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Abstract 
 

Mass appraisal is the process of valuing a large 
collection of properties within a city/municipality 
usually for tax purposes. The common methodology for 
mass appraisal is based on multiple regression though 
this methodology has been found to be deficient. Data 
mining methods have been proposed and tested as an 
alternative but the results are very mixed. This study 
introduces a new approach to building prediction 
models for assessing residential property values by 
treating past sales transactions as a data stream. The 
study used 110,525 sales transaction records from a 
municipality in the Midwest of the US. Our results show 
that a data stream based approach outperforms the 
traditional regression approach, thus showing its 
potential in improving the performance of prediction 
models for mass assessment.  
  
1. Introduction 
 

In the United States local governments provide a 
variety of services to its citizens. These services may 
include law enforcement, fire protection, public schools, 
public transportation, utilities, streets, sanitation, and 
many others taken for granted by the typical citizen. A 
major source of the revenue that pays for these services 
comes from property taxes on the local real estate 
property base. The property tax is an ad valorem tax, 
meaning "according to value." Therefore, the local 
government must have as accurate an estimate of the 
property value as possible to ensure fairness in property 
taxes. The term mass appraisal refers to the process of 
valuing a large collection of properties within a certain 
municipality. The common methodology for mass 

appraisal is based on multiple regression though this 
methodology has been found to be deficient, suffering 
from problems such as nonlinearity, multicollinearity, 
and heteroscedasticity [1-3]. Data mining methods have 
been proposed and tested as an alternative but the results 
are very mixed [4-6]. 

Most prediction models are based on learning 
algorithms that use the entire training set in a batch 
mode. Such learning algorithms assume that the training 
data are independent, identically distributed, and are 
from a stationary distribution. For example, a popular 
and competitive regression model is a regression tree 
called M5 [7]. M5 builds multivariate trees using linear 
models at the leaves. Such a tree learns by recursively 
splitting the training space to select attributes that 
maximize the reduction of variance in the dependent 
variable. Though effective, these regression models are 
inadequate for sequentially generated data from time 
evolving distributions. 

Data stream methods have different features than 
the traditional models [8]: (1) process a sample at a 
time; (2) use a limited amount of memory; (3) process 
samples at a limited time span; (4) predict a sample at 
any time. Up to now, many classification methods have 
been proposed for incremental learning using data 
streams. Fewer regression methods for data stream are 
found in the literature. 

Data streaming addresses a key challenge in 
regression and machine learning based methods, 
concept drift in time-varying data streams. Existing 
techniques such as artificial neural network and 
multiple regression cannot cope with concept drifts, 
while data stream learning algorithms can solve those 
problems [9]. For example, Shaker and Ullermeier [10] 
proposed an instance-based learning algorithm for data 
streams (IBLSTREAMS) which can be used as 
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classification and regression models. It uses the 
nearest-neighborhood estimation principle for 
predicting the output variable. 
  The obstacle to high prediction accuracy for mass 
appraisal is the heterogeneous nature of real estate data 
[11, 12]. Clustering algorithms are usually used to 
segment the house submarkets to improve the 
prediction accuracy [13-15].  

This study applies a new approach to mass 
assessment through incremental learning using data 
stream methodology. The results in the study point to 
better predictive performance of the data stream 
modeling approach over that of the traditional linear 
regression analysis commonly used in mass assessment. 
The study also explores the characteristics using data 
stream methods for the clustered data sets. 

2. Data 
 

The data in this study consist of 126,331 sales 
records from the Property Tax Assessment Office 
database in a Midwest city in the U.S. Table 1 lists the 
attributes in a typical sales record. 15,806 records were 
excluded from the data set as they contained missing 
and incomplete data values. The final data set contains 
features of 110,525 properties and 15 variables 
commonly used for tax assessment. It is noted that 
variables such as Land size, Year built, Square footage 
in the basement, Square footage on the floors, Garage 
size (number of cars), Number of baths, Year sold are 
numeric fields and the remaining variables are 
measured on the nominal scale. Table 1 presents a 
sample of sales transactions, whereas Table 1 shows the 
descriptive statistics of the entire data set. 

