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Abstract
Small-scale oceanic motions are expected to contain both gravity waves and vor­

tical motion. The vortical motion carries the perturbation potential vorticity of the

system. Using eigenvectors of the linear equations of motion, the gravity mode and

the vortical mode are defined. The vortical mode carries the linear perturbation po­

tential vorticity and is horizontally nondivergent, whereas the gravity mode does not

carry the linear perturbation potential vorticity. In an unforced, inviscid, linearized

system, the gravity mode reduces to free linear gravity waves and the vortical mode

to a steady geostrophic flow.

An attempt to separate oceanic measurements into the gravity and vortical modes

can be conveniently made using fields of horizontal divergence H D, vortex stretching

VB, and relative vorticity RV. Spectra of HD, VB, and RV are estimated using

measurements of horizontal velocity and temperature from IWEX. Frequency spec­

tral estimates of area-averaged horizontal divergence H D and relative vorticity RV

represent the result of both attenuation and contamination horizontal wavenumber

array response functions. The attenuation array response function describes the un­

resolvable nature of small-scale fluctuations of HD and RV, and the contamination

array response function describes the contamination between H D and RV. These two

potential problems inhibit the estimation of fluctuations of H D and RV separately.

Observed frequency spectra of H D are well represented by the GM-76 model

(Cairns and Williams, 1976), whereas significant disagreements are found between

spectral estimates of RV and the GM model at small horizontal scales. Frequency

spectra of H D and RV of the GM model are very sensitive to the high wavenumber

cutoff. Since the cutoff is not well determined to date, observed discrepancies do not

conclusively imply the failure of linear internal wave theory.
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strikingly well with the GM-76 spectrum model. This agreement suggests that fluc­

tuations at vertical scales greater than 68 m (the smallest resolvable scale) are mainly

the gravity mode component. Vertical wavenumber spectra of VB and fR also agree

with previous observations by Gregg (1977) and by Gargett et al. (1981).

A general scheme to separate the relative vorticity and horizontal kinetic en­

ergy spectra into gravity and vortical modes is proposed. This requires horizontal

wavenumber-frequency spectra of uncontaminated H D and RV which can be ob­

tained by measuring horizontal velocity components along a closed contour, or with

a horizontal space lag smaller than the scale of H D and RV.
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Chapter 1

Introduction

Small-scale motions in the ocean are bounded by synoptic-scale quasigeostrophic

eddies at large scales and by three-dimensional turbulence at small scales. Small­

scale motions are often attributed to internal gravity waves whose typical horizontal

scale ranges from hundreds of meters to tens of kilometers.

Most studies of small-scale oceanic motions have focused on internal gravity

waves. However, it has been recognized that other processes also exist at small scales

such as current finestructures, instabilities, and other motions. Their dynamics and

kinematic structures are not well understood. Miiller (1984) proposed that the cur­

rent finestructure observed in measurements from Internal Wave Experiment (IWEXj

Briscoe, 1975) is the small-scale vortical motion that is equivalent to the atmospheric

mesoscale two-dimensional turbulence.

Conversely, observations of atmosphere mesoscale kinetic energy spectra have

been interpreted as two-dimensional turbulence (Gage, 1979). However, it was pro­

posed by VanZandt (1982) that mesoscale atmospheric motions can be explained

by internal gravity waves as well. This was supported by the comparison between

mesoscale spectra with a modified oceanic internal gravity wave model spectrum es­

tablished by Garrett and Munk (1972). Apparently, the dynamics of atmosphere

mesoscale motions are still not well understood.
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In a linear system of incompressible, Boussinesq fluid on an I-plane in the ocean,

both the free gravity wave and the steady geostrophic flow are supported. A major

distinction between them is that the geostrophic flow carries the linear perturbation

potential vorticity (the sum of the vertical component of relative vorticity and vortex

stretching ), whereas the linear gravity wave does not. Since the oceanic small-scale

motion can be appropriately described by an incompressible, Boussinesq fluid on an

I-plane, conceptually small-scale oceanic motions must be expected to contain two

types of motions. The gravity wave propagates and does not carry perturbation

potential vorticity, and the vortical motion is stagnant and carries the perturbation

potential vorticity.

The existence of vortical motions at small scales can be recognized from the

oceanic enstrophy cascade as well. One of the main sources of enstrophy in the

ocean is the atmospheric input at large scales. The enstrophy can be dissipated at

the turbulence scale only. If enstrophy cannot transfer directly from large scales to

turbulence scales, vortical motions must exist at small scales and play the central role

of the enstrophy cascade.

Evidence of the coexistence of internal gravity waves and vortical motions have

been recently discovered in laboratory experiments, oceanic and atmospheric obser­

vations, and numerical model studies. Towing objects through a stratified fluid, Lin

and Pao (1979) found that three-dimensional turbulence behind the object collapsed

into two-dimensional pancake-vorticies and propagating internal gravity waves. The

pancake-vortex carries the potential vorticity in the wake. McWilliams (1985) re­

viewed observations of submesoscale coherent vorticies (SCV) in the ocean. The

vertical thickness of SCV found in the thermocline and subthermocline ranges from

500 m to 1 km. The horizontal scales of the SCV varies from 12 to 15 km, an order of

magnitude smaller than that of energetic eddies in the ocean. In three-dimensional
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numerical studies of stratified turbulence, Riley et al. (1981), Staquet and Riley

(1989a and 1989b) also found the coexistence of quasi-horizontal two-dimensional

turbulence and internal gravity waves. In their attempt to understand the complete

wavenumber-frequency structure, Muller et al. (1978) found coherence and energy

disparities in IWEX measurements which can not be explained by internal gravity

waves alone. Later, Muller (1984) proposed that observed disparities in IWEX mea­

surements are attributable to the existence of small-scale vortical motions. Recently,

an attempt to estimate the small-scale perturbation potential vorticity was made by

Muller et al. (1988) using measurements from IWEX to understand the time and

space scales of small-scale vortical motions.

Since observed fluctuations at small scales are expected to consist of both gravity

waves and vorticies (the vortical motion), a clear distinction between them is required

to understand small-scale motions better. Furthermore, the decomposition of fluctu­

ations into gravity wave and vortical components is needed. Attempts to decompose

vortical motions and gravity waves have been made by many researchers. To a limit

of zero Froude number, Riley et al. (1981) and Lilly (1983) proposed to decompose

the velocity field (If) into vorticies and propagating waves as

If = V x .,p~ +V</> +w~ (1.1)

where .,p is the stream function corresponding to vortex motions, and the velocity

potential </> and vertical velocity ware associated with the wave component. ~z is the

unit vector in the upward direction. The wave component has no vertical component

of relative vorticity and is horizontally divergent, whereas the vortex component has a

nonvanishing vertical component of relative vorticity and is horizontally nondivergent.

However, the above approach breaks down for a finite Froude number as pointed

out by Staquet and Riley (1989a). They suggested another generalized decomposition,
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Po

based on the Ertel's potential vorticity, which decomposes the velocity field into the

potential vorticity mode and the gravity wave mode in a nonrotating system. Two

sets of diagnostic relations for three-dimensional velocity components of both modes

were established as

'V x 1!(w)
. 'VP = 0

1!(W) • 'VP = 1! . 'VP

'V . 1!(w) =0

(1.2)

'V x 1!(1r)

Po
. 'VP = 7r

1!(1r) . y:p= 0
(1.3)

s: • 1!(1r) = 0

where 1!(1r) aud 1!(w) are velocity fields of the potential vorticity mode and gravity wave

mode components, and 7r the Ertel's potential vorticity in a nonrotating frame. The .

potential vorticity mode carries Ertel's potential vorticity and the gravity wave mode

does not. The relative vorticity vector of the gravity wave field lies on the isopycnal

surface. An intuitive assumption was made that the potential vorticity mode does not

advect the isopycnal surface to prevent the generation of internal waves. Therefore,

the velocity vector of the potential vorticity mode lies exactly on the isopycnal surface.

The incompressibility condition was assumed for both modes. An application of the

above approach was made in the numerical study by Staquet and Riley (1989b). The

potential vorticity mode was found to be much more energetic in the later stage after

4



the collapse of three-dimensional turbulence in a stratified fluid. The above scheme

is able to decompose the velocity field, but not the density field. Therefore, the total

energy of the system is not decomposed into the potential vorticity mode and gravity

wave mode components. IT one attempts to decompose the density field as well, using

Staquet and Riley's approach, the potential vorticity will be contributed from both

the gravity wave mode and the potential vorticity mode. This is an intrinsic obstacle

in decomposing the vortical motion and gravity wave since their distinction is based

on a nonlinear quantity - Ertel's potential vorticity.

A suitable decomposition scheme still remains to be developed. In this study, a

decomposition scheme using the normal mode representation of small-scale motions

proposed by Muller (1984) will be used. Two gravity modes and one vortical mode are

defined using eigenvectors of the linearized small-scale motion. The linear eigenvector

represents the polarization relation of each corresponding eigenmode. Accordingly,

the vortical mode is characterized by carrying the linear perturbation potential vor­

ticity and being horizontally nondivergent. The internal gravity mode does not carry

linear perturbation potential vorticity and propagates. The advantage of the normal

mode decomposition is that it diagonalizes the total energy and the linear pertur­

bation potential vorticity into the gravity and vortical modes. Therefore, the total

energy of eigenmode components can be determined. Note that the application of

the normal mode representation has long been used in the study of oceanic motions

such as that of Hasselmann (1970).

In a linear system, the normal mode decomposition can exactly separate two

distinct motions that are identical to eigenmodes. Reviewing the familiar geostrophic

adjustment problem, the competition of the gravity and vortical modes depending on

the disturbance scale can be easily understood using the normal mode decomposition.

However, the efficiency of the application to the nonlinear system depends on the
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nonlinearity of the system. Applying the normal mode decomposition to a monopole,

which is a pure nonlinear vortical motion, results in the total energy ratio of the

gravity and vortical modes depending on the Rossby and Burger numbers. For small

Rossby and Burger numbers, the gravity mode is much weaker than the vortical mode.

Using the normal mode decomposition to separate the gravity and vortical modes

requires substantial wavenumber information of velocity and vertical displacement

fields. The analysis can be made conveniently using fields of horizontal divergence

(HD), relative vorticity (RV), and vortex stretching (VS). Since the vortical mode is

horizontally nondivergent, fluctuations of HD are completely due to the gravity mode.

Accordingly, RV of the gravity mode can be obtained using the polarization relation

of the gravity mode. Its vortical mode component can be obtained as the residual of

the total relative vorticity from the gravity mode component. The horizontal kinetic

energy spectrum can also be separated into the gravity and vortical modes using

horizontal wavenumber-frequency spectra of H D and RV.

Spectra of H D, RV, and V S are estimated using measurements of horizontal

velocity and temperature from IWEX. Unfortunately, frequency spectral estimates of

HD and RV are subjected to scale resolution and contamination problems. Detailed

discussion of these problems are represented by lowpass attenuation and bandpass

contamination array response functions. The lowpass array re~onse function is due

to the finite separation between current sensors, whereas the bandpass array response

function originates from the discrete sampling of velocity measurements in the space.

Frequency spectral estimates of H D are well represented by the GM spectrum at all

depths. Frequency spectral estimates of RV also agree with the GM spectrum except

at the shallowest depth where small-scale fluctuations are resolved. Due to the scale

resolution and contamination problems of spectral estimates of H D and RV, the

normal mode decomposition cannot be carried out. Frequency spectral estimates of

6



VS and I R (inverse Richardson number) are obtained and they are well represented

by the GM model.

The linear eigenmode representation will be described in the next chapter. The

detailed algebra and two illustrative applications of the linear eigenmode representa­

tion will be discussed. Data analysis of IWEX will be discussed in chapter 3. Spectral

analysis of HD, RV, V S, and I R will be discussed in detail. Also, the normal mode

decomposition of the relative vorticity and the horizontal kinetic energy spectra is dis­

cussed, although it cannot be made using IWEX measurements. In the final chapter,

summaries of this study will be presented together with proposed future works.

