The frontier-based approach evaluates unoccupied areas adjacent to

unknown regions as frontiers, and performs path planning to reach the closest frontier as the

next destination [65]. It has also been applied to multi-robot exploration [66, 67]. This approach

is simple but it does not take into account uncertainty in the estimates. The decision theory

generalizes this technique; instead of calculating the path length to each frontier, it evaluates a

utility value of each destination based on particular objectives [9, 68]. The information theory

provides a framework to define the utility of a frontier or vantage point so that a robot efficiently

minimizes uncertainty or information entropy in estimation about the environment. Expected

information gain, or entropy reduction, tells how much information a robot will gain when it takes

a measurement at a frontier [69, 70, 71]. As the entropy is calculated by a probability distribution,

the information theory is related to the probability theory. For example, Stachniss et al. proposed

a method to evaluate candidate actions by calculating the expected entropy reduction in the robot’s

estimation given by the Rao-Blackwellized Particle Filter (RBPF) [68].

Thus, the information and probability theories shed light on the robotic exploration problem

by handling uncertainty in the estimates. To make a decision based on the entropy reduction in the

estimates of the robot’s location and maps, localization and mapping problems need to be modeled

in a probabilistic framework.

2.2 Characteristics and Assumptions of Environment and Hard-

ware

This dissertation focuses on an inference mechanism cooperatively operated by multiple robots. As a

high level of the system design and methods are specifically considered, low level of characteristics,

such as physical restrictions existing in the environment and the hardware, are assumed to be

idealized.

In this section, the assumptions and idealization about the environment and the robot’s hard-

ware are described and discussed.

2.2.1 The Environment

The environment is defined as follows. It is mostly based on a cavern environment but it is applicable

to other environments if the following conditions meet. First, the environment is an enclosed space.

It is surrounded by walls and ceilings which block communication and an access to external facilities
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and supports such as remote control and GPS signals. Second, the environment is unstructured.

It may have uneven floors with obstacles. The walls and ceilings are also not flat or even. That is,

unlike an office-like environment, two-dimensional mapping is not applicable since a floor plan at

every altitude is not identical. Because of the lack of specific corners with flat walls and ceilings, it

is assumed to have no specific landmarks for localization or any navigation process. On the other

hand, textures of the surface of the environment — floors, walls, and ceilings — are assumed to

have features used for visual odometry. Lastly, the environment is static. The structure of the

environment does not change over time.

The characteristics mentioned above are summarized and enumerated as follows.

• Remote and Enclosed

– no external support

• Unstructured

– no assumption about the structure

– uneven floor

– no landmark

– texture may be detectable

– map must be three-dimensional

• Static

– map does not change

2.2.2 The Hardware and Physical Characteristics of the Robot

The physical characteristics of the drone in the simulation are defined and idealized in terms of

battery lifetime, propellant, sensing, and communication.

Battery Life: The battery lifetime depends on how much propulsion a drone needs to fly.

On Mars, the condition may not necessarily be severe. The thinner Martian atmosphere may

require more propulsion, but the smaller gravitational force may less. Also, it may be coped by

minimizing power consumption, e.g., reducing payloads and planning optimized trajectories and

communication. Or the lifetime may be extended by bucket-relaying battery packs while the base

lander is recharging batteries by solar panels. Here, to focus on development of the sound inference

system, the battery lifetime is assumed to be long enough to conduct the entire operation, and the

items mentioned above are left as open questions.
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Propellant: For the same reason as the battery lifetime is idealized, the propellant is also assumed

to be unlimited. Chemical rockets or any type of propulsion whose propellant can contaminate the

environment may not be preferable for scientific exploration. In fact, propellers and compressed

atmospheric gas are proposed for propulsion of a drone flying in the Martian atmosphere [50, 44].

These types of propulsion requires atmospheric gas and electricity but not additional propellant.

Thus, propellant can be idealized as the battery lifetime is unlimited.

Sensing: The drone’s sensing in the simulation is defined based on the following sensors: ranging

sensors, a depth camera, an IMU, and odometry. The ranging sensors are used for obstacle avoid-

ance and autopilot. Based on the ranging data to obstacles, the drone decides the direction to fly.

The depth camera is used for SLAM. It provides point clouds representing obstacles in front of

the robot. Based on this data, the robot builds an occupancy map and localizes itself with respect

to the map. The IMU is used to acquire the robot’s orientation. Drifting noises are assumed to

be small enough for pose estimation. The odometry tells the velocity of the robot. In an actual

environment, it can be implemented by visual odometry, using a camera. In the simulation, it is

simulated by a generic odometry module with artificial noises.

• Ranging Sensors: Control

• Depth Camera: Mapping

• IMU: Orientation

• Odometry (Visual): Velocity

Communication/Interactions of Robots: Finally, communication and interactions between

the drones are defined as follows. Each robot has an ability to take a measurement on its relative

pose with respect to the base lander and other robots. The measurement data is composed of

ranging and direction to the target with which the robot is interacting. It can be implemented

by estimation based on image data of the target or using Received Signal Strength Indication

(RSSI) during communication. In the simulation, the robots receive relative pose with artificial

noises. When they communicate with each other, they pass their estimated locations and occupancy

maps. The map is formatted in the octree structure, which makes the data size to be at most a few

hundreds of kilo bytes. With this compression, it is assumed that the robots exchange their data

in real time.

2.3 Multiple Robots as a Mobile Ad Hoc Network

In the related work previously reviewed, several characteristics of robotic exploration in an enclosed

environment have been mentioned. Due to the uneven terrain, aerial robots such as UAVs and
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Figure 2.1: The lander deploying robots which go forward to deeper areas of the environment,
expanding their ad hoc network and maintaining their local submaps (depicted as gray squares).

MAVs have been drawing attention. In a large environment, multi-robot systems have an advantage

as they can be deployed over the environment and each robot can execute its task in its local area.

However, an enclosed and unstructured environment does not allow communication with external

facilities. The multiple robots will not be able to access the ideal network to share information

directly. Rather, they will need to establish their own facility to communicate by themselves,

namely an ad hoc network. Although the use of a separate network, which the robots interact

with, can simplify the navigation problem to a path finding problem in the network graph, it could

impose an additional task on the robots and require a hardware design to deploy network nodes

while navigating through the environment. Instead, they can form an ad hoc network by playing a

role as mobile network nodes and communicating with each other. Based on these considerations, in

this dissertation, we consider a multi-robot system where each robot performs individual SLAM and

communicates with its neighbors to establish a mobile ad hoc network for cooperative localization.

To cope with uncertainty in the estimation, the system must be described as a probabilistic model.

Figure 2.1 shows an abstract idea of the multi-robot exploration. At the entrance area of

an environment, the base lander deploys each robot into the environment. The deployed robots

form a swarm in which they are wirelessly communicating. They proceed into deeper areas while

maintaining distances from their neighbors. When a robot is too close to its neighbors, it tries

to move away from them. Meanwhile, if it is going to be too far away to communicate with its

neighbors, it tries to stay so others can catch up with it to avoid disconnection. As the lander keeps

deploying robots, previously deployed ones are “pushed away” from the lander. In this way, as the

21



network extends into deeper areas, each member makes maps based on locally gained information:

its own sensory data and the information provided by other members.

Generally, mapping is precise in a small local area since distortion of the robot’s trajectory

can be small enough. On the other hand, noises or errors are accumulated as the robot moves

for a longer distance, and the accuracy can significantly degenerate. This is significant when a

robot takes a long trip through the environment and goes back to the initial location. Due to the

accumulated error, the robot may think it is located at a different place even if it is actually at

the original location. Since the mapping process depends on the robot’s estimated locations, the

resulting map will be significantly distorted. To handle this problem, it is effective to build a set

of submaps, which the global map is composed of, so that the submaps can be re-aligned later to

correct the distortion of the global map [72]. Loop closure is a typical approach to reduce this type

of errors. In the single-robot SLAM, when the robot notices that the current local map shares a

part of the region which has been previously mapped, the local map’s frame is moved so it matches

with the other.

In this dissertation, loop-closure is performed in a different way for the multi-robot SLAM.

Instead of closing a loop of submaps, the robots close a chain of interactions. The robots perform

localization by using the ad hoc network where each pair of robots exchange information about their

global locations. When these interactions form a loop, they effectively reduce uncertainty in their

localization estimates. Submaps are built based on their estimated locations which are updated by

the cooperative localization, leading to more accurate mapping results. While the conventional loop

closure requires to find common features in submaps to re-align, this approach does not need such

a process. Submap building requires some criteria such as timing of segmentation and monitoring

the neighbor’s location. While they are moving, each robot builds submaps of the local area where

it is situated. At some point, it saves the current submap and starts with a new submap so that it

can pass submaps to the neighbors without stopping mapping. Through the frequent interactions

with the neighbors, the robot is supposed to know the recent locations of the neighbors. Once it

notices that another robot is entering one of its submap areas, it passes the submap to the robot.

Thus, this approach contains two components: Decentralized Cooperative Localization and

Distributed Submap Building. The following subsections describe each item.

2.3.1 Decentralized Cooperative Localization

The robots establish an ad hoc network where they locally communicate with each other. Based

on the relative pose or location between them, they update their estimated locations.

Figure 2.2 depicts the idea of the localization in an ad hoc network. Each robot serves as a

beacon, providing neighbors with its estimated location. While communicating with each other, a

robot also calculates the distance to the other robot based on the signal strength. If the sensory data

indicates the robot is actually located further away from the other than the robot was thinking, the
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estimated location is moved away from the other robot. If the data indicates the robot is located

rather closer, the estimated location is moved toward to the other robot.

The network topology is meshed. The robots can communicate with any others once they are

within a communication range and perform loop-closure to improve the localization. It is also

decentralized; they do not have a centralized entity to organize or manage the network traffic in

a whole system. This approach allows each robot behave and communicate locally without taking

care of the larger areas. In this type of network, however, there is a problem when they copy their

information. Due to the mesh topology, the network contains cyclic routes. This leads to multiple

paths through which information is passed. Eventually, a robot may receive identical information

which it originally generated. If it takes place repeatedly, the information is “amplified,” so is

the error in it. This leads to overconfidence; a robot estimates a wrong state with overly high

confidence. For example, in the case of localization, a robot would think it is located within a

10-cm radius of a goal but it was actually 20 meters away from there. When it communicates with

others, it sends this information with high confidence, leading to the same problem at other robots.

Keeping history of updates on the estimates may avoid the problem, but it would require a huge

amount of memory space to keep such history data and additional computation. To deal with it,

Figure 2.2: An abstract diagram of cooperative localization. Some robots like the top-left robot
are close enough to communicate with the lander and perform global localization and update the
estimated locations. Additionally, the robots are communicating with each other, taking measure-
ment on relative poses, and exchanging the estimation about their locations. Based on the mutual
measurements and the exchanged estimation, even if they are far away from the lander, they can
update their estimated locations.
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Figure 2.3: An abstract diagram of submap building by a single robot. While moving through the
environment, the robot builds submaps (gray squares) based on sensory data (cyan triangles) such
as ranging data. It performs localization and mapping with respect to the local reference frame,
which is to be separately updated with respect to the global frame.

the proposed approach instead “reduces” the confidence when a robot exchanges its information

with others. They still receive information but with lower confidence. If the confidence is reduced

properly at each communication, the estimates can keep its consistency.

2.3.2 Distributed Submap Building

Each of the robots performs its individual SLAM by taking sensory data about the surrounding

environment and takes care of submaps about its local area. Figure 2.3 shows an abstract view of

this process. By taking sensory data from the environment, it builds a submap. At a specific point

of time, it starts to build a new submap. As the figure indicates, the submaps may overlap with

each other. The robot also performs localization with the submap that it is currently building. This

process performs conventional SLAM problem on each submap: estimating the robot’s location and

maps about the environment. Thus, a robot may use an existing SLAM approach for this process.

For example, one of the possible approaches is the use of the particle filter, which stochastically

samples robot’s poses and maps.

Submaps can be built by a multi-robot system by distributing the tasks over the robots. While

a robot generates a series of submaps through the environment, the robot uses and updates only

the latest submap for its SLAM process. The robot would just keep all the submaps on its memory

if the system had only one robot. On the other hand, a multi-robot system lets the robot pass
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these submaps to its neighbors who are entering the corresponding areas so it can save its memory

space. Moreover, the receiving robot can also save computation for the mapping as it does not

have to build a map from scratch.

2.4 Probabilistic Models

In the previous section, the components of the proposed multi-robot navigation were described

with the challenging issues being addressed. Generally, mapping and localization are problems to

estimate specific states, which can be terrains of the environment, the location of the robot, and

so on. Since estimation entails uncertainty, the system needs to be described as a probabilistic

model. In addition, mapping and localization in an unknown environment is like a chicken-and-egg

problem. When a robot builds a map of the environment, it needs to know where it is located.

On the other hand, to learn where it is located, it needs to have a map. This inter-dependency is

called the simultaneous localization and mapping (SLAM) problem.

In this section, after the probabilistic model of the single-robot SLAM is described, an extension

to the multi-robot SLAM is discussed.

2.4.1 Single-Robot SLAM

The probability theory sheds light on the SLAM problem where there exists significant uncertainty.

Localization and mapping is a process of estimating a state with the robot’s location and the

environment by using known information such as control inputs and sensory data. The estimation

of the state S given known data D is expressed as a probability distribution, p(S|D), and it can be

solved by the Bayesian inference.

p(S|D) =
p(D|S)p(S)

p(D)
=

p(D|S)p(S)∫
p(D|S)p(S)dS

= ηp(D|S)p(S) (2.1)

where p(S) is a prior probability about the state S and p(D|S) is a probability model about the

observed data D given a specific state. In the case of SLAM, it is a probability about sensory data

given a specific set of the robot’s location and maps. The second term is derived by the Bayes’

rule, and it leads to a normalized multiple of the sensory model’s distribution and state prior.

The Bayesian inference tackles the SLAM problem while it entails a large number of parameters.

Sensory data z0:t and control inputs u0:t are known parameters, and the robot’s trajectory or

sequence of locations x0:t and the map m are a state to be estimated.

p(S|D) = p(x0:t,m|z0:t, u0:t) (2.2)

A dynamic Bayesian Network (DBN) graphically represents the Bayesian inference performed in

SLAM. Figure 2.4 shows the DBN of the state transitions in the single robot exploration. The arrows
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Figure 2.4: Dynamic Bayesian Network of the single robot navigation. The arrows represent cause-
and-effect relations. Gray nodes represent the map m and the robot’s trajectory xt, which are
unknown. White nodes represent control inputs ut and sensory data zt, that are directly observed.

represent cause-and-effect relations between nodes, which are modeled as conditional probability

distributions. The robot’s location xt and the map m are not visible while its control inputs ut and

the sensory data zt are known or observable. These hidden values are estimated or inferred in a

form of posterior conditioned by the visible values through motion and sensor models: p(xt|xt−1, ut)

and p(zt|xt,m).

Specifically, the posterior can be factorized into the estimation on the two items: localization

and mapping [64].

p(x0:t,m|z0:t, u0:t) =
p(x0:t,m, z0:t, u0:t)

p(z0:t, u0:t)
=
p(m|u0:t, x0:t, z0:t)p(u0:t, x0:t, z0:t)

p(z0:t, u0:t)

=
p(m|x0:t, z0:t)p(u0:t, x0:t, z0:t)

p(z0:t, u0:t)

= p(m|x0:t, z0:t)p(x0:t|u0:t, z0:t)

(2.3)

Each component is inferred by applying motion and sensor models to the previous states as

follows,

p(x0:t|u0:t, z0:t) = p(xt|x0:t−1, u0:t, z0:t)p(x0:t−1|u0:t, z0:t)

= p(xt|xt−1, ut)p(x0:t−1|u0:t−1, z0:t−1)
(2.4)

p(m|x0:t, z0:t) = ηp(zt|xt,m)p(m|x0:t−1, z0:t−1) (2.5)

where η is a normalizing factor.

From Equations (2.3), (2.4), and (2.5), the estimation can be expressed by the motion and
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sensor models.

p(x0:t,m|z0:t, u0:t) = ηp(xt|xt−1, ut)p(zt|xt,m)p(x0:t−1|z0:t−1, u0:t−1)p(m|x0:t−1, z0:t−1)

= ηp(xt|xt−1, ut)p(zt|xt,m)p(x0:t−1,m|z0:t−1, u0:t−1)
(2.6)

Thus, the state can be estimated by applying the motion model p(xt|xt−1, ut) and the sensor model

p(zt|xt,m) to the previous estimate p(x0:t−1,m|z0:t−1, u0:t−1) incrementally at each time step.
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Figure 2.5: Dynamic Bayesian Network of multi-robot navigation in the marching formation. States
of two robots (the k1-th and k2-th) and their mutual measurement (sk1,k2t ) are shown.

2.4.2 Multi-Robot SLAM

The DBN of the single-robot SLAM can be extended for the multi-robot system as shown in

Figure 2.5. Each robot’s location is denoted as xkt , 1 ≤ k ≤ K where K is the number of robots.

For simplicity, the figure displays only states of two robots xk1t and xk2t . In addition to the sensory

data from the environment zkt taken by the k-th robot, they also take a relative measurement

si,jt between the i-th and j-th robots, and its sensor model is assumed to have a commutative

characteristic.

p(si,jt |xit, x
j
t ) = p(sj,it |xit, x

j
t ) (2.7)

Let St be a set of relative measurements taken at time t.

St = {si,jt : ∀(i, j) ∈ Lt} (2.8)

where Lt is a set of pairs of indexes of robots which are linked and performing mutual measurements.
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Then, the posterior on all robot’s locations and the map can be calculated based on the motion

and sensor models as follows. First, it can be factorized into those on mapping and localization.

p(x1:K
0:t ,m|z1:K

0:t , u
1:K
0:t ,S0:t) = p(m|x1:K

0:t , z
1:K
0:t )p(x1:K

0:t |z1:K
0:t , u

1:K
0:t ,S0:t) (2.9)

The map is estimated by applying the sensor model p(zkt |xkt ,m) to the previous state.

p(m|x1:K
0:t , z

1:K
0:t ) = ηp(z1:K

t |x1:K
t ,m)p(m|x1:K

0:t−1, z
1:K
0:t−1)

= η

{
K∏
k=1

p(zkt |xkt ,m)

}
p(m|x1:K

0:t−1, z
1:K
0:t−1)

(2.10)

where η is a normalization factor. This recursive form is extended into the form of multiplication

of all the sensor models and the priors.

p(m|x1:K
0:t , z

1:K
0:t ) = η

{
K∏
k=1

p(zkt |xkt ,m)

}
p(m|x1:K

0:t−1, z
1:K
0:t−1)

= η′
t∏

τ=1

{
K∏
k=1

p(zkτ |xkτ ,m)

}
p(m|x1:K

0 , z1:K
0 )

= η′′
t∏

τ=1

{
K∏
k=1

p(zkτ |xkτ ,m)

}
p(z1:K

0 |x1:K
0 ,m)p(x1:K

0 ,m)

= η′′
t∏

τ=1

{
K∏
k=1

p(zkτ |xkτ ,m)

}{
K∏
k=1

p(zk0 |xk0,m)

}
K∏
k=1

p(xk0,m)

= η′′
t∏

τ=0

{
K∏
k=1

p(zkτ |xkτ ,m)

}
K∏
k=1

p(xk0,m)

(2.11)

where η′ and η′′ are normalizing factors. This can be transformed as a product of the mapping

results from all the robots.

p(m|x1:K
0:t , z

1:K
0:t ) = η′′

t∏
τ=0

{
K∏
k=1

p(zkτ |xkτ ,m)

}
K∏
k=1

p(xk0,m)

= η′′
K∏
k=1

{
t∏

τ=0

p(zkτ |xkτ ,m)

}
p(xk0,m)

= η′′′
K∏
k=1

p(zkt |xkt ,m)p(m|xk0:t−1, z
k
0:t−1)

= η′′′
K∏
k=1

p(m|xk0:t, z
k
0:t)

(2.12)

28



where η′′′ is a normalizing factor. This shows that the global map can be constructed from the

maps locally built by individual robots.

The locations are estimated by their motion models and the sensor models.

p(x1:K
0:t |z1:K

0:t , u
1:K
0:t ,S0:t)

= ηp(St|x1:K
t )p(z1:K

t |x1:K
t )p(x1:K

t |x1:K
0:t−1, u

1:K
t )p(x1:K

0:t−1|z1:K
0:t−1, u

1:K
0:t−1,S0:t−1)

= η
K∏
k=1

{
p(Skt |x1:K

t )p(zkt |xkt )p(xkt |xkt−1, u
k
t )
}
p(x1:K

0:t−1|z1:K
0:t−1, u

1:K
0:t−1,S0:t−1)

= η
∏

(i,j)∈Lt

p(si,jt |xit, x
j
t )

K∏
k=1

{
p(zkt |xkt )p(xkt |xkt−1, u

k
t )
}
p(x1:K

0:t−1|z1:K
0:t−1, u

1:K
0:t−1,S0:t−1)

(2.13)

where Skt = {sk,jt ∈ St : (k, j) ∈ Lt, k < j}. Because it is a product of probabilities, this shows

that each robot can independently performs localization for itself and each pair of robots perform

mutual localization.

Thus, the model indicates that the multi-robot SLAM can be decomposed into decentralized

cooperative localization and distributed submap building, which are individually performed by each

robot. In the following chapters, each component of the problem is discussed in detail, and solutions

are proposed.
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CHAPTER 3
OVERCONFIDENCE PROBLEM AND CONSERVATIVE DATA

EXCHANGE

In an unknown environment, it is crucial for the robots to estimate where they are located. Due

to the difficulty to access external facilities such as GPS, the robots in an enclosed environment must

get information from their surrounding areas to localize themselves. However, the environment does

not necessarily have enough landmarks to identify local areas.

Cooperative localization by multiple robots may provide a solution to the exploration in such

Figure 3.1: An illustration of cooperative localization. A limited number of robots (the blue robot
in this case) can access landmarks while all robots (including the blue) can exchange information
through local communication to update their estimations about current locations.
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an enclosed and featureless environment since each of the robots can act as a landmark. Figure 3.1

illustrates an abstract concept of cooperative localization. A small group of robots may access a

facility – e.g. a base lander for planetary exploration or a control unit for search and rescue –

which provides global localization. In the figure, the blue robot has access to the lighthouse, which

represents the base station, and the robot can be localized with respect to the base station. On

the other hand, every robot can communicate with others while taking measurements on distances

to them.