Table 1. Sample sales transaction. 

Attribute Name Sample 
Record 

 
Explanation 

Sale price [$](Dependent variable) 390000 Actual sale price 
Year Built 1968 Year in which the property was built 
Year Sold 2005 Year in which the property was sold 

Square footage in the basement [Feet] 900 Square feet in basement 
Square footage on the floors [Feet] 2931 Total square feet above basement 

Land size 0.2135 Total lot size in acres 
Fireplace 1 0=no fireplace; 1=fireplace is present 

Garage size (number of cars) 2 Two-car garage (range 0-2) 

Number of baths 4 0=substandard bath; 1=1 bath; 2=1 ½ baths; 3=2 baths; 
4=2 ½ baths, etc. up to 6=more than 3 baths 

Presence of central air 1 0=no central air; 1=central air is present 

Lot type 1 1=up to one-fourth acre; 2=one-fourth to one-half acre; 
3=one-half to 1 acre; 4=over 1 acre 

Construction type 3 1=1 story; 2=1 ½ story; 3=2 story; 4=2 ½  story; 
5=split-level; 6=bi-level; 7=condominium 

Wall type 2 1=frame; 2=brick; 3=other 
Basement type 1 0=none; 1=partial; 2=full 
Basement code 1 0=none; 1=standard; 2=half standard; 3=walk-out 

Garage type 3 0=none; 1=carport; 2=detached; 3=attached; 
4=garage in basement; 5=built-in garage 

 
Table 2. Descriptive statistics of the entire data set. 

Variable Mean Std. Dev Min Max Median 
Land size 0.31 0.73 0 71.32 0.21 
Year built 1964.08 28.35 1790 2016 1963 

Square footage in the basement [Feet] 216.30 414.27 0 6100 0 
Square footage on the floors [Feet] 1584.42 683.69 0 13575 1390 

Garage size (number of cars) 1.19 0.86 0 2 1 
Number of baths 2.65 1.51 0 6 3 

Year sold 2008.28 6.01 1991 2016 2009 
Sale price [$] 148723 97322 500 3600000 127000 
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3. Methods  
 

This section describes the prequential evaluation 
scheme and three data stream regression methods: 
Adaptive Model Rules (AMR), Perceptron Learning 
(PL), and RandomRules (RR) used in this study. 
 
3.1. Prequential regression measurement 
 

We used the prequential or interleaved 
test-then-train evolution evaluation scheme for the 
models. That is, a regression model on a data stream is 
evaluated by testing then training with each example in 
sequence. It is based on a sliding window, which 
measures the accuracy on the current sliding window of 
recent instances. Figure 1 shows the sliding windows 
W1 and W2 for the window-based regression 
performance. T is the sampling period and f=1/T is the 
sampling frequency. The sliding window sizes are set 
to 50, 100 and 1000 in the study. 

 
 
    

                W1                                      W2 
         

                         T                                       T 
Figure 1. Sliding window W1 and W2 for regression performance evaluator. 

 
3.2. Adaptive model rules (AMR) 
 

Adaptive Model Rules (AMR) algorithm developed 
by Almeida etc. [16, 17] is a popular incremental data 
stream regression algorithm for rules-based learning. It 
uses a one-pass algorithm to build regression rule sets 
from a stream of input data, such as sales transactions. 
AMR can add and remove the rules as the data stream 
evolves. The form of the rule is the following [18]: 

C → M  
In the above rule C represents the antecedent which 

is a conjunction of literals and M represents a model that 
can predict value a. The literal is a condition such as 
A = a, or A ≤ v or A ≥ v, where A is a discrete attribute 
and a is one of its values, and A can also be continuous 
and v is a numerical value. M is a regression model. The 
AMR algorithm has three types of regression models: (1) 
the mean values of the target attribute; (2) a linear 
combination of the attributes; and (3) a choice between 
(1) and (2), resulting in a regression model with a lower 
mean absolute error according to the recent instances.  