7
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Chapter 2

Linear Eigenmode Representation
of Small-Scale Oceanic Motions

Small-scale motions can be appropriately described by the dynamic system of .

an incompressible, Boussinesq fluid on an f-plane. This system contains gravity

waves and geostrophic flows. Traditionally, the gravity wave motion is described

by a second order differential equation of vertical velocity. The geostrophic flow

is described by the potential vorticity conservation equation. Neither the vertical

velocity equation nor the potential vorticity equation alone can determine the small­

scale motion completely.

In this chapter, a linear eigenmode representation of small-scale motions will be

discussed. Two gravity modes and one vortical mode are defined using eigenvectors

of the linear system. Eigenmodes have distinctive kinematic structures and dynamics

described by corresponding eigenvectors and eigenvalues. Since three eigenvectors

form a complete basis, small-scale motions must be expected to contain both gravity .

and vortical modes. To the limit of the linear system, the gravity mode is the linear

internal gravity wave and the vortical mode is the familiar steady geostrophic flow.

The linear eigenmode representation will be discussed in the next section. Its

application to a linear system and a nonlinear system will be illustrated. First, the
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eigenmode representation will be applied on a geostrophic adjustment problem. Dis­

turbances of the flow field or surface displacement in the system are decomposed into

gravity and vertical components. The gravity mode propagates and carries energy

away, whereas the vertical mode does not propagate. The second example is a proto­

type nonlinear vertical motion described by the monopole dynamics. The monopole

is linearly decomposed into the gravity and vortical components. The energy ratio of

these two modes depends on the Rossby number and the Burger number. The gravity

mode component is negligibly small compared with the vortical mode at small Rossby

and Burger numbers.

2.1 Small-Scale Oceanic Motions

Small-scale oceanic motions can be appropriately described by the system of

incompressible, Boussinesq fluid on an f-plane. A linearly-stratified, unbounded

ocean will be considered. The dynamic equations of small-scale oceanic motions are

given as:

1
818t u - fv +-8xp =

Po

1
828t v + fu +-8yp =po

1 (2.1)
8t w +N 2

." +-8zp - 83
po

8t .,., - w - 84

8x u +8yv +8z w = 0

9



Here, u, v, and ware east, north, and upward velocity components, p the pertur-

bation pressure, Po the Boussinesq density, f the Coriolis parameter, and N the

Brunt-VaisaIa frequency. A linear relation between the vertical displacement TJ and

the perturbation density P has been assumed as P = Po N 2TJ . Nonlinear interactions,
9

dissipation, diffusion, and external forcing are implicitly embedded in source terms

e.. S2' S3' and S4·

A Fourier expansion of the field variable ~(~, t) into its wavenumber space can

be expressed as

(2.2)

Here ~ represents any field variable of u, v, w, p, and TJ. The wavenumber vector

and the position vector are 1£ = (kx,ky,kz) and ~ = (x,y,z) ,respectively. The

Fourier coefficient ~(k, t) is defined by the Fourier transformation

~ 1 11100

3 Ok<1'(1£, t) = (211")3 -00 d ~ ~(~, t)e'_·~. (2.3)

At any give wavenumber vector, the dynamics of small-scale motions is described

as
o~ f~ ik«: 8ttU - v --p -

Po

o~ f~ iky~ 82tV+ u--p =po

o~ N2~ ikz ~ 83

(2.4)
tW + TJ --p =

Po

Otfj - w = 84

kxu +kyv + kzw = 0

10



where the overhat ~ denotes corresponding Fourier coefficients.

There are three prognostic variables and two diagnostic variables in the system.

Traditionally, u, V, and fj are chosen as prognostic variables. Diagnostic variables

{jj and p can be obtained from the continuity equation and the divergence of

momentum equations, i.e.,

(2.5)

p= i~ {f( kxv - kllu) - N 2kzfj + «s. + kyS2 + kzS3 } • (2.6)

Diagnostic variables are not dynamically important since they can be obtained at

each instant in time through their diagnostic relations with prognostic variables. In

fact, the dynamics of the system is entirely determined by three prognostic variables

which form the state vector of the system.

The choice of a set of prognostic variables of the system depends on the spe­

cific purpose. In principle, three independent prognostic variables are required to

completely describe the state of the small-scale system. For an experimentalist,

appropriate prognostic variables could be u, v, and TJ since they can be measured

directly. For a data analyst, the most suitable prognostic variables might be two

rotary velocity components and TJ since internal waves have distinct characteristics

which can be clearly described by rotary velocity spectra. For a theoretician, H D,

RV, and V S are convenient prognostic variables to use. Details of the eigenmode

representation of small-scale motions using various forms of the state vector will be

discussed separately.

First, (u, v, TJ) is chosen as the state vector. The dynamic equations of small-scale

motions can be expressed in a compact form as

11



at ~(t, t) + M(t) ~(t, t) = Q(t, t)

~= v

(2.7)

(2.8)

k:z:ky (k~ + k;)
N 2
jk:z:kz

f
-(k; + k;) -k:z:kll

N 2
(2.9)M(t) = - 1(2 jkykz

k:z:K2 k K2--- --y- o
fkz fkz

1
Q(t, t) = 1(2 (2.10)

where K is the magnitude of the wavenumber vector. The source vector Q is impor­

tant for studying responses of the system to atmospheric forcings, diffusion, dissipa­

tion, etc . The state matrix M determines the kinematic structure and dynamics of

the system. Since the state matrix is not in a diagonal form, the three prognostic

variables are coupled dynamically.

12



Using eigenvectors of the linearized system as the new basis, prognostic vari­

ables can be projected into eigenmode amplitudes. Dynamic evolutions of eigenmode

amplitudes are decoupled in a linear, unforced, and inviscid system. The kinematic

structures as well as the dynamics of eigenmodes are clearly determined.

Three eigenvalues O'3(k) and corresponding eigenvectors l(k) satisfying

M(k) ~3(1£) = -iO'3(k ) l (k) are obtained as

s =0, +,- (2.11)

-e; (2.12)

(2.13)

Here a is the magnitude of the horizontal wavenumber vector. Using eigenvectors

as the new basis, the state vector is decomposed into three eigenmode components of

each wavenumber at any time instant, i.e.,

~(k, t) = E 0.3(k, t)l (k),
3=O,±
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where a" is the amplitude of the eigenmode s. Similarly, eigenmode amplitudes can

be expressed in terms of the state vector as

a"(k, t) = E ~i(k, t) ~it (k),
i

where the adjoint eigenvector It (k) is given by

;pt (k) = iN
- uK

K2
':fukx k2 - ifky

z

(2.15)

(2.16)

~±t (k) = kz

- - V2uaK

K2
':fuk y k2 + ifkx

z
(2.17)

The completeness and orthogonality conditions between eigenvectors and their ad­

joints are justified since

(2.18)

(2.19)

Therefore, eigenvectors form a complete basis. It is worthwhile mentioning that

using the linear eigenmode representation the total energy (including both kinetic and

14



(2.20)

(2.21)

potential energy) is diagonalized into three eigenmode components at each instant in

time, i.e.,

1( + + +N 2 - .....) 1 ~ (_,,_,,0)
2 uu vv ww 1l1l = 2 L..J a a .

,,=0,%

Here, the angle brackets denote the ensemble average and the asterisk the complex

conjugate.

Eigenvectors describe relative amplitudes and phases among state variables of

eigenmodes. They are also termed the polarization relations. The kinematic struc­

tures of eigenmodes are determined through polarization relations. Note that al­

though polarization relations change with various forms of state vectors, eigenvalues

will remain the same since they depend on the the underlying dynamics only.

The most distinctive feature between eigenmodes of small-scale motions is re-

vealed by the linear perturbation potential vorticity (= RV - V S). In the wavenumber

domain, it is expressed as

if = ik:z:v - ikyu - fikzfj = 0: 2 + ~: k;ao.

The linear perturbation potential vorticity in the system is solely carried by the

eigenmode s = 0, which is therefore called the vortical mode. It is a horizontally

nondivergent stagnant motion as described by its eigenvector. The s = ±1 mode

does not carry linear perturbation potential vorticity and is termed the gravity mode

since it has the same kinematic structure as linear internal gravity waves. Therefore,

the system of small-scale motions must contain both the vortical and gravity modes

of motion.

Furthermore, if Fourier expansion in the frequency domain is performed, the state

vector ~ can be represented as

15



(2.22)

where (j6(,&,W) is the frequency Fourier coefficient of £16(.&, t). The reality condi­

tion requires wavenumber-frequency Fourier coefficients of state variables to satisfy

~(-.&,-W) = ~*(.&,W).

The dynamic evolution of eigenmodes can be obtained by applying the linear

eigenmode representation of prognostic variables (eq. 2.14) onto the prognostic equa­

tions (eq. 2.7), i.e.,

(2.23)

Effects of diffusion, dissipation, nonlinear interaction, and external forcing on the

dynamic evolution of eigenmodes could be easily studied by specifying the source

vector explicitly. If these effects are neglected, the dynamic equations of the eigen­

modes become homogeneous and the three eigenmodes are decoupled. In this case,

eigenvalues 0'6(.&) correspond to intrinsic frequencies of eigenmodes and the relation

of O'S(.&) in eq. ( 2.11) describes the dispersion relation of the eigenmode. The linear

vortical mode reduces to steady geostrophic flow, and the linear gravity mode to the

linear internal gravity wave. The state vector in an unforced, inviscid, linear system

becomes

(2.24)

Eigenmode amplitudes vanish except on their corresponding dispersion surface, i.e.

We have discussed the linear eigenmode representation of the state vector (u, v, ",).

As mentioned earlier, other forms of the state vector could be more suitable for other

16



applications. On analyzing oceanic velocity measurements, it is sometimes helpful

to use the rotary velocity vector. One familiar example is the internal gravity wave

which has a preferred clockwise rotation of its horizontal velocity vector. Therefore,

we will consider a new state vector, termed the rotary state vector, consisting of two

rotary velocity components and the W K B-scaled vertical displacement Nq which is

proportional to the square root of the available potential energy, i.e.,

r +(~, t) u(~, t) +iv(~, t)

r(~,t) = r _(~, t)
1

u(~, t) - iv(~, t) (2.25)=J2
r o(~, t) v'2Nq(~, t)

Here r+ and r _are counterclockwise and clockwise velocity components. Note that

the interpretation of counterclockwise and clockwise rotation of horizontal velocity

vector is true only if the positive frequency is considered. The interpretation should

be opposite for negative frequencies. All three components of the state vector have

the dimension of velocity. The use of the rotary state vector can avoid potential errors

in the orientation of the coordinate system during experiments.

The transformation between the rotary state vector and the eigenmode amplitude

vector is given by

I(.&,w) = E a"(k,w)l"(k)
,,=O,±

a"(k,w) = E j\(k, w) :y;t (k).
~=O,±

(2.26)

(2.27)

The transformation vector 13 (k) is the eigenvector of the rotary state vector and

l.st (1£) is its adjoint. They can be obtained easily through the relation between the

Cartesian and rotary state vectors, and by the use of eigenvectors of the Cartesian

state vector, i.e.,

17



~O( ) N"V a II'J v (7 - --;::,.....---
~ 'T" - ~(7g(7)h(7)

(7 •(=F- + l)e''''
I

(2.28)

~±( ) vI1. a, 'P, v, (7 = 2(7h((7) (2.29)

~ot( ) N
1. a,'P,V,(7 = ~(7g(7)h(7)

(2.30)

~±t( ) vI
1. a, 'P, v, (7 = 2(7h((7)

18
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icp

[=FJh2(7 ) -1] e
icp

J2iV~g-l(7)

(2.31)



k
Here tp = tan-1

( kY
) is the orientation of the horizontal wavenumber vector count-

:z: JN 2 _ q 2 Ik Iing counterclockwise from the east. g((j) = 2 f2 = _Z is the inverse of
q - a

the aspect ratio, u = sgn(kz ) the sign of the vertical wavenumber, and h(q) =
1 +g-2(q). In this representation, the horizontal wavenumber vector is represented

as (k:z:, ky) = (acostp, asintp), and the vertical wavenumber kz = vg(q)a.