If the robots are situated close to each other, they may use vision-based localization and assume

the localization is accurate enough [43]. However, if the robots are deployed in a huge area and

the distance measurement system has significant noises, they need to handle uncertainty in the

estimation. This is often managed in a probabilistic way; an estimate is described as a probability

distribution over a state space and the distribution is updated using the data acquired from the

environment. That is, the robots update their estimates based on the sensory data and the esti-

mated locations of their neighbors. When the interactions of the robots form a loop, they can gain

a similar benefit to loop-closure, addressing one of the challenging issue.

For these interactions, the robots form a decentralized ad hoc network. Decentralization of

a network makes the system to be robust to anomalies that sporadically take place; the entire

system is expected to remain operational even when some robots in the network fail their tasks.

A decentralized system is more significantly advantageous in an unknown environment than a

centralized system, which could critically fail if specific components are not functional.

However, when they estimate their locations in a probabilistic way as described above, there

is another challenging issue; a decentralized network entails the problem of overconfidence. If the

network has a cyclic route, the same information can be passed through the same point. In that

case, the robots may reuse the identical information to update their estimates, which leads to

inconsistent estimates. It can be avoided by keeping history of received data or restricting the

network topology to an acyclic graph such as a tree. But the former requires excessively huge

memory spaces and the latter cannot perform the loop closure.

As a solution to the challenging issues, i.e., multi-robot loop-closure and overconfidence, we

propose a conservative data exchange scheme for decentralized cooperative localization performed

by a meshed ad hoc network composed of mobile robots. In the proposed approach, the robots

exchange their estimates with neighbors while taking measurements of distance to them. Each

robot updates its estimate based on the measurement data and the estimate from the neighboring

robot. They form a meshed network to close a loop of interactions. To handle overconfidence, the

confidence of the robots’ estimates is reduced before they are exchanged. Specifically, fractional

exponents are applied: ω for the probability distribution about its estimate to keep, and 1− ω for

the one to pass to the other robots, where 0 ≤ ω ≤ 1. This operation guarantees that no identical

information is reused.
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After the review of related work, this chapter describes a multi-robot system as an ad hoc

network and discusses related problems such as overconfidence. Then, the proposed method is

described and discussed with respect to an ad hoc network and confidence reduction. Finally, the

simulation results are presented.

3.1 Related Work

Interactions of robots are based on wireless communication. Wireless communication has a finite

range and may be blocked by obstacles in an enclosed environment. In terms of this situation,

the technologies for mobile devices to exchange messages, e.g., cell phones, may give an insight.

The AllNet network [73] is an ad hoc network of mobile devices designed to provide interpersonal

messaging without an centralized facility. The system applies an epidemic routing; each device

forwards data to the neighbors in its communication range so that all the devices in the network

can receive the data at the end. Each of the mobile devices also works as a data mule: a data node

which physically moves to a different location before forwarding data. Within an ad hoc network,

AllNet typically delivers each message multiple times, each time to a different device that may be

able to deliver it to the intended destination. Each device may receive an individual message more

than once, but only needs to forward at most one copy to every other device. This is a kind of

broadcast. Broadcast has the advantage of simplicity, and of working well even when the mobility

of nodes in the network is high. A 3D simulation was conducted to demonstrate multiple flying

robots passing a packet to all the robot members in the swarm [74]. In the simulation, the robots

continuously fly in an ellipse-shaped route while passing packets. The simulation results showed

that a deliberately changing network topology could improve the network routing. This indicates

that a network of mobile robots can follow a similar routing strategy. However, as the network

composed of robots is dealing with a different type of data, i.e., probability distributions, the robots

need specific methods to exchange their data, instead of copying the message.

In addition to passing data, the robots may also take an measurement on a relative position

with respect to the neighbor. By giving relative positions, a robot uses its neighboring robots as

landmarks and vice versa: relative or mutual localization. This type of localization can be found

in the field of swarming robots [75, 76, 77]. They usually use a vision sensor such as a camera to

get ranging and bearing information of their neighbors: how far and in which directions they are

located. Based on the information, the robots maintain their relative positions so that the entire

group can move in specified formation. In the field of Internet of Things (IoT), radio waves can

also be used for measurement on the relative pose to track the locations of wireless network devices.

Based on the ranging information given by the sub-centimeter sized devices, they can perform 3D

localization [78]. However, in these fields, the robots or devices focus on localization with respect

to a specific device such as an individual robot and the access point of Wi-Fi, and they do not

localize themselves with respect to the global reference frame.
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Using both an ad hoc network and measurements of relative positions, the robots may localize

themselves in the environment. This is a basic idea of cooperative localization; multiple robots

exchange their data and measurements to estimate their locations in the global reference frame.

In terms of communication, there are problems for updating estimation based on the received

data from other robots: out-of-sequence measurements (OOSM) and cyclic update [79]. OOSM

is a problem in the system where the network nodes estimate the same targets, i.e., all members’

locations, and some node receives old sensory data after it has already updated its estimation.

Cyclic update takes place when identical information is passed back to the robot which originally

sent it out, and the robot uses it to update its own estimation.

The OOSM can be found in the system which is not distributed but decentralized; all the robots

share the same tasks but execute independently. In a decentralized system, a robot may receive old

information after it updates its estimates. To address this issue, robots may pass raw sensory data

and perform localization of the other robot from scratch [80] or “retrodict” states to the time point

when the OOSM data was gained [81]. Another approach is to detect checkpoint when the robot

can update its estimates without OOSM [82]. As they identify each set of sensory data, they also

inherently avoid the cyclic update problem. However, all the approaches mentioned above, need

additional memory spaces to keep sensory data.

If each robot estimates separate parameters, e.g., its own location, and fuses sensory data to

its estimation, which is passed to the other members in the network, the OOSM problem can

be avoided. For example, in a distributed sensor network, each network node uses the estimated

locations of others and updates its own estimated location based on the received information.

As they repeat exchanging data, their estimation becomes correlated. If they naively update

their estimation, they would reuse identical information, leading to cyclic update. To deal with

this, each node employs a mechanism to eliminate correlated information such as the channel

filter [63, 83]. The channel filter monitors the information which the node has already passed to

the other nodes, and it subtracts this information from the incoming data. This approach works

consistently in an acyclic network. If the network has a cyclic route, however, it is infeasible to

generate consistent estimates since correlations are caused by another route which is unknown to the

node. Cyclic update causes overconfidence in the estimation about a state, e.g., nodes’ locations.

When overconfidence takes place, the system becomes too “confident” about a particular state and

its estimation becomes inconsistent with the actual state.

Thus, the OOSM can be simply avoided by passing the updated estimation instead of raw

sensory data. However, the cyclic update becomes critical, appearing as the overconfidence problem

in such a scenario. Some sensory network approaches addressed the issue in an acyclic network, but

it will not work for multi-robot ad hoc network, whose network topology is not necessarily acyclic.

In such a system, where multiple robots individually exchange their estimation in a topology-

cally changing network, the overconfidence problem has been generally addressed by maintaining
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correlated information in the framework of a Kalman filter. For example, Roumeliotis and Bekey

introduced a distributed localization method of multiple robots by estimating locations of the entire

group of robots by the decomposed Kalman filters [84]. In their work, the matrix of the Kalman

filter for the entire group of robots is decomposed into subsets of matrices each of which represents

individual robot’s localization and the correlations of pairs of robots. This eventually delivers the

same results as a centralized Kalman filter for the large original covariance matrix. The overcon-

fidence was addressed by calculating the matrices about correlations between robots. While the

calculation can be distributed over the robots, they are supposed to have the ideal network to share

information. Luft et al. improved the distributed Kalman filter so that the robots can work without

the ideal network [85, 86]. In this approach, the matrix for all the robots is similarly decomposed

and distributed to the robots, but instead of simply holding sub-matrices about the correlations,

they hold decomposed matrices from those. This modified form allows the robots to update their

estimation only by pairwise communication which does not require an access to the ideal network.

While it effectively performs distributed Kalman filters, however, the robots need to hold additional

data and update them. Each robot needs to update all the matrices about correlations every time it

updates its estimation even when the process is just individual localization without any interaction

with other robots. The size of this kind of data and the required computation grows as the size of

the group of robots increases.

Instead of decomposing the centralized matrix, Bahr et al. proposed the Interleaved Update

(IU), which generate a set of Kalman filters for each robot based on combinations of the neighbors’

information [87]. Each robot estimates its own location by the Kalman filter, and passes its estimate

to as many neighbors as possible by broadcasting in its communication range. Once another

robot receives its neighbor’s estimate in addition to mutual measurement data, it duplicates its

Kalman filter and applies the received data to the copied filter. As a result, it gains double filters,

representing the original estimate and the newly created one based on the original and the neighbor’s

filters. When it further receives data and creates a new filter, there will be a set of multiple filters

based on all the combination of information sources. A filter is selected from the set so that the

original and the received filters do not share common sources of data on which they are based. Since

identical data is never reused in update steps on their filters, this approach successfully maintains

correlated data, and hence avoids overconfidence on their locations. Nevertheless, each robot

needs to keep matrices based on all possible combinations of data from the neighbors. Thus, the

decomposition of the Kalman filter allows the system to distribute the computation, but it requires

to hold a set of matrices representing the robot’s location and correlation, which is dependent on

the size of the robot group.

Unlike a Kalman filter, Nerurkar et al. introduced a Maximum A Posteriori (MAP) approach

for cooperative localization [88]. Instead of generating a probability distribution about the current

location, their method gives the most probable path from the original location to the current
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location based on the acquired sensory data. The approach is formulated as a matrix operation

for smoothing the robots’ paths up to the current time point, based on sensory data from mutual

measurement of each pair of robots. This calculation task is distributed to individual robots;

each member performs a part of the calculation. It was demonstrated that the proposed method

outperformed a method using Kalman filters. However, it was also noted that the method requires

synchronous communication, which is not usually possible in a decentralized navigation scenario.

Another approach to address the overconfidence problem is the Covariance Intersection (CI),

which is a variant of the Kalman filter. CI generates consistent estimates when the correlation

between nodes is unknown [89, 90]. Let a pair of nodes have means and covariance matrices (a1, A1)

and (a2, A2) as their estimates. If their estimates are independent of each other, the Kalman filter

generates a fused estimate (µ,Σ) by the following equation.

Σ =
(
A−1

1 +A−1
2

)−1
(3.1)

µ = Σ
(
a1A

−1
1 + a2A

−1
2

)
(3.2)

If the network contains a cyclic route and the nodes are repeatedly interacting, it entails over-

confidence as their estimates contain correlations. The CI method modifies the aforementioned

equations as follows:

Σ =
(
ωA−1

1 + (1− ω)A−1
2

)−1
(3.3)

µ = Σ
(
ωa1A

−1
1 + (1− ω)a2A

−1
2

)
(3.4)

where 0 ≤ ω ≤ 1. Each node calculates an optimal ω to minimize |Σ|. There exists a closed form

solution to calculate this value [91]. CI was also applied to the SLAM problem where a robot esti-

mates locations of itself and also landmarks in the environment [92]. As a robot navigates through

an environment with multiple landmarks, the robot needs to estimate locations of the landmarks

as well as its own location. The CI algorithm provides consistent estimates when correlations

between landmarks are unknown, whereas a standard Kalman filter would fail in that situation.

Similarly, the CI algorithm was also applied to the cooperative localization performed by multiple

robots [93, 94, 95] where each pair of robots take measurements of relative poses and exchange

data with each other to update their estimates by the CI algorithm. While CI provides consistent

results, the CI approaches assume all robots always hold consistent estimates. This assumption

makes them to be vulnerable to one-point failure. When one of the robots accidentally generates

a wrong estimate with high confidence, this inconsistent information will eliminate consistent yet

less confident estimates.

In summary, a group of robots can cooperatively localize themselves by establishing an ad hoc

network where they conduct measurements of relative positions. By exchanging their estimation

instead of raw sensory data, they can avoid the OOSM problem, but they need to address the
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Figure 3.2: Naive data exchange: robots generate new estimations p′t(x) and q′t(x) based on the
sensory data ps(r) and the other robot’s estimates (process A). Then, they update their estimates
by multiplying the output of process A and normalizing the results (process B).

overconfidence caused by cyclic updates. To deal with overconfidence, it is crucial to maintain

an uncertainty in their estimation. The methods using Kalman filters generally decompose and

distribute the covariance matrix, representing uncertainties, among the robots and maintain the

correlation information when they update their estimation. This means they need an extra memory

space for the correlation information and more computation, which grow in the size of the group

of robots. On the other hand, the methods using Covariance Intersection only hold covariance

matrices for each robot’s location without any matrix about correlations between the robots, and

they update their estimation in a conservative manner so that the system can avoid being too

confident. As both approaches are parametric filtering, they assume the probability distributions

follow a normal distribution.

3.2 Overconfidence Problem in an Ad Hoc Network

For cooperative localization based on a decentralized multi-robot system performing an ad hoc

network, overconfidence is one of the critical problems as the robots would end up with inconsistent

estimation. The problem is typically significant in an enclosed environment, where the robots

reply on their interactions without any external positioning facilities such as GPS. As reviewed

in the related work, the overconfidence takes place when they re-use identical information and

inappropriately reduce an uncertainty in their estimation, leading to overconfident and inconsistent
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Figure 3.3: Loop closure by multiple robots. Arrows represent mutual measurements between
robots. When Robot2 and Robot7 find each other, they can perform loop closure.

estimation. In this section, it is described in detail how the problem appears in an ad hoc network.

To perform cooperative localization, the robots form an ad hoc network, working as network

nodes which transfer their estimation about each individual location. Each robot takes a measure-

ment to the other with which it is communicating to exchange their estimated locations. Based

on the measured distance and the other robot’s location, the robot can update its own estimated

location. Assume that there are two robots estimating their own locations at time t described

as probability distributions, pt(x) and qt(x), respectively. When they communicate, they take a

measurement about the distance between them. The sensor may be modeled as a probability dis-

tribution ps(r) of measurement data r. Figure 3.2 shows a flow of exchanging data and updating

location estimates. Each box represents a process to generate a new distribution based on the given

inputs. In boxes labelled as A, new estimates are generated based on the other robot’s estimate

and the sensory data. This process is implemented by convolution.

p′t(x) =

∫
qt(x

′)ps(f(x− x′))dx′ (3.5)

q′t(x) =

∫
pt(x

′)ps(f(x− x′))dx′ (3.6)

The function f is a transformation from the state space to the sensory data space.

Subsequently, distributions p′t(x) and q′t(x) are used to update each robot’s estimate in boxes
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labelled as B. The updated estimate pt+1(x) is calculated by multiplying the robot’s estimate pt(x)

with p′t(x), and normalizing the result. qt+1(x) is updated in the same way.

pt+1(x) =
pt(x)p′t(x)∫
pt(x′)p′t(x

′)dx′
= ηpt+1pt(x)p′t(x) (3.7)

qt+1(x) =
qt(x)q′t(x)∫
qt(x′)q′t(x

′)dx′
= ηqt+1qt(x)q′t(x) (3.8)

where ηpt+1 and ηqt+1 are normalization factors.

This mutual measurement can lead to loop closure in a meshed ad hoc network. Figure 3.3

shows mutual measurement among eight robots. After Robot2 and Robot7 update their estimated

location, their updated locations affect other’s estimation as they continue the process. Eventually,

their locations are corrected to meet their mutual measurements, leading to loop closure. Thus,

they can close a loop without finding features in the environment.

As reviewed in the related work, this strategy introduces a cyclic update. Once a cyclic route

forms for loop closure, the identical information may pass through the same route multiple times.

In Figure 3.3, the estimated location of Robot2 affects the estimation by Robot3. Robot3 affects

Robot4; Robot4 affects Robot5, and so on. Finally, Robot7 will give to Robot2 the information

affected by Robot2. That is, the robot will update its estimation by its own estimate delivered

in the past. This cyclic update amplifies the error or noises contained in their data, leading to

inconsistent estimation, namely overconfidence.

3.3 Conservative Data Exchange

To address the overconfidence problem, the proposed method does not copy or amplify information

which already exists in the entire system. Instead, when a pair of robots exchange their informa-

tion, it “divides” the confidence in the probability distributions by applying fractional exponents

and passes the reduced information. As a result, each robot generates distributions with lower am-

plitudes and avoids overconfidence. Unlike decomposing Kalman filters, it does not need to track

information about correlation. While it is similar to CI-based methods, it updates the estimation

in a different way. It also does not need to assume the probability distribution to follow a normal

distribution, making a nonparametric filter applicable. This section describes the proposed method

in detail and shows how the robots deal with the problem.

3.3.1 Confidence Reduction

The proposed method addresses the overconfidence problem by reducing confidence in the esti-

mation when the robots exchange their information. In terms of the probability theory and the

information theory, this confidence reduction can be materialized by applying a fractional exponent
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to a probability distribution. For example, when a robot applies square root to the probability dis-

tribution followed by normalization, the resulted distribution looks smoothed, intuitively indicating

reduced confidence. This can be proved by representing the uncertainty as information entropy.

In the information theory, information entropy is used to quantify how much uncertainty a

probability distribution contains [96]. In a continuous space x ∈ R, the entropy of a probability

density function p(x) is calculated by differential entropy.

h(p) = −
∫ ∞
−∞

p(x) log p(x)dx (3.9)

It indicates “how smoothly” the probability is distributed on the support set, which is the coordi-

nates of the environment here. If probability is distributed over a large area, the entropy increases.

If it is in a smaller area, the entropy decreases. Thus, information entropy provides a gauge of

uncertainty the robot holds about its estimation. This mathematical model gives an insight to

quantify how much the confidence changes by a specific operation. Let a new distribution p′(x) be

generated by the power of 1/n of the function where n is an integer greater than 1.

p′(x) =
(p(x))

1
n∫∞

−∞(p(x))
1
ndx

= η(p(x))
1
n (3.10)

where η is a normalization factor. Then, the entropy of this function is

h(p′) = −
∫ ∞
−∞

p′(x) log p′(x)dx (3.11)

If the resulting distribution p′(x) gains more uncertainty, the entropy must grow (h(p′) > h(p)).

To calculate the difference of entropy values, there are two important quantities: cross entropy

and relative entropy. Cross entropy is entropy of a distribution based on another.

h(p′, p) = −
∫ ∞
−∞

p′(x) log p(x)dx (3.12)

Relative entropy, also known as Kullback-Leibler divergence, is expressed as follows.

DKL(p′||p) =

∫ ∞
−∞

p′(x) log
p′(x)

p(x)
dx ≥ 0 (3.13)

with equality if p(x) = p′(x). And, it is known to be non-commutative.

DKL(p′||p) 6= DKL(p||p′) (3.14)
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Also, cross entropy and relative entropy have the following relationship.

h(p′, p) = h(p′) +DKL(p′||p) (3.15)

These expressions give the following equation.

h(p′) = −
∫ ∞
−∞

p′(x) log p′(x)dx

= −
∫ ∞
−∞

p′(x) log η(p(x))
1
ndx

= − log η −
∫ ∞
−∞

p′(x) log(p(x))
1
ndx

= log

(∫ ∞
−∞

(p(x))
1
ndx

)
− 1

n

∫ ∞
−∞

p′(x) log p(x)dx

= log

(∫ ∞
−∞

(p(x))
1
ndx

)
+

1

n
h(p′, p)

= log

(∫ ∞
−∞

(p(x))
1
ndx

)
+

1

n
(h(p′) +DKL(p′||p))

(3.16)

This leads to the following equation.

log

(∫ ∞
−∞

(p(x))
1
ndx

)
=
n− 1

n
h(p′)− 1

n
DKL(p′||p) (3.17)

The left-hand side of Equation (3.17) can also be expressed by DKL(p||p′).

DKL(p||p′) =

∫ ∞
−∞

p(x) log
p(x)

p′(x)
dx

= − log η +
n− 1

n

∫ ∞
−∞

p(x) log p(x)dx

= log

(∫ ∞
−∞

(p(x))
1
ndx

)
− n− 1

n
h(p)

log

(∫ ∞
−∞

(p(x))
1
ndx

)
=
n− 1

n
h(p) +DKL(p||p′)

(3.18)

Since Equations (3.17) and (3.18) hold the same value,

n− 1

n
h(p′)− 1

n
DKL(p′||p) =

n− 1

n
h(p) +DKL(p||p′)

h(p′) = h(p) +
n

n− 1
DKL(p||p′) +

1

n− 1
DKL(p′||p) ≥ h(p)

(3.19)

with equality when p(x) = p′(x). In the case of applying square root, i.e., n = 2, the entropy of the
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Figure 3.4: Conservative data exchange: each robot first applies a fractional exponent ω and
generates a pair of distributions. It keeps one of them and passes the other to the neighboring
robot.

resulting distribution h(p′) is simplified as follows.

h(p′) = h(p) + 2DKL(p||p′) +DKL(p′||p) ≥ h(p) (3.20)

Thus, the entropy of a probability density function which is taking the power of 1/n of the

original function always increases unless it generates an identical distribution.

3.3.2 Exchange Procedure

After reducing the confidence, a pair of robots exchange their data, i.e., their estimation with

reduced confidence. Figure 3.4 shows a workflow of the proposed method. At the beginning, a

fractional exponent ω, where 0 ≤ ω ≤ 1, is applied to the robots’ estimates. Then, the first robot

keeps (pt(x))ω and passes (pt(x))1−ω to the second robot. On the other hand, the second robot

keeps (qt(x))ω and passes (qt(x))1−ω to the first robot. The rest of the process is the same as the

naive method. Thus, the resulting distributions are expressed as follows.

pt+1(x) = ηpt+1 (pt(x))ω p′t(x)

= ηpt+1 (pt(x))ω
∫ (

qt(x
′)
)1−ω

ps(f(x− x′))dx′
(3.21)
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qt+1(x) = ηqt+1 (qt(x))ω q′t(x)

= ηqt+1 (qt(x))ω
∫ (

pt(x
′)
)1−ω

ps(f(x− x′))dx′
(3.22)

where ηpt+1 and ηqt+1 are normalization factors. This process does not amplify the information in

the original estimates.