AMR has some different features from decision 
trees. For example, a decision tree model includes a set 
of exclusive and complete rules, whereas AMR uses a 
set of rules that are neither exclusive nor complete. The 
rules need not cover all instances and an instance may 
be covered by a set of rules. AMR supports a set of 
ordered or unordered rules. If the rules are ordered rules, 
the prediction result of an instance is that of the first rule. 
If the rules are unordered, all rules that cover an instance 
are used and the algorithm averages their predicting 
results. A critical feature of AMR is that it creates new 
rules, extends existing rules, and removes useless rules. 
 

3.3. Perceptron learning 
 

The Perceptron, proposed by Rosenblatt in 1957, is a 
linear classifier and one of the first methods for online 
learning [18]. It is a low computational cost algorithm. 
It can be taken as a regression method. Given a data 
stream of pairs (X, yi,), where X is a case and yi is its 
numeric output value. The target of the perceptron 
learning (PL) algorithm is to reduce the mean squared 
error (MSE) on these cases. To complete this task, the 
strategy is to move each weight in the weight vector W 
in the direction of the descending error gradient. The 
update rule is as follows: 

𝑊 = 𝑊 + 𝜂�(𝑦𝑖
𝑖

− ℎ𝑊(X))𝑋; 

where η is the learning rate. The function ℎ𝑊(X) is 
used to predict the output value, ℎ𝑊(X) = 𝜎(𝑊𝑇𝑋); 
where 𝜎(𝑥) = 1/(1 + 𝑒−𝑥)  is a soft-threshold 
function whose range is [0,1]. Weights can be updated 
at every single case, or taken in mini-batches for a 
single update step per mini-batch. The rule permits the 
fine-tuning of the trade-off between update time and 
adaptiveness. 
 
3.4. RandomRules 
 

RandomRules (RR) is an ensemble method using 
AMR as a base learner [9]. Domingos [19] proposed 
the bias-variance decomposition of the error of a 
learning algorithm that could improve its performance. 
Perturbing the set of examples used for training may 
improve regression models with a high-variance, and 
perturbing the set of attributes used for training may 
improve regression models with a low-variance. AMR 
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is a low-variance model, and it can be designed as the 
Random Forests algorithm. The ensemble method is 
called as Random AMR or RR.  
  The RR algorithm begins by initializing an ensemble 
F with k models fm. The k models were constructed 
using the AMRules regression algorithm. When a rule 
R is created or expanded a subset of the data attributes 
with size d0, 1 <d0 <d, is randomly chosen. The next 
split decision for R considers only the attributes 
belonging to this subset. This procedure prevents the 
models from being correlated.  

Every time a training example (x; y) is available, 
the on-line error estimation of each model fm  is 
updated, and it is sent to each individual AMRules 
learner fm for training. The on-line error of each fm 
is estimated using a fading factor strategy. In order to 
perturb the training set for each model, we apply an 
on-line Bagging approach. 

The prediction y of Random AMR is computed as a 
linear combination of the estimations produced by the 
models 𝑓𝑚 ∈ 𝐹: 

𝑦 = 𝑓(𝑥) = � 𝜃𝑚𝑓𝑚(𝑥)
𝑘

𝑚=1

; 

The weights 𝜃𝑚 can be computed using weighting 
functions. The most common approach is using a 
uniform weighting function, such that all the predictors 
have the same importance: 

𝜃𝑚 = 1/𝑘; 
 
3.5. The framework of data stream methods 
   Figure 2 shows the framework for predicting real 
estate prices using data stream methods. In the study, 
the three data stream algorithms AMR, PL and RR, and 
traditional machine learning, Linear regression (LR) 
and M5 are used to predict sale prices for the whole 
dataset and the three clustered data sets. The 
framework includes two assessment steps: 
measurement for traditional machine learning and 
Prequential measurement for the data stream 
algorithms. 

 

 
 Figure 2. The framework of data stream methods for predicting real estate prices. 