There are some distinct features of eigenmodes revealed by their eigenvectors.

The vortical mode has equal partition of rotary velocity energy, whereas the gravity

mode has the energy ratio between two rotary velocity components depending on

the aspect ratio. For the linear gravity mode, the aspect ratio is a function of the

frequency only through its dispersion relation.

Using previously discussed state vectors to project eigenmode amplitudes requires

substantial wavenumber information which is not available for most oceanic measure-

ments. Alternatively, another state vector is proposed as

H D(:f., t)

RV(:f., t)

VS(:f., t)

= (2.32)

All components of this state vector have the dimension of the vorticity. They

are the horizontal divergence, vertical component of relative vorticity, and vortex

stretching. Corresponding eigenvectors are found as

o

;(if) = Na
2

- qK

19
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.,.()f N
1/1 (k) = ..j2uK

.U
=Fz-

f

1

1

o

1

-1

(2.34)

(2.35)

(2.36)

Examining polarizations of the gravity and vortical modes (eqs. 2.33 and 2.34),

their important kinematic structures are revealed. The vortical mode is horizontally

nondivergent and carries linear perturbation potential vorticity. The ratio between

its relative vorticity and vortex stretching is _;:~2. Conversely, the gravity mode

is horizontally divergent, and does not carry linear perturbation potential vorticity

for its relative vorticity cancels with vortex stretching. Since the eigenvalue a is the
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intrinsic frequency of the linear gravity mode, the frequency spectral ratio between
2

horizontal divergence and relative vorticity must be ;2 and their phase spectrum

should be 90° out of phase.

A slightly different state vector has been proposed by Olbers (1988), defined as

A(~, t) = (2.37)

1
-j(8x8x +8y8y )p
po

Eigenvectors and their adjoints are found as

o

:X0(k) = N 0
2

1
- - uK

1

.u
=j=Z-

j

(2.38)

1 (2.39)

o

(2.40)

1
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±
,cr
z-
f

1

-1

(2.41)

This state vector will be used in the section 2.3 of the application of linear eigenmode

decomposition onto a prototype nonlinear vortical motion, the monopole.

The purpose of the linear eigenmode representation is to decompose small-scale

motions into gravity waves and vortical motions. The main distinction between the

gravity wave and the vortical motion is based on the perturbation potential vorticity

which includes both the linear and the nonlinear components, whereas the distinction

between the gravity mode and the vortical mode is based on the linear perturbation

potential vorticity alone. Apparently, for linear, unforced small-scale motions, the

linear eigenmode representation can precisely determine the gravity wave and vorti­

cal motion components since only the linear perturbation potential vorticity exists.

This fact will be illustrated in the next section. For nonlinear small scale motions,

an exact linear decomposition into gravity waves and vortical motions is intrinsically

impossible. An example of a nonlinear vortical motion will be illustrated in section

2.3 where the effectiveness of the linear eigenmode representation depends on the

Rossby and Burger numbers.
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2.2 Geostrophic Adjustment Problem

In this section, the familiar geostrophic adjustment problem will be studied ap­

plying the linear eigenmode representation. The primary purpose is to justify that

the linear eigenmode representation can separate the gravity wave and the vortical

motion unambiguously in the linear system.

The geostrophic adjustment problem was first studied by Rossby (1937,1938) who

examined the competitive gravitational and Coriolis forces in response to disturbances

in a small-scale system. His work has been extended by other researchers such as

Cahn (1945), Gill (1976, 1982), and Middleton (1987). Despite different approaches

and initial conditions, the disturbed field eventually approaches a steady state of

the geostrophic balance after gravity waves carry away a fraction of energy from the

adjusted region.

Specifying a step function of sea surface displacement, Gill (1976, 1982) studied

the steady state and transient solution separately. The initial system contains the

potential energy only. In the final state, the kinetic energy is only one third of the

loss of the initial potential energy. The other two thirds is carried away by gravity

waves. In a recent study, Middleton (1987) proved that the ratio of the kinetic energy

in the final state and the loss of the initial potential energy depends on the horizontal

scale of the initial disturbance relative to the Rossby radius of deformation.

Based on the linear eigenmode representation, disturbances in the system are

regarded as a linear superposition of gravity and vortical components. The total

energy and the perturbation potential vorticity of the system are decomposed into

its gravity and vortical components as mentioned earlier. Both gravity waves and

geostrophic flows conserve their total energy while conversion between the potential

and kinetic energy of each eigenmode may occur.
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A linear system of Boussinesq, incompressible, inviscid shallow water equations

in a barotropic ocean on an I-plane are considered. A constant depth, H, of the

ocean is assumed. Dynamic equations are described as

(2.42)

(2.43)

(2.44)

Here, eis the surface displacement. Three prognostic variables in the system are

u, v, and e. The dynamic equations in the Fourier wavenumber space can be written

as

o - I -igk:c o

I o -igky o (2.45)

o o

This system is linear and homogeneous. Since the state matrix is not in a diago­

nal form, three prognostic variables are coupled dynamically. Eigenvalues US and

eigenvectors is of the state matrix are

u"(k) = sJj2 +gH 0:2 = su(k),

f(k) = v'gH -k:c
- u

.f-z­
g
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s = 0, +,- (2.46)

(2.47)



=Fuk: +ilky

~±(!£) = .; =Fuky - ilk:
- v2uo

(2.48)

Three eigenmodes are determined. The s = 0 is the vortical mode, and s = ± two

gravity modes. Adjoint eigenvectors can also be obtained as

(2.49)

.f
-~-

H

(2.50)

Unique transformations among eigenmode amplitudes and prognostic variables are

expressed as
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klJ ..jgH -k:r; ..jgH .fViR'
~---

aO(k, t) a o H u u(k, t)

a+(k, t)
-uk:r; - ifklJ -uky+ ifk:r; gcx2

v(k, t) (2.51)=
../2ucx ../2uCt - ../2UCt

(j-(k,t) uk:r; - ifky uky+ ifk:r; gcx2 {(k, t)

../2ucx ../2UCt - ../2UCt

k ..jgH -uk:r; + ifky uk:r; +ifky

u(k, t)
y u ../2UCt ../2UCt aO(k, t)

v(k, t) -k:r; ..jgH -uky - ifk:r; uky - ifk:r; (j+(k, t) (2.52)-
../2UCt ../2UCto

{(k, t) ,f..;gH HCt2 HCt2 a-(k,t)
-~--- - ../2UCt - ../2UCt9 o

The above decomposition assures that the total energy spectrum of the system is

diagonalized into energy spectra of three eigenmodes, i.e.,

1(~~* + ~~* + 9 tt*) 1(~O~O* +~+~+* +~_~_*)2 uu vv H.... = 2 a a a a a a . (2.53)

Note a small aspect ratio 6 = ~ has been assumed for the system of shallow water

equations. Quantities of 0(62) or smaller have been neglected. The vertical kinetic

energy is neglected since it is an order of 62 compared to the horizontal kinetic energy.

The linear perturbation potential vorticity in a barotropic ocean is defined as

11' = 8:r;v - 8y'U - [fl. At any given wave vector, the linear perturbation potential

vorticity is solely carried by the vortical mode.

Prognostic equations of eigenmode amplitudes are described as

(2.54)
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(2.55)

The vortical mode amplitude is steady, whereas the gravity mode propagates with

its intrinsic frequency O'±(k). According to the reality condition of state variables,

Fourier coefficients have to satisfy

u(k, t) = u*(-k, t)

v(k, t) =v*(-k, t)

[(k,t) = [*(-k, t).

(2.56)

(2.57)

(2.58)

Similarly, the eigenmode amplitude of the gravity mode has to satisfy a+(k, t) =

a-*(-k, t).

Applying the concept of the linear eigenmode representation, the geostrophic ad­

justment problem can be easily attacked. Initial disturbances of surface displacement

or velocity fields can be decomposed to amplitudes of the gravity and vortical modes

using eq. 2.51. Therefore, the total energy of the gravity and vortical modes are de­

termined. Furthermore, the potential and kinetic energy of the gravity and vortical

modes are obtained using polarization relations of eigenmodes.

As a simple example, the initial disturbance of surface displacement [(k,O) is

imposed on the system. Amplitudes of the gravity and vortical modes are determined

as

(2.59)
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(2.60)

Eigenmode amplitudes evolve in time according to their dynamics.

Assuming a statistically homogeneous field, wavenumber spectra of the total en­

ergy E(k, t), potential energy E,,(k, t), and kinetic energy Ek(!s., t) are defined as

(2.61)

(2.62)

(2.63)

Total wavenumber energy spectra of the gravity and vortical modes at the initial time

are obtained as

(2.64)

(2.65)

Here R = Jgf~ is the Rossby radius of deformation. E9 and .eo are the total energy

spectra of the gravity mode and of the vortical mode, respectively. E,,(k,O) is the

initial potential energy. Since there is no sink nor source of the energy in this system,

the total energy of eigenmodes must be conserved. The partition of eigenmode energy

depends on the scale of the initial disturbance relative to the Rossby radius of defor­

mation (Figure 1). The vortical mode is dominant at scales greater than the Rossby
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radius of deformation, whereas the gravity mode is dominant at smaller scales. They

are equi-partitioned at the Rossby radius of deformation.

At the final state, only the steady vortical mode is left after the gravity wave

propagates away. The potential and kinetic energy components of the vortical mode

are expressed as

(2.66)

(2.67)E~O:') = (1+~2R2)2 Ep(!£,0).

They are displayed in Figure 2. At the Rossby radius of deformation, the kinetic

energy of the vortical mode reaches its maximum and the potential and kinetic energy

components are identical. One third of the loss of the initial potential energy has been

converted to the kinetic energy of the vortical mode, whereas the other two thirds

must be carried away by gravity waves.

This example clearly illustrates that the geostrophic adjustment problem can be

easily understood using the linear eigenmode representation. The main distinction

between two types of motions in the system is the linear perturbation potential vortic­

ity. This fact is fruitfully used. Any given initial disturbance of surface displacement

or velocity field can be regarded as the linear superposition of the gravity and vortical

components. Since the system is linear, the separation of these two types of motions

is unambiguous and efficient using the linear eigenmode representation.
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Figure 1: Total energy of the gravity and vortical modes normalized by the initial
potential energy in the geostrophic adjustment problem. The solid line denotes the
normalized energy of the vortical mode, and the dotted line of the gravity mode. The
energy partition depends on the ratio between the perturbation scale and the Rossby

radi us of deformation Jgf~ .
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Figure 2: Potential and kinetic energy of the vortical mode normalized by the initial
potential energy as a function of initial disturbance scale normalized by the Rossby
radius of deformation. The solid line denotes the normalized kinetic energy of the
vortical mode, and the dotted line is the normalized potential energy.
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(2.68)

2.3 Monopole Motion

To illustrate the application of the linear eigenmode representation on a nonlin-

ear system, a prototype of nonlinear vortical motions will be discussed. One simple

example is the monopole motion. McWilliams (1985) suggested that oceanic subme­

soscale coherent vortices (SCV) are the monopole motion in a cyclostrophic balance,

i.e.,

u2 1
fuo +~ = -Orp.

r po

Here, Uo is the azimuthal velocity, r the radial distance, and p the pressure. The

relation between the velocity and pressure fields is determined by the above dynamic

balance as

rf {Uo = 2" -1 + 1+ f4 2 8rP}
Po r

(2.69)

providing that the azimuthal velocity remains finite in the far field. If the azimuthal

independence is assumed, the monopole is horizontally nondivergent.