If the location estimate follows a normal distribution, the process becomes similar to the Kalman

filter and the CI algorithm. To show that, let the distributions of the robots’ estimates and sensory

data be represented as

pt(x) ∼ N (µp,t,Σp,t)

qt(x) ∼ N (µq,t,Σq,t)

ps(r) ∼ N (µr, Q).

(3.23)

Then, the intermediate estimates p′t(x) and q′t(x) are expressed as follows.

p′t(x) ∼ N
(
µq,t −Hr,

1

1− ω
Σq,t +HQHT

)
= N

(
µ̂p,t,

1

1− ω
(
Σq,t +Q′

))
= N

(
µ̂p,t,

1

1− ω
Σ̂p,t

) (3.24)

q′t(x) ∼ N
(
µp,t +Hr,

1

1− ω
Σp,t +HQHT

)
= N

(
µ̂q,t,

1

1− ω
(
Σp,t +Q′

))
= N

(
µ̂q,t,

1

1− ω
Σ̂q,t

) (3.25)

where H is a transformation matrix from the sensory space to the state space, µ̂p,t = µq,t − Hr,
µ̂q,t = µp,t +Hr, and Q′ = (1− ω)HQHT .

The means and covariance matrices are updated as follows.

Σp,t+1 =
(
ωΣ−1

p,t + (1− ω)Σ̂−1
p,t

)−1
(3.26)

µp,t+1 = Σp,t+1

(
ωΣ−1

p,tµp,t + (1− ω)Σ̂−1
p,t µ̂p,t

)
(3.27)

Σq,t+1 =
(
ωΣ−1

q,t + (1− ω)Σ̂−1
q,t

)−1
(3.28)

µq,t+1 = Σq,t+1

(
ωΣ−1

q,tµq,t + (1− ω)Σ̂−1
q,t µ̂q,t

)
(3.29)

This update step calculates an inverse matrix six times. It can be converted into a more efficient
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form, which is used for SLAM problems.

Σp,t+1 =
(
ωΣ−1

p,t + (1− ω)Σ̂−1
p,t

)−1

= Σ̂p,tΣ̂
−1
p,t

(
ωΣ−1

p,t + (1− ω)Σ̂−1
p,t

)−1
Σ−1
p,tΣp,t

= Σ̂p,t

(
Σp,t

(
ωΣ−1

p,t + (1− ω)Σ̂−1
p,t

)
Σ̂p,t

)−1
Σp,t

= Σ̂p,t

(
ωΣ̂p,t + (1− ω)Σp,t

)−1
Σp,t

=
Σ̂p,t

1− ω

(
Σ̂p,t

1− ω
+

Σp,t

ω

)−1
Σp,t

ω

=
Σ̂p,t

1− ω

(
Σp,t

ω
+

Σq,t

1− ω
+HQHT

)−1 Σp,t

ω

(3.30)

Now that the first and last matrices in the right-hand side of Equation (3.30) can be switched as

shown below.

Σp,t+1 = Σp,tΣ
−1
p,t

(
ωΣ−1

p,t + (1− ω)Σ̂−1
p,t

)−1
Σ̂−1
p,t Σ̂p,t

= Σp,t

(
ωΣ̂p,t + (1− ω)Σp,t

)−1
Σ̂p,t

=
Σp,t

ω

(
Σp,t

ω
+

Σq,t

1− ω
+HQHT

)−1 Σ̂p,t

1− ω

(3.31)

The middle part of the last equation can be written as follows.(
Σp,t

ω
+

Σq,t

1− ω
+HQHT

)−1

= H∗T
(
H∗Σp,tH

∗T

ω
+
H∗Σq,tH

∗T

1− ω
+Q

)−1

H∗

= H∗TS−1
p,tH

∗

(3.32)

where H∗ is a pseudo-inverse of H such that H∗ = (HTH)−1HT and Sp,t =
H∗Σp,tH∗T

ω +
H∗Σq,tH∗T

1−ω +

Q.
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Finally, the updated covariance matrix is expressed as a simplified form.

Σp,t+1 =
Σ̂p,t

1− ω
H∗TS−1

p,tH
∗Σp,t

ω

=

(
Σp,t

ω
+

Σ̂p,t

1− ω
− Σp,t

ω

)
H∗TS−1

p,tH
∗Σp,t

ω

=

((
H∗TS−1

p,tH
∗)−1 − Σp,t

ω

)
H∗TS−1

p,tH
∗Σp,t

ω

=

(
I − Σp,t

ω
H∗TS−1

p,tH
∗
)

Σp,t

ω

= (I −Kp,tH
∗)

Σp,t

ω

(3.33)

where Kp,t is a Kalman gain such that Kp,t = 1
ωΣp,tH

∗TS−1
p,t . Based on Equations (3.31), (3.32),

and (3.33), the mean is also updated by the Kalman gain.

µp,t+1 = Σp,t+1

(
ωΣ−1

p,tµp,t + (1− ω)Σ̂−1
p,t µ̂p,t

)
= ωΣp,t+1Σ−1

p,tµp,t + (1− ω)Σp,t+1Σ̂−1
p,t µ̂p,t

= ω (I −Kp,tH
∗)

Σp,t

ω
Σ−1
p,tµp,t + (1− ω)

Σp,t

ω
H∗TS−1

p,tH
∗ Σ̂p,t

1− ω
Σ̂−1
p,t µ̂p,t

= µp,t −Kp,tH
∗µp,t +

Σp,t

ω
H∗TS−1

p,tH
∗µ̂p,t

= µp,t −Kp,tH
∗µp,t +Kp,tH

∗µ̂p,t

= µp,t +Kp,tH
∗ (µ̂p,t − µp,t)

= µp,t +Kp,tH
∗ (µq,t −Hr − µp,t)

= µp,t +Kp,t (−r −H∗ (µp,t − µq,t))

(3.34)

Similarly, the other robot’s estimate is expressed using its Kalman gain Kq,t.

Σq,t+1 = (I −Kq,tH
∗)

Σq,t

ω
(3.35)

µq,t+1 = µq,t +Kq,t (r −H∗ (µq,t − µp,t)) (3.36)

where Sq,t =
H∗Σq,tH∗T

ω +
H∗Σp,tH∗T

1−ω +Q and Kq,t = 1
ωΣq,tH

∗TS−1
q,t .

Thus, the confidence reduction can be performed with matrix operations when the probability

distributions are assumed to follow a normal distribution. Although the proposed method is similar

to the Covariance Intersection as both of them actually apply fractional exponents to the probability

distributions, the use of CI could amplify the original information sources. Figure 3.5 shows a

workflow of the CI-based method. While the proposed method applies a fractional exponent to

“divide” pt and qt, the CI-based method uses fractional exponents to weigh information to generate
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Figure 3.5: CI-based data exchange (for comparison with the proposed method): fractional ex-
ponents ωp and ωq are separately determined to optimize an arbitrary objective function, which
generally represents uncertainty in the resulting distributions pt+1 and qt+1, e.g., determinant of
the covariance matrix.

pt+1 and qt+1. Since ωp and ωq are determined separately (generally to minimize the uncertainty

in pt+1 and qt+1), this process could amplify identical information. For example, if the first robot’s

location is estimated with much higher confidence compared to that of the second robot, ωp will be

close to 1 and ωq will be to 0. Then, both robots will estimate their locations based on the same

information from the first robot.

3.4 Modeling the Overconfidence Problem

The proposed method reduces confidence in the estimation and addresses the overconfidence prob-

lem in cooperative localization, where the robots exchange their estimation in a decentralized

manner. To mathematically model and show how it works, here, the problem is formulated as a

simplified case.

3.4.1 Simplified Problem Model

For simplicity, a pair of robots are considered. Figure 3.6 shows components in this model. They are

estimating a particular state x. Their estimation is described as probability distributions; Robot1’s
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Figure 3.6: A simplified model of two robots exchanging data. Both robots estimate the state x.
Their estimation is described as probability distributions. Robot1’s estimate is p(x) and Robot2’s
is q(x). They do not have direct access to information about the state but they exchange and
update their estimation. The exchanged data may possibly contain noises.

estimation is described as p(x) and Robot2’s is as q(x). Initially, they have prior information: p0(x)

and q0(x). They do not have any direct access to information about x. Instead, they exchange and

update their probability distributions. When a robot passes its distribution to the other robot,

some noise may be added. Finally, they update their estimation based on the distributions passed

from the others with some noise. At time t, their estimation is denoted as pt(x) and qt(x).

This model is a simplified case of mutual localization in one dimensional space. The robots do

not have a volume and they are represented as points in the 1D space. The two robots are actually

located at the same location, but the robots do not know it, and each one updates its estimation

based on mutual localization with the other robot. This model can be easily extended to a more

general case in which they are located at different locations by introducing translation between two

states that the robots are estimated respectively.

3.4.2 Methods to Analyze

Based on the simplified problem model, the proposed method, Conservative Data Exchange, is

analyzed and reviewed while being compared with other methods. Here, two other methods are

analyzed to show how the proposed method outperforms them. The first one is a simple method

which naively fuses probability distributions without considering correlations between the robots,

as shown in Figure 3.2. The other method employs Covariance Intersection (CI), as shown in
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Figure 3.5. Hence, there are three methods being modeled and analyzed.

1. The Naive Method

2. The CI-based Method

3. The Conservative Data Exchange (proposed method)

Each method is analyzed by delivering converging probability distributions, which represent

the robots’ estimation, when infinitely repeating their interactions. By comparing with the naive

method, it is analyzed how the proposed method can avoid the overconfidence. It is also shown

that the proposed method gives a geometric mean of the priors unlike the CI-based method, which

selects a prior with lower entropy as the resulting distribution.

3.5 Noiseless Cases

If the sensor does not have any noise, the robots can send their probability distributions without

any distortion. In this section, the resulting distributions after infinitely exchanging data without

noises are evaluated in the cases of the naive method, the CI-based, and the conservative data

exchange.

3.5.1 Naive Method

Since the sensor is assumed to provide noiseless data, the sensory data about the relative location

is always zero as the robots are located at the same location. Then, the naive method calculates

the current estimates based on the previous estimates as follows.

pt(x) =
pt−1(x)qt−1(x)∫
pt−1(x′)qt−1(x′)dx′

= ηpt−1(x)qt−1(x) (3.37)

qt(x) =
pt−1(x)qt−1(x)∫
pt−1(x′)qt−1(x′)dx′

= ηpt−1(x)qt−1(x) (3.38)

where η is a normalization factor. Since it is just multiplying the probabilities followed by normal-

ization, the uncertainty in their estimation is reduced. If they repeat this process multiple times,

they keep reducing the uncertainty although they do not gain any new information from outside.

Their uncertainty will eventually reach zero while their estimated state is inconsistent, leading to

overconfidence. This phenomenon can be described as follows.

Consider functions ft(x) and gt(x) which are proportional to the robots’ probability distributions

pt(x) and qt(x), satisfying the following relations.

pt(x) =
ft(x)∫
ft(x′)dx′

(3.39)
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qt(x) =
gt(x)∫
gt(x′)dx′

(3.40)

Let’s say these functions ft(x) and gt(x) are exchanged and updated in the same way as pt(x) and

qt(x) are, but without normalization. When this process is infinitely repeated, they will converge

to a specific function form. Since pt(x) and qt(x) can be calculated by normalizing ft(x) and gt(x)

respectively, if there exist ft(x) and gt(x) converging to an impulse function, pt(x) and qt(x) will

also converge to an impulse function, leading to zero uncertainty. To find such ft(x) and gt(x),

f0(x) and g0(x) are defined as follows.

f0(x) =
√
αp0(x) | ∃α, x ∈ R : max (αp0(x)q0(x)) > 1 (3.41)

g0(x) =
√
αq0(x) | ∃α, x ∈ R : max (αp0(x)q0(x)) > 1 (3.42)

Assuming the robots exchange their estimation at each time step, the functions are defined as

multiplication of their previous values, and they can be described as the multiplication of the

priors. At t ≥ 1, ft(x) and gt(x) can be the same form expressed with the priors.

ft(x) = gt(x) = ft−1(x)gt−1(x) = (αp0(x)q0(x))2t−1

= (f0(x)g0(x))2t−1

(3.43)

Let xmax be the value of x maximizing αp0(x)q0(x). Then, lim
t→∞

ft(xmax) diverges to infinity,

implying that lim
t→∞

ft(x) will be an impulse function whose impulse is at xmax. This can be proved

by comparing the values of ft(x) at xmax and x 6= xmax. Let Dt(x) be the difference between

ft(xmax) and ft(x) where x 6= xmax.

Dt(x) = ft(xmax)− ft(x)

= (f0(xmax)g0(xmax))2t−1

− (f0(x)g0(x))2t−1

= (f0(xmax)g0(xmax)− f0(x)g0(x))
2t−1−1∑
i=0

{
(f0(xmax)g0(xmax))2t−1−1−i (f0(x)g0(x))i

}
(3.44)

Since lim
t→∞

∑2t−1−1
i=0

{
(f0(xmax)g0(xmax))2t−1−1−i (f0(x)g0(x))i

}
→∞,

∀x ∈ R, x 6= xmax : lim
t→∞

Dt(x)→∞ (3.45)

Thus, ft(x) will become an impulse function whose peak is at xmax,

lim
t→∞

ft(x)→ δ(x− xmax) (3.46)
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where δ(x) is the delta function holding this property:

∀c ∈ R :

∫
δ(x− c)f(x)dx = f(c) (3.47)

This convergence to an impulse function affects the differential entropy of the probability dis-

tribution, which quantitatively represents the uncertainty in the estimate. The differential entropy

of pt(x) and qt(x) are expressed as follows.

h(pt) = −
∫
pt(x) log(pt(x))dx (3.48)

h(qt) = −
∫
qt(x) log(qt(x))dx (3.49)

Based on Equation (3.39), h(pt) can be expressed using ft(x) as follows.

h(pt) = −
∫
pt(x) log(pt(x))dx

= −
∫
pt(x) log

ft(x)∫
ft(x′)dx′

dx

= −
∫
pt(x) log ft(x)dx−

∫
pt(x) log

1∫
ft(x′)dx′

dx

= − 1∫
ft(x′)dx′

∫
ft(x) log ft(x)dx− log

1∫
ft(x′)dx′

∫
pt(x)dx

= − 1∫
ft(x′)dx′

∫
ft(x) log ft(x)dx− log

1∫
ft(x′)dx′

(3.50)

When ft(x) converges to an impulse function, the entropy is led to negative infinity.

lim
t→∞

h(pt)→ −
1∫

δ(x′ − xmax)dx′

∫
δ(x− xmax) log δ(x− xmax)dx− log

1∫
δ(x′ − xmax)dx′

= −
∫
δ(x− xmax) log δ(x− xmax)dx− log 1

= − log (δ(0)) = − log(∞)

= −∞
(3.51)

Similarly, based on Equation (3.40), h(qt) can be expressed using gt(x) and led to the same result.

lim
t→∞

h(qt)→ −∞ (3.52)

Thus, when the interaction is repeated infinitely, the differential entropy of the probability distri-

bution diverges to negative infinity, resulting in zero of uncertainty in the distribution. This means
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that the naive method causes infinite confidence in the estimation, i.e., overconfidence.

3.5.2 CI-based

The CI-based method applies fractional exponents to the probability distributions before multipli-

cation and normalization.

pt(x) =
p
ωp
t−1(x)q

1−ωp
t−1 (x)∫

p
ωp
t−1(x′)q

1−ωp
t−1 (x′)dx′

= ηptp
ωp
t−1(x)q

1−ωp
t−1 (x) (3.53)

qt(x) =
p

1−ωq
t−1 (x)q

ωq
t−1(x)∫

p
1−ωq
t−1 (x′)q

ωq
t−1(x′)dx′

= ηqtp
1−ωq
t−1 (x)q

ωq
t−1(x) (3.54)

where ηpt and ηqt are normalization factors.

The fractional exponents ωp and ωq are optimized so that the resulting probability distribution

has the smallest uncertainty. Since the entropy of the resulting distribution is minimized as well

when the uncertainty is minimized, ωp and ωq are selected based on the following equations.

ωp = argmin
ω

h (pt) (3.55)

ωq = argmin
ω

h (qt) (3.56)

In the simplified problem, with one-dimensional space, it is simply to choose the distribution

with lower entropy [91]. For example, the fractional exponent is set to 1 if the entropy of the robot’s

own distribution is smaller than that of the other robot’s distribution. Otherwise, it is set to 0.

ωp =

{
1 if h(pt−1) ≤ h(qt−1)

0 otherwise
(3.57)

ωq =

{
1 if h(pt−1) ≥ h(qt−1)

0 otherwise
(3.58)

Therefore, the resulting distributions will be either one of the original distributions.

pt(x) =

{
pt−1(x) if h(pt−1) ≤ h(qt−1)

qt−1(x) otherwise
(3.59)

qt(x) =

{
qt−1(x) if h(pt−1) ≥ h(qt−1)

pt−1(x) otherwise
(3.60)

As the robots repeat the interaction, the resulting distributions are determined based on the initial
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distributions.

pt(x) =

{
p0(x) if h(p0) ≤ h(q0)

q0(x) otherwise
(3.61)

qt(x) =

{
q0(x) if h(p0) ≥ h(q0)

p0(x) otherwise
(3.62)

Thus, the CI-based method can be viewed as selecting a distribution with the lowest uncertainty.

Since the entropy of the resulting distribution never gets less than that of the original distributions,

the estimation will not be overconfident. This method works when all the robots are assumed to

always give consistent estimation. If there is a one-point failure in the system and one of the robots

gives inconsistent estimation with higher confidence, this estimation will be copied to other robots.

3.5.3 Conservative Data Exchange

Like the CI-based method, the conservative data exchange applies a fractional exponent before

exchanging the probability distributions, but the fractional exponent is set to a constant.

pt(x) =
pωt−1(x)q1−ω

t−1 (x)∫
pωt−1(x′)q1−ω

t−1 (x′)dx′
= ηptp

ω
t−1(x)q1−ω

t−1 (x) (3.63)

qt(x) =
p1−ω
t−1 (x)qωt−1(x)∫

p1−ω
t−1 (x′)qωt−1(x′)dx′

= ηqtp
1−ω
t−1 (x)qωt−1(x) (3.64)

where ηpt and ηqt are normalization factors.

As this method is expected to avoid overconfidence, pt(x) and qt(x) will not converge to an

impulse function when repeating the interactions infinitely. To see if the convergence to an impulse

function can be avoided, let’s consider the functions ft(x) and gt(x), defined in Equations (3.39)

and (3.40). Then, let f0(x) and g0(x) be the prior distributions.

f0(x) = p0(x) (3.65)

g0(x) = q0(x) (3.66)

As a constant fractional exponent is applied, they are updated as follows.

ft(x) = fωt−1(x)g1−ω
t−1 (x) (3.67)

gt(x) = f1−ω
t−1 (x)gωt−1(x) (3.68)

Based on these definitions, ft(x) and gt(x) are expected to be expressed by the prior distributions
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p0(x) and q0(x) and some real numbers at and bt.

ft(x) = pat0 (x)qbt0 (x) (3.69)

gt(x) = pbt0 (x)qat0 (x) (3.70)

By Equations (3.65) through (3.68), at and bt can be expressed as recursion.

a0 = 1 (3.71)

b0 = 0 (3.72)

at+1 = ωat + (1− ω)bt (3.73)

bt+1 = (1− ω)at + ωbt (3.74)

The closed form expressions of at and bt are acquired by the following steps. First, the triple-

term recursion is formulated.

at+2 = ωat+1 + (1− ω)bt+1

= ωat+1 + (1− ω) ((1− ω)at + ωbt)

= ωat+1 + (1− ω)2at + ω(1− ω)

(
at+1

1− ω
− ωat

1− ω

)
= 2ωat+1 + (1− 2ω)at

(3.75)

This formula leads to the following characteristic equation and its solutions.

x2 − 2ωx− 1 + 2ω = 0

(x− 1)(x+ 1− 2ω) = 0
(3.76)

By the solutions, Equation (3.75) becomes two geometric recursions.

at+2 + (1− 2ω)at+1 = at+1 + (1− 2ω)at

at+2 − at+1 = (2ω − 1)(at+1 − at)
(3.77)

And the closed forms are expressed as follows.

at+1 + (1− 2ω)at = a1 + (1− 2ω)a0

= 1− ω

at+1 − at = (2ω − 1)t(a1 − a0)

= (2ω − 1)t(ω − 1)

(3.78)
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From the equations above, the closed forms of at and bt can be acquired.

2(1− ω)at = (1 + (2ω − 1)t)(1− ω)

at =
1

2
+

(2ω − 1)t

2

(3.79)

bt =
1

2
− (2ω − 1)t

2
(3.80)

Since 0 < ω < 1, when the robots repeats interactions infinitely, at and bt converge to a constant.

lim
t→∞

at →
1

2

lim
t→∞

bt →
1

2

(3.81)

This concludes that ft converges to multiplication of squared roots of the priors.

lim
t→∞

ft(x) = lim
t→∞

pat0 (x)qbt0 (x)→ p
1
2
0 (x)q

1
2
0 (x) =

√
p0(x)q0(x) (3.82)

Therefore, the entropy of pt will converge to a constant.

lim
t→∞

h(pt) = lim
t→∞

h

(
ft(x)∫
ft(x′)dx′

)
→ h

( √
p0(x)q0(x)∫ √
p0(x′)q0(x′)dx′

)
= C (3.83)

This means that the conservative data exchange can avoid the divergence to the negative infinity

and overconfidence.

What if there are more than two robots? Let’s say there are K robots. Each robot interacts

with others at random. Like Equation (3.39), let’s consider fi,t(x) based on robot i’s probability

distribution pi,t(x).

pi,t(x) =
fi,t(x)∫
fi,t(x′)dx′

(3.84)

And, let robot i hold its prior distribution pi,0(x) and a function fi,0(x), which is defined as follows.

fi,0(x) = pi,0(x) (3.85)

Then, the function fi,t(x) is updated as follows.

fi,t(x) = fωi,t−1(x)f1−ω
j,t−1(x) (3.86)

Note that fj,t−1(x) is the function of the other robot j with which the robot i interacts at time t.

