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Abstract. Learning and knowledge creation is often distributed across multiple 
media and sites in networked environments. Traces of such activity may be 
fragmented across multiple logs and may not match analytic needs. As a result, 
the coherence of distributed interaction and emergent phenomena are 
analytically cloaked. Understanding distributed learning and knowledge 
creation requires multi-level analysis of the situated accomplishments of 
individuals and small groups and of how this local activity gives rise to larger 
phenomena in a network. We have developed an abstract transcript 
representation that provides a unified analytic artifact of distributed activity, 
and an analytic hierarchy that supports multiple levels of analysis. Log files are 
abstracted to directed graphs that record observed relationships (contingencies) 
between events, which may be interpreted as evidence of interaction and other 
influences between actors. Contingency graphs are further abstracted to two-
mode directed graphs that record how associations between actors are mediated 
by digital artifacts and summarize sequential patterns of interaction. Transitive 
closure of these associograms yields sociograms, to which existing network 
analytic techniques may be applied, yielding aggregate results that can then be 
interpreted by reference to the other levels of analysis. We discuss how the 
analytic hierarchy bridges between levels of analysis and theory. 

Keywords: Socio-technical networks, distributed learning, networked learning, 
interaction analysis, social network analysis.  

1   Introduction 

The rapid adoption of information and communication technologies (ICT) in support 
of “online,” “distributed,” and “networked” learning and knowledge creation 
activities [1], and their blending with face-to-face venues [14] is well known to the 
research community to which this paper is addressed. In this paper we use learning as 
shorthand to include any enhancements of individual or collective knowledge or 
skills, whether or not it occurs in formal educational settings. We include in our scope 
of interest learning in (for example) online university settings, professional 
communities, and virtual organizations [2, 4, 8, 29]. We will refer to these 
collectively as socio-technical networks [19]. A related trend is towards open learning 
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communities. Courses in formal educational settings need no longer isolate 
participants from others in different courses, but can embed courses in online 
communities of learners, for example supporting transdisciplinary graduate education 
[10]. In corporate or other work settings, professional learning communities similarly 
may cross team contexts rather than being isolated in work teams [42]. The 
fundamental question of interest in all of these settings is how learning takes place 
through the interplay between individual and collective agency. All learning activity 
requires that individuals take actions, but these individual actions are contingent on 
the actions of others in their socio-technical network contexts, actions that reflexively 
construct those contexts.  

The first analytic challenge addressed by this paper is that learning and knowledge 
creation activities in these networked environments are often distributed across 
multiple media and sites. As a result, traces of such activity may be fragmented across 
multiple logs. For example, the networked learning environments we study offer 
mixtures of threaded discussion, synchronous chats, wikis, whiteboards, profiles, and 
resource sharing. Events in these media may be logged in different formats and 
recorded in databases and text files, disassociating actions that for participants were 
part of a single unified activity. This disassociation is exacerbated when activity is 
distributed across multiple virtual sites or spread over time. Also, the granularity at 
which events are recorded may not match analytic needs, and media-level events may 
be the wrong ontology for analyses that begin with relationships rather than individual 
acts. Translation from log file representations to other levels of description may be 
required to begin the primary analysis. As a result of these various issues, the 
coherence of distributed interaction and phenomena that emerge from this interaction 
are analytically cloaked.    

Furthermore, understanding distributed learning and knowledge creation requires 
multi-level analysis of the situated accomplishments of individuals and small groups 
and of how these local accomplishments give rise to larger phenomena in networks 
such as the dissemination and transformation of ideas, implicit coordination of the 
activities of many participants, and the accrual of collective knowledge. Consider the 
question of how the design of the virtual environment influences emergent 
phenomena. Everything builds on the existence of multiple successive moments in 
which an individual is experiencing some presentation of the virtual environment, 
cares enough to act, and is able to choose an appropriate action. Whether and how this 
action has implications for network or community level phenomena requires that 
some trace of the action be given persistent form that other participants might later 
encounter in their experience of the virtual environment [18]. Appropriate aggregation 
and availability of such traces can drive dissemination of ideas, align participants, and 
lead to accrual of collective resources of value. Critically, an empirically grounded 
understanding of this emergence requires analysis at both fine-grained and aggregate 
levels. The same can be said for understanding the relationship between small group 
interactions and larger scale phenomena.  

