
Managing Fieldwork Data with Toolbox and the
Natural Language Toolkit

Stuart Robinson,* Greg Aumann†, Steven Bird+

*Powerset Inc.
†SIL International

+University of Melbourne

This paper shows how fieldwork data can be managed using the program Toolbox together
with the Natural Language Toolkit (NLTK) for the Python programming language. It
provides background information about Toolbox and describes how it can be downloaded
and installed. The basic functionality of the program for lexicons and texts is described, and
its strengths and weaknesses are reviewed. Its underlying data format is briefly discussed,
and Toolbox processing capabilities of NLTK are introduced, showing ways in which it can
be used to extend the functionality of Toolbox. This is illustrated with a few simple scripts
that demonstrate basic data management tasks relevant to language documentation, such as
printing out the contents of a lexicon as HTML.

1. BACKGROUND. One of the oldest and best known software tools for field linguistics
is Shoebox, a program produced by SIL International (formerly the Summer Institute of
Linguistics) that provides linguists with the ability to maintain a lexicon and use it to
interlinear gloss texts within an integrated environment. The description of the program
provided on the Shoebox homepage (http://www.sil.org/computing/shoebox/) explains its
purpose and the motivation for its name:

Shoebox is a computer program that helps field linguists and anthropologists
integrate various kinds of text data: lexical, cultural, grammatical, etc. It
has flexible options for sorting, selecting, and displaying data. It is especially
useful for helping researchers build a dictionary as they use it to analyze and
interlinearize text. The name Shoebox recalls the use of shoe boxes to hold note
cards on which definitions of words were written in the days before researchers
could use computers in the field.

In 2003 the program was re-released with a new name, Toolbox. Toolbox is fundamentally
the same as Shoebox, to the extent that it uses the same basic data format and user interface,
but Toolbox differs from its predecessor Shoebox in two important respects. First, Toolbox
continues to be developed, although it is not officially supported. (Development of Shoebox
has stopped, as has support for it, and users of the program should upgrade to Toolbox.)
Second, Toolbox provides a number of useful new features, such as the ability to export
data in XML format and support for Unicode data storage.

2. DOwNLOADiNG AND iNsTALLiNG TOOLBOx. Toolbox is freeware and can be
downloaded from the Toolbox homepage (http://www.sil.org/computing/toolbox/). As
noted there, the program runs only on Windows. For users of other operating systems, the
only option is to run the program using a Windows emulator. This option works fairly well,

Vol. 1, No. 1 (June 2007), pp. 44–57
 http://nflrc.hawaii.edu/ldc/

Licensed under Creative Commons
Attribution Non-Commercial Share Alike License E-ISSN 1934-5275

http://www.sil.org/computing/shoebox/
http://www.sil.org/computing/toolbox/

thanks to the advanced state of many Windows emulation programs, and more information
about installing Toolbox on Linux and MacOSX can be found on the Toolbox download
homepage.1

The installation of Toolbox is fairly straightforward, particularly for Windows. The
biggest challenge is the initial setup of a project. Although it is possible to do this from
scratch by carefully following the documentation, a better approach is to start with a sample
project and modify it for one’s own purposes. Changes can then be introduced gradually
and incrementally. It is a good idea to back up the current version of a project before
modifying it, since this will ensure that there is a working version to fall back on in the
event that the changes introduce problems that cannot readily be fixed.

For a sample project, there are two options: the ones included with the Toolbox
installation package or those from the MDF project (http://www.sil.org/computing/
toolbox/ToolboxMDFFields.zip). The benefit of using the latter is that it simplifies data
export as well as interactions with other SIL software, such as LexiquePro (http://www.
lexiquepro.com/). It will also make it easier to upgrade to the next generation of SIL
linguistic software.

3. TOOLBOx BAsiCs. A full overview of what Toolbox has to offer can be found in the
documentation that comes with the program. Here we will cover the highlights using
screenshots from the authors’ own Toolbox projects. We will start by looking at how
lexicons are managed in Toolbox.