53



As they repeat the interactions, fi,t(x) will be a product of the priors with fractional exponent ak,t.

fi,t(x) = p
a1,t
1,0 (x)p

a2,t
2,0 (x)p

a3,t
3,0 (x) ... p

aK,t
K,0 (x)

=
K∏
k=1

p
ak,t
k,0 (x)

(3.87)

From Equation (3.85), the exponents for the robot i at time t = 0 is defined as follows.

ai,0 = 1

∀j 6= i : aj,0 = 0
(3.88)

As Equation (3.86) shows the exponents are just updated when the robots exchange their data, the

exponent at time t is expressed as recursion.

ai,t = ωai,t−1 + (1− ω)aj,t−1 (3.89)

When the robots infinitely repeat the interactions, the exponents converge to specific values. As

the robots randomly choose one another to interact at each time step, we can consider the expected

values of the exponents. Let’s say the robot i interacts with the other robot j. The expected value

of ai,t can be expressed as follows.

E [ai,t] = ωE [ai,t−1] + (1− ω)E [aj,t−1] (3.90)

Similarly, the robot j interacts with another robot k, and the expected value of aj,t is expressed

below. As the robot k may be the robot i (k = i) or one of the rest of the K−2 robots (k 6= i 6= j),

E [ak,t−1] can be extended to the average value of the exponents of the robot i and the K− 2 other

robots.

E [aj,t] = ωE [aj,t−1] + (1− ω)E [ak,t−1]

= ωE [aj,t−1] + (1− ω)

(
E [ai,t−1] + (K − 2)E [aj,t−1]

K − 1

)
=

1− ω
K − 1

E [ai,t−1] +
K − 2 + ω

K − 1
E [aj,t−1]

(3.91)

For notational simplicity, let us denote them by at and bt.

at = E [ai,t]

bt = E [aj,t]
(3.92)
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Then, from Equation (3.88),

a0 = E [ai,0] = 1

b0 = E [aj,0] = 0
(3.93)

Equations (3.90) and (3.91) can then be expressed by at and bt,

at = ωat−1 + (1− ω)bt−1

bt =
1− ω
K − 1

at−1 +
K − 2 + ω

K − 1
bt−1

(3.94)

In the same as the case of the two robots, the recursive formulas lead to the following triple-term

recursive formula.

at+2 = ωat+1 + (1− ω)bt+1

= ωat+1 + (1− ω)

(
1− ω
K − 1

at +
K − 2 + ω

K − 1
bt

)
=
Kω +K − 2

K − 1
at+1 +

1−Kω
K − 1

at

(3.95)

and the following geometric recursive formulas.

at+2 − at+1 =
Kω − 1

K − 1
(at+1 − at)

at+2 −
Kω − 1

K − 1
at+1 = at+1 −

Kω − 1

K − 1
at

(3.96)

Then,

at+1 − at =

(
Kω − 1

K − 1

)t
(a1 − a0)

=

(
Kω − 1

K − 1

)t
(ω − 1)

at+1 −
Kω − 1

K − 1
at = a1 −

Kω − 1

K − 1
a0

= ω − Kω − 1

K − 1

=
1− ω
K − 1

(3.97)

Finally, the closed form expression of at is acquired.

at =
1

K
+
K − 1

K

(
Kω − 1

K − 1

)t
(3.98)
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Since 0 < ω < 1, when they repeat interactions infinitely, at, i.e., the expected value of ai,t,

converges to a constant based on the number of robots K.

lim
t→∞

at = lim
t→∞

E [ai,t]→
1

K
(3.99)

Then, from Equation (3.87), fi,t also converges to a product of the priors at time t = 0, i.e., pk,0,

to the power of 1/K.

lim
t→∞

fi,t →
K∏
k=1

p
1
K
k,0(x) =

(
K∏
k=1

pk,0(x)

) 1
K

(3.100)

This means that pi,t converges to a function proportional to a K-th root of the product of the K

priors. As this does not lead to an impulse function, the entropy of pi,t converges to a constant.

lim
t→∞

h(pi,t) = lim
t→∞

h

(
fi,t(x)∫
fi,t(x′)dx′

)
→ h

 ∏K
k=1 p

1
K
k,0(x)∫ ∏K

k′=1 p
1
K
k′,0(x′)dx′

 = C (3.101)

Thus, the entropy of the resulting distribution never gets negative infinity, avoiding overconfidence.

Unlike the CI-based method, the proposed method does not prioritise a distribution with small

entropy. This indicates that it may make the multi-robot system stable even if there is a malfunc-

tioning robot in the group that gives erroneous estimation with higher confidence.

3.6 Cases with Sensor Noises

Previously, the cases without noises have been modeled and presented to show that overconfidence

takes place when they exchange their data without confidence reduction. Here, the cases with

considering the sensor noises will be discussed and presented.

Like the previous section, the two robots calculate their individual estimates pt(x) and qt(x)

by exchanging their previous estimates pt−1(x) and qt−1(x) . With noises, on the other hand, the

sensory data contains noises, dt−1. This makes the robot to translate or shift the distribution of

the other robot qt−1(x) by dt−1, leading to qt−1(x− dt−1). Before the multiplication of its previous

estimate and the one from the other robot, the robot needs to take the noises into consideration,

and it needs to convert the distribution qt−1(x−dt−1) based on the sensor model r(x). Let’s call this

converted distribution p′t−1(x), estimation for the robot based on the other robot’s estimation and

the sensory data. Similarly, the other robot converts pt−1(x−dt−1) into q′t−1(x). These distributions

reflecting the noises can be expressed by convolution by the sensor model.
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p′t−1(x) =

∫ ∞
−∞

qt−1(x− dt−1 − x′)r(x′)dx′

=

∫ ∞
−∞

qt−1(x− x′)r(x′ − dt−1)dx′

q′t−1(x) =

∫ ∞
−∞

pt−1(x− dt−1 − x′)r(x′)dx′

=

∫ ∞
−∞

pt−1(x− x′)r(x′ − dt−1)dx′

(3.102)

The sensor model r(x) is usually expressed as a normal distribution.

r(x) =
1√

2πσ2
e−

x2

2σ2 (3.103)

3.6.1 Naive Method

The naive method simply combines the generated distribution with the robot’s own distribution

by multiplication and normalization.

pt(x) =
pt−1(x)p′t−1(x)∫
pt−1(x′)p′t−1(x′)dx′

= ηptpt−1(x)p′t−1(x)

qt(x) =
qt−1(x)q′t−1(x)∫
qt−1(x′)q′t−1(x′)dx′

= ηqtqt−1(x)q′t−1(x)

(3.104)

where ηpt and ηqt are normalization factors.

The robot’s interactions alternately repeat the convolution in Equation (3.102) and the multi-

plication and normalization in Equation (3.104). Based on the equations, pt(x) and qt(x) can be

expressed by using older distributions, pt−1(x), qt−1(x), pt−2(x), qt−2(x), and so on. For example,

pt(x) can be extended into a form composed of pt−2(x) and qt−2(x) as follows.
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pt(x) =ηptpt−1(x)p′t−1(x)

=ηptηpt−1pt−2(x)p′t−2(x)p′t−1(x)

=ηptηpt−1pt−2(x)∫ ∞
−∞

qt−2(x− x′′)r(x′′ − dt−2)dx′′
∫ ∞
−∞

qt−1(x− x′)r(x′ − dt−1)dx′

=ηptηpt−1pt−2(x)∫ ∞
−∞

qt−2(x− x′′)r(x′′ − dt−2)dx′′
∫ ∞
−∞

ηqt−1qt−2(x− x′)q′t−2(x− x′)r(x′ − dt−1)dx′

=ηptηpt−1pt−2(x)∫ ∞
−∞

qt−2(x− x′′)r(x′′ − dt−2)dx′′∫ ∞
−∞

ηqt−1qt−2(x− x′)
∫ ∞
−∞

pt−2(x− x′ − x′′′)r(x′′′ − dt−2)dx′′′r(x′ − dt−1)dx′

(3.105)

This equation can be reformed so that the multiplications of probability distributions can be first

done followed by the convolution with the sensor models.

pt(x) =ηptηpt−1ηqt−1∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

pt−2(x)pt−2(x− x′ − x′′′)qt−2(x− x′)qt−2(x− x′′)

r(x′ − dt−1)r(x′′ − dt−2)r(x′′′ − dt−2)dx′dx′′dx′′′

(3.106)

Likewise, qt(x) can be expressed by a multiplications of qt−2(x) and pt−2(x) followed by the convo-

lution with the sensor models.

qt(x) =ηqtηqt−1ηpt−1∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

qt−2(x)qt−2(x− x′ − x′′′)pt−2(x− x′)pt−2(x− x′′)

r(x′ − dt−1)r(x′′ − dt−2)r(x′′′ − dt−2)dx′dx′′dx′′′

(3.107)

These equations show that the older probability distributions pt−2(x) and qt−2(x) appear as a factor

more than once in the updated probability distributions pt(x) and qt(x). If pt−2(x) and qt−2(x)

are extended as well and the extension is repeated, pt(x) and qt(x) can be eventually expressed by
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using multiple factors of the original distributions at t = 0, i.e., p0(x) and q0(x).

pt(x) =ηptηpt−1ηqt−1 · · ·∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
· · · p0(x)p0(x− x′ − x′′′) · · · q0(x− x′)q0(x− x′′) · · ·

r(x′ − dt−1)r(x′′ − dt−2)r(x′′′ − dt−2) · · · dx′dx′′dx′′′ · · ·

qt(x) =ηqtηqt−1ηpt−1 · · ·∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
· · · q0(x)q0(x− x′ − x′′′) · · · p0(x− x′)p0(x− x′′) · · ·

r(x′ − dt−1)r(x′′ − dt−2)r(x′′′ − dt−2) · · · dx′dx′′dx′′′ · · ·

(3.108)

These multiple factors of the original probability function is similar to the noiseless case, which

has led to an impulse function when t is infinitely large. But here, the convolution part must be

investigated so that the naive method with sensor noises also leads to an impulse function when t

is infinitely large.

Because of the convolution, there are infinitely many combinations each of which is a multi-

plication of functions that are shifted (or translated). But, since a probability function is always

non-negative, the product of the differently shifted functions cannot be greater than that of the

identically shifted functions. To prove that, consider a non-negative function f(x) whose maximum

is at xmax.

f(xmax) > f(x), ∀x 6= xmax (3.109)

Then, consider a multiplication of the functions each of which is shifted by different values, a, b ∈ R,

i.e., f(x− a)f(x− b), whose maximum is at x′max.

f(x′max − a)f(x′max − b) > f(x− a)f(x− b), ∀x 6= x′max (3.110)

When a and b are the same value c ∈ R, its maximum is equivalent to that of f(x)f(x).

max (f(x− c)f(x− c)) = max (f(x− c)) max (f(x− c))

= max (f(x)) max (f(x))

= f(xmax)f(xmax)

(3.111)
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Then,

max (f(x− a)f(x− b)) = f(x′max − a)f(x′max − b)

< f(xmax)f(xmax)

= max (f(x− c)f(x− c))

(3.112)

Thus, the maximum of a multiplication of differently shifted functions f(x − a)f(x − b) is always

less than the maximum of that of identically shifted functions f(x− c)f(x− c).
If it is repeated n times,

max ((f(x− c))n) > max

(
n∏
i=1

f(x− ci)

)
(3.113)

where there exist some ci and cj that are not equal, i.e., ∃i, j ∈ N | 1 ≤ i < j ≤ n, ci 6= cj . This

inequality gets more significant as n increases. Consider the ratio of the left hand side and the

right hand side.

max ((f(x− c))n)

max (
∏n
i=1 f(x− ci))

(3.114)

max ((f(x− c))n)

max (
∏n
i=1 f(x− ci))

=
max ((f(x− c))n)

max
(
f(x− cn)

∏n−1
i f(x− ci)

)
>

max ((f(x− c))n)

max (f(x− cn)) max
(∏n−1

i f(x− ci)
)

=
max (f(x− c))
max (f(x− cn))

max
(

(f(x− c))n−1
)

max
(∏n−1

i f(x− ci)
)

=
max

(
(f(x− c))n−1

)
max

(∏n−1
i f(x− ci)

)

(3.115)

Thus, this ratio holds the recursive inequality and it increases as the multiplication is repeated.

This indicates that the product of identically shifted functions will be more significant than that

of those with smaller maximum values.

Since a probability density function is always non-negative, it holds this characteristic above.

As the robots interact with each other multiple times, the identically shifted functions will become

more significant. Hence, the probability distribution will get close to the multiplication of the

original probability distributions which are identically shifted. Like the noiseless case, infinite
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products of a function with normalization leads to an impulse function at the maximum of the

original function. Let x at the maximum of the function be xmax.

p0(x− a)q0(x− b)p0(x− a)q0(x− b)p0(x− a)q0(x− b) · · · → δ(x− xmax) (3.116)

Then, pt(x) will be expressed as follows.

lim
t→∞

pt(x)→
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
· · · δ(x− xmax)r(x′ − dt−1)r(x′′ − dt−2)r(x′′′ − dt−2) · · · dx′dx′′dx′′′ · · ·

=δ(x− xmax)

∫ ∞
−∞

r(x′ − dt−1)dx′
∫ ∞
−∞

r(x′′ − dt−2)dx′′
∫ ∞
−∞

r(x′′′ − dt−2)dx′′′ · · ·

=δ(x− xmax)

(3.117)

Therefore, pt(x) converges to an impulse function. This leads to the same entropy in the case with-

out the sensory noises, which is negative infinity. Thus, the naive method will cause overconfidence

in the case of including sensory noises.

3.6.2 CI-based

The CI-based method applies fractional exponents to the robot’s own probability distribution and

the convoluted distribution which represents the one from the other.

pt(x) =
p
ωp
t−1p

′1−ωp
t−1 (x)∫

p
ωp
t−1(x′)p

′1−ωp
t−1 (x′)dx′

= ηptp
ωp
t−1(x)p

′1−ωp
t−1 (x)

qt(x) =
q
ωq
t−1(x)q

′1−ωq
t−1 (x)∫

q
ωq
t−1(x′)q

′1−ωq
t−1 (x′)dx′

= ηqtq
ωq
t−1(x)q

′1−ωq
t−1 (x)

(3.118)

where ηpt and ηqt are normalization factors. As defined, the fractional exponents are optimized

so that the resulting distribution will have the smallest entropy. This results in selecting either

the original distribution or the convoluted distribution from the other, depending on their entropy

values. That is, the robot keeps the original distribution if it has a smaller entropy. Otherwise, the

original distribution will be replaced with the one from the other robot.

pt(x) =

{
pt−1(x) if h(pt−1) ≤ h(p′t−1)

p′t−1(x) otherwise
(3.119)

qt(x) =

{
qt−1(x) if h(q′t−1) ≥ h(qt−1)

q′t−1(x) otherwise
(3.120)

Since convolution does not decrease the entropy, the replacement will not take place twice.
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For example, if the entropy of the original distribution p0(x) is small enough to replace the other

robot’s distribution q0(x), the first robot will keep its own p0(x) and the second robot will replace its

distribution q0(x) with the convoluted distribution given from the first q′0(x). After this exchange,

they will no longer replace their distributions with the one from each other. Thus, the resulting

distributions are determined based on the initial distributions.

pt(x) =

{
p0(x) if h(p0) ≤ h(p′0)

p′0(x) otherwise
(3.121)

qt(x) =

{
q0(x) if h(q′0) ≥ h(q0)

q′0(x) otherwise
(3.122)

As the entropy will not diverge to negative infinity, the overconfidence can be avoided, but in a

similar way as the noiseless case, it assumes every robot to always give consistent estimation.

3.6.3 Conservative Data Exchange

Like the CI-based method, the conservative data exchange applies fractional exponents but in a

different way. It applies a constant exponent ω and 1− ω to the probability distributions, and the

robot will have pω(x) and p1−ω(x), and the other robot will have qω(x) and q1−ω(x). To interact

with each other, they keep the first distributions and exchange their second ones; the robot keeps

pω(x) and sends p1−ω(x) to the other robot, and the other robot keeps qω(x) and sends q1−ω.

They generate their updated estimates pt(x) and qt(x) as follows.

pt(x) =
pωt−1(x)p′t−1(x)∫
pωt−1(x′)p′t−1(x′)dx′

= ηptp
ω
t−1(x)p′t−1(x)

qt(x) =
qωt−1(x)q′t−1(x)∫
qωt−1(x′)q′t−1(x′)dx′

= ηqtq
ω
t−1(x)q′t−1(x)

(3.123)

p′t−1(x) and q′t−1(x) are calculated as follows.

p′t−1(x) =

∫ ∞
−∞

q1−ω
t−1 (x− dt−1 − x′)r(x′)dx′

=

∫ ∞
−∞

q1−ω
t−1 (x− x′)r(x′ − dt−1)dx′

q′t−1(x) =

∫ ∞
−∞

p1−ω
t−1 (x− dt−1 − x′)r(x′)dx′

=

∫ ∞
−∞

p1−ω
t−1 (x− x′)r(x′ − dt−1)dx′

(3.124)
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Based on the definitions above, pt(x) is extended as follows.

pt(x) =ηptp
ω
t−1(x)p′t−1(x)

=ηptη
ω
pt−1

pω
2

t−2(x)p′ωt−2(x)p′t−1(x)

=ηptη
ω
pt−1

pω
2

t−2(x)(∫ ∞
−∞

q1−ω
t−2 (x− x′′)r(x′′ − dt−2)dx′′

)ω ∫ ∞
−∞

q1−ω
t−1 (x− x′)r(x′ − dt−1)dx′

=ηptη
ω
pt−1

pω
2

t−2(x)(∫ ∞
−∞

q1−ω
t−2 (x− x′′)r(x′′ − dt−2)dx′′

)ω
∫ ∞
−∞

η1−ω
qt−1

q
ω(1−ω)
t−2 (x− x′)q′1−ωt−2 (x− x′)r(x′ − dt−1)dx′

=ηptη
ω
pt−1

pω
2

t−2(x)(∫ ∞
−∞

q1−ω
t−2 (x− x′′)r(x′′ − dt−2)dx′′

)ω
∫ ∞
−∞

η1−ω
qt−1

q
ω(1−ω)
t−2 (x− x′)

(∫ ∞
−∞

p1−ω
t−2 (x− x′ − x′′′)r(x′′′ − dt−2)dx′′′

)1−ω
r(x′ − dt−1)dx′

=ηptη
ω
pt−1

η1−ω
qt−1∫ ∞

−∞
pω

2

t−2(x)

(∫ ∞
−∞

p1−ω
t−2 (x− x′ − x′′′)r(x′′′ − dt−2)dx′′′

)1−ω

q
ω(1−ω)
t−2 (x− x′)

(∫ ∞
−∞

q1−ω
t−2 (x− x′′)r(x′′ − dt−2)dx′′

)ω
r(x′ − dt−1)dx′

=ηpt−1η
ω
pt−1

η1−ω
qt−1∫ ∞

−∞

(∫ ∞
−∞

(
pω

2

t−2(x)p
(1−ω)2

t−2 (x− x′ − x′′′)
) 1

1−ω
r(x′′′ − dt−2)dx′′′

)1−ω

(∫ ∞
−∞

(
q
ω(1−ω)
t−2 (x− x′)qω(1−ω)

t−2 (x− x′′)
) 1
ω
r(x′′ − dt−2)dx′′

)ω
r(x′ − dt−1)dx′

(3.125)

If overconfidence took place when the robots repeat interactions, the probability distribution would

become an impulse function, whose maximum value is infinity. Consider the maximum of pt(x).

It cannot be greater than the maximum of the case when all sensor noise (e.g., dt) are 0 and the
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sensor model is noiseless, i.e., r(x) = δ(x), where δ(x) is an impulse function.

max (pt(x)) ≤ηptηωpt−1
η1−ω
qt−1

max

(∫ ∞
−∞

(∫ ∞
−∞

(
pω

2

t−2(x)p
(1−ω)2

t−2 (x− x′ − x′′′)
) 1

1−ω
δ(x′′′)dx′′′

)1−ω

(∫ ∞
−∞

(
q
ω(1−ω)
t−2 (x− x′)qω(1−ω)

t−2 (x− x′′)
) 1
ω
δ(x′′)dx′′

)ω
δ(x′)dx′

)
=ηptη

ω
pt−1

η1−ω
qt−1

max

(∫ ∞
−∞

((
pω

2

t−2(x)p
(1−ω)2

t−2 (x− x′)
) 1

1−ω
)1−ω

((
q
ω(1−ω)
t−2 (x− x′)qω(1−ω)

t−2 (x)
) 1
ω

)ω
δ(x′)dx′

)
=ηptη

ω
pt−1

η1−ω
qt−1

max

(∫ ∞
−∞

pω
2

t−2(x)p
(1−ω)2

t−2 (x− x′)qω(1−ω)
t−2 (x− x′)qω(1−ω)

t−2 (x)δ(x′)dx′
)

=ηptη
ω
pt−1

η1−ω
qt−1

max
(
pω

2

t−2(x)p
(1−ω)2

t−2 (x)q
ω(1−ω)
t−2 (x)q

ω(1−ω)
t−2 (x)

)
=ηptη

ω
pt−1

η1−ω
qt−1

max
(
p
ω2+(1−ω)2

t−2 (x)q
2ω(1−ω)
t−2 (x)

)

(3.126)

Likewise,

max (qt(x)) ≤ηqtηωqt−1
η1−ω
pt−1

max
(
q
ω2+(1−ω)2

t−2 (x)p
2ω(1−ω)
t−2 (x)

)
(3.127)

The inner part of max appears in the noiseless case of the conservative data exchange when Equa-

tions (3.63) and (3.64) are extended as follows.

pt(x) = ηptp
ω
t−1(x)q1−ω

t−1 (x)

= ηpt
(
ηpt−1p

ω
t−2(x)q1−ω

t−2 (x)
)ω (

ηqt−1q
ω
t−2(x)p1−ω

t−2 (x)
)1−ω

= ηptη
ω
pt−1

η1−ω
qt−1

p
ω2+(1−ω)2

t−2 (x)q
2ω(1−ω)
t−2 (x)

(3.128)

qt(x) = ηqtp
1−ω
t−1 (x)qωt−1(x)

= ηqt
(
ηpt−1p

ω
t−2(x)q1−ω

t−2 (x)
)1−ω (

ηqt−1q
ω
t−2(x)p1−ω

t−2 (x)
)ω

= ηqtη
1−ω
pt−1

ηωqt−1
q
ω2+(1−ω)2

t−2 (x)p
2ω(1−ω)
t−2 (x)

(3.129)

where ηpt , ηpt−1 , and ηqt−1 are normalization factors. Thus, their upper bounds are the noiseless

case of the conservative data exchange, whose maximum is always finite. Therefore, pt(x) and qt(x)

do not converge to an impulse function and they can avoid overconfidence. In addition, as each

information spreads over the system, the method may be stable even when there is a malfunctioning
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Figure 3.7: Motions of robots to simulate. Each circle represents a robot. As indicated by the
gray circles, the eight robots are initially deployed in a square formation at the beginning, and
moved by forces determined by their positions. For example, the red and blue arrows are forces
being applied to Robot7 (the top-left robot). The red arrows pull the robot toward its neighbors
(attractive forces). The blue arrows pushes it away from the others (repulsive forces). Eventually,
the robots move away from each other while keeping themselves in a circular formation.

robot giving an inconsistent estimation.