In summary, since interaction is distributed across space, time, and media, and the 
data comes in a variety of formats, there is no single transcript to inspect and share, 
and the available data representations may not make interaction and its consequences 
apparent. To address these concerns (and to support the diverse research in our 
laboratory), we have developed a framework consisting of an abstract transcript 
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representation that collects relevant events into a single analytic artifact, and an 
analytic hierarchy that supports multiple levels of analysis. This paper describes the 
framework and discusses its potential roles in unifying multiple sources of data and 
bridging between levels of analysis and theory. We discuss how the framework 
addresses several specific analytic needs, including: (a) scaling up microanalysis of 
interaction to large data sets, (b) enabling the translation of event logs into tie data 
appropriate for social network analysis, and (c) interpreting results at one level in 
terms of another (e.g., relating social network analytic results back to their 
interactional settings). Throughout the paper, a simple example drawn from our prior 
research illustrates many of the features of the framework.  

2   Preview 

The analytic hierarchy consists of several abstraction layers of analytic 
representations that we have found to be useful, summarized in Table 1. Process 
traces such as log files are abstracted to domain models describing the actors, actions 
and media objects involved in event models, which are collections of temporally 
tagged events. These event models can be further elaborated by installing directed 
graphs of empirical relationships between events called contingencies. Contingencies 
can be any observed relationship between events (e.g., two events are by the same 
actor, involve the same object, are temporally contiguous or proximal, or overlap in 
content). Contingencies situate participants’ acts in relation to other events—hence 
the name contextualized action model. The analytic utility of contingency graphs is 
enhanced if focused on those contingencies that may be interpreted as evidence of 
uptake: interaction and other influences between actors. When such interpretations are 
made, contingency graphs are abstracted into uptake graphs, representing interaction 
models. Interaction can be further abstracted to two-mode directed graphs, called 
associograms, which record how associations between actors are mediated by their 

Table 1. The Analytic Hierarchy  

Models  Representations  
Process Trace Log files, audio and video recordings, etc. 
Domain  Entities and their relationships (types and instances of both) 
Event  Sets of events (described in terms of actors, objects, time, etc.) 
Contextualized 
Action  

Contingency graphs indicating empirical relationships 
(contingencies) between events 

Interaction  Uptake graphs (each arc corresponds to bundles of contingencies 
that evidence uptake) 

Mediation  Associograms: two-mode directed graphs relating actors to objects 
Relationship  Subgraphs of the mediation model consisting of all paths between 

two actors 
Tie  Sociograms representing ties between actors 
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creation and modification of and access to digital artifacts: hence the name mediation 
models. Associograms also summarize sequential patterns of interaction, making it 
easier to localize certain patterns. Reduction of associograms by transitive closure 
into direct ties between actors yields sociograms, representing tie models. Existing 
network analytic techniques may be applied to sociograms. The results of network 
analysis can then be interpreted by reference to the other levels of analysis. Thus 
associograms bridge between interaction analysis and network analysis. 

The analytic concepts (e.g., contingencies, uptake, mediated associations, and ties) 
in this paper are not new. Rather, the value of the framework relies on the fact that 
they are abstractions of concepts commonly applied in existing analytic practice (e.g., 
adjacency, edits, replies, etc.) as will be detailed later. Thus the framework is offered 
to coordinate and augment rather than replace existing analytic practices.  

The layers are explained in more detail in the following subsections. The process 
trace, domain, and event models and transformations between them are likely to be 
familiar to readers: brief sections on these layers are included for completeness and to 
provide the foundation and examples for describing subsequent layers. Contingency 
and uptake graphs and associograms are more unique contributions, so are described 
in some detail here—see also [37] for extensive discussion of motivations for 
contingency graphs and examples of their use for uptake analysis. The most abstract 
layer is covered substantially in the social network analysis literature [e.g., 41], so is 
described here only in relation to how it is derived from the layer below, and what 
that vertical relationship enables that would not be possible with direct measurement 
of ties. Throughout this presentation, applications to the study of learning analytics 
are discussed. The methods described in this paper have been applied in numerous 
analyses of data from an online learning environment and from laboratory studies of 
ICT mediated collaboration. At present we are using these techniques in analyses of 
SRI’s Tapped-In teacher professional community [12, 32], a virtual organization that 
hosts many thousands of education professionals annually in more than 8,000 user-
created spaces that include IRC, threaded discussions, shared files and URLs, and 
other tools to support collaborative work.  

3   Process Traces 

Any analysis of interaction begins with a process trace, or record of activity left in the 
environment and accessible to the researcher. Examples include software log data 
(software application or server logs), audio and video recordings, and textual 
transcripts. The analytic hierarchy described herein was originally designed to support 
analysis of both software logs and video recordings, sometimes in conjunction (e.g., 
we have analyzed application logs and screen capture of the same application [25, 
26]). For learning analytic applications and to emphasize the potential for automated 
analysis, this paper focuses on software logs, and does not touch on issues of video 
analysis; see [15, 17] for discussion of such issues.  