Intuitively, SCV are vortical motions for their carrying the perturbation potential

vorticity. The pressure field of SCV has a Gaussian distribution both in the vertical

and horizontal (McWilliams, 1985). Two types of monopoles will be discussed for

illustrations. The first type has a Gaussian pressure field with a maximum in its

center and will be termed a hot monopole. The second type has a Gaussian pressure

field with a minimum in its center and will be called a cold monopole. Pressure

distributions of the hot and cold monopoles are specified as

(2.70)
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p(Il) = Po { 1 - e-(.q+~)} . (2.71)

Here, Lo and Ho are horizontal and vertical scales of the Gaussian pressure field, and

Po the pressure scale. Corresponding velocity fields for the hot and cold monopoles

are determined as

u~I) =~ [-1+
•

( r2 .2 ) ]

1 2R - L2'+H2'- oe 0 0 (2.72)

ufI) = f; [-1 + 1+ 2R"e-(~+-;,g)] , (2.73)

where the Rossby number is defined as Ro =*with the velocity scale Uo = po~~o'

For the hot monopole, an additional constraint Ro :::; t has to be made in order to

have non-imaginary velocity field.

Amplitudes of eigenmodes can be determined from fields of horizontal divergence

(HD), the scaled Laplacian of the pressure field (.cP), and the vertical component of

relative vorticity (RV) using eqs. 2.1 and 2.41 as

(2.74)

(2.75)

Here the overhat ~ denotes the wavenumber coefficient.

For the hot monopole, the relative vorticity RV(I) and .cp(l) are obtained from

the prescribed pressure distribution

(2.76)
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( r~ .~)[
R f

- L7+ji7
= 0 ·e 0 0

1+

(2.77)

To the limit of a small Rossby number, t,p(I) and RV(I) are identical and the gravity

mode does not exist in the system (eq, 2.75). Since the Rossby number is a measure of

the nonlinearity of the system, the previous statement simply justifies the exactness

of the linear eigenmode representation in a linear system.

Numerical simulations of hot monopoles were performed. First, pressure fields of

hot monopoles with various horizontal and vertical scales, Lo and Ho, are simulated.

Corresponding velocity fields are calculated for various Rossby numbers. Accordingly,

.cp(I) and RV(I) are determined, and amplitudes of the gravity and vortical modes

are estimated. Finally, energy of the gravity and vortical modes are obtained by

integrating their wavenumber energy spectra over the complete wavenumber space.

The energy ratio between the gravity and vortical components is found depending on

two global parameters only. They are the Rossby number and Burger number defined

as B = r;:Z/. Contours of constant energy ratios versus Ro and B are presented in

Figure 3. The linear eigenmode representation clearly demonstrates that the vortical

mode is the dominant component in the hot monopole. The energy ratio increases

from 10-13 to 10-3 with increasing Rossby and Burger numbers.

A similar analysis can be made for the cold monopole. .cp(II) and RV(II) of the

cold monopole are described as
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Figure 3: Energy ratio between the gravity and vortical modes for the hot monopole.
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(2.78)

( .2 .2) [
R f

- V+'i{7= O·e 0 0

1+

(2.79)

Again, the gravity mode vanishes as the Rossby number approaches zero. The energy

ratio between the gravity and vortical components is presented in Figure 4. The

vortical mode is the dominant component at small Rossby numbers. The energy

ratio increases from 10-9 to 10-2 with increasing Rossby and Burger numbers.

The monopole is a pure vortical motion. The nonvanishing gravity mode com­

ponent is due to the nonlinearity of the system. The Rossby number is a measure

of the nonlinearity. The energy of the gravity mode vanishes when Rossby num-

bel'S approach zero. Since the energy decomposition is virtually a linear operation,

it is intrinsically infeasible to perform in a nonlinear system. Nonetheless, the linear

eigenmode representation is able to justify that the vortical mode is the dominant

component in the system.
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Chapter 3

Normal Mode Decomposition
of IWEX

Theoretically, the system of small-scale motion supports both the gravity wave

and vortical motion. This fact has been demonstrated from the linear eigenmode

representation of the system. Therefore, one would expect that observed small-scale

fluctuations in the ocean must contain both the gravity wave and vortical motion

components. Indeed, small-scale fluctuations of temperature and velocity measured

from the IWEX experiment can not be explained by the linear internal wave alone

(Muller et al., 1978).

In this chapter, an attempt will be made to separate small-scale oceanic fluctua­

tions into the gravity and vortical modes using the linear eigenmode representation.

This separation scheme is referred to as the normal mode decomposition. It can be

achieved conveniently using fields of horizontal divergence (HD), vertical component

of relative vorticity (RV), and vortex stretching (VB). Estimating them requires

oceanic measurements of horizontal velocity and temperature at a sufficient spatial

resolution. There are very few oceanic measurements available for such calculations.

Most often, oceanic measurements are taken in one-dimensional time or space do­

mains. It is even difficult to obtain temporal variations of these field. The most

38



suitable oceanic measurements to apply the normal mode decomposition to are from

the IWEX experiments.

The estimation of horizontally averaged H D, RV, and VS has been attempted

by Miiller et al. (1988) using IWEX measurements. Frequency spectral estimates of

H D and RV were interpreted as frequency-horizontal wavenumber spectra of H D and

RV subjected to a lowpass horizontal wavenumber filter. Here; a rigorous analysis

will be made to show that frequency spectral estimates of H D and RV were also

contaminated by each other.

Area averaged V S was estimated indirectly from the time integration of H D

(Miiller et al., 1988). Since HD, RV, and VS are three independent prognostic

variables in the system of small-scale motions, it is impossible to estimate them using

horizontal velocity measurements alone. Indeed, it can be shown that their estimates

of V S include the gravity mode component only. Here, VS will be estimated using

temperature measurements instead.

The configuration and measurements of IWEX will be described in the next sec­

tion. Methods of estimating HD, RV, VS, and IR (inverse Richardson number),

their spectral analysis, and comparisons with the GM-76 spectrum model will be dis­

cussed in sections 3 and 4. The general concept of the normal mode decomposition

of relative vorticity and horizontal kinetic energy spectra will be discussed in the last

section.

3.1 Description of IWEX

The IWEX was conducted in late 1973 during a 42-day period. A trimooring array

was designed on which 20 current meters (17 VACM and 3 EG&G 850) and temper­

ature sensors were deployed in the main thermocline in the Sargasso Sea (27°44' N,
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69°51' W). Horizontal velocity components, temperature, and temperature difference

over a vertical distance of 1.74 m were measured. Horizontal spacing between sensors

ranged from 1.4 m to 1600 m and vertical spacing from 2.1 m to 1447 m. Sampling

interval was 225 s, except at the lowest level (2050 m depth) which was sampled every

900 s. The trimooring array was a nearly perfect tetrahedron (roughly 6 km on a side)

with the apex on top of the main thermocline at 604 m depth and the deepest current

meter and temperature sensor at a depth of 2050 m. A schematic diagram of IWEX

is shown in Figure 5. The mooring was very stable during the entire experiment.

Pressure records showed ±0.2 m displacement at the apex and about ±6 m at 3000

m. A detailed description of IWEX was given by Tarbell et al. (1976). The IWEX

measurements provide an opportunity to estimate fields of spatial gradients in the

time and space scales of small-scale motions. Measurements from 15 current meters

and temperature sensors at five horizontal planes, where measurements are available

at all three legs, are used. Characteristics of the five IWEX levels are described in

the Table 1.

3.2 Estimates of HD and RV

Estimates of H D and RV have been made by Miiller et al. (1988) using Stokes'

and Gauss' theorem as

- If 1 fH D = - dA(8 u +a v) = - u . dnA x Y A - -

- If 1 fRV = A dA(8xv - 8yu) = A M.' dt,

(3.1)

(3.2)

where t: and 11 are tangential and normal unit vectors along the circumference, and
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Table 1: Characteristics of five IWEX levels with three current meters

Level Depth (m) Radius (m) N (cph) Number of points

2

5

6

10

14

606

640

731

1023

2050

4.9

25.4

80.3

260.0

925.0

42

2.54

2.60

2.76

2.05

0.66

1800

12000

12000

4800

3900



A is the area of the circle connecting three current meters. The overbar indicates that

the quantity is estimated over an area A. A schematic diagram of the configuration

of current meters of IWEX at one horizontal plane is shown in Figure 6. Horizontal

velocity measurements are first converted to their normal and tangential components,

and the circle integration is approximated using three points on the circle. Specifically,

H D and RV are estimated as

HD L n 2
= ui 3R

i=A,B,C

RV L t 2
= Ui 3R·

i=A,B,C

(3.3)

(3.4)

Here, un and ut are normal and tangential velocity components, R the radius of

the circle, and A, B, C indices of three mooring legs.

An alternative approach can be made by obtaining estimates of means and gra­

dients of horizontal velocity components using the linear regression fit of horizontal

velocity measurements:

Ui = U + 8x u ~Xi + 8yu ~Yi, i == A,B,C

Vi = v + 8x v ~Xi + aI/V ~Yi, i = A,B,C.

(3.5)

(3.6)

Here, u and v are estimates of mean horizontal velocity components, and oxu,
ayu, axv, and ayv are estimates of east and north gradients of horizontal velocity

components. ~X and ~Y are horizontal distances of current meters from the center of

the circle. Six velocity measurements at each horizontal plane (two horizontal velocity

components at three legs on the circle) are used to estimate the mean velocity and
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Figure 6: Schematic diagram of current meter configuration of IWEX at one horizon­
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mean horizontal velocity gradients. Accordingly, 1lIJ and 1lV can be obtained

from estimates of velocity gradients as

- 2 (VA+VC ) 1RV = - -VB - --(UC-UA).3R 2 V3R

(3.7)

(3.8)

It can be shown that estimates of H D and RV using Stokes' and Gauss' theorems

will arrive at the same result as above.

Estimated time series of H D and RV are stationary using the "run test" method

(Bendat and Piersol, 1971). The run test for the standard deviation of H D is illus­

trated in Figure 7. To test the stationarity, the time series of HD is first divided into

11 segments with a length of 1024 (= 210) points. Standard deviations of 11 segments

fluctuate around the median standard deviation. Since there are five runs about the

median value in the sequence, the hypothesis of stationarity is accepted at the 95%

level of significance. Similar analysis for H D at other levels and for RV have been

made. They are all accepted as a stationary process.

3.3 Spectral Analysis of H D and RV

In this section, spectral analysis of H D and RV will be discussed. Time series of

H D and RV at each level are first divided into segments with a length of 1024 ( =

210) data points. Successive segments are 50% overlapped. Each segment is subjected

to a Hanning window and fast Fourier transformed. One-sided frequency spectra are

obtained using estimated Fourier coefficients and are averaged over all segments.

The averaged spectra of H D and RV at each level are furthermore averaged over
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adjacent frequencies to yield estimates at 40 frequency bands spaced about equally

on a logarithmic scale.

Measurement errors on estimates of H D and RV have been discussed by Miiller

et al. (1988). The systematic error is unlikely to be significant. Part of the observed

variance may be due to incoherent current fluctuations with horizontal scales smaller

than the smallest current meter separation (8.5 m at level 2). Horizontal velocity

components at level 2 are decomposed into the coherent "signal" component and

the incoherent "noise" component, with respect to a horizontal scale of 8.5 m. The

"signal" component of horizontal kinetic energy is dominant in the whole frequency

domain with a -2 spectral slope in the internal wave frequency band and a -3 slope

beyond the buoyancy frequency (Figure 8). The "noise" component does not playa

significant role in the velocity spectrum.

The contribution of frequency spectral estimates of H D and RV due to the

incoherent "noise" component can be obtained using eqs. 3.7 and 3.8 as

(3.9)

where 6Su(w) is the kinetic energy frequency spectrum of the incoherent noise com­

ponent. At level 2, the frequency spectral estimate SRV(w) is of the same order as

the incoherent noise component in the internal wave frequency band (Figure 9). The

frequency spectral estimate of H D at level 2 is also comparable to the noise com­

ponent. At deeper levels, spectra Sn-rJ and Srw are much stronger than incoherent

noise components (Figure 10). In further discussion, incoherent noise components

3~26Su(w) are removed from SlID and Silv at levels 5,6, 10, and 14. Spectral esti­

mates of H D and RV at level 2 will not be used since they are strongly contaminated

by the incoherent noise.