3.7 Simulation

The proposed method has been simulated and demonstrated in a two-dimensional space x =

{x1, x2}. The performance was compared with the naive method and the CI-based method, and

the resulting work was presented in Ubiquitous Robots 2020 [97]. The source code is available at

Github [98]. We also included the centralized version of localization in this section, which provides

an upper bound for the accuracy by estimating all the locations of the robots in a centralized

manner.

In this section, the simulation setups are first described, including the details about the cen-

tralized version. Then, the simulation results are presented.
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3.7.1 Simulation Setups

In the simulation, the probability distributions are assumed to follow a normal distribution. Also,

a robot’s state is represented by the two-dimensional location only without orientation. Figure 3.7

shows how robots move in the simulation. The gray circles represent the robots’ initial locations,

and the black circles are those after the simulation starts. They are first deployed in a square

formation. For each robot, forces are calculated based on their relative locations. An attractive

force is applied so the robot is pulled toward its neighboring robot. A repulsive force is also

calculated with respect to all the other robots. By simulating these forces, the robots keep a

circular formation while they move. They keep moving until the balance of the forces reaches an

equilibrium. Noises are also added to the forces so the trajectories acquire some randomness. The

simulation is conducted for 100 seconds and an equilibrium is reached in the first 50 seconds. After

the 50 seconds, the simulation parameters such as the attractive and repulsive forces are changed

so the robots move further away until they reach another equilibrium. That is, they reach an

equilibrium twice during the simulation. If their estimates entail overconfidence, they converge to

inconsistent estimates when they reach the first equilibrium. After that, since they continue to

estimate their locations with significant errors until the second equilibrium, this motions should

make the effects of overconfidence appear more significantly.

For localization, the robots take measurement about distances between them. The ad hoc

network that they establish is assumed to be fully connected, therefore a robot can communicate

with every other robots. Note that this fully connected network contains abundant cyclic routes.

When a pair of robots communicate, they measure the distance between them and exchange their

estimates. In this simulation, the first deployed robot of the group also has access to landmarks

and performs global localization so that it can provide other robots with information regarding the

environment.

The proposed method was compared with three other approaches. The first one is a naive

method which does not apply the fractional exponents; each robot just copies its estimate without

any amplitude reduction. This is equivalent to the extended Kalman filter (EKF) assuming the

estimated locations do not have correlations. The second one is a Covariance Intersection-based

method, in which each robot copies its own estimate and also performs covariance intersection to

update it. For this method, the ω is determined so that the trace of the generated covariance matrix

is minimized, whereas it is selected empirically and set to 0.95 for the proposed method. The last

one is the centralized version. This version performs EKF on a large covariance matrix about the

entire system: each robot’s covariance and also correlations between them. Since it has an access

to the correlation information, the resulting estimation provides an upper-bound of accuracy for

the other methods, which do not have knowledge about the correlations between the robots.
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Figure 3.8: Simulated trajectories of robots and estimations provided by the naive method in the
two-dimensional space x = {x1, x2}. The dashed lines are actual trajectories. The solid lines are
trajectories estimated by the robots. The colors represent simulation time (brown is the oldest and
blue is the latest.)
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Figure 3.9: Simulated trajectories of robots and estimations provided by the CI-based method in
the two-dimensional space x = {x1, x2}. The dashed lines are actual trajectories. The solid lines
are trajectories estimated by the robots. The colors represent simulation time (brown is the oldest
and blue is the latest.) The ellipses represent the covariance of their estimates at the last time step.
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Figure 3.10: Simulated trajectories of robots and estimations provided by the proposed method in
the two-dimensional space x = {x1, x2}. The dashed lines are actual trajectories. The solid lines
are trajectories estimated by the robots. The colors represent simulation time (brown is the oldest
and blue is the latest.) The ellipses represent the covariance of their estimates at the last time step.
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Figure 3.11: Simulated trajectories of robots and estimations provided by the centralized method
in the two-dimensional space x = {x1, x2}. The dashed lines are actual trajectories. The solid lines
are trajectories estimated in a centralized manner. The colors represent simulation time (brown is
the oldest and blue is the latest.)

70



Naive CI-based Proposed Centralized

2.86 0.86 0.52 0.46

Table 3.1: Average errors in the estimation about the robots’ location (x, y). They are calculated
by accumulating errors and dividing them by the total time steps and the number of robots.

3.7.2 Simulation Results

Figures 3.8, 3.9, 3.10, and 3.11 show the simulated trajectories and those estimated provided by each

method for comparison. The dashed lines are actual trajectories, and the solid lines are estimations.

While randomized noises are applied to the robots’ motion so they wriggle while moving, the same

random seed for the noises was used so the robots follow the same routes in all cases. In the results,

the naive method shows significant discrepancies from the true trajectories while estimations by

the CI-based and the proposed methods trace the true trajectories more closely like that of the

centralization case.

As a quantitative measure for comparison, an average error was calculated as follows.

E =
1

TN

T∑
t=0

N∑
k=1

∥∥xk,t − µk,t
∥∥ (3.130)

where xk,t and µk,t are the actual and estimated locations of k-th robot at time t in the two-

dimensional space, respectively. The average error of each method is shown in Table 3.1.

As visually observed in the figures, the naive method produces a significantly larger error than

the other methods. It is also clear that the proposed method performs better than the CI-based

method giving the smallest average error.

Figures 3.12, 3.13, 3.14, and 3.15 show the change of estimation error through the simulation

for each robot. The sudden increases of errors right after 0 and 50 seconds are because the robots

started moving at high velocities to reach an equilibrium. As we see in the figure, the errors of naive

method converge to a specific value, which indicates overconfidence. The CI-based and proposed

methods generates lower errors, which are closer to those by the centralized version. Although the

CI-based methods shows significantly lower errors compared to the naive method, it is outperformed

by the proposed method.

We have also compared the covariances estimated by each method throughout the simulation.

For this comparison, a square root of the determinant of the covariance matrix was calculated.

Figure 3.16 shows how this value is changing through the simulation for the 5th robot. For the

naive method, it is almost always close to zero. Together with the fact that the error of naive

method converges to a specific level, it clearly indicates overconfidence. The centralized version

gives lower values that can be used as lower bounds of uncertainty as it has knowledge of correlations

between robots while others do not. For both CI-based and the proposed methods this value is
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Figure 3.12: Localization errors of the naive method: err1∼8 represent errors of estimated locations
of Robot1∼8, respectively. The horizontal axis is elapsed time and the vertical axis is the error of
the robot’s estimation from the actual location.

Figure 3.13: Localization errors of the CI-based method: err1∼8 represent errors of estimated
locations of Robot1∼8, respectively. The horizontal axis is elapsed time and the vertical axis is the
error of the robot’s estimation from the actual location.
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Figure 3.14: Localization errors of the proposed method: err1∼8 represent errors of estimated
locations of Robot1∼8, respectively. The horizontal axis is elapsed time and the vertical axis is the
error of the robot’s estimation from the actual location.

Figure 3.15: Localization errors of the centralized version: err1∼8 represent errors of estimated
locations of Robot1∼8, respectively. The horizontal axis is elapsed time and the vertical axis is the
error of the robot’s estimation from the actual location.
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Figure 3.16: |Σ|
1
2 of Robot5. The square root of determinant of the covariance matrix (vertical

axis) is displayed during the simulation time from 0 to 100 seconds (horizontal axis) to roughly
show how large the covariance matrix is. The values of the naive method are so small that the
graph is hardly visible, indicating the distribution has a sharp peak. The centralized version gives
a lower bound of uncertainty as it has knowledge about correlations between robots. The CI-based
method generates the middle line and the proposed method generates the larger values.

larger throughout the simulation and sharply increases when the robot starts to move to the next

equilibrium. Then it is gradually reduced to a specific level. This phenomenon appears to be

more significant for the proposed method than the CI-based one, indicating uncertainty is handled

properly.

Thus, the simulation results indicate that the proposed method outperforms the other methods

without knowledge about correlation between robots.
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CHAPTER 4
CONSERVATIVE DATA EXCHANGE BY NON-PARAMETRIC

FILTER

The previous chapter provided the general probabilistic models of exchanging information

among multiple robots. In the simulation, the probability distributions were supposed to fol-

low a normal distribution, with a mean and a covariance matrix. Like this parametric method, a

nonparametric method such as sampling particles based on a given distribution can also be used

for the proposed method. For 3D SLAM with occupancy mapping, the robot needs to estimate

the occupancy parameter for each grid in the map. If the map size is n by n by n grids, the total

number of parameters for the map would be n3. If a parametric method such as Kalman filter was

applied to this situation, it would need a tremendously large matrix which is infeasible to process.

On the other hand, a nonparameteric method just samples possible maps based on the acquired

information, and it does not need to have such a huge matrix. Thus, the nonparametic method is

especially usable due to its complexity of the mapping.

However, it is challenging to perform the conservative data exchange by a particle filter. A

particle filter uses a set of sampled particles to represent a probability distribution, but when a

distribution is modified by a fractional exponent, the particles no longer represent the distribution.

It will need additional information and process so that the particles can represent the modified

distribution. After reviewing the basics of particle filter, this chapter introduces a method to

Figure 4.1: Particle filter expresses a probability distribution by density of particles. A motion
model predicts the next state by moving the current population, leading to a lower density. A
sensor model resamples particles whose states do not contradict with the gained sensory data,
leading to the sharper density (red).
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represent the modified distribution by using the particles with resampling weights. In addition, the

nonparameteric version of the proposed method is demonstrated in a simulation, comparing with

the naive method.

4.1 Review of Particle Filter for Occupancy Map-Based SLAM

A particle filter is a nonparametric Bayes filter, which statistically takes samples from a state

space [64, 9]. Unlike a Kalman filter or any other parametric filters, the probability distribution is

represented by a population of sampled particles each of which represents a specific state.

Figure 4.1 depicts particles representing a probability distribution to estimate. The particles

are processed through the three steps to update the probability distribution: prediction, evaluation,

and resampling.

The prediction step samples a possible state or location by the motion model, which is a

probabilistic model of the robot’s motion based on control inputs u and the previous state x
[i]
t−1.

x̂
[i]
t ∼ p(x|u, x

[i]
t−1) (4.1)

Then, in the evaluation step, the particles are evaluated based on acquired sensory data. If a

particle explains well according to the data, a higher weight is given to the particle. Otherwise, the

particle will get a lower weight. Let’s say f(x) is a target distribution, which the new population

is supposed to represent, and g(x) is a proposal distribution, which is represented by the current

population. A resampling weight w
[i]
t for particle i is calculated as follows.

w
[i]
t =

f(x̂
[i]
t )

g(x̂
[i]
t )

(4.2)

In the resampling step, particles are sampled from the evaluated population so as to form a new

population. A particle is chosen with a probability that is proportional to its weight w
[i]
t . If the

values of the target and proposal distributions are equal at a particle x̂
[i]
t , the weight w

[i]
t will be 1.

If the value of the target distribution is higher than that of the proposal distribution, the weight

will be higher so that the particle would be chosen at a higher chance. Otherwise, the weight will

be lower so that the particle would be less likely to be selected. Therefore, those particles with

higher weights get a higher chance to survive, leading to the resulting population representing the

target distribution.

4.2 Confidence Reduction for Particles

As an additional part of the process of the particle filter, conservative data exchange reduces the

confidence in the estimation by applying additional sampling weights so that the resulting particles

can represent a probability distribution with lower confidence. Let’s say a robot has a set of particles
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X1 representing p(x), and let the other robot’s distribution be q(x) and the particles be X2. Then,

each iteration taken by the first robot is composed of the following steps.

1. Calculate weights W1 and W ′1 to represent pω(x) and p1−ω(x) respectively (confidence reduc-

tion)

2. Data exchange: Send the particles and weights [X1,W
′
1] representing p1−ω(x) to the other

robot & receive the particles and weights [X2,W
′
2] representing q1−ω(x) from the other robot

3. Calculate weights W ′′1 based on [X2,W
′
2] and sensory data on relative pose of a pair of robots

4. Calculate weights W ′′′1 by multiplying W1 and W ′′1

5. Resample the particles X1 based on the combined weights W ′′′1

Step 4 simply multiplies the two types of weights for each particle and step 5 follows the same

process of the conventional particle filter. On the other hand, steps 1 through 3 require special

processes. The rest of this section will mathematically describe the first three steps.

4.2.1 Weights for Confidence Reduction

For the first step: confidence reduction, a weight for each particle is calculated based on the concept

of particle filter. Weights are calculated so that the target distribution appears as ηpω.

w(x) =
target distribution

proposal distribution
=
ηpω(x)

p(x)
= ηpω−1(x) (4.3)

where x is a state the particle represents. Note that the normalization factor η can be omitted for

actual calculation since it does not affect the resampling process.

The weights for ηp1−ω is calculated in the same way.

w′(x) =
ηp1−ω(x)

p(x)
= η

1

pω(x)
(4.4)

Since the distribution is represented by particles, p(x) needs to be estimated by the kernel

density estimation (KDE). By KDE, the value of p at x is calculated as

p(x) = η
∑
i∈N

k(x− xi) = η
∑
i∈N

e−
||x−xi||

2

2σ2 (4.5)

where η is a normalization factor (and this can also be omitted for resampling). The kernel window

size σ affects estimation of the distribution and it is manually set at the moment.
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4.2.2 Data Exchange

At step 2, the particles and the weights are sent as p1−ω to the other robot. This approach can skip

an additional resampling step which generates particles representing p1−ω. Let’s say X1 is samples

representing p about the robot and X2 is samples representing q about the other robot. The first

robot calculates weights W1 and W ′1 so that [X1,W1] represents pω1 and [X1,W
′
1] represents p1−ω.

Similarly, the second robot calculates W2 about qω and W ′2 about q1−ω. Then, the robots exchange

their particles and weights representing p1−ω and q1−ω. Finally, they will have these items:

• The first robot

– [X1,W1] (representing pω)

– [X2,W
′
2] (representing q1−ω)

• The second robot

– [X2,W2] (representing qω)

– [X1,W
′
1] (representing p1−ω)

4.2.3 Weights Based on Sensory Data

Each robot needs to evaluate its own particles based on the other’s particle and the sensory data

of relative pose. For example, the first robot calculates weights W ′′1 for particles in X1 based on

[X2,W
′
2] and sensory data on relative pose so that [X1,W

′′
1 ] can represent the distribution about the

first robot estimated by q1−ω(x) and the sensor model. For each particle x
[i]
1 in X1, a weight w

′′[i]
1

in W ′′1 is calculated as follows. First, a particle x
[j]
2 is randomly selected from X2 at a probability

proportional to W ′2. Then, sensory data is traced with respect to the selected particle, resulting

in a particle x
′[j]
1 about the first robot sampled by the second robot’s information and sensory

data. This particle is compared with each particle x
[i]
1 in X1, and a value is calculated by a normal

distribution representing the sensor model; if x
′[j]
1 and x

[i]
1 are close to each other, a higher value

is given, and the value will be otherwise smaller. This process is repeated for specified times. The

weight w
′′[i]
1 is calculated by summing the values generated for x

[i]
1 in this comparison process.

w
′′[i]
1 =

∑
j

e
−

(
x
[i]
1 −x

′[j]
1

)2

2σ2sensor (4.6)

This process is also applied to the second robot. Finally, this set of weights is used for the rest

of the steps. Step 4 calculates the weight w′′′[i] in W ′′′ for the resampling in step 5 by multiplying

the weights for pω and those calculated on step 3.

w′′′[i] = w[i]w′′[i] (4.7)
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4.3 Sub-Sampling for Lossy Data Compression

Figure 4.2: Evaluation of particle pi in a robot’s estimate based on the other robot’s estimate by
using the true population Q (Top) and the sampled population Q′n (Bottom). A particle in Q has
an importance weight (represented by the size of the symbol). Q′n is a set of n particles sampled
from Q with replacement by weighted sampling.

Cooperative localization requires a pair of robots to exchange their particles with weights rep-

resenting their estimates whose uncertainty is increased by a fractional exponent. Then, the robot

evaluates each particle against those given by the other robot. If the communication bandwidth is

limited, the size of the particles to pass between robots is problematic. Also evaluation of a large

number of particles may be computationally expensive. Here, the possibility to reduce the number

of particles is discussed by approximating the original estimate from the other robot.

When the robots exchange data, each particle has a weight for weighted sampling to represent

the probability distribution with a fractional exponent. Let a particle of the robot for evaluation be

pi and the particles given from the other robot be qj ∈ Q, where Q is the other robot’s population,

as shown in the top image of Figure 4.2. Each particle qj has a weight uj for weighted sampling so

that, when a particle q is randomly selected from Q, the probability for q to be qj is expressed as

follows.

P (q = qj) =
uj∑
k uk

(4.8)

The weight for the particle pi is calculated by the sensor model eval(∗, ∗, ∗) given sensory

measurement r on the relative pose. If all the particles from Q are used instead of weighted

sampling, the value is expressed by the summation of the evaluation weighted by uj .

wi = η
∑
j

ujeval(pi, r, qj) (4.9)
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where η is a normalization factor. As it is based on the sum of the evaluation values, this weight

can be represented by the expected value of eval about Q.

wi = η
∑
j

ujeval(pi, r, qj)

= η

(∑
k

uk

)∑
j

uj∑
k uk

eval(pi, r, qj)

= η

(∑
k

uk

)∑
j

P (q = qj)eval(pi, r, qj)

= η′E[eval(pi, r, q)]

(4.10)

Note the eval function is nonlinear, indicating the following inequality.

E[eval(pi, r, q)] 6= eval(pi, r, E[q]) (4.11)

Hence, particle pi cannot be simply evaluated by the expected state from Q.

Next, consider evaluation of pi against the particles which are randomly sampled from Q. Let q′

be a particle selected from Q by weighted sampling with replacement. The probability for particle

qj to be selected is proportional to its weight uj .

P (q′ = qj) =
uj∑
k uk

(4.12)

Let Q′n be a set of the n particles sampled in such a way so that Q′n approximates Q, as shown in

the bottom image of Figure 4.2. The expected value of eval by the samples of Q′n can be calculated

by the accumulated eval values divided by n

E[eval(pi, r, q
′)] =

∑n
j=1 eval(pi, r, q

′
j)

|Q′n|
=

∑n
j=1 eval(pi, r, q

′
j)

n
(4.13)

where q′j ∈ Q′n. When this value is close enough to the expected value of eval based on Q, the

sampled particles Q′n approximates Q well. Consider the following value to represent the difference

between the expected values.

dn = E
[(
E[eval(pi, r, q

′)]− E[eval(pi, r, q)]
)2]

(4.14)

Q′n generates a close expected value of eval to the expected value of eval on Q when the value dn
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approaches 0. This value dn is extended as follows.

dn =E
[(
E[eval(pi, r, q

′)]− E[eval(pi, r, q)]
)2]

=E
[
E[eval(pi, r, q

′)]2 − 2E[eval(pi, r, q
′)]E[eval(pi, r, q)] + E[eval(pi, r, q)]

2
]

=E

(∑n
j eval(pi, r, q

′
j)

n

)2

− 2

∑n
j eval(pi, r, q

′
j)

n
E[eval(pi, r, q)] + E[eval(pi, r, q)]

2


=E

(∑n
j eval(pi, r, q

′
j)

n

)2
− 2E

[∑n
j eval(pi, r, q

′
j)

n

]
E[eval(pi, r, q)] + E[eval(pi, r, q)]

2

=

∑n
j E

[
eval(pi, r, q

′
j)

2
]

+ 2
∑

k<lE [eval(pi, r, q
′
k)]E [eval(pi, r, q

′
l)]

n2

− 2

∑n
j E

[
eval(pi, r, q

′
j)
]

n
E[eval(pi, r, q)] + E[eval(pi, r, q)]

2

(4.15)

As q′ is selected in the same way as q is from Q, the terms with q′ can be expressed by using q in

Q and n.

dn =
nE
[
eval(pi, r, q)

2
]

+ (n2 − n)E [eval(pi, r, q)]
2

n2

− 2
nE [eval(pi, r, q)]

n
E[eval(pi, r, q)] + E[eval(pi, r, q)]

2

=
E
[
eval(pi, r, q)

2
]

+ (n− 1)E [eval(pi, r, q)]
2

n
− E[eval(pi, r, q)]

2

=
E
[
eval(pi, r, q)

2
]
− E[eval(pi, r, q)]

2

n

(4.16)

The numerator is the variance of eval(pi, r, q), which is independent on the random sampling for

Q′n. This shows that dn continuously decreases as n grows. In other words, dn is reduced every

time a particle is sampled from Q to comprise Q′n. If the random sampling from Q is repeated

infinitely, it eventually converges to 0.

lim
n→∞

dn → 0 (4.17)

n is determined so that dn can be small enough to approximate Q, depending on the application

area. When n is set to a smaller number than |Q|, the random sampling eventually performs lossy

compression on the data of Q because this can reduce the data size to pass to the other robot. To

find the optimal n, the variance of eval(pi, r, q) would need to be calculated. However, this would

also require to pass and use all particles of Q, which contradicts the data compression purpose.

Thus, it is infeasible to optimize n without sending all the particles. Therefore, here, n is empirically
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set to a constant value instead of dynamically choosing the optimal n every time the robot sends

the data.

4.4 Simulation

The two-dimensional simulation of the conservative data exchange was presented in the previous

chapter, by using a parametric filter. All the probability distributions were assumed to follow a

normal distribution and all the methods were performed by using Extended Kalman Filter (EKF).

Here, it is simulated and demonstrated by using a nonparametric filter, i.e., a particle filter.