The analytic hierarchy is illustrated throughout this paper by building on a 
simplified example taken from one of our online learning community applications, 
disCourse. The disCourse environment provides threaded discussions, wiki pages, 
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resource sharing with searchable metadata, and user profiles, organized in a 
workspace metaphor that collects together tools and resources relevant to a given 
group, such as a class [36]. The lower portion of Figure 1 shows excerpts (edited for 
anonymity and simplicity of presentation) of an http server log1 from disCourse. The 
example in this paper builds on these logs. See [37] for the full text of the example. 

4   Entity-Relations: Domain Model 

Prior to or concurrently with the construction of the event model (next section), it is 
necessary to construct an ontology of the kinds of entities involved in the application 
domain of interest. Classes of entities and potential structural relationships between 
them are defined (e.g., actors, discussions, and messages, related by containment, 
threading and authoring relations). As the trace or log file is processed, new instances 
of entities and their structural relations are added to the domain model when they are 
encountered, along with relevant attributes that are expected to be needed for analysis. 
This is undertaken in conjunction with construction of the event model. For example, 
the right hand side of Figure 1 illustrates a domain model fragment representing how 
messages m1, ... m4 are created by participants P1, P2, P3 (shown by shading), 
related to each other by a threading relation, and contained in a discussion forum. The 

                                                             
1 disCourse logs events in a database. HTTP server logs of the same events are shown in this example to 

illustrate the method using log formats familiar to readers. 

 
Figure 1. From Process Trace to Domain and Event Models 
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content of messages are also recorded in the domain model. Temporal information is 
recorded in the event model, discussed next. 

5   Events: Event Model  

The process trace is transformed into a set of events that constitute an analysis’ first 
commitments concerning the relevant units for analyzing processes. This 
transformation involves the Exploratory Sequential Data Analysis (ESDA) operations 
of chunking and coding [31]. For example, the first three lines of the log of Figure 1 
all are part of the process of posting a message in a system in which each message is 
previewed before posting. These three traces are chunked together and represented as 
the single event w1 in the event model, along with information about the actor (P2, 
indicated by grey), action taken (w for writing), object (message m1), contents and 
location (recorded in the domain model), and temporal scope of the action.  We call 
this layer the event model because the focus is on individual actions and other events 
by nonhuman actants such as software display events. (Actant is Latour’s [22] term 
for non-human entities that yet have agency in networks of associations.) The events 
have not yet been put in relation to each other, other than ordering along a timeline.  

Events may be derived from distinct process traces that come from different media, 
tools or sites, and are recorded in different formats. For example, chat contributions, 
wiki edits, whiteboard edits, file uploads, etc. can be merged into a single event 
stream. (To remain faithful to the case example and avoid complicating the figures, 
this capability is not illustrated in the figures, but it is a simple extension.) A key 
concern is persistence of identity across tools and sites: some work may be required to 
ensure that each given actor is represented by the same identifier in the event model, 
and likewise for the identity of digital objects shared across tools (ideally persistence 
of identity should be addressed in mash-ups for the learners’ sake [20]). Once this has 
been accomplished, the event and domain models taken together provide an abstract 
transcript of the data that re-assembles in one analytic artifact the diverse events that 
were for their actors a single activity. If the transcription is complete with respect to 
the needs of a given analysis, then it is not necessary to retain the original process 
traces. However, we retain pointers to the original process traces because it may not 
be possible to identify all needs in advance. We may need to recover other 
information from the process trace. Also, any transcript includes initial theoretical 
commitments [11, 28], which may turn out to be faulty, necessitating a return to the 
original process traces.  

A number of analyses can be undertaken on the event and domain models without 
further analysis. In our research, this is the level at which we answer basic questions 
about the distribution of activity in the environment: who is participating with whom, 
in what virtual sites or contexts, and involving what literal content. But to analyze 
interaction and uncover ties between actors we must relate events to each other.  
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6   Contingency Graph: Contextualized Action Model 

Contingency graphs are an empirically grounded elaboration of the abstract transcript 
to make analytically relevant relationships between events explicit. We originally 
called these relationships dependencies, but have renamed them contingencies 
because they capture relationships between events that may be merely contingent or 
incidental to the situation, rather than being causal or deterministic. The graph simply 
makes relationships that are latent in the data more explicit, and does not constitute a 
commitment concerning actors’ intentions. Human action can be embedded in its 
context in many ways, including accidental relationships, or opportunistic leveraging 
of contextual and historical features as well as necessary antecedents for action [6, 
22]. Thus, a contingency graph represents how action is embedded in the context of 
other events. Examples of contingency types we have used are listed in Table 2 (not 
intended to be a complete taxonomy). A detailed presentation of the motivations and 
theory behind contingency graphs and their application to interaction analysis may be 
found in [37].  