Frequency spectra SliD and Silv at levels 5, 6, 10 and 14 decrease systematically
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Figure 9: Estimated frequency spectrum of relative vorticity (the solid line) compared
with the current noise component (the dotted line) at the level 2 of IWEX.
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with increasing depth (Figures 11 and 12). In other words, they decrease with the

increase of averaged area. For most frequencies, the sum of spectra of H D and RV

can be well represented by a power law of the radius of the circle, i.e.,

SHD(W; R) +SRV(w; R) '" R-q(w) , (3.10)

(3.11)

where q(w) is the slope. In the common internal wave frequency band of all four

levels, the mean slope is about 1.6 (Figure 13). Beyond the internal wave frequency

band, the slope is slightly steeper and the corresponding 95% confidence interval is

relatively larger. Frequency spectral slopes of S1T1J(w) and Sw(w) are about -2/3

in the internal wave frequency band, and -2 beyond the Brunt-Vais~i.1afrequency.

For linear internal waves, the consistency relation exist between frequency spectra

of relative vorticity and horizontal divergence, i.e.,

sJ{:')(w) P
SJ:1j) (w) = w2 '

Here, the superscript (IW) denotes the linear internal wave. The consistency test of

spectral estimates SRV(w) and S7ll5(w) at level 5 with the linear internal wave theory

is displayed in Figure 14. Apparently, linear internal wave theory can not explain

frequency spectral estimates of H D and RV. In fact, these two spectral estimates

are of the same order for all four levels.

The observed discrepancies in the consistency test could be either due to the fail­

ure of the linear internal wave theory to explain fluctuations of horizontal divergence

and of relative vorticity or simply imply a need of further interpretation of frequency

spectral estimates SHD(w; R) and SRV(w; R).

Indeed, frequency spectral estimates SHD and SRV' based on three velocity mea­

surements separated by a finite distance on a circle at each horizontal plane, do not
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represent area averaged frequency spectra of horizontal divergence and relative vortic­

ity exactly. Assuming a horizontally isotropic flow field, frequency spectral estimates

SliD and SRV can be expressed as

SHD(W; R) = 100

da {SHD(a,w)F(aR) +SRv(a,w)G(aR)}

S1W(w; R) = 100

da {SRv(a,w)F(aR) +SHD(a, w)G(aR)} .

(3.12)

(3.13)

SHD(a,w) and SRv(a,w) are horizontal wavenumber-frequency spectra of HD and

RV in a horizontally isotropic flow field. F( aR) is a lowpass array response func­

tion in the horizontal wavenumber domain with a slope of -2 beyond the rolling-off

wavenumber (aR ~ 1), and G(aR) is a bandpass array response function (Figure

15). Detailed derivations of these two array response functions for the IWEX cur­

rent meter configuration are discussed in Appendix A. The lowpass array response

function F(aR) represents the problem of the finite separation among current me­

ters such that variations at scales smaller than the scale of the circle are attenuated.

The bandpass array response function G(aR) represents the contamination problem

due to the discrete velocity measurements on the circle such that estimated RV and

HD are contaminated by each other. Hereafter, F is termed the attenuation array

response function since it describes the attenuation of small-scale fluctuations, and G

is termed the contamination array response function since it represents the potential

contamination errors.

A more general discussion for an arbitrary number of current meters located

evenly on a circle is described in Appendix B. Increasing the number of velocity sen­

sors along the circle does not change the attenuation array response function signifi­

cantly since it is a result of the finite size of the circle only. The contamination array
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response function is reduced and its peak moves to a higher horizontal wavenumber

by increasing velocity measurements along the circle. In principle, the contamination

problem can be eliminated using continuous velocity measurements along the circle

since its peak will vanish and move to an infinite horizontal wavenumber. The at-

tenuation array response function can also be eliminated to a limit of infinitesimal

radius of the circle.

Specifically, the attenuation and contamination array response functions for the

IWEX trimooring configuration have the forms

(3.14)

(3.15)

Here, Jo and J2 are Bessel functions of the first kind of zeroth and second order,

respectively. Obviously, the previously observed consistency discrepancy does not

necessarily imply a failure of the linear internal wave theory. To test the linear

internal wave theory, estimates of uncontaminated frequency spectra of horizontal

divergence and relative vorticity are required. Note that with the effect of the attenu­

ation problem alone, the linear internal wave theory will still predict a ratio between

t?frequency spectra of H D and RV to be "2.
w

3.3.1 Comparison with GM-76 Internal Wave Spectrum

Compiling observations from various sources and different locations in the time-

space scales of oceanic internal waves, Garrett and Munk (1972) constructed an em­

pirical energy spectrum (referred to as the GM-72 spectrum). This spectrum has
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been considered as a representation of internal waves in the absence of local sources

or sinks of energy.

Modifications of the GM-72 spectrum have been made as a result of improvements

in oceanic instrumentation and advances in theoretical studies. In our discussion, the

GM-76 spectrum (Cairns and Williams, 1976) will be used. It is briefly reviewed in

Appendix C.

Using the GM-76 spectrum model and the polarization relation of internal waves,

GM frequency spectra of H D, RV are obtained at different levels of IWEX applying

the wavenumber filter functions F and G. A vertical cutoff wavenumber of 0.1 cpm has

been assigned as the upper boundary of the GM spectrum in the vertical wavenumber

space.

Frequency spectra of H D at four levels are compared with the corresponding

GM-76 spectra (Figures 16 - 19). Both spectral levels and slopes are consistent with

the GM spectra at levels 6, 10 and 14. At level 5, the observed frequency spectrum

of H D is stronger than the GM spectrum, especially near the inertial frequency

(Figure 16). One possible reason for this disagreement is due to the prescribed vertical

cutoff wavenumber in the GM spectrum. Figure 20 displays the variance preserving

contours of H D spectrum of the GM model. Most of variance of horizontal divergence

of the GM model is concentrated at high wavenumbers. At level 5, most of variance of

HD near the inertial frequency is lost due to the vertical cutoff wavenumber effect. At

deeper levels, the effect of vertical cutoff wavenumber does not playa significant role,

whereas the attenuation array response function is effective. In fact, if we increase

the vertical cutoff wavenumber used in the GM spectrum to 1 cpm, the energy level

of the GM spectrum will be much closer to observed frequency spectrum.

Frequency spectra of RV at four levels are compared with the corresponding

GM-76 spectra (Figures 21 - 24). At level 5, the observed spectrum is about one
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order greater than the GM-76 spectrum, and is about a factor of four greater than

the GM-76 spectrum at level 6. At levels 10 and 14, observed spectral estimates

of RV agree very well with the GM spectra. Discrepancies at levels 5 and 6 could

be either due to the failure of the linear internal wave theory to explain small-scale

fluctuations of H D and RV or to the inadequacy of the GM-76 spectrum at small

horizontal scales. GM-76 spectrum model is not appropriate to make a conclusion.

An exact justification requires either uncontaminated frequency spectra of horizontal

divergence and relative vorticity or a more accurate wavenumber structure of the in­

ternal wave field.

3.3.2 Inverse Transformation of SHD(a::,W) and SRV(a::,W)

Frequency spectral estimates SHD(Wj R) and SRV(Wj R) can be expressed as horizon­

tal wavenumber integration of SHD(a,w) and SRv(a,w) applying the attenuation and

contamination array response functions (eqs. 3.12 and 3.13). The inverse transfor­

mation of SHD(a,w) and SRv(a,w) is difficult to obtain since two integration kernels

are involved. However, the sum and the difference of SHD(Wj R) and SRV(w; R) can

be expressed as the horizontal wavenumber integration of the sum and the difference

of SHD(a,w) and SRv(a,w) applying one integration kernel only, i.e.,

S7llJ{w; R) +SRV(Wj R) =100

da [SHD(a,w) +SRv(a,w)] F+(aR)

F+(aR) = F(aR) +G(aR) = 3a;R2 [1 - Jo(J3aR)]

65

(3.16)

(3.17)

(3.18)



--. 10-8

~-a.
~

10-10N
I

$

f
t

RELATIVE VORTICITY
LEVEL 5

......
.......

.........
....................................\.

95 %

10-1 100

FREQUENCY (cph)

10-184- ----_------1
10-2

Figure 21: Frequency spectrum of estimated relative vorticity (solid line) at level 5
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ination array response functions. The 95% confidence level is shown.
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compared with the GM spectrum (dotted line) applying the attenuation and contam­
ination array response functions. The 95% confidence level is shown.

67



10-4
RELATIVE VORTICITY

LEVEL 10

10-6

f
...- 10-8 t
.c
0.
~

10-10N
I

~

:E
::::> 10-12
0::

t3
t.J
0..
CIJ

10
14

95 %

10-1 10°
FREQUENCY (cph)

10-18+- ---,~----..,..----......
10-2

Figure 23: Frequency spectrum of estimated relative vorticity (solid line) at level 10
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ination array response functions. The 95% confidence level is shown.
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ination array response functions. The 95% confidence level is shown.
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(3.19)

Here, F+(o:R) and F_(o:R) both behave as attenuation array response functions with

slightly different shapes. The inverse transformation of SHD(O:, w) - SRV(O:,W) can

be easily obtained. Substituting F_(o:R) into eq. 3.17, it can be rewritten as

{3:2
[51m-(w; R) - SJW(Wj R)]} = ~oo do: { SHD(O:,W)~ SRV(O:,W)} o:J2 ( V3o:R).

(3.20)

Therefore, the term in the bracket on the left-hand side of the equation is the Hankel

transformation (of the second order) of the term in the bracket on the right-hand side.

Applying the inverse of the Hankel transformation, the difference of wavenumber­

frequency spectra of H D and RV can be found as

roo 90:
3 R3

SHD(O:,W) - SRV(O:, w) = Jo dR[SHD(W; R) - SRV(w; R)] 8 J2 ( V3o:R). (3.21)

Also, the inverse transformation of SHD(O:,W) +SRV(O:,W) can be obtained using

the inverse of the Hankel transformation as

roo 90:
3 R3

- I« dR-4- Jo(V3o:R) {SHD(W; R) +SRV(w; R)}
(3.22)

using eqs. 3.16 and 3.19, and the relation

S () S ( )
_ ~ood [SHD(O:,W) +SRV(O:,W)]

uw+v w- 0: 2 •
o 0:
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Here, Su(w) and Su(w) are horizontal velocity frequency spectra. Accordingly, the

inverse transformation of SHD(a,w) and SRv(a,w) can be expressed as

(3.24)

(3.25)

The inverse transformation of SHD(a,w) and SRV(a,w) requires frequency spec­

tral estimates SjlD(w; R) and SRV(w; R) at continuous radii R. Using IWEX mea­

surements, frequency spectral estimates SjlD(w;R) and SRV(Wj R) could be obtained

at five different radii only. Since the convergence of the above inverse transforma­

tions is very sensitive to the radius dependence of frequency spectral estimates of H D

and RV, these finite points of information are not sufficient to carry out the inverse

transformation.

3.3.3 Parameterized Wavenumber Spectrum

As shown in section 3.3.1, the observed frequency spectra of H D are well rep­

resented by the GM-76 spectrum model, whereas significant discrepancies occur be­

tween observed frequency spectra of RV and the GM spectrum at levels 5 and 6. We

71



are not able to determine whether such discrepancies are due to the failure of the

GM-76 model or due to observed fluctuations which are not internal waves alone.

Here, we propose a wavenumber spectrum structure similar to the shape of GM-76

and attempt to determine wavenumber parameters from observed spectra.