In Toolbox, a lexicon consists of a collection of entries, each with a varying number
of user-defined data fields. The main lexicon window shows the entries of a lexicon in
alphabetical order. The following screenshot shows the browsing window for a lexicon of
the Central dialect of Rotokas, a Papuan language spoken in Bougainville (Firchow 1987,
Robinson 2006):

1 The first author runs Toolbox on Red Hat Linux (http://www.redhat.com/) using WINE (http://
www.winehq.com/), the second on Ubuntu Linux (http://www.ubuntu.com/) using VMware (http://
www.vmware.com/products/player/), and the third on Mac OSX (http://www.apple.com/macosx/)
using Parallels (http://www.parallels.com/).

Managing Fieldwork Data with Toolbox 45

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

FIgurE 1: Browsing a Toolbox lexicon

http://www.sil.org/computing/toolbox/ToolboxMDFFields.zip
http://www.sil.org/computing/toolbox/ToolboxMDFFields.zip
http://www.lexiquepro.com/
http://www.lexiquepro.com/
http://www.redhat.com/
http://www.winehq.com/
http://www.winehq.com/
http://www.ubuntu.com/
http://www.vmware.com/products/player/
http://www.vmware.com/products/player/
http://www.apple.com/macosx/
http://www.parallels.com/

By default, only the main lexeme field is displayed, but others can be added to the
display, as in the screenshot, where each lexeme is displayed with its part-of-speech field.
By double-clicking on a single entry, its full contents can be displayed, as shown below for
the entry aako (a noun that means “mother”).

FIgurE 2: Browsing the entries in a Toolbox lexicon

The entry consists of a number of different fields of information: the lexeme for the
entry, aako; its part of speech, “N”; its part of speech subtype, “FEM” (Feminine); its
English gloss (used for interlinear glossing), “mother” or “aunt”; its gloss in Tok Pisin (the
lingua franca of Papua New Guinea), “mama”; notes concerning the entry, “Mo/FaBrWi”
(the kinship relations covered by the term—that is, “Mother” and “Father’s Brother’s
Wife”); its semantic field, “KIN”; the date last edited, “29/Apr/2007”, and an example
sentence consisting of three fields: the original Rotokas, the English translation, and the
Tok Pisin translation.

In the default display shown above, the program displays the data for an entry in two
columns: on the left are the field markers, and on the right are the field values. (Note that
the hierarchical relationship between fields is also shown: “xe” and “xp” are children of
“xe” and all other fields are children of “lx”.) Alternate views of the data are possible.
For example, below we find the same data displayed with additional information: the
field markers are accompanied by their description on the left, while the field values are
displayed in their usual location on the right:

Managing Fieldwork Data with Toolbox 46

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

FIgurE 3: An entry in a Toolbox lexicon

Toolbox provides more fine-grained control over the contents of the fields in an entry,
allowing the values of a field to be restricted in various ways. In the “Database” menu,
under “Properties”, various properties of a field can be defined. Below we see the default
tab displayed when the marker properties for the “ps” field is selected:

FIgurE 4: Another view of an entry in a Toolbox lexicon

Managing Fieldwork Data with Toolbox 47

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

If the “Data Properties” tab is selected, we see that a value for the field is not required
(empty field contents are allowed), but is restricted to a single word (no spaces allowed):

FIgurE 5: Data properties for a field in a Toolbox lexicon

In the “Range Set” tab of the same “Marker Properties” window, we see that the values
for the “ps” field are restricted to a fixed set of options:

FIgurE 6: The range set for a field in a Toolbox lexicon

Managing Fieldwork Data with Toolbox 48

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

One of the advantages of storing a lexicon in Toolbox is that it can also be used to
create interlinear glossed texts, which break down each line of a text into numerous tiers of
analysis (see Bow, Hughes, and Bird 2003 for a general model of interlinear glossed text),
as illustrated for a Rotokas folk tale recorded by Irwin Firchow (a missionary linguist who
first described the language) (Firchow 1974):