Construction of a complete graph of the contingencies between events in a process 
trace is not practical, as it would result in a graph with a high “signal” to “noise” ratio 
that is too complex for processing. (Imagine a graph in which each event is linked to 
every one involving the same actor, or the same object, or that has overlap in lexical 
content, or occurred nearby in time, and so on.) An analyst chooses those 
contingencies that are relevant for specific analytic purposes as guided by explicit or 
implicit theory. Therefore a contingency graph reflects further commitments on the 
part of the analyst. However, even though a contingency graph is theoretically 
selective, we always base contingencies on empirically observable relationships 
between events found in the event and domain models, preferably those relationships 
that are unambiguous and can be detected automatically. If this standard of evidence 
is followed, a contingency graph can be treated as an abstract transcript that makes the 
evidence for interaction or other phenomena of interest manifest. 

Table 2. Examples of contingency types 

ek is contingent on ej when … 
Media 
Dependency  

ek operates on a media object or state of that object that was created 
or modified by ej (e.g., reply to a message; editing a shared wiki) 

Same Actor ek and ej were due to acts of the same actor 
Inscriptional 
Similarity 

ek creates inscriptions with visual attributes similar to those of 
inscriptions created by ej 

 ek creates inscriptions with lexical strings identical to those in 
inscriptions created by ej 

Temporal 
Proximity 

ek took place soon after ej, where “soon” depends on the attentional 
properties of the agents and persistency of the medium (e.g., 
proximal messages in chat) 

Spatial 
Organization 

ek operates on inscriptions in a spatial context created by ej (e.g., 
“grouping” a graphical object by placing it near others) 



8 

Contingency graphs can be constructed automatically from the layers below it [see, 
for example, 26]. For example, for each event in which an actor accessed an object we 
might scan back to find the last event in which the object's contents were modified, 
and install a media dependency. Contingencies can also be installed from a given 
event to the most recent prior event involving the actor, to prior events in which the 
actor accessed a media object with similar inscriptions (e.g., lexical phrases or 
graphical devices), or to temporally recent events in the same spatial site. A challenge 
with algorithmic installation of contingencies is limiting their number. Temporal or 
sequential proximity are useful (and computable) heuristics for selecting relevant 
contingent events, as they follow the local continuity of human attention and goal 
directed behavior: what actors do at any given moment is likely to be contingent upon 
their immediately prior act. 

For example, Figure 2 shows the events of Figure 1 with contingencies installed. 
The single arcs represent media dependencies, and the double arcs represent multiple 
contingencies, such as temporal proximity combined with same actor and possibly 
inscriptional similarity. The act of reading a message (r1, r2, etc.) is media-dependent 
on the act of creating the message (w1, w2, etc.). The act of writing a message (e.g., 
w2) may be media-dependent on the act of creating the message to which it is a 
threaded reply (e.g., w1) and is contingent on the messages that the author has 
recently read (e.g., r1).  In this example, the message created by w2 contained a noun-
phrase in common with that created by w1. 

 
Figure 2. Installing Contingencies 
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Once constructed, various kinds of analytic actions are possible on contingency 
graphs. For example, suppose a particularly productive session was identified in 
which participants made significant ideational progress. One option is to examine the 
interaction of the session participants more closely to identify the relationship 
between group processes and their accomplishments, and how participants 
appropriated the interactional affordances of the available media for these purposes. 
We have used the contingency graphs in several studies to support this kind of 
microanalysis of interaction [24, 25, 26, 38]. Recurring patterns of interaction so 
identified could be searched for in the overall contingency graph to find other sessions 
that have similar patterns of activity, to see whether they display similar productivity. 
Such pattern matching techniques are similar to structural equivalence metrics in 
social network analysis, which can be employed once contingency graphs are 
converted into sociograms, as discussed in section 9. Another option is to look outside 
the session to find influences from or to other sessions. One can trace same-actor and 
media-dependency contingencies, following the actors and actants respectively. 
Tracing proceeds forward in time to see whether the new ideas of the session were 
disseminated elsewhere, or backward in time to identify possible predecessors of the 
ideational advance. Such an analysis grounds the concept of brokers in actual 
accomplishments, not relying solely on structural relationships that do not guarantee 
such accomplishments. At this writing we are constructing a contingency graph of 
several years of data from Tapped-In in preparation for application of methods such 
as those just described.  