Using equations 3.16 and 3.23, the sum of frequency spectral estimates of H D

and RV can be written as

A velocity wavenumber spectrum model is proposed such that

(3.27)

(3.28)

Here, Eu(w) is proportional to the horizontal kinetic frequency spectrum. a. is the

wavenumber bandwidth, and p the high wavenumber slope. Applying this wavenum­

ber spectrum model, the sum of frequency spectral estimates Srm(Wj R) and 51w(Wj R)

becomes

4Eu (w)100
[ . /0] 1SHD(Wj R) +SRV(Wj R) = 3R2 da 1 - Jo(v 3aR) ( /) .

o a. 1 +a a. P
(3.29)

The asymptotic form of the above integration can be used to determine the high

wavenumber slope. Following Gradshteyn and Ryzhik (1965, eq. 6563), the above

integration can be approximated as

(3.30)
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Furthermore, assuming a.R < 0(1) and 1 < p < 3, the higher order terms

in the above equation can be neglected. Note that the prescribed range of high

wavenumber slope includes the wavenumber slope 2 of the GM model. Also, the

assumption of a.R < 0(1) is valid using GM spectrum at shallower levels in the low

frequency band (Figure 25). Since SHD(Wj R) +SRV(WjR) has an approximate R-1.6

dependence in the internal wave frequency band (Figure 13), the high wavenumber

slope p of the velocity wavenumber spectrum is approximately 1.4 which is slightly

smaller than that of the GM model. The high wavenumber spectral slope can also

be determined from velocity coherence spectra at different horizontal separations. A

consistent result was found.

Accordingly, horizontal wavenumber-frequency spectra of H D and RV have a
a 2

form of (1 / )1.4 assuming they have the same wavenumber structure. Ap-
a. +a a.

parently, a horizontal cutoff wavenumber has to exist to assure a finite variance of

H D and RV. In the GM spectrum, a horizontal cutoff wavenumber is defined using

a vertical cutoff wavenumber of 0.1 cpm (Munk, 1981) and the dispersion relation

of linear internal waves. However, the vertical cutoff wavenumber prescribed in the

GM model is originated from previously observed vertical shear spectra (Gargett et

al., 1981) and temperature vertical gradient spectra (Gregg, 1977) where a change of

slope at 0.1 cpm was found. However, such a vertical cutoff wavenumber is purely

phenomenological. Also, the GM spectrum model has assumed the separability be­

tween the vertical wavenumber spectrum and the frequency spectrum. Nonetheless, it

has been recently found that vertical wavenumber-frequency spectra of vertical shear

have a frequency dependence which is a function of vertical wavenumber (Sherman

and Pinkel, 1990). A decreasing vertical cutoff wavenumber and a narrowing of the

wavenumber bandwidth at higher frequencies were also found, which disagree with

the GM spectrum model. Apparently, one should be very cautious in using the GM
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(3.31)

spectrum model. Particularly, GM spectra of H D, RV, VS, and I R are highly sen­

sitive to the choice of cutoff wavenumber.

3.4 Spectral Analysis of V S and I R

Two principal linear components of perturbation potential vorticity are vortex

stretching and relative vorticity. Since relative vorticity is negligibly small relative to

vortex stretching at large scales, the conservation law of vortex stretching has been

widely used for studying large-scale oceanic circulation. For small-scale oceanic

motions, these two components can be equally important. An estimate of vortex

stretching was attempted by Miiller et al, (1988) using an estimated field of horizontal

divergence. Since the vortical mode is horizontally nondivergent, only the gravity

mode component of vortex stretching was obtained in their estimate. Note that

in their calculation, the vortical mode contribution can exist through the nonlinear

advection only.

Here, fluctuations of vortex stretching at small scales will be estimated using tem­

perature measurements from IWEX. The vortex stretching is defined as V S = j8z T/ .

The vertical displacement, T/, is obtained from temperature fluctuations normalized

by a background temperature gradient given by

T'
T/= -=.

8zT

The background temperature gradient is estimated as the time average of temperature

difference field over a vertical distance of 1.74 m taken in IWEX. The field of vortex

stretching is estimated as
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VB = f'ifup - 'iflow.
H

(3.32)

Here,1fup and 'filow are averaged vertical displacements at the upper and lower levels. H

is the vertical distance between two successive levels. Vertical separation distances are

shown in Table 2. Similarly, vertical shear of horizontal velocity can also be estimated

by vertically differencing mean horizontal velocity between successive levels.

Spectral analysis is performed in the same manner for spectral estimates of RV

and H D. Spectra of horizontal velocity shear are used to obtain spectra of inverse

Richardson number defined as

S- (w) +S- (w)
S- ( ) - 8zu 8zv .

IR W - N2 . (3.33)

Frequency spectra of VB and ill are displayed in Figures 26 and 27. They both

show a spectral slope of - 2 in the internal wave frequency band and drop with a slope

of -3 to -4 beyond the Brunt-Vaisala. frequency. Total variances of VB and fR are

obtained by integrating over their frequency spectra (Table 2). The variance of VB
displays a monotonic decrease with increasing vertical separations. The corresponding

r.m.s. vertical strain (oz1l) ranges from 0.025 to 0.12. The variance of ill also show

a general decrease with. increasing vertical separations. Corresponding Richardson

numbers are much greater than the critical Richardson number for shear instability.

Similar to spectral estimates of H D and W, frequency spectra of VB and ill

are described by their wavenumber-frequency spectra applying an array response

function:

Svs(w) = 1: d(3l~o da {Svs(w,a,(3)F(a,Ru , R,,(3H)}
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Table 2: Parameters and variance of estimated vortex stretching and inverse Richardson number

layer between vertical mean buoyancy vertical cutoff vortex inverse Richardson

levels separation (m) frequency (cph) wavenumber (cpm) stretching (S-2) number

2 and 5 34 2.57 1.5.10-2 6.2.10-11 9.1.10-2

5 and 6 91 2.71 5.4 . 10-3 2.5.10-11 2.5.10-3
-t
-t

6 and 10 292 2.41 1.8.10-3 4.9.10-12 1.9.10-3

10 and 14 1027 1.36 4.8.10-4 2.9.10-12 2.0.10-3
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(3.35)

(3.36)

with

F(o:,Ru,R"(3H) = 3((3~)2 ([I + Jo(V3o:Ru)+Jo(V3o:R,)]

-cos((3H) [Jo(o:~R) +2Jo(o:R')]}.

Here, Svs(w,0:, (3) and SIR(w, 0:, (3) denote wavenumber-frequency spectra of vortex

stretching and inverse Richardson number. Ru and R, are radii of circles connecting

three current meters at the upper and the lower levels, ~R = I Ru - R, I and R' =

JR~ +R~ +Ru . R,. Jo is the Bessel's function of the first kind of the zeroth order.

The wavenumber array response function is very complicated since the horizontal

wavenumber and the vertical wavenumber dependence are not separable due to the

slanting of the IWEX mooring.

The array response function for frequency spectra of VB and fR using measure­

ments at levels 5 and 6 is greater than one in the region where the vertical wavenumber

is smaller than 10-3 cpm and the aspect ratio is greater than 3 (Figure 28). Small­

scale oceanic motions rarely have such large vertical scales and small aspect ratio. In

the regime of small aspect ratio or vertical wavenumber greater than 10-3 cpm, the

horizontal wavenumber dependence of the array response function can be ignored,

i.e.,

Svs(W) ~ i: d(3 Svs(w, (3)F((3H)

SfR(W) ~1: d(3 SIR(W, (3)F((3H),

(3.37)

(3.38)

where F((3H) = (Sin~:::t2)) 2 is the simplified array response function (Figure 29).
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(3.39)

It has a -2 slope beyond the vertical wavenumber f3 '" 2/H. For analytical con­

venience, it is approximated by a top-hat array response function with its cutoff

wavenumber defined as

13 = 100

d(3 F((3H) ~ 3.12.
-00 H

Vertical cutoff wavenumbers are described in Table 2. The smallest resolvable vertical

scale is about 68 m. Therefore, estimated Richardson numbers suggest that the flow

field at the IWEX site is stable with respect to the shear instability for vertical scales

greater than 68 m.

Frequency spectra of VB of the GM-76 model are estimated using the simplified

array response function. Observed frequency spectral levels of VB agree with GM

spectra within 95% confidence level (Figures 30 - 33). In general, the GM-76 spec­

trum is slightly greater than observed spectra (except at the shallowest depth near

the Brunt-VaisiWi. frequency). The spectral slope is very well explained by the GM

model. Comparisons between observed frequency spectra of fR and the GM-76 spec­

trum are displayed in Figures 34 - 37. Observed spectra are remarkably consistent

with the corresponding GM spectra, in particular the -2 frequency spectral slope.

Observed agreements imply that observed fluctuations of VB and fR are well ex­

plained by linear internal waves at vertical scales greater than the smallest resolvable

scale (68 m).

The systematic decrease of spectral levels of VB and fR with the increasing

vertical separation is presumably due to the effect of the array response function. As-

suming a homogeneous physical environment, differences between frequency spectra .

estimated over different vertical separations can be converted to the vertical wavenum-

ber information. Specifically, the vertical wavenumber-frequency spectrum can be

approximated as

82



101

Z
0

10°1-4
E-!
U
Z
::> 10-1~

~
U'J
Z
0 10-2
~
U'J
~

~

~ 10-3

~
~

< 10-4
10-2 10-1 10° 101 102

NORMALIZED VERTICAL WAVENUMBER (f3H)

Figure 29: Simplified array response function for frequency spectral estimates of
vortex stretching and inverse Richardson number. f3H is the normalized vertical
wavenumber.

83



VORTEX STRETCHING
10-7 -r---------------,

--..
.c
0.
~ 10-11

CIl
I

~

::E
::::>
~

10-13E-
U
~
c...
(/)

f,
..................

....
......

10-15 95 %

~

10-17
,-----

10-2 10-1 100 101

FREQUENCY (cph)
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Figure 32: Frequency spectrum of vortex stretching (solid line) estimated between
levels 6 and 10 compared with the GM spectrum (dotted line).
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Figure 33: Frequency spectrum of vortex stretching (solid line) estimated between
levels 10 and 14 compared with the GM spectrum (dotted line).
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between levels 5 and 6 compared with the GM spectrum (dotted line).
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S({3i,W) = Si(~ - ~1 (w). (3.40)
f3i - f3H1

Here, Si denotes the frequency spectrum of VB or ill estimated between levels i and

i + 1, Si+l denotes the frequency spectrum estimated from levels i + 1 and i + 2.

The corresponding vertical cutoff wavenumbers are Pi and PH1. In this analysis,

three vertical wavenumbers can be resolved centering at {3i = (Pi + Pi+l)/2. Vertical

wavenumber-frequency spectra of VB and ill are displayed in Figures 38 and 39.

Vertical wavenumber spectra of VB and ill (Figures 40 and 41) are obtained by

integrating vertical wavenumber-frequency spectra over the frequency domain. The

estimated vertical wavenumber spectrum of VB agrees with Gregg's results (1977) to

the order of magnitude with a multiplication of P to his normalized temperature gra­

dient spectrum. Since only three vertical wavenumbers are resolved, the wavenumber

spectral slope is not well defined. Gargett et al. (1981) found the vertical wavenumber

spectrum of current shear of 1 '" 3 X 10-4 s-2 and a zero slope for vertical wavenum­

bers smaller than 10-1 cpm. The corresponding inverse Richardson number spectrum

is about 10 (cpmjr". This also agrees well with our estimates at vertical wavenum­

bers f32 and f3s, whereas our spectral estimate is about one order smaller than their

result at ('" 10-3 cpm). This might be due to the simplification of the array response

function which is not suitable at vertical wavenumbers smaller than 0(10-3 cpm).

3.5 Proposed Normal Mode Decomposition
Using H D and RV

The system of small-scale motions can be completely described by three prog­

nostic variables HD, RV, and VS. The linear eigenmode representation has been
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Figure 39: Vertical wavenumber-frequency spectrum of inverse Richardson number.
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the vertical cutoff wavenumber.
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discussed in section 2.1. Specifically, the gravity and vortical components of these

variables are defined at each wave vector and instant in time (eqs. 2.33 and 2.34) as

HDV(J£, t) 0

RVV(k, t) 1 Na2
- uJ( aV(k,t). (3.42)

VSV(k, t) _ j2k;
N2 a2

Superscripts 9 and v denote the gravity and vortical components. These relations

clearly describe kinematic structures of the gravity and vortical modes:

• The vortical mode is horizontally nondivergent. Therefore, fluctuations
of horizontal divergence result entirely from the gravity mode.