Additionally, the state of a robot in the simulation is extended from two parameters (x and y) to

three parameters (x, y, and the orientation).

4.4.1 Simulation Setups

Like the simulation in the previous chapter, eight robots are initially deployed in a square near

the origin, and their motions are determined based on their relative locations and they move away

from each other while maintaining the distance to their neighboring robots. Unlike the previous

simulation, each robot has an additional parameter to estimate: orientation. The motion control

is applied to the velocity on the forward direction and rotational rate. Based on these settings, the

robots separately perform localization to estimate their 2D locations and orientations. Each pair of

robots take measurement on their relative poses and update their estimated locations. Additionally,

the first robot can also perform global localization by taking a measurement on its location with

respect to the global reference frame.

In this section, the naive and proposed methods are demonstrated and compared. While the

proposed method applies the confidence reduction to the probability distribution, the naive method

simply skips this step so that overconfidence is reproduced.

The CI-based method and the centralized method are not considered here due to the difficulty of

implementation using a particle filter. The CI-based method basically assumes that the probability

distribution follows a normal distribution, which is not necessarily true when the distribution is

represented by particles. Especially, when one of the parameters to estimate is about the rotation

of the robot and the relative pose measurement is provided in a polar coordinate system, the prob-

ability distribution represented by the particles will no longer follow a normal distribution. Even

if the CI-based method directly processes particles without calculating covariance matrices, there

is a computational issue. With the given sets of particles, it would need to optimize the fractional

exponent to minimize the entropy of the resulting probability distribution. As the probability

distributions are represented by particles, this optimization process would not be able to be done

analytically.

The centralized method has another reason which makes it hard to use a particle filter. Since
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Figure 4.3: Trajectories of the eight robots estimated by the naive method. The dashed lines are
the ground truth trajectories, and the thick lines are their estimation. The colors indicate the
simulation time ranging from 0 second to 100 seconds.
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Figure 4.4: Trajectories of the eight robots estimated by the proposed method. The dashed lines
are the ground truth trajectories, and the thick lines are their estimation. The colors indicate the
simulation time ranging from 0 second to 100 seconds.
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Figure 4.5: Errors in the estimated locations of the eight robots by the naive method.

it considers the correlations between the robots, it samples the state of the entire system. That is,

each particle would have the locations of all the robots. This requires a large number of particles

to represent the distribution in such a high-dimensional space. When each robot holds N particles

for the particle filter individually estimating the robot’s state, the number of particles required for

the centralized version would be N to the power of M where M is the number of the robots in the

system. Obviously, this number would grow exponentially as the number of robots increases.

4.4.2 Simulation Results

Figures 4.3 and 4.4 show the robot’s trajectories based on the naive and proposed methods, re-

spectively. The color of the line indicates the simulation time; the red lines are older than the blue

ones. The thick lines are their estimated trajectories and the dashed lines are the ground truth.

The robots reached the first equilibrium at t = 50, and stayed in a circle with a radius of 10 me-

ters. Then, as the motion setting was updated, they moved further away. While the naive method

generates estimated trajectories far away from the ground truth, the proposed method generates

more accurate trajectories.

The errors in the estimation of 2D location were calculated and compared. Figures 4.5 and 4.6

show Euclidean distances between the ground truth and the estimated locations, i.e., the errors in

the estimation given by the naive and proposed methods, respectively. The naive method generated
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Figure 4.6: Errors in the estimated locations of the eight robots by the proposed method.

Figure 4.7: Errors in the estimated orientations of the eight robots by the naive method.
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Figure 4.8: Errors in the estimated orientations of the eight robots by the proposed method.

Location Error (meters) Orientation Error (deg)
Overall First Second Overall First Second

Naive 3.01 1.64 4.38 10.61 8.13 13.10

Proposed 0.56 0.42 0.70 8.99 5.91 12.07

Table 4.1: Average errors in the estimation about the robots’ location (x, y) and orientation over
the entire time (Overall), the first half (First), and the second half (Second) of the simulation.
They are calculated by accumulating errors caused by the particles and dividing it by the number
of particles, the total time steps, and the number of robots.

larger errors and these errors tended to increase, indicating it is causing overconfidence. The errors

are increased significantly during the second half of the simulation as they moved at a higher speed.

On the other hand, the proposed method generated smaller errors. The errors increased when they

started at the beginning and decreased until the simulation time reached 50 seconds. During the

second half of the simulation, the errors did not drastically increase like the naive method.

Additionally, the errors in the orientation estimation were also compared. Figures 4.7 and 4.8

show the errors in their estimation for orientation in degrees. The naive method generated signif-

icant amounts of errors in the earlier time and these errors stay large throughout the simulation.

The proposed method gave slightly better results. They were kept relatively low in the first 50 sec-

onds while they drastically increased during the second half of the simulation. As the motion noise
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Figure 4.9: Error and uncertainty of the estimation by particles. The error is represented by
the difference between the ground truth location and the average of the particle locations. The
uncertainty is represented by the length of the line that starts from the average location, passes the
ground truth, and ends at the edge of the ellipse representing the 95% confidence of the covariance.

to be added in the orientation is set to be proportional to the robot’s velocity in the simulation, the

increase of the errors in the second half indicates that particle depletion might have happened and

there may be room for adjustment of parameters to improve the performance such as the number

of particles, the highest speed the robots can take, and so on.

Table 4.1 shows average errors in the estimated locations and orientations over the entire sim-

ulation time, the first half and the second half of the simulation. The average error caused by the

proposed method is significantly smaller compared to the naive method.

The uncertainty of the location estimation was also evaluated. First, the covariance of the

particle locations is calculated. Figure 4.9 depicts the ellipse that represents the 95% confidence of

the covariance, in addition to the average of the particle locations and the ground truth location.

From the average location to the edge of the ellipse, there is a line passing through the ground

truth location. The length of this line is calculated and used as a metric of the uncertainty. When

the uncertainty is larger than the error, the ground truth falls inside the ellipse, indicating that the

estimation is plausible. Otherwise, the ground truth will fall outside of the ellipse, which indicates

that the estimation is not plausible. Figures 4.10 and 4.11 show the results for each robot. The

naive method generated smaller uncertainty than the proposed method did while the errors were

actually growing, indicating its estimation is inconsistent. On the other hand, the proposed method

gave significantly better results. At the end of the first half of simulation, the ground truth locations

fell within their covariance ellipses with 95 % confidence. After that, the robots increased their
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speeds and the errors sometimes exceeded the ellipses possibly because their higher motion speeds

affected the estimation quality.
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Robot1 Robot2

Robot3 Robot4

Robot5 Robot6

Robot7 Robot8

Figure 4.10: Error and uncertainty in the estimated locations by the naive method. The vertical
axis is the error and uncertainty in meters. The horizontal axis is the elapsed time in seconds.
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Robot1 Robot2

Robot3 Robot4

Robot5 Robot6

Robot7 Robot8

Figure 4.11: Error and uncertainty in the estimated locations by the proposed method. The vertical
axis is the error and uncertainty in meters. The horizontal axis is the elapsed time in seconds.
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CHAPTER 5
DISTRIBUTED SUBMAP BUILDING

The mapping task is decomposed into submap building tasks that are distributed among the

robots. Each robot performs SLAM in the local area where it is situated. This task can be executed

locally and done by conventional approaches.

In a multi-robot system, the robots can transfer their submaps to their neighbors who are

entering the corresponding areas. If the neighboring robot uses the received submap, it will not

need to build a submap of the corresponding area from scratch and the whole system can efficiently

build the map of the environment. In addition, as the robots can hold fewer submaps, they can

save the memory space for the mapping tasks.

After reviewing the related work, this chapter will describe the mapping process performed

by each robot and will discuss the submap transfer between robots. The presented techniques

and methods set the stage for implementation in the robotic systems and simulations in the next

chapter.

5.1 Related Work

The mapping task is to express the environment based on the measurements acquired from the

robot’s sensors, generally using either feature-based or location-based mapping formats [64]. The

feature-based map is a list of estimated locations of objects or landmarks which the robot detects

and identifies in the environment. As this mapping format assumes that the robot can easily find

features in the structured environment like indoor rooms, it is hardly applicable to an unstructured

environment such as a natural cave where adequate features are not necessarily found. On the

other hand, the location-based map is a list of estimated states of specific spaces. The occupancy

grid-based map is a typical example. The map represents grid-partitioned spaces and estimates

the occupancy in each space. Since it does not rely on the existence of identifiable features in the

environment, the occupancy grid-based map is appropriate for the unstructured environments.

To express the unstructured environment where the floor, walls, and ceiling are uneven, the

map needs to be three-dimensional. The three-dimensional occupancy grid-based map is composed

of voxels or cubic cells each of which holds a probability of the corresponding space to be occupied

by obstacles. However, due to the curse of dimensionality, the 3D map representation tends to

take up significantly large memory spaces, leading to necessity of compression techniques. Octree

is one of the compression techniques for 3D occupancy grid-based maps [99]. The map is formatted

in a data structure called “octree,” a tree where each node can hold eight child nodes. The root

node represents a voxel covering the entire space. The node can be expanded and hold eight child

nodes which represent eight equally divided voxels. This expansion repeats until enough resolution

is gained. Then, each leaf node holds a state indicating the voxel is either occupied, empty, or
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unknown. If all the eight leaf nodes hold the same state, they are merged and their parent node

becomes a leaf node. This operation reduces the number of leaf nodes, compressing the data.

These techniques of the 3D mapping allows a robot to perform SLAM in the unstructured

environment. Fairfield introduced underwater SLAM techniques using the 3D occupancy grid-

based mapping as a part of the Rao-Blackwellized Particle Filter (RBPF) [8]. The RBPF is a

particle filter that estimates the robot’s location and the map by sampling particles. Each particle

represents a specific location of the robot and a map built based on the location. By updating the

particles and resampling them based on the sensory data, the RBPF provides an estimation of the

robot’s location and the map.

Fairfield et al. also addressed the SLAM problem in a large environment by introducing the

segSLAM technique [72]. Because of the uncertainty caused by sensory noises and the motion

model, the localization inherently contains uncertainty or errors. As the robot navigates for a long

period of time, it suffers from the accumulated errors due to the locality of sensory data, which

means the sensors only provides information about a local area. Since the map is built based on the

estimated location, this accumulated errors negatively affect the mapping process. The segSLAM

tackles the problem by segmenting the SLAM process. Instead of building a single map, it builds

a series of submaps. The segSLAM maintains database of segmented submaps of the environment

aside from the population of particles each of which represents a robot’s pose and the map that is

currently being built. At a specific timing, the robot saves the current submap to the database and

starts to build a new submap. As repeating this process, the robot generates a series of submaps.

The segSLAM performs loop-closure on the submaps. When the robot detects that it is entering an

area which has previously been mapped, it retrieves the corresponding submap from the database.

As each submap is associated with their previous and next submaps based on their relative poses,

the robot can close a “loop” of submaps by re-aligning the submaps. For example, the incremented

Smoothing and Mapping (iSAM) expresses the relations between the submaps as metric constraints

and adjusts alignments of submaps based on the constraints so the chain of the submaps can be

smoothed to form a loop [100, 101]. Since the submaps are relocated at more accurate positions,

the loop-closure of submaps corrects the accumulated errors in the SLAM process.

In the loop-closure process, there is a problem about timing to segment the SLAM process.

The timing of segmentation affects the submap size and consequently the SLAM quality due to the

loop closure of the submaps. If the segmentation is less frequent, the submaps tend to be large.

As the submap gets larger, it will contain more accumulated errors in the mapping results, causing

distortion of the submap. The contained errors make the loop-closure ineffective as they cannot be

corrected by re-aligning the submaps. On the other hand, if the segmentation is rather frequent,

the submaps tend to be small. As the robot builds more submaps for the same space, it needs to

process more submaps for loop closure, requiring more computational power. Moreover, it would

not be able to localize itself based on such a small submap. Thus, the robot needs to find an
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optimal timing to start to build a new submap so as to perform the loop-closure effectively. As a

part of the work for the segSLAM, Fairfield proposed two methods: motion error segmentation and

predictive score segmentation [8]. The first method decides to segment the SLAM process when the

uncertainty in the robot’s estimation exceeds a specific threshold. The second method calculates

a score of the current submap’s ability to predict future sensory data. When the score drops,

it decides to start building a new submap. While the second method outperforms the first in a

structured environment, they mentioned that there was not significant difference in an unstructured

space.

Hence, their SLAM techniques allow the robot to perform localization and mapping without

relying on any external supports or resources. However, their techniques and methods are designed

for the underwater and ground-based robot navigation. When the robot starts over mapping for the

segmentation, it is supposed to stay on a specific location so that it can initially build a part of the

map. This assumption may not be applicable to other types of robots such as an aerial vehicle. In

addition, the robot needs to visit some locations more than once. For example, the loop-closure of

submaps requires the robot to visit the location where the robot has already visited. To deliver the

mapping results, the robot also needs to come back to the location where it was initially deployed

because the ideal network or communication is not available in the environment.

Deployment of multiple robots are beneficial to address the issues raised by the single-robot

SLAM. If they cooperatively localize themselves, they can improve the mapping accuracy without

using the loop-closure of submaps since the submaps can be built based on more accurate estimated

locations. They can also transfer the submaps by establishing an ad hoc network. In addition,

the robots can also coordinate to determine their paths so that their mapping covers the whole

environment. Thus, each single robot does not need to go to the locations where it has already

visited, and the mapping operation can be done in a shorter time compared to the single-robot

mapping. In this area, a variety of approaches have been proposed during the last few decades.

Singh and Fujimura introduced cooperative mapping by heterogeneous mobile robots which are

different in size [102]. Once a member finds an unexplored space which it cannot access due to its

size, it calls other members for help by broadcasting. Zlot applied a market control architecture to

asynchronous multi-robot collaboration [103]. They perform auction for mapping task assignments

and pass local maps without synchronization. Howard et al. introduced an incremental deployment

of multiple robots to deploy the robots all over the environment [104]. To maximize their coverage

area of mapping, the robots scatter in the environment by interacting each other. If a robot

finds another robot blocking its path, it changes its destination to the location of the blocking

robot, which takes over the original destination. As a result, it “pushes” another robot toward

its destination. In these approaches, although the robots cooperatively build maps about the

environment, they are assumed to know their correct locations and have an access to the ideal

network so that they can communicate with any other robots.
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Williams et al. presented a mapping method in SLAM for multiple mobile robots [105]. Each

robot generates a feature-based map in its local reference frame. At a specific interval of time,

local maps are integrated into a global map by data association. Likewise, Rodriguez-Losada et

al. presented a local map fusion method which updates a global feature map with a local map

generated by an individual robot [106]. A local map is a list of estimated locations of individual

segments representing a wall or an obstacle’s surface. Each robot has its own local map and it

updates the global map by transforming the reference frame of the local map. However, as they

use feature-based maps, their methods are supposed to work in structured environments to detect

sufficient features or landmarks.

Instead of the feature-based mapping, Thrun presented a mapping method by using a metric

map as a part of the SLAM problem, and extended the probabilistic SLAM to the multi-robot

scenario [107]. To perform multi-robot mapping as a probability theoretic method, each robot

performed a particle filter to estimate its own location and a 2D occupancy grid-based map about

its local area. For cooperation, they matched the locally built maps to generate a global map. In

addition to the 2D map, 3D occupancy grid-based maps can also be efficiently merged. Jessup et

al. introduced an efficient merge algorithm for 3D occupancy grid-based maps [108, 109]. The 3D

map is formatted in the octree data structure to efficiently access and update the map data. Then,

the maps are transformed to the same reference frame, and finally merged into the global map.

However, the merging process is supposed to be performed off-line in a centralized manner. This

prohibits the robots from cooperating with each other in the middle of the operation.

Contreras et al. introduced a method of decentralized 3D mapping based on octree-based

point clouds [110]. Each of the vehicles individually builds its local point cloud map from lidar

data. Once a pair of robots find that their local maps share a common space, they exchange their

map data and merge the local maps by re-registering point-clouds into another octree data frame.

However, because their system is intended to be implemented to automobiles, their localization

purely depends on GPS.

Unlike merging the metric maps, a topological map loosely connects the maps and allows the

robots to update the mapping data even after combining the local maps. Howard introduced a

manifold map of metric maps [111]. The graph-based map is allowed to overlap with another map.

Once a pair of robots find each other, they take mutual observation to resolve the overlapping parts

of their map, leading to a merged map. This approach of using a topological map also appears in

other work. Pfingsthorn et al. introduced a hybrid map integrating graph-based and occupancy

grid-based mapping [112]. In the same concept, Chang et al. designed a Multi-Robot SLAM (MR-

SLAM) algorithm for two-dimensional navigation [113]. Similarly, Dube et al. presented a mapping

method using a combination of a pose graph and sets of point clouds each of which is associated

with the corresponding node in the pose graph [114]. Generally, in their work, the topological

information of the graph-based map allows the robots to perform loop-closure and merge local
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Figure 5.1: Cooperative localization: Multiple robots taking measurements on their relative poses
with respect to their neighbors, forming loops of interactions.

maps to improve their occupancy grid-based maps. However, these methods are assumed to use

the ideal network to share the data or perform the loop-closure task off-line.

Throughout the existing work reviewed above, the SLAM problem in an enclosed environment

was addressed by both the single-robot and the multi-robot approaches, but with some restrictions,

leaving room for improvement. The single-robot methods perform the loop-closure of submaps to

improve their mapping performance, yet requiring the robot to re-visit the same location for the

process. Multi-robot SLAM techniques address the mapping task as multiple tasks which each

of the robots individually handle. Some of the approaches perform a similar process of the loop-

closure of submaps by using a topological map. However, since the topological map needs to be

processed in a centralized way, the loop-closure of submaps by multiple robots is performed off-line

or with the ideal network. The other approaches also assume that the robots can access the ideal

network or centralized resources. This assumption prohibits the robots from performing SLAM in

a decentralized way.

5.2 Approach: Mapping Based on Cooperative Localization

In this study, we present the distributed submap building. The proposed mapping process is

performed along with the decentralized cooperative localization, which was presented in the previous

chapters. Mapping based on the cooperative localization corrects the errors in a different way from

the loop-closure of submaps. Figure 5.1 shows an abstract view of cooperative localization, in

which multiple robots take measurements on their relative pose with respect to each other. They
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Figure 5.2: Each robot builds a sequence of submaps (depicted as squares in the corresponding
color) based on the estimated locations given by the cooperative localization.

can form a “loop” of interactions. If they pass their own estimated locations, they may perform

a similar process of the loop-closure without finding a landmark in the environment or closing a

loop of submaps. Thus, based on the cooperative localization, the robots can build more accurate

maps.

As the robots establish an ad hoc network for the cooperative localization, they also use the

network to transfer their mapping data between the robots. Each robot builds submaps of regions

where it has visited. It locally builds a submap and localizes itself by its SLAM process. Figure 5.2

depicts segmented SLAM performed by multiple robots. While a single robot can process one

submap at once, multiple robots can take care of multiple submaps concurrently in the way that

each robot processes the area where it is located. When a neighboring robot is entering the area

where the corresponding submap is available, the submap is transferred to the entering neighbor

from the robot which originally built it. Then, the neighboring robot starts using the transferred

submap for its SLAM process.

The proposed method provides advantages for multi-robot mapping. For example, the method

can be performed in a decentralized manner. The existing methods of multi-robot SLAM needed

to perform the loop-closure of submaps in a centralized manner since the computation needs all

the mapping data to close a loop of relations of the submaps. On the other hand, the proposed

approach performs the loop-closure on the robots’ locations instead of those of submaps, and it can
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be performed without using any centralized resources. Also, because the segmentation of SLAM

generates submaps rather than a single global map, this allows a robot to pass some submaps to

the other robot. As each robot holds partial maps, this improves the memory efficiency as they

can reduce the memory space to store the mapping data. In addition, the robots can cooperatively

perform mapping with their neighbors; newly deployed robots receive already built submaps from

the others. Finally, as the ad hoc network can deliver the submaps from the robots to the base

station, the robots do not need to go back to the initial location. Hence, the robots can explore

into deep areas of the environment without considering the return trips.

In the rest of this chapter, the details of the proposed approach are provided. First, the

mapping process which each individual robot performs is described. Then, the map segmentation

and the submap transfer are presented by addressing challenging problems in the multi-robot system

without an ideal network.

5.3 Individual SLAM Process

While performing the cooperative localization, each individual robot also performs its SLAM pro-

cess, and the submap is updated in this procedure. This local process is based on the existing

SLAM methods with different types of sensors. Equation (2.6) shows the mathematical model of

the Bayes filter for SLAM problem. This model is implemented in a variety of filtering methods.

When a map is occupancy grid-based, a nonparametric filter such as Rao-Blackwellized Particle

Filter (RBPF) is generally used [64].

RBPF is a nonparametric filter that estimates the robot’s location and builds a map by rep-

resenting and updating a probability distribution with particles. Like the original particle filter

shown in Figure 4.1, the probability distribution is expressed by a population of particles which are

sampled based on the motion and sensor models. An area with dense particles indicates a higher

likelihood.

In RBPF, each particle holds a specific sampled state: a robot’s pose x and a map m that is

based on a specific trajectory. Let’s say there are n particles at time t. Then, the population of

particles will be n pairs of a pose and a map.{
{x[1]

t ,m
[1]
t }, {x

[2]
t ,m

[2]
t }, ..., {x

[n]
t ,m

[n]
t }
}

(5.1)

As described in Section 4.1, the particles are processed in the following steps: prediction,

evaluation, and resampling. RBPF also adds another step: map update. In the rest of this section,

each step is described in details.
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5.3.1 Prediction

Based on Equation (4.1), the prediction step changes the pose x of each particle based on the motion

model and control inputs u. The control inputs are given by odometry or estimated distance the

robot has moved since the last iteration. The particles are moved by this estimated distance with

some additional noise given by the motion model.

Odometry data is given by a variety of sensors. Generally, an IMU is used for any kind of

robots. In addition to an IMU, other types of sensors can be used for its hardware characteristics.