 
4. Results 
 

Weka software was used in computer simulation 
(https://www.cs.waikato.ac.nz/ml/weka/) [20]. We 
created and evaluated models for the whole data set 
and three clusters of properties. Due to the very large 
data set containing 110,525 cases, only Linear 
regression (LR) and M5 models with 10-fold 
cross-validation is used because other data mining 
algorithms run very relatively slow. The performance 
of the models is evaluated by the Mean Absolute 

Percentage Error (MAPE) expressed in [%], the Mean 
Absolute Error (MAE), and the Root Mean Squared 
Error (RMSE). The RMSE is the principal error 
measure and it is expressed in the same units as actual 
and predicted sale values, i.e. [$]. The disadvantage of 
RMSE is that it tends to aggregate the effect of outliers. 
The MAE, also expressed in [$], treats errors evenly 
according to their magnitude. The MAPE value 
measures the closeness of predicted sale prices to 
actual sale prices in the following 6 intervals: [0,5], 
(5,10], (10,15], (15,20], (20,25], and >25%. Columns 2 
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and 3 in Table 3 show the MAPE results for LR and 
M5, respectively. One can see that for LR the average 
MAPE is 38.1% and the MAPE results in the six 
different percentage ranges of MAPE. For example, the 
MAPE value =15.5% means that 15.5% of the 
properties predicted sale prices are within [0,5%] of 
their actual sale prices, whereas the MAPE value of 
14.9% means that 14.9% of the properties predicted 
sale prices are within (5,10%] of their actual sale prices. 
Table 4 shows that the values of MAE and RMSE for 
LR are 29975 and 41648, respectively and those values 
for M5 are 26848 and 38450, respectively. Table 4 
provides a basis for comparison of the LR and M5 
models with the data stream models. 
Table 3. MAPE results for LR, M5, AMR, PL and 

RR. 
MAPE LR M5 AMR PL RR 

≤ 5 15.5 17.5 15.8 15.4 16.4 
(5,10] 14.9 16.5 15.0 14.7 15.8 

(10,15] 13.3 14.2 13.4 13.2 13.7 
(15,20] 11.6 11.6 11.4 11.3 11.3 
(20,25] 9.1 9.1 9.3 9.3 9.1 

>25 35.5 31.2 35.2 36.2 33.6 
Total 100.0 100 100.0 100.0 100.0 

Average 38.1 33.7 24.1 25.1 22.6 
 

Table 4. MAE and RMSE results for LR and M5 
with 10-fold cross-validation. 

Methods MAE RMSE Time(Sec) 
LR 29975 41648 34.82 
M5 26848 38450 867.25 

We use data stream regression methods in Massive 
Online Analysis (MOA) platform [8] for the whole data 
set and the same data set clustered into three segments. 
The three data stream regression algorithms are AMR, 
PL and RR. Prequential Regression was used to 
measure the performance of the data stream models. 
Sampling frequency f =500 was used for the whole data 
set. We reported the MAPE, MAE and RMSE results 
for the different window sizes of 50, 100, and 1000. The 
average MAPE results for the three methods AMR, PL, 
and RR are 24.1%, 25.1%, and 22.6%, respectively 
(Table 3). They are less than the average of 38.1% for 
LR. The average MAPE value for RR =22.6% is the 
lowest. The MAPE values for the range [0,5%] for 
AMR, PL and RR are 15.8%, 15.4%, and 16.4%, 
respectively. MAPE for RR=16.4% is the highest, 
meaning that 16.4% of the properties predicted sale 
prices are within [0,5%] of the properties actual sale 
prices. This value is also higher than the MAPE value 
of 15.5% for LR. 

Table 5 shows that the MAE values for AMR, PL 
and RR for the sliding window size 50 are 28491, 
29095, and 28695; whereas the RMSE values for the 
three models are 37013, 37647, and 37332, 
respectively. With the increase of the window size, the 
values of MAE and RMSE tend to rise as well (Table 5). 
The results for AMR are the best. It is an obvious 
improvement over the results for LR. Although the 
MAE results for M5 are the best in all the algorithms, 
the averages of MAPE and RMSE results are less than 
those from the data steam approaches. The elapsed 
time for M5 is 867.25 seconds, which are far greater 
than those for LR, AMR, PL and RR. In the 
subsequent experiments, only LR was used for 
comparison with data stream methods.   

 
Table 5. MAE and RMSE results for AMR, PL and RR for different window sizes. 