• The gravity mode does not carry linear perturbation potential vortic­
ity, whereas the vortical mode carries the linear perturbation potential
vorticity with a fixed ratio between the relative vorticity and vortex
stretching.

• For the linear gravity mode, the ratio between frequency spectra of
horizontal divergence and relative vorticity is w2

/ p, and their phase
spectrum should be 900 out of phase.
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These characteristics are very useful for the decomposition of relative vorticity and

horizontal kinetic energy spectrum into gravity and vortical components.

Assuming measurements of uncontaminated H D and RV were obtained, observed

RV can be decomposed into its gravity and vortical components as

RV9(t) =V'S9(t) = f7J;?(t) = -fIt
dt'HD(t')

RVV(t) = RV(t) - RV9 (t ).

(3.43)

(3.44)

Here, a linear gravity mode is assumed. A bandpass filter should first be applied

on observed H D to extract fluctuations in the internal wave frequency band. The

gravity component of RV as well as VS can be obtained by the time integration of the

bandpassed H D. Accordingly, the vortical component is the residual of the observed

RV and the gravity component.

Horizontal wavenumber-frequency spectrum of horizontal kinetic energy SHK(a, w)

is related to spectra of relative vorticity and horizontal divergence as

1
SHK(a,w) = 2a2 [SRv(a,w) + SHD(a,w)]. (3.45)

The gravity and vortical components of horizontal kinetic energy spectrum can be

defined as:

(3.46)

(3.47)

Here, SlIK(a,w) and SHK(a, w) are horizontal wavenumber-frequency spectra of hor­

izontal kinetic energy of gravity and vortical modes.
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The normal mode decomposition of relative vorticity and horizontal kinetic en­

ergy requires uncontaminated estimates of RV and H D. Unfortunately, estimates

of RV and H D are potentially contaminated with each other. The normal mode

decomposition can not be achieved at this stage.
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Chapter 4

Summary and Conclusion

The primary goal of this study was to understand small-scale oceanic motions

which include both internal gravity waves and vortical motion. Traditionally, internal

gravity waves are treated as the only motion at small scales. However, since inter­

nal waves do not carry perturbation potential vorticity, the vortical mode must be

present to carry the perturbation potential vorticity at small scales. Coexistence of

internal waves and vortical motion at small scales has been supported by oceanic

observations, numerical models, and laboratory experiments. Discrepancies between

oceanic measurements in the time scale of internal waves and linear internal wave

theory have been found (Muller et al., 1978). Three-dimensional numerical studies

(Riley et al., 1981) and laboratory experiments (Lin and Pao, 1979) also found the

coexistence of internal waves and vortical motions.

The fundamental objective of this study was to decompose small-scale motions

into gravity waves and vortical motion. The major distinction between these two

types of motions is the perturbation potential vorticity which is, in general, a nonlinear

quantity. Therefore, a linear decomposition is impossible to perform except in a linear

system in which only the linear components of the perturbation potential vorticity

exist.

Using eigenvectors of the linear equations of motion, the gravity and vortical
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modes are defined. The gravity mode propagates and does not carry linear perturba­

tion potential vorticity. The vertical mode is stagnant and carries linear perturbation

potential vorticity. The linear gravity mode has a ratio between the horizontal diver­

gence spectrum and the relative vorticity spectrum as a function of frequency only.

The vertical mode has a fixed ratio of the relative vorticity and vortex stretching

spectra and is horizontally nondivergent.

In the linear system, the normal mode decomposition of the flow field into its

gravity mode and vertical mode is unambiguous. An example of the geostrophic ad­

justment problem was illustrated. The initial surface disturbance field is decomposed

into its gravity wave and the geostrophic flow components. The final state is steady

geostrophic flow, while the gravity wave carries energy away from the disturbed field.

To justify the application to a nonlinear model, the normal mode decomposition was

employed on a nonlinear vertical motion with a monopole dynamic. At small Rossby

and Burger numbers, the gravity mode component is negligible. Since the normal

mode decomposition is based on the linear perturbation potential vorticity while the

monopole has the nonlinear component of perturbation potential vorticity as well, a

weak gravity mode was also obtained.

The normal mode decomposition can be conveniently performed using measure­

ments of horizontal divergence, relative vorticity, and vortex stretching. Using veloc­

ity measurements from IWEX, fluctuations of area-averaged horizontal divergence,

and relative vorticity at different depths were estimated using Stokes' and Gauss' the­

orems. There are two potential problems with the estimation of horizontal divergence

and relative vorticity using discrete sampling of velocity measurements along a circle

of finite size. First, due to the finite size of the circle, fluctuations at scales smaller

than the scale of the circle are attenuated. Second, due to the discrete sampling of

velocity measurements along the circle, there is contamination between the horizontal
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divergence and relative vorticity. Increasing the number of velocity sensors along the

circle can reduce the effect of the contamination error, but the attenuation error will

remain.

The GM-76 internal wave spectrum model was compared with frequency spectral

estimates of horizontal divergence and relative vorticity. Frequency spectral estimates

of horizontal divergence were well represented by the corresponding GM-76 spectra,

whereas discrepancies were found in frequency spectral estimates of relative vorticity

at levels 5 (640 m depth) and 6 (731 m depth). However, we cannot conclude whether

observed discrepancies were due to the existence of small-scale vertical motion or

the failure of the GM-76 spectrum model to predict the internal wave spectrum of

horizontal divergence and relative vorticity at small scales. The GM spectrum of

the horizontal divergence and relative vorticity is very sensitive to the choice of the

horizontal cutoff wavenumber which is not well defined.

An inverse transformation was attempted to derive horizontal wavenumber-frequency

spectra of horizontal divergence and relative vorticity. Unfortunately, it requires fre­

quency spectral estimates of horizontal divergence and relative vorticity in continuous

sizes of circles. The inverse transform is impossible using only few frequency spectral

estimates from IWEX.

Fluctuations of vortex stretching and inverse Richardson number were estimated

from IWEX. Both spectral levels and spectral slopes agree very well with the corre­

sponding GM spectra. Vertical wavenumber spectra of vortex stretching and inverse

Richardson number were obtained and are consistent with results from Gregg (1977)

and Gargett et al. (1981).

A general scheme of the normal mode decomposition of the relative vorticity

and the horizontal kinetic energy spectra using uncontaminated measurements of

horizontal divergence and relative vorticity was proposed. Since we were not able to
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decontaminate estimates of horizontal divergence and relative vorticity, the normal

mode decomposition cannot be performed.

It is clear that the normal mode decomposition can be made most conveniently

using fields of horizontal divergence, relative vorticity, and vortex stretching. In the

previous IWEX analysis by Muller et al, (1978), current finestructure with a vertical

wavelength from about 1 m to 10 m were found from the vertical coherence spectrum.

Later, Muller (1984) proposed that the current finestructure represents small-scale

vertical motion. If small-scale vortical motion does exist only at small vertical scales,

vertical wavenumber spectra of horizontal divergence, and relative vorticity will be

needed to detect it.

103



Appendix A

Array Response Functions for
Spectra of H D and RV

Horizontal velocity measurements from a triad of current meters of IWEX are

used to estimate fields of horizontal divergence (H D) and relative vorticity (RV).

The configuration of the triad current meters is displayed in Figure 42. Time series of

HD and RV were estimated using horizontal velocity components from three current

meters on a horizontal plane. Because of discrete sampling in space (three current

meters only) and the finite separation among current meters (ranging from 8.5 m to

1600 m), there are two potential errors in frequency spectral estimates of H D and

RV.

By applying Stokes' theorem and Gauss' theorem over the circle connecting three

current meters on a horizontal plane, area-averaged horizontal divergence and relative

vorticity are estimated as

- 2""HD(t) = 3R LJ {uk(t)coslh +vk(t)sinlh}
k=A,B,G

(A.l)

(A.2)- 2 ""RV(t) = 3R LJ {vk(t)coslh - uk(t)sinlh}.
k=A,B,G

Here, A, B, and C denote three current meters, fh the counterclockwise orientation
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Figure 42: The mooring configuration of a triad of current meters on a horizontal
plane.
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of the current meter from the east direction, and R the radius of the circle. u and v

are east and north velocity components. The overbar denotes the estimated field.

Assuming statistical homogeneity, frequency spectra of estimated H D and RV

can be expressed as

SHD(Wj R) = -k f:' da f;1r adt/J {Su(a, t/J,w)F2(aR, 00, t/J) +Sv(a, t/J,w)Ft(aR, 00, t/J)

+Suv(a, t/J,w)F;(o:R, 00, t/J) + Svu(a, tP, w)F3(aR, 00, t/JH
(A.3)

SRV(W; R) = d:r fooo da f;1r adt/J {Su(a, t/J, w)F1(aR, 00, t/J) +Sv(a, t/J, w)F2(o:R, Oe, t/J)

-Suv(a, t/J,w)F3(o:R,00, t/J) - Svu(a, t/J,w)F;(aR, Oe, t/JH·
(AA)

Su(a, t/J, w) and Sv(a, t/J,w) are wavenumber-frequency spectra of horizontal velocity

components. Suv(a, tP, w) and Svu(0:, t/J, w) are their cross-spectra. a is the horizontal

wavenumber magnitude, t/J the orientation of the wavenumber vector counterclockwise

from the east. The superscript asterisk denotes the complex conjugate. FI, F2 and

F3 are three array response functions given by

F1(o:R, 00, t/J) = {~+ 2sin(Oe - ~1l" )sin(()e + ~1l" )cos[v'3aR cos(tP - 00 + ~)]

+2sin(Bo - ~1l")sin(Bo)cos[v'3 aR cos(t/J - Be - i7l")]

+2sin(Bo + ~1l")sin(Bo)cos[v'3 a H cos(t/J - Oe - ~7l")]},
(A.5)

F2(aR, Be, t/J) = {~+ 2cos(Oe - ~1l")cos(Be + ~1l")cos[v'3 aR cos(tP - 00 + ~)]

+2cos(00 - ~1l")cos(Bo)cos[V3 aR cos(t/J - 00 - ~7l")]

+2cos(Bo + ~1l")cos(Bo)cos[J3 aR cos(t/J - 00 - ~1l")]},
(A.6)
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and

F3(aR, ()e, 4» = sin(()e - ~lI")cos(()e + ~11") •exp {iV3 o R cos(4> - ()e + ~)}

+sin(()e - ~11" )cos(()e) . exp {iV3 ccR cos(4> - ()e - ill") }

+sin(()e + ~lI")cos(()e - ~11")' exp {-iV3 aR cos(4) - ()e +~)}

+sin(()e + ~11" )cos(()e) . exp {iV3 aR cos(4> - ()e - ~11")}

+sin(()e )cos(()e - ~11") •exp {-iv'3 aR cos (4> - ()e - ~11")}

+sin(()e )cos(Be+ ~11") •exp {-iv'3 aR cos(4> - Be - ~11")} •
(A.7)

Since Be, ()B, and BA are lagged by 3~ successively, ()e was chosen to be the only

independent parameter that describes the orientation of the mooring. Apparently,

these array response functions depend on the radius of the circle, the magnitude and

direction of the horizontal wavenumber relative to the mooring array. Frequency spec­

tral estimates of H D and RV are related to four independent wavenumber-frequency

spectra Su(a,4>,w), Sv(a,4>,w), and Suv(a,4>,w) (including the real and the imagi­

nary components). In general, they cannot be represented completely in terms of

SHD(a,4>,w) and SRv(a,4>,w) except in some limiting cases such as isotropic or uni­

directional flow fields (Prater, 1989).

A.I Isotropic Flow Field

Isotropy conditions of velocity wavenumber spectra were found by Batchelor

(1953). The velocity cross-spectra can be expressed as
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(A.8)

(A.9)

(A.I0)

where A(a) and B(a) are arbitrary even functions of a. Accordingly, frequency­

wavenumber spectra of H D and RV can be described as

SRv(a,ifJ,w) = a2B(a,w).