7   Uptake Graph: Interaction Model  

As discussed above, contingencies are so named because they can include 
circumstantial relationships between acts with varying degrees of relevance to 
interaction. Analytic interpretation is required to identify relationships between events 
that are not merely circumstantial, but reflect intentional acts. An act of uptake is one 
in which an actor takes traces of one or more prior events as having certain 
significance for an ongoing activity [37]. For example, a speaker takes up some aspect 
of the prior speaker’s utterance, or a message poster in a discussion forum can take up 
some aspect of the message being replied to. Uptake is a generalization of all 
interactional relationships used in analysis, such as comment, reply, elaboration. It 
includes these relationships, but also applies to spatio-temporally distributed 
associations between actors in which they may not even be aware of each other, let 
alone be directing their actions towards each other, such as tagging, downloading, etc. 
Therefore, uptake is more general than transactivity [5], which requires other-
directedness. Uptake is an appropriate generalized unit of interaction in networked 
learning environments, where individuals may benefit from each others’ presence 
without conversing directly. The essential idea is that the trace an actor's actions have 
left in the environment (e.g., chat contribution, discussion posting, uploaded file, 
profile, recommendation) is taken up by another actor in some manner. Uptake of 
traces can result in stigmergic effects, i.e., implicit distributed coordination of 
collective action [30]. Illuminating these stigmergic effects reveals the contingencies 
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by which an individual’s actions are connected to information, actions, and resources 
from sources that may otherwise not be known to that individual, even if embedded 
within one’s known social network. 

An uptake graph is an interaction model, as it describes the interaction that the 
analysis claims is taking place. Although all analytic artifacts from process traces on 
up involve theoretical decisions, the move from contingency graphs to uptake graphs 
is a move from primarily empirically accountable representations to those more 
strongly determined by analytic interpretations. Representationally, an uptake relation 
is a subgraph of contingencies, as illustrated in Figure 3. An analyst collects 
contingencies that are considered to be analytically meaningful: a number of 
contingencies between two or more acts may corroborate the interpretation that the 
final act is an intentional taking up of traces of the prior ones. For example, w2, in 
which P1 posts a reply to the message posted by P2 in w1, is contingent on w1 in 
these ways: there is a media dependency (m2 is linked by threading to m1); lexical 
overlap (m2 contains phrases also found in m1); and a chain of temporal proximity 
(w2 took place shortly after read event r1 by the same actor, and r1 is media-
dependent on w1 by virtue of reading m1). All of these contingencies are taken as 
evidence for an intentional relationship of w2 to w1, and collapsed into one uptake 
arc. Because of this relationship between contingencies and uptake, an uptake graph 
may be seen as an abstraction of a contingency graph, and many of the same analytic 
moves (such as pattern matching and tracing actions) apply to both.  

 
Figure 3. From Contingency to Uptake Graphs 
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Contingency and uptake graphs are described more fully in [37]. We have used 
contingency and uptake graphs to provide interactional accounts of specific 
accomplishments of participants [24, 25], to trace out information sharing [40], and to 
detect roles of participants not visible in the final media trace [38]. For example, 
examining only reply structure (the threading relationship between messages in 
Figure 1) we might miss the fact that m4 played an integrative role in this discussion. 
The uptake graph of Figure 3 makes this integration explicit as a structure of uptake 
converging on w4. Integrative or convergent acts are important to group learning 
processes such as intersubjective meaning making [35] and community knowledge 
building [16].  

Contingency and uptake graphs represent process models: they focus on how acts 
relate to each other and constitute a process of interaction. Their basic unit is acts and 
other events: the actors and entities through which interaction takes place are 
attributes of these events. Now we turn to an alternative derived representation that 
makes these actors and entities explicit, rather than the events.   

8   Associograms: Mediation Model 

In the study of socio-technical networks, we are interested in how the technological 
infrastructure enables and is utilized by the social actors to interact with each other. 
The next layer of the analytic hierarchy makes the objects of this technological 
infrastructure explicit and shows how they mediate interaction between participants. 
Analysis at this layer provides the mediation model, and is represented by multi-
modal bipartite graphs in which participants are related to each other via the objects 
through which they interact. We call these graphs associograms to distinguish them 
from sociograms in a manner that honors Latour's [22] concept of mediated 
associations that assemble a social system. Associograms are multimodal because 
there may be two or more types of nodes—actors and the various types of media 
through which they interact—and they are bipartite because they are divided into two 
partitions: actors in one partition and the various types of media objects in the other. 
Directed arcs represent state-influence (a weaker form of state-dependency): they 
extend from an object to an actor if the state of the object is influenced by some action 
of the actor (e.g., writing a message or editing a wiki), and from the actor to the object 
if the state of the actor has been influenced by accessing the object (e.g., reading a 
message or wiki)  