Algorithms AMR PL RR 
Window 

Size 50 100 1000 50 100 1000 50 100 1000 

MAE 28491 29042 29583 29095 29752 30393 28695 29166 29799 
RMSE 37013 38473 39943 37647 39314 41594 37332 38721 40312 

Time(Sec) 18.41 18.38 18.47 1.03 1.03 1.23 173.15 172.60 171.91 
 

 
The average MAPE as well as MAE and RMSE for 

AMR, PL, and RR are compared with LR using 
histograms in Figures 3, 4, and 4. Clearly, the three 

data stream models outperform the LR model. The 
sliding window size for the data stream algorithms is 
set to 50. 
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Figure 3. The average MAPE results for LR, AMR, 

PL and RR for window size of 50. 
 

 

 
Figure 4. MAE results for LR, AMR, PL and RR 

for window size of 50. 
 
 

Figures 6 and 7 show Prequential regression MAE 
results for AMR, PL, and RR for window sizes 50 and 
1000, respectively. One can observe the error drifts as 
instances are processed. The curves of MAE for 
window size 50 tend to oscillate much more than the 
curves of MAE for window size 1000. In the two curves 
depicted in Figure 5, the values of MAE for the 
sampling points before instance 60000 are higher and 
fluctuate more than the sampling points after instance 
60000. The MAE values for AMR are lower than those 
values for PL and RR in most sampling points. One 
can see from Figure 6 that the MAE values between 
16000 and 32000 and the MAE values after 79000 are 
lower than those values for the other sampling points. 
The MAE value for PL at instance 15000 is the 
highest. 

 

 
Figure 5. RMSE results for LR, AMR, PL, and RR 

for window size of 50.

 
Figure 6. MAE Prequential results for AMR, PL, and RR for window size 50. 

A common practice in a real estate market is to 
group properties into segments. Segmentation allows 
one to assess the property sale prices more accurately. 
Thus, we ran automatic K-means clustering algorithm 
to group the properties into three more homogeneous 
clusters. We normalized the attributes in the entire data 
set and then selected the following attributes: Land size, 

Year built, Square footage in the basement, Square 
footage on the floors, and Number of baths as 
clustering fields. The three clusters were obtained; 
Cluster 1 with 40642 records (36.8%), Cluster 2 with 
29514 (26.7%) records and Cluster 3 with 40369 
records (36.5%). 
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Figure 7. MAE Prequential results of AMR, PL, and RR for window size 1000.

 
Due to space constraints, we cannot present the full 

descriptive statistics for the three clusters. We only 
report that the mean Sale prices and the average Square 
footages on the floors are 139181 and 1493.6, 252329 
and 2334.4, 82583.32 and 1127.6 for Clusters 1, 2, and 
3, respectively. We define Cluster 1 as medium value 
properties, Cluster 2 as high value (more affluent) 
properties and Cluster 3 as low value (low-end) 
properties. 

Table 6 shows MAE and RMSE results of LR for 
10 folds for the three clusters. Table 7 shows MAPE 
results for LR, AMR, PL, and RR for the three clusters. 
The average MAE values for Clusters 1, 2, and 3 are 
30499, 38366, and 24917, respectively. The average 
RMSE values for Clusters 1, 2, and 3 are 41354, 52685, 
and 34923, respectively. Table 7 shows that for LR the 
average MAPE values for Clusters 1, 2, and 3 are 
39.7%, 16.4%, and 59.5%, respectively. 

Table 6. MAE results of LR for 10 folds for the 
three clusters. 

Methods Cluster MAE RMSE 

LR 
Cluster 1 30499 41354 
Cluster 2 38366 52685 
Cluster 3 24917 34923 

The same three data stream algorithms were also 
used to build and assess the models for the three 
clusters. Prequential Regression was used to measure 
the performance of the data stream models. Sampling 
frequency f was set to 200 for the clusters. Table 7 
shows MAPE results for LR and the three data stream 
methods. The average MAPE values for LR, AMR, PL, 
and RR for Cluster 1 are 39.7, 22.6, 21.9, and 21.5, 
respectively. The average MAPE values for LR, AMR, 
PL, and RR for Cluster 2 are 16.4, 16.4, 16.9, and 16.6, 

respectively. The average MAPE values for LR, AMR, 
PL, and RR for Cluster 3 are 59.5, 25.8, 26.2, and 25.2, 
respectively. Compared with LR, the MAPE results for 
the data stream algorithms for Clusters 1 and 3 
representing medium value and low-end properties are 
significantly improved. There is no improvement for 
Cluster 2 representing high-end properties. The 
average MAPE value for RR for Cluster 1, that for 
AMR for Cluster 2 and that for RR for Cluster 3 are 
the best. 