(A.ll)

(A.12)

Under the horizontal isotropy condition, frequency spectral estimates of H D and

RV can be represented in terms of wavenumber-frequency spectra of H D and RV

and two array response functions (Figure 15), i.e.,

SHD(W, R) = 100

da {SHD(a,w)F(aR) +SRv(a,w)G(aR)}

Smr(w, R) =100

da {SRv(a,w)F(aR) +SHD(a,w)G(aR)}
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Here, Jo and J2 are Bessel functions of the first kind of zeroth and second order, re­

spectively. F(QR) is an attenuation array response function with a cutoff wavenumber

of approximately ~ and a -2 spectral slope beyond the cutoff wavenumber. G(aR) is

a contamination array response function with a +2 spectral slope in the low wavenum­

ber region and a -2 slope in the high wavenumber region. It reaches a peak of 0.1

at the wavenumber a ~ ~. Beyond this wavenumber, F and G are of the same order.

A.2 Unidirectional Flow Field

For any arbitrary unidirectional flow field v(x, y, t) = c u(x, y, t), frequency spec­

tral estimates of H D and RV can be described as

SmJ(w) = d:r fooo da f;1I" ad¢> Su(a, ¢>,w)

. {c2
• F1(aR, ee, ¢» + F2(aR, ee, ¢» + 2c· ~ [F3(aR, ee, ¢»]}

(A.l7)

(A.18)

Here, ~ [ ] denotes the real component. Wavenumber-frequency spectra of horizontal

divergence; and relative vorticity fields are related to the velocity spectrum by

(A.19)

(A.20)

Note that SHD(a, ¢>,w) and SRv(a, ¢>,w) are linearly related for any given wave vector.
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To simplify our discussion, we consider a zonal flow field (c = 0) without merid­

ional dependence, with nonvanishing horizontal divergence and zero relative vorticity.

For this flow field, frequency spectral estimates of H D and RV can be expressed as

SHD(W) = 1'X) da {SHD(a,w)F'(aR, Oen

Smr(w) = 1'X) da {SHD(a,w)G'(aR, Oen

(A.21)

(A.22)

(A.23)

(A.24)

Here, F'(aR, Oe) is the attenuation array response function which describes the effect

due to the finite separation among current meters and G'(aR, Oe) is the contamination

array response function that describes the contamination resulting from the presence

of H D. Although the flow field does not contain relative vorticity, the estimated

spectrum of RV does not vanish due to the contamination from the H D field. Both

F' and G' depend on the radius ofthe circle, the wavenumber magnitude (a =1 k:z; I),

and the orientation of the mooring relative to the wavenumber. These two array

response functions are displayed in Figure 43 as functions of a H with the orientation

of mooring ranging from Oe = 0 to Oe = ~. F' is largest at Oe = o. It decreases with

increasing Be reaching its smallest at Be = 1r/6, and increases again until Be = 1r /3

where it reaches its largest value. The contamination array response function G' van­

ishes at Be = 0 and increases with 0e until 0e = 6/1r where it reaches a peak. For
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higher Oe, G' decreases again and vanishes at Oe = 3/'rr. Accordingly, there is no

contamination error in the spectral estimate of RV if the mooring array is set up for

Oe = n; with any integer n. In this case, current meters C and A are aligned on the

y-direction. Therefore, the estimate of the relative vorticity vanishes.

A.3 Simulations of Unidirectional Flow Past a
Triad of Current Meters

Simulations of flow past a triad of current meters have been discussed by Prater

(1989). A velocity time series is generated using a first order autoregressive model,

AR(I), i.e.,

u(t) = a . u(t - 6t) + e(t), (A.25)

where 6.t is the time interval of 60 s, and the coefficient a of the autoregressive model

is chosen to be 0.999. e is a Gaussian distributed random variable with a variance

of 0.0469 cm2/s2 • These parameters are chosen to duplicate the velocity frequency

spectrum observed from IWEX measurements.

The simulated time series of zonal velocity is advected past a triad of current

meters by a zonal mean current Uoat about 0.1 au]«. Frequency spectra of H D and

RV can be obtained replacing 8H D (a,w) in eqs. A.21 and A.22 with k;Su(w) <5(w­

Uok:z:). They are displayed in Figures 44 and 45 for radii of circles connecting three

current meters in the configuration of IWEX (4.9 m, 25.4 m, 80.3 m, 260 m, and 925

m). Frequency spectra of H D and RV are very similar except in the low frequency

band of the smallest two separations where 8H D (w) is greater than SRV(w).

In this simulation scheme, for each frequency the wavenumber-frequency velocity
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the attenuation and contamination array response functions for different orientations
of the mooring array.

112



10-4

--.........
10-5

...
\.. \ 4.9m.. \,-...... ... \.c .. \

e, ..• \.. \..g
10-6

.... \... ......
N ..

I
....

(/J .. ..
"-" ". -, ,.. .. \.. ...... \

~
.. \

10-7 .. ... ,. ,.. ... ,
~

, .... \.. 80.3 m \ ..
~

.... \, .. \., .. .... .. \-
U 10-8

,
....••.••..., \~

tI.:l .. \,

0-4 260m .. -,...
C/.) , -,

10-9
.,

0
., ..
., .... ,

::t: ., ......
925 m .,. ......

0
, .......,.

tI.:l 10-10
, ..., .......

~
,

<
.,.,

~ "'
~ 10-11

.'.,
~

-,
I--l
C/.)

10-12

10110010-1
10-13 L...-...L-L...L.JL.LL&.LL---L-...I-I....I..I.I~.............L..LI.Lu.u

10-2

FREQUENCY (cph)

Figure 44: Estimated frequency spectra of H D assuming a mean advection velocity
of 0.1 ern S-1 passing triads of current meters with the orientation Be = 7r /6 and radii
of 4.9 m, 25.4 m, 80.3 m, 260 m, and 925 m as in IWEX.

113



10-4

10110°10-1
10 -13 &..-....I..-J-I-&..U-I..LL.-...-I............",..&..I.I,J.I.I-.-.I......I-L.U.LU.I

10-2

10-5
,..-.....
..c=c,

\
~ 10-6 \

\
N \

I •tI:l ... 25.4 m"-"
........ ... ...

~ 10-7 .. -, ... ...,. ..
\

::J
... •...

\.. 80.3 m \

~
....

..... \

E-
.. \... ". ,

U 10-8
.. ..

'. , l". ..
tIJ .. <, "C-4 260m \. ,
(/.) ". .... u... f'. ..
> 10-9 ". .........
~

... ...~... ....., '-.
Q

.,. ~"C,
"'10-

tIJ 10-10 "'E-
,

~

<: .'.
".

......J
...,

::J 10-11
.,
.'.

~
.

~

(/.)

10-12

FREQUENCY (cph)

Figure 45: Same as Figure 44 for estimated frequency spectra of RV.

114



spectrum exists at one specific wavenumber only, i.e., a = k:c = ;0. Given Uo = 0.1

cm/s, the horizontal wavenumber increases from 0.0677 m- l at the inertial frequency

f ( = 0.03878 cph) to 4.5 m- l at the buoyancy frequency N (~ 2.6 cph), The at-

tenuation and contamination array response functions for different radii of the circle

connecting three current meters are presented in Figure 46. The wavenumber band

corresponding to the internal frequency range is also shown. Clearly, these two ar­

ray response functions are of the same order for radii of 80.3 m and 925 m in this

wavenumber band. However, for the 4.9 m radius, the attenuation array response

function is greater than that of the contamination array response function in the

low wavenumber region (low frequency) of the band and they are of the same order

beyond the wavenumber of 0.5 rrr? (corresponding to the frequency about 0.3 cph).

S1l15(w) and SJW(w) are of the same order beyond the frequency of 0.3 cph for the 4.9

m radius. This explains the similarity between simulated frequency spectra of H D

and RV for larger separations and the detected rolling off frequencies at smaller sep­

arations. This example clearly demonstrates the concept of array response functions

applied to frequency spectral estimates of H D and RV.
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Appendix B

General Representation of Array
Response Functions

Here, we will derive array response functions for frequency spectral estimates of

H D and RV assuming arbitrary number of current sensors spaced evenly on a circle

at a horizontal plane. It is intended to improve experimental design for the estimation

of area-averaged H D and RV.

Using the isotropic condition for velocity spectra (Batchelor, 1953), velocity fre-

quency cross-spectra at a given horizontal space lag j; can be expressed as

(B.1)
SRv(a,w) }+ [Jo(ar) +cos(20)J2(ar )] 2

20:

(B.2)
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('Xl . SHD(a,W) - SRV(a,W)
Puv(W; r,O) = Pvu(W; r,O) =- 10 daJ2(ar)sm(20) 2a2 • (B.3)

Here, r is the horizontal separation distance between two current sensors and 0 is

their angle counterclockwise from the east. Puu(Wj r, 0), Pvv(w; r, 0) and Puv(w; r,O)

are velocity frequency cross-spectra with a space lag !..

Assuming there are N current meters located evenly on a horizontal circle, area

averaged horizontal divergence H D and relative vorticity RV can be estimated using

the Stokes' and Gauss' theorems. In the following, the estimation of H D will be

illustrated and the estimation of RV is essentially the same. H D is estimated as the

approximate circle integration of the radial velocity components at all current sensors

as

N
HD = _1_ "" (n)21l"R

R2 LJ u r N'
1r n=l

(BA)

where R is the radius of the circle where current measurements are sampled, and

u~n) is the radial velocity component of the nth measurements. The radial velocity

component is estimated as

(B.5)

(B.6)

Here, 00 is the angle of a reference current sensor. On is the differential angle coun­

terclockwise from the reference current sensor.
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Accordingly, estimates of 1llJ can be expressed in terms of Fourier transforms of

velocity measurements at each instant of time

Assuming statistically homogeneous and stationary conditions, frequency spectral

estimates SH'l}{Wj R, N) derived from N current sensors on a circle of the radius of R

can be expressed as

4 NN rXl 2

SHD(Wj R, N) = N2R2 L: L: io dk {Puu(k,w)cos(On)COs(On')
n=l n'=l 0

(B.8)

Using representations of velocity cross spectra of an isotropic flow field in eqs.

B.l, B.2, and B.3, SHD (Wj R, N) can be expressed in terms of wavenumber-frequency

spectra SHD(a,w) and SRv(a,w) as

SliD(WjR,N) = loo da{SHD(a,w)F(aR,N) + SRv(a,w)G(aR,N)} (B.9)

F(aR,N) =

(B.IO)
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2 N N

G(aR,N) = N2a2R2 L L
n=l n'=l

[ ( . On - On' ) ( . On - On' )]cos On - On' )Jo(2aR sm ( 2 ) - J2 2aRsm( 2 ) .

(2.11)

F( aR, N) and G(aR, N) are the attenuation and contamination array response func-

tions. These two functions for six and nine current sensors on the circle are displayed

in Figures 47 and 48. The attenuation array response function does not change sig­

nificantly with the increasing number of the current sensors since it is only sensitive

to the size of the circle. However, the amplitude of the contamination array response

function reduces by a factor of five with the increasing number of current sensors and

the center of the band moves to higher wavenumber. Therefore, the contamination

error can be reduced simply by increasing the number of current sensors on the hori­

zontal circle. In the case of IWEX, the total number of instruments equals three and

the above relation reduces to what we have derived in the Appendix A.
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Appendix C

GM-76 Spectrum

The Garrett and Munk (1972, 1975) internal wave model spectra have been

changed and improved during the course of time. The version that is used in this pa­

per is generally referred to as the GM-76 spectrum (Cairns and Williams, 1976). For

this spectrum the distribution of total internal wave energy in frequency-horizontal

wavenumber space is given by

(C.l)

with

(C.2)

(C.3)

(C.4)

(C.5)
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The parameters are chosen to be b = 1.3 X 103 m, No = 5.2 X 10-3 S-1, Eo = 6 X 10- 5

and j. = 3. The spectrum also includes a high wavenumber cutoff

ac(w) = (w2 _ j2)1/2(N2 _ W2)-1/2(3c,

with (3c = 211'/10 m-1 = 0.1 cpm.
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