One can construct associograms from a set of events, whether taken directly from 
the event model, or events of interest that were selected from the contextualized 
action or interaction models  (contingency graphs or uptake graphs, respectively). A 
node in any of these models represents an event, and actors and objects are attributes 
of the node. This is largely reversed in an associogram: actors and objects are nodes, 
and events are links between nodes. For example, in Figure 4, w1—the event of P2 
writing m1—becomes a directed association from m1 to P2 (m1’s state depends on 
P1), and r1—the event of P1 reading m1—becomes a directed association from P1 
to m1. 
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An associogram can be constructed at different granularities. Object nodes could 
be created for each individual object (e.g., one node for each message, wiki page, 
chat, etc., as in Figure 4), or they could be aggregated for object types (e.g., all 
associations via messages aggregated into a single node, those via wikis in another, 
etc.) in order to characterize how interaction is distributed across types of media. 
Some information is lost in either case: all the events involving an actor and an object 
will fall into the same two nodes and links between them. For example, if P1 reads 
m1 multiple times there is still only one link from P1 to m1, and if P2 edits a wiki 
multiple times, there is still one link from the wiki to P2. Some of this information 
can be preserved by weighting the links with number of occurrences, or by putting 
backpointers to the originating event nodes. Temporal sequencing is mostly lost, 
though it can be recovered by following these backpointers to the contingency graph. 
This information reduction is actually an advantage of associograms: they reduce the 
clutter of interaction models to expose recurring patterns of mediation. An example is 
given next. 

 
Figure 4. From Events to Associogram 
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8.1   Finding Interaction Patterns  

Associograms can help expose patterns of interest in contingency or uptake graphs. 
For example, consider the question of finding which participants are in dialogue with 
each other. Dialogue is clearly a prerequisite for learning through argumentation, 
intersubjective meaning-making and group cognition [3, 33, 35]. A key indicator of 
the presence of dialogue is what we call a round trip: one participant makes a 
contribution that is accessed by another participant who then makes a contingent 
contribution (evidencing uptake) that the first participant then accesses [40]. In a 
contingency graph one would need to trace out many paths from each participant to 
find paths that go to another participant via a read and then a write and then back to 
the first participant. In an associogram one need only find cycles in the graph. If the 
links are weighted with frequency counts, the minimum weight of the path is taken as 
a measure of extent of dialogue. For example, in Figure 4 there is a cycle  (following 
the arrows in reverse to trace chronology rather than dependency) 
P2←m1←P1←m2←P2. This corresponds to the round trip in which P2 posts m1, 
P1 reads it and posts m2 in reply and P2 reads m2, completing the round trip. Note 
that P2 need not post a reply to m2 to complete the round trip: an analysis that looks 
only at the threading structure of posted messages and does not include read events 
would miss this round trip.  

8.2   Characterizing Mediation  

Degree and path analysis of an associogram can reveal the roles different media play 
in a socio-technical network. Media objects or media types (in an aggregate 
associogram) that have high in-degree are accessed by many actors, and hence may be 
influential sites where an educational intervention can reach many participants in a 
socio-technical network. Those with high out-degree are modified by many actors, 
and hence may be sites where ideas are aggregated or consolidated (potential roles as 
community memory, or locus of knowledge building). In a weighted associogram, 
heavily weighted links indicate that actors visit the incident objects repeatedly. These 
measures may be compared between different media types to assess their relative 
roles. Additional roles can be identified, such as liaison roles, where the media object 
or type connects other objects or actors that would not otherwise be reachable. For 
example, we have used associograms constructed from bridging events to assess the 
roles of different media (discussions, wikis, resources and profiles) in mediating 
bridging in a socio-technical network [36].  

8.3   Characterizing Mediated Relationships 

Associograms summarize how objects directionally mediate the interaction between 
any given two people. The subgraph of all paths of length two (direct mediation) 
between two persons can be used in at least two ways to characterize the relationships 
between those persons as mediated by the socio-technical network. First, we can 
recognize defined patterns, two of which are shown in Figure 5. Second, profiles of 
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mediated interaction between any two people can be 
represented as vectors of the weights on paths of 
different types and directions (e.g., P1 to P2 via 
discussions, P2 to P1 via discussions, P1 to P2 via 
wikis, etc.). Cluster analysis of these vectors can 
reveal recurring types of relationships. These 
approaches are currently being investigated in a 
dissertation by Kar-Hai Chu, under the authors’ 
direction.  