Table 8 shows MAE and RMSE results for the 
three data stream methods for three different window 
sizes. When the window size increases, the MAE and 
RMSE values increase. The average MAE values for 
AMR, PL and RR for Cluster 1 for window size 50 are 
28648, 28943, and 28583, respectively. The average 
MAE values for AMR, PL and RR for Cluster 2 for 
window size 50 are 39409, 39572, and 41222, 
respectively. The average MAE values for AMR, PL 
and RR for Cluster 3 for window size 50 are 22132, 
22425, and 22833, respectively. Compared with MAE 
results of LR (30499 for Cluster 1, 38366 for Cluster 2 
and 24917 for Cluster 3), MAE results for data stream 
algorithms for Cluster 1 and Cluster 3 are improved. 
MAE results of data stream algorithms for Cluster 2 
are comparable. RMSE results AMR for window size 
50 for Cluster 1, those of PL for window size for 
Cluster 2 and those of AMR for window size 50 for 
Cluster 3 are the lowest, they are 37606, 51031 and 
28442 respectively. Compared with RMSE results of 
LR (41354 for Cluster 1, 52685 for Cluster 2 and 
34923 for Cluster 3). RMSE results of data stream 
algorithms for Cluster 1, Cluster 2 and Cluster 3 are all 
improved. 
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Table 7. MAPE results for LR, AMR, PL and RR for the three clusters. 

Cluster Cluster1 Cluster2 Cluster3 
Algorithms LR AMR PL RR LR AMR PL RR LR AMR PL RR 
MAPE ≤ 5 16.2 16.8 16.8 17.2 21.0 21.1 20.3 20.0 11.6 11.9 12.2 12.8 

(5,10] 15.6 15.9 15.4 16.3 20.1 19.6 19.3 19.0 11.2 11.7 11.3 12.0 
(10,15] 13.9 14.1 14.1 14.2 16.6 16.6 16.3 16.5 10.8 10.8 10.8 11.3 
(15,20] 11.8 11.4 11.5 11.3 13.1 12.7 13.0 13.1 9.8 10.2 9.9 9.8 
(20,25] 9.2 9.4 9.3 9.3 9.1 9.5 9.7 9.9 8.7 9.0 8.8 8.5 

>25 33.2 32.5 32.9 31.6 20.1 20.5 21.4 21.5 47.8 46.4 47.0 45.5 
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Average 39.7 22.6 21.9 21.5 16.4 16.4 16.9 16.6 59.5 25.8 26.2 25.2 
 

Table 8. MAE and RMSE results for AMR, PL and RR for the three clusters. 
Algorithms AMR PL RR 

Window 
Size 50 100 1000 50 100 1000 50 100 1000 

Cluster 1 
MAE 28648 28771 29021 28943 29065 29219 28583 28748 28788 

RMSE 37606 37917 39350 38591 38757 40164 37387 37828 38631 
Cluster 2 

MAE 39409 39148 40012 39572 39513 41074 41222 40726 41390 
RMSE 51486 51031 54656 51442 51200 59380 53035 52542 54712 

Cluster 3 
MAE 22132 22420 22294 22425 22633 22888 22833 22987 22857 

RMSE 28442 29720 31869 28632 30040 35357 29113 30286 31568 
 

Figure 8 shows the average MAPE results for LR, 
AMR, PL and RR for the three Clusters. One can see 
that MAPE results of the LR model in Clusters 1 and 3 
are the worst compared with the three data stream 
algorithms. The MAPE results are comparable in 
Cluster 2. Figure 9 shows MAE results for LR, AMR, 
PL and RR for the three clusters. MAE results for the 
LR model in Cluster 1 and Cluster 3 are the worse than 

those for the three data stream methods, and MAE 
result for the LR model for Cluster 2 is slightly better. 
Figure 10 shows RMSE results for LR, AMR, PL and 
RR in the three Clusters. RMSE results of the LR 
model for Clusters 1 and 3 are worse than those for the 
three data stream methods, and for Cluster 2 they are 
comparable.