FIgurE 7: A Toolbox interlinear glossed text

Each line in the text consists of multiple user-defined fields (sometimes called
“tiers”): the raw line, a morpheme-by-morpheme breakdown of the line, the gloss for each
morpheme, the part of speech for each morpheme, the Tok Pisin gloss, and the English
gloss. Toolbox has a built-in morphological parser that automatically interlinearizes a line
of text by parsing words into morphemes and looking them up in the lexicon to populate
each field in the interlinear gloss. For example, in the Rotokas text shown above, the “m”
field in the text comes from the “lx” field of the lexicon and the “g” tier comes from
the “ge” field of the lexicon. When there is ambiguity in the morphemic analysis, the
program prompts the user to disambiguate, as illustrated below, where various options for
the analysis of the morpheme -pa from the fourth line of the Rotokas text are presented:

Managing Fieldwork Data with Toolbox 49

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

FIgurE 8: Morpheme disambiguation during the parsing of a word in a Toolbox
interlinear glossed text

4. The sTReNGThs AND weAKNesses OF TOOLBOx. Toolbox is a mature program
that is very full-featured. It handles many of the tasks performed by the everyday working
linguist, such as searching for entries, constraining how they can be edited, tracking when
changes are made by automatically updating a timestamp field, analyzing texts by breaking
down the words into morphemes and looking them up in the lexicon, etc. It has a fairly
large user base, including a mailing list for the discussion of Toolbox-related issues (http://
groups.google.com/group/ShoeboxToolbox-Field-Linguists-Toolbox), where questions
about the program can be posted.

Two major strengths of the program are that:

• Its data format is very flexible. It is possible to use Toolbox to store all kinds
of data that the developers never envisioned. It is therefore easy to incorporate
idiosyncratic features of any language into a lexicon.

• All data and metadata are stored in text files that use a relatively simple-to-
understand format. This means that it is easy to write external software that
reads and even modifies these files to extend the built-in functionality of
Toolbox.

Despite the above-mentioned strengths of the program and its general popularity,
Toolbox still has a few limitations that are worth pointing out, such as the following:

• The initial set-up of a project is not straightforward, and many linguists find it

Managing Fieldwork Data with Toolbox 50

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

http://groups.google.com/group/ShoeboxToolbox-Field-Linguists-Toolbox
http://groups.google.com/group/ShoeboxToolbox-Field-Linguists-Toolbox

daunting. This is particularly true with sorting and interlinearization. There is a
need for a set-up wizard that would guide a user through the creation of a new
project.

• One of the most commonly voiced complaints about Toolbox concerns the
integration of the lexicon and interlinear glossed texts. When the lexicon is
revised, those changes do not propagate back to the previously glossed texts,
and the mechanism for updating an outdated text from a revised lexicon is not
foolproof.

• Support for the enforcement of data consistency is weak. For example, the range
sets discussed above are only applied to individual entries when they are saved
(i.e., when they are created or edited). If changes are made to the range set, they
are not automatically applied to all entries.

• There is no macro language to automate common operations.

Although the functionality of Toolbox will be increased over time, and future versions
may provide additional features that current versions lack, there will always be tasks that
were not envisioned by its designers or that are too specific to a particular audience to
warrant the investment of time required to add them to the program. For this reason, it
is useful to be able to write custom programs that manipulate the contents of a Toolbox
lexicon or text.

It is relatively easy to parse a Toolbox data file and extract its contents using a scripting
language with good string-processing capabilities, such as Perl (http://www.perl.com/),
Python (http://www.python.org/), or Ruby (http://www.ruby-lang.org/). Although one
could write custom code to manipulate Shoebox data, it is much easier to use an existing
code library that provides that ability. Libraries of this sort can be found for at least two
popular scripting languages, Perl and Python. For Perl, Sean M. Burke has developed a
module for processing Toolbox data, which is described in Making Dictionaries with Perl
(http://www.perl.com/pub/a/2004/03/25/dictionaries.html), and Martin Hosken has written
a number of Shoebox utilities (http://scripts.sil.org/SHUtils-manual).