For example, encoders attached at the wheels are generally used for ground-based robots, telling

how many times the wheels have rotated. Doppler Velocity Log (DVL) is used for underwater

robots, providing approximation about the robot’s velocity [8]. The aerial navigation, however, is

not able to use these types of sensors. Obviously, encoders on the wheels cannot be used. DVL

is also not applicable as it depends on dense medium such as water; air or gaseous medium may

not allow it to provide accurate velocity data. Let alone, the thin Martian atmosphere. Instead

of these sensors, visual odometry is generally used for aerial robots; velocities are estimated by

tracking the view of the terrain texture [115, 116, 117]. As a camera generates infrared images, it is

also applicable to a dark space. Lidar odometry is also a possible approach: motion estimation by

comparing lidar scans at different time points [118, 119, 120]. While some of them detect features

in the lidar scans and perform a similar process like visual odometry [120], the others use lidar

scans directly by comparing them as point clouds by Incremental Closest Point (ICP) [118, 119].

As an infrared depth camera can generate both image data and point clouds, both visual and

lidar odometry methods are applicable to an aerial robot equipped with an infrared depth camera.

Thus, in this work, the robots are assumed to use an IMU and an infrared depth camera to generate

odometry data.

Finally, the population gains the changed pose x in each particle.{
{x̂[1]

t+1,m
[1]
t }, {x̂

[2]
t+1,m

[2]
t }, ..., {x̂

[n]
t+1,m

[n]
t }
}

(5.2)

Due to the noises in the odometry data, the resulting population of particles tend to scatter over

a larger area, indicating larger uncertainty. This error is corrected in the next steps.

5.3.2 Evaluation

This step evaluates each particle with the gained sensory data. If the sensory data matches with

the map well, the corresponding particle gains a higher weight value for resampling.

As an infrared depth camera is assumed to be used in this work, the sensory data is given as

point cloud: a list of coordinates of detected points of obstacles with respect to the camera. The

scan matching technique is used for matching point clouds with an occupancy grid-based map [11],

but it is only applicable to a 2D map. Another approach is to trace the point cloud data in a
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Figure 5.3: Weighing particles. Each particle holds a specific state of the robot’s location and
the map. Given sensory data, a set of rays are traced in the state of each particle. The particles
shown in the left and right figures cause contradiction with the sensory data and get lower weights;
the data lands on free space in the particle’s map (left) and it runs through the obstacles in the
particle’s map (right). The particle shown in the middle figure, on the other hand, allows the
sensory data to land on more occupied cells, leading to a higher weight.

Figure 5.4: Two cases of ray tracing. Point cloud data is placed in the map with two different posi-
tions. The occupied, empty, and unknown areas are colored in black, white, and gray, respectively.
In the left case, two points hit the occupied areas while the other one falls in the unknown area.
In the right case, all the three points fall in the occupied areas.

map. Figure 5.3 shows how the point cloud data is traced in an occupancy grid-based map in each

particle. The points in the data are placed in the map of the particle, and the particle is evaluated

based on how the data matches with the map.

An intuitive way to evaluate a particle may be just to count the numbers of the points landing

on the occupied areas and those landing on wrong areas. If a particle gets more points falling in

the occupied area, it will get a higher weight value. However, this intuitive way can cause an issue

when the map contains unknown areas. Figure 5.4 shows matching of point cloud data with two
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Figure 5.5: Ray tracing of point cloud data in an occupancy grid-based map. The rectangle at the
bottom represents the sensor giving the point cloud data. Among the four points, only point “b”
falls in the occupied area. Point “a” goes beyond the occupied area, point “c” falls in the empty
area, and point “d” falls in the unknown area. The red points are the actual point cloud data. The
orange points are simulated points traced in the map based on the sensor’s pose. The lengths of
the orange line segments are the distances between the actual data points (red) and the simulated
points (orange).

particles. The right case has more points falling in the occupied areas so it would gain a higher

weight value if the particles were evaluated based on counting the number of points on occupied

areas. But, since the robot is building the map concurrently and the map contains unknown areas,

some detected points may fall in such an unknown area, and the left case could be also reasonable.

Hence, it is desirable to evaluate both cases with similar weights.

In this work, the point cloud data is ray-traced in the map. The ray-tracing process simulates

sensor rays based on the sensor’s pose and the map, and each point from the actual sensory data

is checked to see how close it is to the simulated point. For example, in Figure 5.5, four points in

the point cloud data are placed in the map. The ray-tracing process draws lines from the sensor’s

location toward the points to simulate the rays of the sensor. When it hits the occupied area, it

drops the simulated point at the center of the occupied area hit by the ray (orange points in the

figure). Point “d” is discarded in this process as it is in the unknown area and a simulated point

cannot be generated.

Then, the sensor model of each point is defined based on the distance between the actual and
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simulated points. Let z be a point in the data which gained a simulated point ẑ by the ray-tracing.

p(z|x,m) =
1√

2πσ2
e−

1
2σ2
|z−ẑ|2 (5.3)

where σ is the standard deviation determined based on the characteristics of the sensor beam.

Finally, the weight value w
[i]
t+1 is calculated based on the average probability of the sensor model.

To get the average of a set of probabilities, the geometric mean is calculated [121].

w
[i]
t+1 = η

∏
z∈Z

(
p(z|x̂[i]

t+1,m
[i]
t )
) 1
|Z|

(5.4)

where η is a normalization factor and Z is a set of points which have the corresponding simulated

points. With this calculation, the weight value is reduced only by erroneous points such as points

“a” and “c” in Figure 5.5, but not by a point falling in the unknown areas such as point “d”.

5.3.3 Resampling

After calculating the weight values, the particles are resampled based on their weights. It randomly

chooses a particle in the population at a probability which is proportional to the weight. If a particle

was evaluated with a higher weight, it will be resampled at a higher chance.

{x[i]
t+1,m

[i]
t } = {x̂[j]

t+1,m
[j]
t } ∼

w
[j]
t+1∑n

k=1w
[k]
t+1

(5.5)

Then, the new population will have the resampled particles.

{
{x[1]

t+1,m
[1]
t }, {x

[2]
t+1,m

[2]
t }, ..., {x

[n]
t+1,m

[n]
t }
}

(5.6)

5.3.4 Map Update

The map is updated by applying the point cloud data. Generally, the ray-casting is used to

integrate point cloud data into an occupancy grid-based map [99]. In this study, we follow the

generic approach for this part. As shown in Figure 5.6, points from the point cloud data are

placed in the map based on the pose. The areas where the points fall get higher probabilities of

occupancy. If the areas are between the points and the sensor, they will gain lower probabilities.

These generated probabilities are integrated to the existing probabilities of the corresponding areas

in the map.

Finally, the map of each particle is updated and the population looks as follows.

{
{x[1]

t+1,m
[1]
t+1}, {x

[2]
t+1,m

[2]
t+1}, ..., {x

[n]
t+1,m

[n]
t+1}

}
(5.7)
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Figure 5.6: Map update by point cloud data (red dots). Each point draws a line. The grids on the
line gets lower probabilities (white cells) while those containing the detected points get high values
(black cells). Other grids (gray cells) remain unchanged.

Through these steps, particles with states agreeing with the acquired sensory data can survive

highly likely, providing reasonable estimates on the robot’s pose and maps.

5.4 Map Segmentation

Segmentation of SLAM is a technique to divide the SLAM process into smaller tasks. In the

case of single-robot navigation, the robot divides the entire process into multiple SLAM processes

each of which builds a submap in the corresponding local area. Multi-robot navigation can apply

a similar approach in which each robot builds a series of submaps by segmenting the individual

SLAM process, and it also takes advantage of cooperation of the robots. In this section, the issue

of segmentation for multi-robot SLAM is discussed, followed by the discussion of the timing of

segmentation. Then, the details of the segmentation process are presented.

5.4.1 Timing of Segmentation

The timing of segmentation is crucial as it determines the size of each submap. If the robot

frequently segments its SLAM process, it would generate many smaller submaps. Otherwise, it

would generate fewer and larger submaps.

As our approach closes a loop of interactions of the robots by the cooperative localization,

the optimization techniques used for the loop-closure of submaps are not necessary. However, the

proposed approach entails another issue associated with the multi-robot SLAM. Figure 5.7 shows

two cases of different sizes of submaps. In the figure at the top, the robot segments its SLAM
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Figure 5.7: Two cases with different sizes of submaps. The top image is a case with large submaps
and the bottom is a case with small submaps. In both cases, the red and blue robots are moving
toward the right side. The red rectangles are submaps built by the red robot. The blue robot is
entering the red robot’s submap area. While the case at the bottom allows the red robot to pass
the submap into which the blue robot is entering, the case at the top cannot allow it as both robots
are in the same submap.

process less frequently and generates a submap with a long interval. When the blue robot, which

is moving behind the red robot, enters the submap area, the red robot cannot pass the submap

to the blue robot since the submap is still being built. Thus, less frequent segmentation leads to

submaps with larger intervals and it prohibits the robots from performing the submap transfer.

On the other hand, in the figure at the bottom, the red robot more frequently segments its SLAM

process and generates submaps with shorter intervals. As the blue robot enters the submap that is

not currently being built, the red robot can pass the submap to the blue robot. Nevertheless, there

would be a bottleneck of the computation if the robots segmented their SLAM processes excessively

frequently. Therefore, the robots need to balance the frequency of the segmentation.

In this work, we assume that the robots move through the enclosed environment such as a

natural cave. While moving into deeper areas, the robots do not rapidly change their directions.

When the robot keeps building a single submap, the submap grows in the direction to which the

robot is moving. As the robot does not go backward, the location where the robot started to build

the submap and the robot’s current location will correspond to each end of the submap. Based
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on this assumption, the robots determine to segment their SLAM processes as follows: When the

robot starts to build a submap, it saves its estimated location. Then, while building the submap,

the robot checks the length of the line from the current estimated location to the saved location.

If it exceeds a specific threshold, the robot segments the SLAM process and starts to build a new

submap. Thus, the submap size is confined by the threshold. Since the robots keep some distance

from each other to form a meshed network, if the threshold is set to be less than this distance, the

robots will always have submaps to pass to the neighbor.

5.4.2 Segmentation Process

For the segmentation of SLAM, the robots save their SLAM results and start over new SLAM

processes. When a sampling-based SLAM such as a particle filter is used, this means that each

robot saves the current particles and starts over the SLAM process with new particles. As we use

RBPF, the particle filter holds a set of particles each of which is a set of a specific location x of the

robot and a submap m built based on it.{
{x[1],m[1]}, {x[2],m[2]}, ..., {x[n],m[n]}

}
(5.8)

Once the robot decides to start a new segment, it deals with the particles as follows.

1. Save the current particles (the copied particles represent the previous segment)

segmenti−1 =
{
{x[1]

i−1,m
[1]
i−1}, {x

[2]
i−1,m

[2]
i−1}, ..., {x

[n]
i−1,m

[n]
i−1}

}
2. Clear the submaps in the current particles

segmenti =
{
{x[1]

i , ∅}, {x
[2]
i , ∅}, ..., {x

[n]
i , ∅}

}
3. Each particle builds a submap from scratch based on its location, resulting in

segmenti =
{
{x[1]

i ,m
[1]
i }, {x

[2]
i ,m

[2]
i }, ..., {x

[n]
i ,m

[n]
i }
}

Right after starting a new segment at Step 2, localization cannot be performed due to the empty

submaps. Practically, for several seconds, each particle refers to its “ancestor” in the previous

segment. Then, each particle is evaluated with the existing submap in its ancestor particle for

localization. At Step 3, as the submaps in the current particles are built large enough, the particles

refer to their current submaps for localization. Unlike the existing segmentation method, which

requires the robot to stay to build a new submap, this approach allows the robots to keep moving

even when they are segmenting their SLAM processes. Thus, the SLAM process is segmented by

saving the particles as a segment and starting over the new SLAM process.

105



5.5 Submap Transfer

As the robots hold a series of submaps by the segmentation, they can pass the submaps to the

other robots entering in the corresponding areas. This section explains how the robots interact

with each other so that they can pass their submaps and integrate the received submaps into their

own SLAM processes.

5.5.1 Entry Detection

As each robot performs the cooperative localization, the robot knows the estimated locations of

the neighboring robots. This information is used for the entry detection in the submap transfer

process.

A submap holds information about the ranges of X, Y, and Z axes, where the submap exists with

respect to the global reference frame. The robot checks if the location of the neighbor falls in these

ranges. If the coordinates of the neighbor’s location fall in these ranges, the robot determines that

the neighbor is entering the area that is covered by the corresponding submap. While a segment

has multiple submaps, we assume that the ranges of a submap are not significantly different from

those of the others in the same segment, and one of the submaps is selected for this entry check for

each segment.

Let us assume that the robot i is communicating with its neighboring robot j as shown in

Figure 5.8: Entry detection of a neighboring robot. The robot i holds a set of segments Θi, each
of which holds particles with sbumaps. Each gray square is one of the submaps in the segment. If
the robot j is entering the ranges of the submap in the segment θik, the robot passes the submap
data to the robot j.
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Figure 5.8. The robot i holds a list of segments Θi. As they perform the cooperative localization,

the robot i knows the estimated location of the robot j. If the robot i finds that the robot j

is entering the area associated with the submap in the segment θik, it passes the corresponding

submap data to the neighbor.

5.5.2 Transfer Process

Since the SLAM process is based on a particle filter, a segmented SLAM process holds a set of

particles each of which holds a submap. In terms of the communication bandwidth, it may be

infeasible to send all the particles to the other robot. This problem is addressed by sampling a

subset of the particles and transferring the submaps of the selected particles. The sampling is

done in a similar way described in Section 4.3. After a robot receives submaps from a neighbor, it

integrates them into its SLAM process as follows.

Suppose that the robot has the following particles currently,

segmenti =
{
{x[1]

i ,m
[1]
i }, {x

[2]
i ,m

[2]
i }, ..., {x

[n]
i ,m

[n]
i }
}

and it is receiving a set of submaps M from the other robot. Let a map in the set be mj
new ∈ M .

The receiving robot saves the current segment, and then starts a new SLAM process by creating a

new segment with the received submaps. For each particle in the new segment, one of the received

set of the submaps is selected randomly. Hence, the k-th particle’s map is set as

m
[k]
i+1 = mj

new ∼
1

|M |
.

Finally, the robot has the new segment.

segmenti+1 =
{
{x[1]

i+1,m
[1]
i+1}, {x

[2]
i+1,m

[2]
i+1}, ..., {x

[n]
i+1,m

[n]
i+1}

}
Thus, the robot saves the existing submaps and switches to a new process with the received submap

data. After this integration process, the robot continues its SLAM process.
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CHAPTER 6
SYSTEM DEVELOPMENT BASED ON ROS AND

SIMULATION USING GAZEBO

To demonstrate and analyze the decentralized cooperative localization and the distributed

submap building, they are implemented in a robotic system. In this study, we use Robot Op-

erating System (ROS): the middleware to run robotics programs [122]. Each robotics program,

e.g., control, SLAM, etc, runs as a ROS node and communicate with other ROS nodes in the

framework provided by ROS. Through the ROS system, the robotics programs gain data from the

sensors and provide control inputs to the robot’s hardware. In the actual situation, each robot runs

its own ROS nodes individually and needs to communicate with each other. Hence, communication

protocols are also designed.

The developed ROS nodes are demonstrated in a simulation using a 3D robotics simulator. Here,

we use the Gazebo simulator, which is compatible with the ROS system [123]. In addition to the

physical characteristics of the robot hardware and the environment, the inter-robot communication

is also simulated by developing a plugin; the communication may be blocked by obstacles in the

environment. Finally, the proposed methods are evaluated by comparing the simulation results

quantitatively.

In this chapter, the communication protocols are first discussed and presented. Then, the

system components of the ROS and the Gazebo are described. It is followed by the designs of

the simulation models. After that, the simulation setups are described and presented with the

evaluation metrics. Finally, the simulation results are provided to evaluate the proposed method.

6.1 Protocols

The robots, running separate processes individually, need protocols to synchronize and commu-

nicate with their neighbors so that they can exchange data of mapping and localization. The

decentralized cooperative localization requires communication for its data exchange, where a pair

of robots exchange their estimation about their locations. The distributed submap building requires

communication for its submap transfer, where the robot passes its submap to its neighbor. This

section describes how the robots synchronously communicate with each other for these interactions.

6.1.1 Decentralized Cooperative Localization: Data Exchange

The interactions for the cooperative localization are performed in a decentralized manner and each

robot needs to individually work on several steps: detection of neighbors, initiation of interaction,

exchange of their data, and update on its estimation by using the acquired data from the inter-

action. The previous chapters about the cooperative localization focused on the last step, where
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Figure 6.1: State transitions of a pair of robots exchanging data. Robot1 is a robot initiating the
interaction and Robot2 is a robot responding to the request. Their states are set to “IndivSLAM”
while they are individually performing SLAM. They switch to next states when the specified con-
ditions are met. “Sync” represents a synchronization packet, and “Data” represents a data packet
with the robot’s estimation. The signs “−” and “+” represent transmission and reception of the
packet, respectively.

the conservative data exchange is performed, assuming the robots access their data without the

preliminary steps. In an actual system, the robots require the preliminary steps because each robot

is working independently and needs to establish a pairwise communication to exchange data. This

section describes these preliminary steps which allow the robots to facilitate the communication

for the cooperative localization.

Detection of Neighbors: While performing its individual SLAM, a robot maintains a list of its

neighbors which is used to choose a robot to interact for the cooperative localization. To update

the neighbor list, a robot periodically broadcasts a beacon packet, which can be transmitted in its

communication range. Once another robot receives the beacon packet, it replies back. As receiving

this replying packet, the originating robot updates its neighbor list.

Initiation of Interaction: Periodically, each robot attempts to initiate an interaction with an-

other robot in its communication range. From the neighbor list, the robot randomly selects one of
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Figure 6.2: Protocol diagram along the states of the robots. Robot1 is a robot initiating the
interaction and Robot2 is a robot responding to the request. The vertical lines represent time,
which passes from the top to the bottom. The horizontal lines represent state transition. The
arrows represent transmissions of packets.

them to interact. Then, it sends a synchronization packet to the selected robot. This synchroniza-

tion packet is used as a request to interact. If the robot does not receive a reply within a specified

time period, it aborts the attempt due to timeout.

Exchange of Data: Once a robot receives a synchronization packet, it sends its data to the robot

who sent the packet as a response. When this data packet is received, the other robot’s data is sent

back. Finally, both robots get each other’s data with relative pose information which is stored in

the data packet.

This process is designed and controlled based on a finite state machine. The robots change their

internal states so that they can locally synchronize with each other to exchange data. Figure 6.1

shows how a pair of robots change their internal states while exchanging the data. Transmission of

a synchronization packet is specified “−Sync” and reception is “+Sync”. “−Data” and “+Data”

are transmission and reception of a data packet, respectively. They are initially in “IndivSLAM” as

they are individually performing its SLAM process. Once Robot1 initiates the interaction, it sends

a synchronization packet to Robot2 (−Sync), and Robot1’s state changes to “SyncInit.” In state

“SyncInit,” Robot1 can go back to “IndivSLAM” if it determines that Robot2 no longer replies

possibly because of a collision of requests (Timeout). When Robot2 receives the synchronization
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Figure 6.3: The entire state machine performed by an individual robot. “Init” is the state in
which the robot initializes its settings and immediately enters into “IndivSLAM” once it starts
its individual SLAM. If it is initiating an interaction, the state follows the route starting with
“SyncInit.” If it is responding to the other’s request for an interaction, it follows the route starting
with “SyncReact.”

packet (+Sync), it enters into the state “SyncReact” in which it sends its data to Robot1 (−Data),

and changes its state to “DataWaiting.” Once Robot1 receives Robot2’s data (+Data), it enters

into “DataSending,” immediately sends its data to Robot2 (−Data), and enters into the “Update”

state. Accordingly, Robot2 receives Robot1’s data (+Data) and moves to the state “Update.” In

the “Update” state, the robots update their estimation by using the data from each other. Once

the update is done (Complete), the state is set back to “IndivSLAM.”

Figure 6.2 depicts communication between the two robots and the timings of transmission and

reception along their states. They send data interchangeably and each transmission affects the

other robot’s state transition. A synchronization packet plays an important role to avoid collisions

of requests from multiple robots and make sure that data packets are sent only when a pair of robots

establish their interactions. Since the system is decentralized, there is a chance that a robot receives
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Figure 6.4: Protocol diagram of the submap transfer. Robot1 is sending its submap to Robot2. If
it does not receive back a confirmation packet, it re-send the submap. Once Robot2 receives the
submap, it sends back a confirmation packet (Ack) to Robot1 and integrates the submap into its
SLAM process. After receiving the confirmation, Robot1 deletes the corresponding submap.

multiple packets from more than one neighbors. Robot1 does not know Robot2 is in “IndivSLAM”

when it sends a synchronization packet. Robot2 may be in another state to interact with other

robots and in such a case, it will not be able to respond to Robot1. Once a certain length of time

passes, Robot1 will abort their requests without sending their data packets and attempt another

request later. Since the data size of a synchronization packet is supposed to be significantly smaller

than that of a data packet, the entire size of wasted data is expected to be small. Thus, a pair of

robots synchronously exchange their data without a centralized control.

Each robot is designed to perform both roles; it can initiate an interaction with its neighbor

and also react to the other’s request. Figure 6.3 shows the entire state machine. “Init” is the

initialization state in which the robot initializes its settings at the beginning of its operation. It

enters “IndivSLAM” once it starts its individual SLAM process. Then, for interactions with other

robots, it moves on either “SyncInit” or “SyncReact,” depending on whether they are sending a

request or reacting to the other’s request.

6.1.2 Distributed Submap Building: Submap Transfer

The interactions for the submap transfer is simpler than the interactions for the data exchange.

The reason is that the robots do not need to interrupt their individual SLAM process or wait
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for the other robot’s action to finish each step. To depict it, the sender and receiver’s tasks are

individually described as follows. Here, the robot that sends its submap is named as “Sender” and

the one receiving the submap is as “Receiver.”

Sender: Once it detects that its neighbor is entering an area covered by its submap, the sender

robot simply passes the submap to the neighbor. The sent submap is then marked as a map to

delete. As the submap is marked, it is not used for the entry detection so that it will not be sent

multiple times in a short time.

Receiver: Once the submap is received, the receiver robot integrates the submap into its SLAM

process. Once the robot finished the integration of the submap, it sends confirmation to the sender.

Sender: When the sender robot receives the confirmation from the receiver, it deletes the marked

submap and the whole process is complete. If the confirmation is not received after a predetermined

time, the sender robot unmarks the submap, assuming the receiver could not receive the submap,

and it will start over the submap transfer process.