9   Sociograms: Tie Model  

Finally, we briefly note that associograms can be 
transformed to conventional sociograms by transitive 
closure of the paths between actors, or by other computations that interpret patterns of 
mediated associations as ties. As shown in Figure 6, this results in a directed graph or 
an asymmetric matrix representing the ties between actors. Well established methods 
of social network analysis (SNA) can then be applied [41], but with advantages that 
would not be realized if one had merely constructed sociograms directly from source 
data (e.g., surveys about ties). A tie in a sociogram or sociomatrix is really shorthand 
for a complex network of multi-mediated interactions that develop over time. If 
suitable back-pointers to prior representations (the associograms and, via them, the 
contingency graph) are maintained, then results obtained via network analysis of ties 
can then be interpreted and understood by expanding back to the mediation and 
interaction models underlying those ties.  

In fact, bidirectional construction and deconstruction of ties was one motivation for 
the development of this analytic hierarchy. We wanted to leverage the power of SNA 
for describing patterns of relationships between actors in terms of the structural 
positions they occupy in relational networks, but wanted to retain the complex and 
artifact-mediated interactions that ties summarize. In classic SNA research, ties are 
identified through manual techniques such as interviews or questionnaires, eliciting 
subjective perceptions of relatedness to others. Some computer-mediated 
environments allow for a more automated data collection, such as email networks, but 
those generally represent explicit, intentional communication. Online environments, 
through activity logging, offer the potential of automatically computing ties from 
traces of behavior, but they log actions rather than relationships. Therefore, methods 
to convert activity and interaction into ties are of value. These traces may not reflect 
subjective perceptions of relationships between persons, but have the advantage that 
this conversion can be automated. The analytic hierarchy supports such an automated 
translation from activity logs to mediated interaction and ultimately ties to which 
SNA methods can be applied. But the value of the analytic hierarchy does not only lie 
in automating the gathering of tie data for SNA. Analysis and interpretation can go in 
the other way as well. Once analytic results are reached using summary 
representations of ties—or using bipartite representations of artifact-mediated 

 
Figure 5. Pairwise Associations 
(Relationship Model) 
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relationships—these results can be interpreted by unpacking the binary ties back into 
the interactional sequence that they summarize.  

Part of the unique power of social network analysis is in the ability to 
operationalize systemic processes, providing a window into social systems that is 
otherwise difficult to gain. Taking a systemic approach to learning frames the learning 
process as a group of individuals that, when interacting with each other, or artifacts of 
interactive activity, create a whole greater than any isolated individual [9]. If we are 
to analytically study learning processes it is helpful to have frameworks for analysis 
that can trace the patterns of interaction generated from learning processes, and 
harness the information available from the structure revealed by those patterns. The 
framework presented above provides a missing piece in the analytic ability to extract 
structural indicators (traces) of activity, both intentionally (e.g. discussion board 
posts), and unintentionally cast off (e.g. accessing a digital artifact), from individuals 
interacting and learning in mediated environments. 

10   Discussion 

10.1   Status 

The framework discussed in this paper has been used extensively in our research 
through mixtures of manual and ad-hoc automated analysis, leading to 
implementation of a principled analytic software toolkit. Research in our own 
laboratory is diverse: we study technology-mediated interaction ranging from dyads 
to online communities, and our methods draw on experimental, conversation-analytic 
and network analytic traditions. We developed the framework to make distributed 

 
Figure 6. From Associogram to Sociogram 



16 

interaction visible, but also as a means of coordinating the various strands of our own 
work. Initially we developed contingency and uptake graphs through extensive use in 
manual analyses [24, 38]. Then we implemented software tools for constructing 
contingency graphs automatically from log files and developed rudimentary analytic 
tools that leverage these representations [25, 26]; and we have used associograms in 
ad-hoc computational analyses [36]. More recently we developed a comprehensive 
“Traces” analytic toolkit that is implemented in Java with Hibernate persistence and is 
applicable to a variety of socio-technical networks. The Traces design includes: (1) an 
Entity-Event-Contingency (EEC) core, supporting the fundamental classes of Entity, 
Event, and Contingency; and classes that are likely to be common to all analyses (e.g., 
specializations of Entity into ArtifactBase, ActorBase and IdeaBase abstract classes); 
(2) an Analytic Core layer, including classes for Uptake, various types of 
Contingencies, and Composites (CompositeEntity, e.g., discussion forums; 
CompositeEvent, e.g., chat sessions; and CompositeContingency, used to represent 
uptake); (3) a Domain Core, with common domain objects such as Chat and 
Contribution, Discussion and Message, etc. These cores are extended for application 
to specific data sources such as Tapped-In, using (4) data source specific extensions 
to the Domain Core such as Calendar Events (these may migrate to the core if they 
are found to be useful across systems, and (5) classes that map the data source 
databases and logs to the above.  Presently the Traces toolkit does not include 
associograms: our analyses at the levels of mediation and tie models are handled by 
exporting to other tools available for the task at hand (e.g., Jung and UCINet). We 
have imported two years of data from Tapped-In, and are conducting analyses to be 
reported in future publications.  