For Python, the authors have developed a module for processing Toolbox data, which is
distributed as part of a larger suite of tools known as the Natural Language Toolkit (NLTK).
In the following section, we will describe NLTK and provide a brief introduction to its
Toolbox processing capabilities.

5. PROCessiNG TOOLBOx DATA wiTh The NATURAL LANGUAGe TOOLKiT. The
Natural Language Toolkit (NLTK) (http://nltk.org) is a comprehensive set of tools for
natural language processing. It is written in the programming language Python and includes
tools for a variety of tasks, including tagging, chunking, and parsing (Loper and Bird 2002,
2004). Here we will concentrate on only one component, the module nltk.corpus.toolbox,
which provides tools for processing Toolbox data. (More information about what NLTK
has to offer can be found on the hompage. Since the project is pedagogically-oriented, the
documentation includes numerous tutorials and exercises.)

On the installation page (accessible from the homepage), there is information about
how to install and run NLTK on various operating systems (Windows, MacOS, Linux).

Managing Fieldwork Data with Toolbox 51

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

http://www.perl.com/
http://www.python.org/
http://www.ruby-lang.org/
http://www.perl.com/pub/a/2004/03/25/dictionaries.html
http://scripts.sil.org/SHUtils-manual
http://nltk.org

Once NLTK has been installed, it can be tested using Python’s interactive mode (which
allows Python code to be typed directly and the results obtained immediately, in the style
of a calculator). This is illustrated below in a Unix-style command-line window, where the
main code library is imported for use (if NLTK is not installed, an error will result):

$ python
Python 2.4.3 (#1, Oct 23 2006, 14:19:47)
[GCC 4.1.1 20060525 (Red Hat 4.1.1-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from nltk.corpus import toolbox

>>>

In order to manipulate Toolbox data effectively using NLTK, it is necessary to know at
least the basics of Python programming. A good starting point is python.org (http://www.
python.org/), the official web site for the programming language. There are also a number
of useful books in print (e.g., Lutz and Ascher 2004, Mertz 2003). Here we will illustrate
the workings of NLTK using fairly basic Python constructs so that even readers unfamiliar
with the language can follow the discussion.

5.1 The TOOLBOx DATA FORMAT. Although we have looked mainly at Toolbox data
through the graphical user interface, it is also possible to look at this data in its raw form
using a word processor (e.g., Notepad, MS Word, etc.) or text editor (e.g., vi, emacs, etc.).
The data format used by Toolbox is called “standard format marker” (SFM), a markup
format that predates Shoebox. Although standard format is easy to read and interpret, it is
not as easily parsed as modern mark-up schemes, such as XML, which is easily parsed and
validated using a wide variety of freely available tools. Here is what the sample entry from
the Rotokas lexicon that was illustrated above looks like in its raw form:

\lx aako
\ps N
\pt FEM
\ge mother
\ge aunt
\tkp mama
\nt Mo/FaBrWi
\sf KIN
\dt 29/Apr/2007
\ex Aako avaoe eisire kovoa upiriko erisia.
\xp Mama em i go digim kaukau long gaden.

\xe Mother went to the garden to dig sweet potato.

The entry consists of a number of fields. Each field has two parts: a field marker and
a field value. The field marker is preceded by a backslash and is separated from the field
value by white space. For example, the first field consists of the field marker “lx” with the
field value aako. The same basic markup scheme is used for lexicons and texts. The raw
data that makes up the third line from the text shown above is illustrated below:

\ref 3
\t Uva voa toupaoro ovokivuia
ogoeaepa.
\m uva voa tou -pa -oro o- voki -vu -ia
ogoe -a -epa
\g so here be -CONT -DEP.SIM SPEC- day -ALT -LOC
hungry -3.PL.A -RP.A
\p PART LOC V.B -SUFF.V.2 -SUFF.V.3 PRE.N- N.N -SUFF.N.5 -ENC.N.6
V.A -SUFF.V.A.3 -SUFF.V.A.5

Managing Fieldwork Data with Toolbox 52

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

http://www.python.org/
http://www.python.org/

\fp Na taim ol i stap long dispela ples wanpela de ol i bin hangre.