 

 
Figure 8. The average MAPE results for LR, AMR, 

PL and RR for the three clusters. 
 

 
Figure 9. MAE results for LR, AMR, PL and RR 

for the three clusters. 
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Figure 10. RMSE results for LR, AMR, PL and RR 

for the three clusters. 
 

 
Figure 11. MAE Prequential results for AMR, PL 

and RR for window size 1000 and Cluster 1. 
 

 
Figure 12. MAE Prequential results for AMR, PL 

and RR for window size 1000 for Cluster 2. 
 

 
Figure 13. MAE Prequential results for AMR, PL 

and RR for window size 1000 for Cluster 3. 
 

   Figures 11, 12 and 13 show MAE Prequential 
Regression results of AMR, PL and RR for window 
size of 1000 for Clusters 1, 2, and 3. One can see the 
drift in MAE values. For Cluster 1, MAE values of RR 
are slightly better than those values for AMR and PL. 
For Clusters 2 and 3, MAE values of AMR are better 
than for Cluster 1. The three figures show that the 
curves for Cluster 2 are smoother than the curves for 
Clusters 1 and 3. It suggests that prediction of sale 
prices of more affluent properties grouped in Cluster 2 
are more accurate than those sale prices for medium- 
and low-end properties grouped in Clusters 1 and 3. 
The MAE results also depict the decreasing trend as 
more instances are processed.  

5. Conclusions 
This paper investigates a novel approach to 

residential real estate price prediction in a mass 
assessment context. We used LR and the three data 
stream methods: AMR, PL and RR for a real estate 
data set including 110,525 records. The average MAPE, 
MAE and RMSE values of the three data stream 
methods are lower than those values for LR. The data 
stream methods have a better performance than LR. 
Among the three methods, AMR has the best 
performance. In addition, data stream methods allow 

one to observe the drift of MAE and RMSE values. 
Different sliding window sizes 50, 100, and 1000 were 
used. The algorithms using a larger window size 
produced smoother curves of MAE, though the average 
MAE values are higher as the window size increases. 
The algorithm with a smaller sliding window size 
would generate more fluctuant curves of MAE. 

We used K-means to divide the whole data set into 
three clusters representing medium value, high-end, 
and low-end properties. We created and evaluated the 
LR model and the three data stream methods for the 
three clusters. For medium and low value properties, 
the MAPE, MAE, and RMSE for LR are larger than 
those results for the data stream methods. Especially, 
MAPE values for the data stream methods are much 
lower than MAPE for LR. The data stream methods 
greatly improve prediction of house prices using 
clustered data sets. For high value properties, the 
average MAPE, MAE, RMSE values using the data 
stream methods are comparable to those of LR. Among 
the three data stream methods, in terms of the average 
of MAPE values, RR is the best for medium and low 
value properties, whereas AMR appears to be the best 
for high value properties. In terms of MAE and RMSE, 
AMR is the best for all the clusters. The Prequential 
results show that AMR has the best performance in 
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most sampling points. The data stream algorithms also 
enable one to observe the drifts in error values.  

This novel data streaming approach produced better 
prediction results than the traditional multiple 
regression analysis commonly used in mass assessment. 
For processing larger datasets, the data streaming 
methods have obvious advantages in terms of prediction 
accuracy and running speed. We can observe the 
changing of models using data streaming. Given the 

importance of prediction accuracy in mass assessment 
the data streaming approach merits further examination. 
In the future, we plan to collect more data to test the 
performance of the methods, and do further research to 
understand concepts drifts in fluctuating home prices. It 
will also be meaningful to compare data streaming 
methods with traditional approaches such as time-series 
analysis. 
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