10.2   Multi-Level Analysis and Theoretical Multivocality  

Although this paper outlines how the analytic hierarchy is constructed as one goes 
from log data to more abstract representations of action, interaction, mediation and 
tie, it should be emphasized that the analytic hierarchy is not just a data interpretation 
framework. It is also intended to be a structural framework for connecting theorizing 
at different levels. Developmentally, the framework arose out of our own need to 
reconcile our research on small group interaction in computer supported collaborative 
learning and online learning contexts with our emerging research on online 
communities. It was clear that studies of communication networks, and social network 
analysis in particular, had something to offer, but the “ties” of such analyses seemed 
to hide away the very processes we were interested in: the interaction and how it was 
influenced by and appropriated the media we were designing. Therefore we 
constructed the framework as an explicit bridge between analyses of local interaction 
and of larger social phenomena, with the expectation that it would also guide our 
bridging between theoretical explanations at these different levels.  

This work is sympathetic to calls by Contractor and colleagues [7, 27] for multi-
theoretical and multi-level (MTML) analyses and models of communication 
networks, but is based on a different conception of layering than MTML. The MTML 
approach calls for examining (1) the properties of individual nodes (incorporating 
attributed-based data); (2) properties of the network under consideration (including 
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dyadic, triadic and global properties); and (3) relationships of this network to other 
relations over the same network constituents or the same relations as they change over 
time. These levels change the granularity or scope of analysis, but stay within an 
ontology of structural relations between a set of network constituents. Our 
hierarchical approach adds a more “vertical” dimension, changing the ontology 
between layers, from relationships between observed events, to mediated associations, 
to direct ties between actors. 

Marin & Wellman [23] contrast attribute based explanations, which explain 
behavior in terms of attributes of individuals, with the network analysis' position “that 
causation is not located in the individual, but in the social structure.” Similarity of 
attributes is explained by similarity of network positions, due to the similar 
“constraints, opportunities and perceptions created by these similar network 
positions.” We agree with their critique of attribute-based explanations but wish to 
avoid the opposite oversimplification: individuals’ similarities do not arise merely out 
of static structures piping influences into the individuals from without. A range of 
thinkers, including Garfinkel [13], Blumer [6] and Latour [22] have argued (each in 
their own way) that social regularities are constructed and sustained through 
interaction between actors (whether strictly local interaction, as for Garfinkel, or 
potentially mediated across time and space, as for Latour). To fully understand social 
systems we must examine interaction. Colleagues2 have offered the analogy that 
ethnomethodological interaction is the quantum mechanics of social science. We can 
ignore it when explaining social life at a Newtonian level, but to really understand the 
origins of the social world we must dive in and find how fluctuations in micro-
phenomena can have an influence on larger scale change. Latour [22] has made a 
similar observation in claiming that the “sociology of the social” may seem adequate 
for explanation of stable states of affairs, but Actor-Network Theory’s “sociology of 
associations” is needed to understand rapidly changing networks. 

Our position is that network structures are relevant because of how they support 
interaction. The network structure is not enough: to explain the origins of social life 
we must understand the nature of the communication or interaction that takes place. 
In socio-technical networks, this includes understanding how that interaction is 
embedded in and exploits the resources of technological infrastructures; i.e., how it is 
mediated. The present work offers a conceptualization of how to map between these 
different levels of theory and analysis, viz., structure, mediation, and interaction; and 
also provides specific representations for supporting analytic work with 
computational tools.  

In addition to providing a unified analytic artifact and supporting multiple levels of 
analysis, a third concern has motivated the work reported here. Researchers from 
multiple theoretical and analytic traditions are studying distributed and networked 
learning, virtual organizations, and similar socio-technical networks. This diversity 
can mean balkanization, or it can be a strength. A single integrated discipline of 
Learning Analytics may not be possible or even desirable, but there must be some 
basis for dialogue and coordination between the traditions. Shared instruments and 
representations mediate the daily work of scientific discourse [21], and advances in 

                                                             
2 Ravi Vatrapu, personal communication, July 28, 2007; David Sallach , personal communication, May 23, 

2010 
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scientific disciplines are sometimes accompanied with representational advances. 
Similarly, researchers studying socio-technical networks could benefit from shared 
ways of conceptualizing and representing distributed interaction, or at least from 
boundary objects [34] that make discourse between multiple analytic traditions 
possible. We offer this framework as a potential basis productive discourse among 
multiple analytic voices [39] in the study of socio-technical networks such as 
networked learning by enabling the development of shared conceptualizations, 
representations, and tools at a given level of analysis and supporting bridging between 
different levels of analysis. 
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