\fe They were hungry in this place one day.

The information about the nature of the various fields in a lexicon or text (see earlier
screenshots) is not found in the data file itself. Instead, it is found in separate “settings” files
that provide information about the contents of the lexicon and text. (These are sometimes
called metadata files since they contain data about data.) Toolbox uses these files to interpret
the contents of a lexicon. For example, here is the metadata for the part of speech field:

\+mkr ps
\nam Part of Speech
\lng Default
\rngset ??? ADJ ADV CLASS COMP CONN DEM ENC EXCL FFP INFIX INTER LOC N
NUM PART POST PPRO PRE PRO RPRO SUFF V
\SingleWord
\mkrOverThis lx

\-mkr

Note that it describes the range set for the field, which restricts the number of possible
values the field can take. It is therefore unwise to modify them by hand in the absence of
expert information about their contents. A detailed discussion of the format and contents
of these files goes beyond the scope of this introduction to Toolbox, but fortunately there
is a good deal that can be done with the raw lexicon file without having to worry about
metadata.

5.2 PARsiNG AND MANiPULATiNG TOOLBOx DATA. NLTK provides tools for parsing
and manipulating Toolbox lexicons and texts. Here we will concentrate on a method of
parsing a lexicon into a tree structure using the ElementTree module, which has become
the standard Python interface for reading, writing, and manipulating XML (eXtensible
Markup Language) and was added to Python’s standard library as of version 2.5. Since
standard format is a less sophisticated markup language, a standard XML interface for it
makes handling it significantly easier. It also greatly facilitates conversion between standard
format and XML, which is an important consideration, given that a great deal of recently
developed linguistics software uses XML formatted data. (Note that NLTK includes a copy
of the ElementTree code to simplify installation for users of Python versions prior to 2.5.)

The first step in processing a Toolbox lexicon with NLTK is to parse the lexicon file.
To simplify the discussion, we will use the Rotokas lexicon shown above. An excerpt from
that lexicon is available in NLTK as a sample data file called “rotokas.dic”. We can use
the toolbox.parse_corpus() method to access “rotokas.dic” and load it into an ElementTree
object, which is saved as the variable lexicon:

>>> from nltk.corpus import toolbox

>>> lexicon = toolbox.parse_corpus('rotokas.dic')

The contents of the lexicon object can be accessed by indices or by paths. Indices
essentially treat a lexicon as a list of entries, each of which consists of a list of fields.
Individual items in the list can be accessed by number (where counting begins with zero).
Continuing the session from above, the fourth entry from the lexicon can be accessed

Managing Fieldwork Data with Toolbox 53

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

with lexicon[3] and saved as the variable entry. The first field from the entry is accessed
with entry[0] and saved as the variable field. The field has two attributes: “tag” (the field’s
marker) and “text” (the field’s value).

>>> entry = lexicon[3]
>>> field = entry[0]
>>> field.tag
'lx'
>>> field.text
'kaa'

Alternatively, the syntax for nested lists can be used: lexicon[3][0] accesses the first
field of the fourth entry, as illustrated below:

>>> lexicon[3][0]
<Element lx at 77bd28>
>>> lexicon[3][0].tag
'lx'
>>> lexicon[3][0].text
'kaa'

We can iterate over all the fields of a given entry to print out the contents of the
lexicon:

>>> for entry in lexicon :
... for field in entry :

... print "\\lx %s %s" % (field.tag, field.text)