Figure 6.4 depicts the interaction described above. Robot1 is the sender and Robot2 is the

receiver. It shows that Robot1 sent the submap to Robot2 but it did not receive the confirma-

Figure 6.5: Overview of the ROS system in the cases of the real world (left) and the simulation
(right). The rectangles with thick outlines represent ROS nodes: the programs running in the
framework of ROS. While each robot holds several ROS nodes, here, only the two major ROS
nodes “Auto-Pilot” and “SLAM” are shown for simplicity. In the real world (left), the ROS nodes
interact with the actual hardware of the robots which work in the environment. On the other hand,
in the case of simulation (right), the hardware and the environment are simulated by the Gazebo
simulator, which interacts with the ROS nodes.
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tion from Robot2 within the specified time period. After the timeout, Robot1 attempts to send

its submap again. When Robot2 receives the submap, it sends the confirmation to Robot1 and

integrates the submap into its SLAM process. Receiving the confirmation from Robot2, Robot1

then deletes the corresponding submap. These tasks of “Integration” and “Deletion” are done in

the state of “IndivSLAM.” Unlike those for the cooperative localization, the interactions for the

submap transfer do not require to interrupt their SLAM processes to wait for the action from other

robots. Therefore, when it enters in the state of “IndivSLAM,” each robot asynchronously checks

the received submap and processes it.

6.2 System Components

Figure 6.5 shows an overview of the ROS system in the cases of the real world (left) and the

simulation (right). In both cases, the programs run as ROS nodes running in the framework of

ROS. A set of ROS nodes consist of a system for an individual robot. For example, the “SLAM”

node processes tasks for both the decentralized cooperative localization and the distributed submap

building. The “Auto-Pilot” node performs as a reactive agent, which decides the robot’s direction to

move, reacting to the gained ranging sensory data. These ROS nodes do not directly communicate

with those for another robot.

In the real world, the ROS nodes interact with the hardware of each corresponding robot

through the ROS system. The hardware provides sensory data to the ROS nodes and also accepts

control inputs from them. The communication between the robots is also performed by the ROS

nodes interacting with the hardware. In this study, we conduct simulations by using the Gazebo

simulator. In the Gazebo simulator, the kinematics and dynamics of the environment and the

hardware of the robots are simulated. The simulator interacts with the ROS nodes by providing

Figure 6.6: Components in the simulation with two robots communicating with each other. Gazebo
simulator updates the robot’s hardware models and runs the “AdHocNet” plugin which handles
local communication. Arrows represent data passed between the components.
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Figure 6.7: Reactive agent control. The control node is composed of sub-parts, each of which gener-
ates basic behaviors reacting to the gained sensory data. The arrows show the flow of control data.
Receiving control data from the upper parts, each part overrides the received data or integrates
them with its own control data and gives the output to the lower parts. The “main control” part
(at the bottom) finally generates the integrated control output for the robot.

data from the simulated hardware to the ROS nodes and also accepting data from the ROS nodes.

The simulator allows interactions between the robots only when they are in their communication

range and there is no obstacle hindering their communication. In this structure of simulation, the

robots interact with each other as if each robot’s ROS nodes run on a separate machine.

Therefore, the simulator mediates all the inter-robot communication and interactions. Figure 6.6

shows details about the components of the simulator and ROS nodes for two robots interacting with

each other. The Gazebo simulator contains the robot hardware models; the physics and dynamics

of each roobot’s hardware is simulated by these models. In addition, as inter-robot communication

is performed in this study, we designed a plugin “AdHocNet” to simulate the communication. By

checking the robot hardware models and the environment structure, it allows data to be passed

if the robots are in the communication range and there is no obstacle between them. The plugin

also allows the robots to perform global localization when they are close to the origin, assuming

they can interact with the base station or lander while they are close to it. The “Auto-Pilot” node

takes the sensory data from the simulator and gives commands to move the robot model. The

“SLAM” node takes sensory data for the individual SLAM. It also exchanges packets with the

“AdHocNet” plugin and establish an ad hoc network for the decentralized cooperative localization

and the distributed submap building.

As this study focuses more on the SLAM process and inter-robot communication for those tasks,

the robot’s control is designed to be simple; the robots are supposed to follow the wall while keeping

the distance to their neighbors. For this purpose, the “Auto-Pilot” node is designed based on a
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simple reactive agent. Figure 6.7 is a diagram of the reactive agent running in the “Auto-Pilot”

node to control the robot to follow the wall. It is composed of several parts, each of which generates

basic behaviors. Each part follows the following steps.

• Receive sensory data from the sensors and control data from the upper nodes.

• Generate its control data, reacting to the sensory data.

• Decide whether to override the received control data or integrate them with its control data.

• Release the resulting control data to the lower node.

Finally, a desired behavior emerges from the integrated control data. To deploy multiple robots

while they maintain distances between them, some components takes data about distances to the

neighboring robots. The “going straight” determines the forward velocity based on the distance

to the neighbor behind the robot. If the neighbor is approaching close to the robot, it moves

Figure 6.8: Drone model with sensors. The bottom left and bottom right pictures are views from
the side and the top, respectively. The red arrows represent the beams of the ranging sensors. The
rectangle box highlighted by green lines represents the depth camera.

116



Figure 6.9: The meshed model of the simulation environment based on the dataset of the Indian
Tunnel in Idaho [1]. The left image is the diagonal view of the model. The right image is the top
view. The red circle represents the entry area, where the robots are deployed.

forward. Otherwise, it generates zero velocity so that the robot stays there. The “steering” and

“moving sideways” also take the neighbor’s distance into consideration so that the robot can keep

the distance from it. By keeping the distances from other robots and also from the obstacles, i.e.,

the walls, they eventually form a meshed formation to establish an ad hoc network where the robots

can communicate with each other within a given communication range.

6.3 Robot and Environment Models

Figure 6.8 shows the robot model. The model is based on the Micro Aerial Vehicle (MAV) model

provided in the package of rotorS [124]. For the model, a depth camera is mounted at the bottom

of the body. The depth camera looks forward and generates point cloud data of the terrain in front

of the robot, and the data is used for the SLAM process. It also has ranging sensors: three on

the top pointing above, three on the bottom pointing below, and eight around the robot’s body

pointing horizontally. Each of them tells the distance to a detected obstacle, and the data is used

for the control.

Figure 6.9 shows the simulation environment model where the robot models fly. The model is

based on the dataset of the Indian Tunnel, located in Idaho [1]. As the point clouds in the dataset
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is too dense to generate a meshed model, the data was down-sampled by the Poisson sampling

code [125] and meshed up by Blender, the 3D modeling software, to generate this simulation

model. The space is roughly 80 meters long and 20 meters wide. The ground is uneven and there

are sporadic boulders. Data for both ends of the tunnel are missing and substituted with artificial

surface.

6.4 Simulation Setups

This section describes how the simulation is conducted and how the simulation results are evaluated.

First, the configuration of the simulation is described. The deployment of the robots and the

resulting formation are explained, followed by the testing cases to be conducted in the simulation.

Then, the evaluation metrics are defined to compare the testing cases.

6.4.1 Configuration

In Figure 6.9, the red circle represents the entry area. The base lander is assumed to be in this area,

and the robots are deployed one by one. The timing of the deployment is determined based on the

distance from the base lander to the previously deployed robot. Once the distance to the previously

deployed robot from the lander exceeds a threshold, a new robot is deployed. This threshold is

manually set based on the preliminary runs of the simulation. The control of the robot is configured

to have the robots keep the distances to their neighbors about 10 to 15 meters so that they can

form a meshed network in the simulation environment. Based on this interval, the threshold is set

to 10.5 meters so that the robots can be seamlessly deployed. Every other robot is deployed facing

in a different direction so that the robots can scatter in the space and eventually form a meshed

network. Based on the characteristics of ZigBee, one of the low-power wireless communication

technologies [126], the communication range is set to 30 meters for the communication between the

robots and the base lander, while the communication is blocked when there is an obstacle such as

a wall between them. While they are flying in a meshed formation, they perform the individual

SLAM and the cooperative localization every one second and every 0.4 seconds, respectively. Once

10 robots are deployed and scattered in the environment, the simulation is terminated.

In this simulation, we integrate and demonstrate the proposed methods focusing on the extent

to which the proposed methods handle the overconfidence and improve the mapping performance,

compared to the naive method. The CI-based method and the centralized method are not consid-

ered for comparison. As the RBPF is a particle filter, the probability distributions are represented

by particles. Hence, the CI-based and the centralized methods cannot be implemented due to

the same reasons for the simulation of the cooperative localization by a particle filter described

in Section 4.4.1. Therefore, the simulation is conducted in four cases: the naive method and the

proposed method, with or without the distributed submap building for each method.
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Figure 6.10: Deployment for the multi-robot navigation. The cyan arrows represent the robots
moving in the environment. The multi-robot navigation deploys each of the ten robots one by one,
and the robots move into the deeper area while keeping the distance from each other.

In all the cases, ten robots are deployed and form a meshed network as shown in Figure 6.10.

In the first two cases, the robots perform the cooperative localization and they do not perform the

distributed submap building. Instead, each robot builds a single map. On the other hand, in the last

two cases, the robots perform the distributed submap building: segmenting their SLAM processes

and transferring their submaps to their neighbors. The cases with and without the distributed

submap building are evaluated with the naive method and the proposed method. Therefore, in

the first and third cases, the robots perform the cooperative localization with the naive method,

in which they update their estimate without reducing the confidence. On the other hand, in the

second and fourth cases, the robots perform it with the proposed method, in which they deliberately

reduce the confidence in their estimate.
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Figure 6.11: Generation of the entire map by the proposed method without the distributed submap
building. In the left image, the maps from all the robots are rendered. Let’s say the robots named
as Robot1 through 10 in the order of deployment. The submaps are colored in red for Robot1, in
green for Robot2, in blue for Robot3, in yellow for Robot4, in cyan for Robot5, in magenta for
Robot6, in brown for Robot7, in light green for Robot8, in purple for Robot9, and in sky blue
for Robot10. (Note some submaps are not visible as they are overlapped by the other submaps
entirely.) For evaluation, the maps from Robot1 (Red) and Robot2 (Green) are selected to generate
the entire map as shown in the right image.

6.4.2 Evaluation Metrics

The simulation results are evaluated based on the resulting maps. In the case without the dis-

tributed submap building, the maps from the first two robots (Robot1 and Robot2) are used

to generate the map for evaluation since these two robots provide the largest maps covering the

submaps of the other robots. As an example, Figure 6.11 shows the generation of the map for the

proposed method. In the case with the distributed submap building, the maps from all the robots

are used to generate the map to evaluate as each robot holds submaps about its local area. For

example, Figure 6.12 shows the resulting map for the proposed method. These generated maps
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Figure 6.12: Generation of the entire map by the proposed method with the distributed submap
building. Let’s say the robots named as Robot1 through 10 in the order of deployment. The
submaps are colored in red for Robot1, in green for Robot2, in blue for Robot3, in yellow for
Robot4, in cyan for Robot5, in magenta for Robot6, in brown for Robot7, in light green for Robot8,
in purple for Robot9, and in sky blue for Robot10. As each robot holds submaps about its local
area, an entire map is generated by combining the submaps from all the robots.

are compared against the ground truth map shown in Figure 6.13. It was generated through a

simulation in which a robot was manually controlled to fly through the environment and performed

mapping based on the ground truth locations.

These resulting maps then need to be converted into a specific format. The maps are originally

occupancy maps but, for comparison, they are converted into point clouds. As shown in Figure 6.14,

occupied cells in an occupancy map are converted into points so that the resulting points can

represent the occupied area. This conversion is processed in a C++ program [127], and the resulting

point clouds are generated by the Point Clouds Library (PCL) [128]. The ground truth map is

also converted into point clouds through the same process. A set of point clouds from each of

the resulting maps are evaluated against the ground truth point clouds by performing the could-
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Figure 6.13: The ground truth map generated by mapping based on the ground truth trajectory
of the robot which was manually controlled.

to-cloud comparison using the open source software CloudCompare [129]. Figure 6.15 shows the

cloud-to-cloud comparison of two sets of point clouds. The red points are from the map to evaluate,

and the blue points are from the ground truth map. From each point of the map to evaluate, the

distance to the closest point in the ground truth data is calculated as the error of the point. Finally,

the average error is calculated as the metric of evaluation.

6.5 Simulation Results

Figures 6.16 and 6.17 show the results of cloud-to-cloud comparison of the point clouds from each

simulation case against the ground truth data. The entry area of the environment is represented at

the bottom and the deep area is at the top. The color represents the amount of error calculated by

the comparison. The value increases as the color changes from blue toward red. When it exceeds
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Figure 6.14: Conversion of occupancy map data to point clouds. On the left side, occupancy map is
depicted with open cells (white), occupied cells (black), and unknown cells (gray). The coordinates
of the occupied cells (red dots) are extracted as point clouds, depicted on the right side.

Figure 6.15: Comparison of the target point clouds to evaluate (red dots) against the reference
point clouds from the ground truth map (blue dots). Each point in the target point clouds is
checked in terms of the distance to the closest point in the reference point clouds (green line).

two meters, it is colored in pure red.

The results of the cases without the distributed submap building are shown in Figure 6.16. The

left and right images show the result from the naive method and the proposed method, respectively.

As the naive method generated a larger green and red areas than the proposed method did, the

results indicate that the proposed method performs the mapping process more accurately. Similarly,

the proposed method with the distributed submap building (right image in Figure 6.17) generates

more accurate map than the naive method (left image in Figure 6.17).

Table 6.1 shows the average distance value for each case. In the case without the distributed
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Figure 6.16: Cloud-to-cloud comparison for the case without the distributed submap building, using
the naive method (left) and the proposed method (right). The entry area of the environment is at
the bottom and the robot moved from the bottom toward the top. The color of points represents
the distances ranging from 0 meter (blue) to 2+ meters (red).

submap building, the proposed method resulted in significantly smaller average error than the

naive method, indicating that the proposed method can handle the overconfidence problem and

improve the mapping performance. Similarly, the proposed method outperforms the naive method

in the case with the distributed submap building as well. It is also notable that, for each method,

the accuracy does not change significantly whether or not the distributed mapping is applied; the

differences of the errors between the cases are just a few centimeters or less. This indicates that

the distributed submap building does not negatively affect the mapping performance.

In addition, the distributed submap building was evaluated by comparing the data size of the

Case Average Error (meters)

w/o Distributed Submap Building
Naive 0.388181

Proposed 0.223311

w/ Distributed Submap Building
Naive 0.363706

Proposed 0.225828

Table 6.1: Average errors in the point clouds generated in the simulation cases, measured by the
distance between the generated points and the ground truth points.
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Figure 6.17: Cloud-to-cloud comparison for the case with the distributed submap building, using
the naive method (left) and the proposed method (right). The entry area of the environment is at
the bottom and the robot moved from the bottom toward the top. The color of points represents
the distances ranging from 0 meter (blue) to 2+ meters (red).

generated maps. The data size is calculated by the utility function provided by the octomap

library [99], which uses the number of nodes in the octree data structure as follows.

Data Size of a Map = (# of Internal Nodes×X) + (# of Leaf Nodes× Y ) (6.1)

where X is the data size of an internal node and Y is the data size of a leaf node. In the cases with

the distributed submap building, the robots may hold more than one submap. Hence, the data size

is calculated as the summation of the data size of the submaps held by the robot.

Figure 6.18 shows the data size of the maps generated by each robot. In the case without the

Case Average (MiB) Maximum (MiB)

w/o Distributed Submap Building
Naive 1.736 3.44

Proposed 1.743 3.44

w/ Distributed Submap Building
Naive 0.847 1.51

Proposed 0.851 1.31

Table 6.2: The average and maximum data sizes of the mapping data in MiB.
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Figure 6.18: Comparison of data size in MiB of the generated maps by the naive and proposed
methods in the cases with and without the distributed submap building (DSB). As a robot may
hold more than one submap in the case with the distributed submap building, it is calculated as
the summation of the data size of the submaps that the robot holds.

distributed submap building, the robots that were deployed earlier hold larger sized data than those

newly deployed since the data size increases as the robots explore more areas of the environment.

On the other hand, when the map data is distributed as submaps, the data size becomes smaller.

Some robots have larger data size than others since they hold more submaps. Table 6.2 shows

the average and the maximum data size held by the robots in each case. Without the distributed

submap building, the size of the mapping data tends to be larger. For example, the size of the data

that Robot1 holds exceeded 3 MiB. Hence, the average data size becomes larger. On the other

hand, when the robots performed the distributed submap building, the average data size is about

0.85 MiB and the maximum size is about 1.3 to 1.5 MiB. Obviously, each robot only needs to hold

a few submaps so the memory space can be saved. Thus, the distributed submap building can

significantly improve the memory efficiency.

In this simulation, the communication bandwidth was assumed to be large enough for the robots

to perform the distributed submap building. In the real world, the distributed submap building

may cause a trade-off with communication as the robots need to transmit the mapping data, which

is relatively larger than the localization data for the cooperative localization. When the submaps

were losslessly compressed and saved into files, the file size of a single submap was about 10 KiB.

Even if the robot transmits the submaps of all the particles without subsampling, the total data

to send to the neighbor will be several hundreds KiB. Thus, if the bandwidth of communication
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covers the required data size to transmit, the distributed submap building is expected to work in

practice.
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CHAPTER 7
CONCLUSIONS

This dissertation work addresses the problems arising in robotic exploration of a remote, un-

structured, and enclosed environment such as a Martian lava tube. In this type of environment,

multi-robot SLAM with occupancy grid-based mapping is suitable as the robots can cooperatively

explore a large area of the environment that rarely has landmarks to detect. Nonetheless, due to

the lack of external supports such as GPS and access points to the ideal network, each robot can

only sense and access its local area. This locality of sensing and communication for each robot

prevents the existing techniques from working in this type of environment.

Hence, this work presents a set of multi-robot SLAM techniques: mainly, the decentralized

cooperative localization and the distributed submap building. These techniques enable the robots

to cooperatively localize themselves and build occupancy gird-based maps about the environment

without relying on external or centralized resources.

7.1 Contributions

The presented work enables the multi-robot SLAM in the aforementioned challenging situation,

resulting in the following contributions.

Decentralization of Cooperative Localization: The decentralization of cooperative localiza-

tion allows the robots to estimate their locations in the enclosed environment without relying on

any external supports. Each robot only needs to interact with its neighbors as this approach is

based on the local interactions: measurements on the relative poses and exchanging the estimates

of their locations.

Conservative Data Exchange: The conservative data exchange enables the robots to avoid

overconfidence in their estimation while performing decentralized cooperative localization. The

proposed method enables each robot to handle its estimation without knowing the correlations

between the robots’ estimation in the entire system.

By conducting 2D simulations and developing mathematical models of the data exchange, we

showed that the proposed method avoids overconfidence and outperforms the naive and CI-based

methods in the localization performance.

Integration with Mapping: The non-parametric version of the decentralized cooperative lo-

calization enables the robots to perform occupancy grid-based mapping with the decentralized

cooperative localization. This technique allows the proposed method to perform as a part of SLAM

in an unstructured environment with few landmarks to detect.
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Distribution of Submap Building Tasks: The methods for the distributed submap building,

which are segmentation of a map into submaps and the submap transfer, enable each robot to

perform mapping in the local area where the robot is situated. By these methods, the robots

independently produce and pass their submaps to the other robots. Hence, each robot can process

a smaller mapping area than the mapping of the entire environment, and it can reduce the memory

space of individual robots for the mapping process. Moreover, the experimental results show that

the distributed submap building does not degrade the mapping performance.

Implementation of ROS Nodes: The ROS implementation enables the proposed methods and

techniques to work with the actual robotics middleware. As they are implemented as ROS nodes,

the proposed methods can run with the ROS middleware, which can run on the actual robot’s

hardware and system. The 3D robotics simulation by the Gazebo simulator shows that the ROS

nodes can perform the proposed techniques and methods in the cavern environment modeled based

on an actual lava tube.

7.2 Future Work

Although the proposed methods have been implemented in the actual robotic system of the ROS

and demonstrated in a 3D simulation by using the Gazebo simulator, some characteristics of the

hardware and the environment were simplified or assumed to be ideal. To apply the proposed

methods to actual robotic hardware in the real world situation, more realistic characteristics and

system designs will need to be considered.

Therefore, an immediate next step of this study will be to make the design of the hardware and

physical characteristics of the robots in the 3D simulation reflect the real world more closely. For

example, instead of the generic odometry with noises, the visual odometry can be implemented with

cameras observing the texture of the terrains of the simulated environment. Additional physical

restrictions such as the battery limits can also be considered in the simulation. Currently, the

navigation and autonomy of the robots in the 3D simulation are controlled to continuously fly and

hover in the environment. However, because the battery life is limited in reality, the robots have

limited flight time in practice. It can be incorporated into the simulation by designing the robot

control that allows the robots to temporarily land on the ground to reduce the flight time and save

the battery power.

In addition, the variations of the environment structure will also need to be considered. The

environment model used in the simulation was a tunnel-like cave with a width of approximately 20

meters and gradual slopes. Since this study focused on SLAM and state estimation, the motion

control was simplified and designed based on this environment structure; the robots were controlled

to keep the same distance from the other robots, forming a meshed formation mainly horizontally.

129



This motion control may not work correctly if the environment is different in size and has significant

structural changes vertically, such as steep slopes and vertical pathways. For the general case of the

environment structure, the motion control will need to be improved to optimize the distance from

their neighbors and form a three-dimensional meshed formation. Because the improved motion

control will not rely on structural assumptions, it will also be applicable in fundamentally different

environments, such as apartment buildings.

The ultimate goal of future work will be to demonstrate the proposed methods in a real environ-

ment. A set of ROS nodes for each robot will run on each robot and interact with others through

wireless communication. While the protocols for the actual interactions have been designed and

demonstrated in the simulation, unpredicted issues might be identified once the methods are imple-

mented and deployed in the actual world situation. In addition, it will be practically desirable to

switch to ROS2 from the original ROS or ROS1. ROS1 requires a centralized core process to serve

the middleware functionality. It did not matter for the simulation in this work since the robot’s

communication was deliberately limited to the interactions through the simulator. However, it

would not be reasonable to use ROS1 in the real environment. As ROS2 allows the robots to

run their processes in a purely decentralized manner, it will be preferable for the actual hardware

implementation.
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