The second way to access the contents of the lexicon object uses paths. The lexicon is
a series of record objects, each containing a series of field objects, such as “lx” and “ps”.
We can conveniently address all of the lexemes using the path “record/lx”. Here we use the
findall() function to search for any matches to the path “record/lx”, and we access the text
content of the element:

>>> for lex in lexicon.findall('record/lx') :

... print lex

Using some of the techniques discussed above, NLTK provides the ability to write
Python scripts that give more fine-grained control over the presentation of data. Although
Toolbox has the built-in capacity for the generation of dictionaries, it is still primarily
oriented towards print dictionaries. However, electronic publication of materials on the
web is increasingly common, and it is therefore useful to be able to take a Toolbox lexicon
and format it as HTML for web display. For example, an entry might be formatted as
HTML in the style of a dictionary, as follows:

<p>aako n. "mother, aunt"</p>

Producing such HTML code automatically from a Toolbox lexicon is fairly
straightforward using NLTK. The following sample script will print out the contents of
the Rotokas dictionary in tabular format. That is, the output will be HTML consisting of a
table in which each entry is a row with three columns: the lexeme, its part of speech, and
its gloss.

from nltk.etree.ElementTree import ElementTree, Element, SubElement,
tostring
from nltk.corpus import toolbox

lexicon = toolbox.parse_corpus('rotokas.dic')

Managing Fieldwork Data with Toolbox 54

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

html = Element("table")
html.text = "\n "
for entry in lexicon[0:10]:
 lx = entry.findtext('lx')
 ps = entry.findtext('ps')
 ge = entry.findtext('ge')
 row = SubElement(html, "tr")
 for ent in (lx, ps, ge):
 ent_elem = SubElement(row, "td")
 ent_elem.text = ent
 row.tail = "\n "
row.tail = "\n"

print tostring(html)

The output of the script is the first 10 entries of the dictionary formatted as HTML
(which can be saved into a file and viewed in a web browser):

<html><body><table>
 <tr><td>kakae</td><td>???</td><td>small</td></tr>
 <tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
 <tr><td>kakaevira</td><td>ADV</td><td>small-like</td></tr>
 <tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
 <tr><td>kakapikoto</td><td>N</td><td>newborn baby</td></tr>
 <tr><td>kakapu</td><td>V</td><td>place in sling for purpose of
carrying</td></tr>
 <tr><td>kakapua</td><td>N</td><td>sling for lifting</td></tr>
 <tr><td>kakara</td><td>N</td><td>arm band</td></tr>
 <tr><td>Kakarapaia</td><td>N</td><td>village name</td></tr>
 <tr><td>kakarau</td><td>N</td><td>frog</td></tr>

</table></body></html>

The advantage of using a Python script to generate HTML code automatically is
that the output formatting can be changed without touching the underlying data format.
Furthermore, a Python script can be custom tailored to a specific data format, which means
that it can be made to work even for lexicons (such as the one for Rotokas) that do not
conform to the MDF standard. For example, entries in the Rotokas dictionary have part
of speech information in two separate fields: “ps” and “pt”. The script above can be easily
modified so that the HTML display produced by it includes both part-of-speech fields,
separated by a dot (e.g., ‘N.FEM’):

from nltk.etree.ElementTree import ElementTree, Element, SubElement,
tostring
from nltk.corpus import toolbox

lexicon = toolbox.parse_corpus(‘rotokas.dic’)

html = Element("html")
body = SubElement(html, "body")
table = SubElement(body, "table")
table.text = "\n "
for entry in lexicon[0:10]:
 lx = entry.findtext('lx')
 ps = entry.findtext('ps')
 pt = entry.findtext('pt')
 if pt :
 ps = “%s.%s” % (ps, pt)
 ge = entry.findtext('ge')
 row = SubElement(table, "tr")
 for ent in (lx, ps, ge):
 ent_elem = SubElement(row, "td")
 ent_elem.text = ent

Managing Fieldwork Data with Toolbox 55

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

 row.tail = "\n "
row.tail = "\n"

print tostring(html)

The output of the script is the first 10 entries of the dictionary formatted as HTML with
full part-of-speech information:

<html><body><table>
 <tr><td>kakae</td><td>???</td><td>small</td></tr>
 <tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
 <tr><td>kakaevira</td><td>ADV.MANNER</td><td>small-like</td></tr>
 <tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
 <tr><td>kakapikoto</td><td>N.HUM</td><td>newborn baby</td></tr>
 <tr><td>kakapu</td><td>V.B</td><td>place in sling for purpose of
carrying</td></tr>
 <tr><td>kakapua</td><td>N.NT</td><td>sling for lifting</td></tr>
 <tr><td>kakara</td><td>N.NT</td><td>arm band</td></tr>
 <tr><td>Kakarapaia</td><td>N.PN</td><td>village name</td></tr>
 <tr><td>kakarau</td><td>N.FEM</td><td>frog</td></tr>

</table></body></html>

We have provided only a very brief introduction to the Toolbox processing capabilities
of NLTK, concentrating on the processing of lexicons rather than texts. For a more in-
depth tutorial, consult the chapter Accessing and Analyzing Linguistic Field Data from
the forthcoming book Natural language processing in Python (Bird et al. 2007). There is a
mailing list for NLTK users, where general questions can be posted: nltk-devel.

6. CONCLUsiON. As the publication of primary materials on the web becomes more
commonplace, it is necessary for field linguists to organize their materials in such a way
that they can be easily processed and shared with other researchers. This is especially
important for research on endangered languages, since the materials gathered may represent
the only record of a language before it ceases to be spoken. Toolbox is an excellent tool
for this purpose. It provides an integrated workspace for the development and maintenance
of lexicons and texts. On balance, its strengths outweigh its limitations, especially for
researchers who have a basic command of a scripting language such as Python, which
together with NLTK can be used to extend its functionality.

Managing Fieldwork Data with Toolbox 56

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

RefeRences

BIrD, StEvEN, EwaN KLEIN, and EDwarD LopEr. 2007. Natural language processing in
Python. http://nltk.org/.

BIrD, StEvEN, and gary SImoNS. 2003. Seven dimensions of portability for language
documentation and description. Language 79(3):557–82.

Bow, cathErINE, BaDEN hughES, and StEvEN BIrD. 2003. Towards a general model of
interlinear text. In Proceedings of the EMELD Conference 2003: Digitizing and
annotating texts and field recordings. http://linguistlist.org/emeld/workshop/2003/
proceedings03.html.

FIrchow, IrwIN B. 1974. Rotokas songs. Ukarumpa: Summer Institute of Linguistics.
FIrchow, IrwIN B. 1987. Form and function of Rotokas words. Language and Linguistics

in Melanesia 15:5–111.
mErtz, DavID. 2003. Text processing in Python. Reading, MA: Addison-Wesley.
LopEr, EDwarD, and StEvEN BIrD. 2002. NLTK: The Natural Language Toolkit. In

Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics. Philadelphia, July
2002, Association for Computational Linguistics. http://arxiv.org/abs/cs/0205028.

LopEr, EDwarD, and StEvEN BIrD. 2004. NLTK: The Natural Language Toolkit. In
Proceedings of the ACL Demonstration Session, Barcelona, July 2004. http://www.
ldc.upenn.edu/sb/home/papers/nltk.pdf.

Lutz, marK, and DavID aSchEr. 2004. Learning Python. Sebastopol, CA: O’Reilly Press.
roBINSoN, Stuart. 2006. The phoneme inventory of the Aita dialect of Rotokas. Oceanic

Linguistics 45(1):206–9.

Stuart Robinson
stuart@zapata.org

Greg Aumann
greg_aumann@sil.org

Steven Bird
 sb@csse.unimelb.edu.au

Managing Fieldwork Data with Toolbox 57

LaNguagE DocumENtatIoN & coNSErvatIoN voL. 1, No. 1 JuNE 2007

