INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" × 23" black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" × 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Abilities and performance in vocabulary acquisition

Dunn-Rankin, Patricia Ann, Ph.D.
University of Hawaii, 1987

Copyright ©1987 by Dunn-Rankin, Patricia Ann. All rights reserved.
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark ___.

1. Glossy photographs or pages _____
2. Colored illustrations, paper or print _____
3. Photographs with dark background _____
4. Illustrations are poor copy _____
5. Pages with black marks, not original copy ___
6. Print shows through as there is text on both sides of page _____
7. Indistinct, broken or small print on several pages ___
8. Print exceeds margin requirements _____
9. Tightly bound copy with print lost in spine ______
10. Computer printout pages with indistinct print ______
11. Page(s) ________ lacking when material received, and not available from school or author.
12. Page(s) ________ seem to be missing in numbering only as text follows.
13. Two pages numbered ______. Text follows.
14. Curling and wrinkled pages ______
15. Dissertation contains pages with print at a slant, filmed as received ______
16. Other__________________________________________
    ____________________________________________________________________
    ____________________________________________________________________

University
Microfilms
International
ABILITIES AND PERFORMANCE IN VOCABULARY ACQUISITION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN EDUCATIONAL PSYCHOLOGY

MAY 1987

by

Patricia A. Dunn-Rankin

Dissertation Committee:

Daniel D. Blaine, Chairman
Betsy Brandt
Morris Lai
Roland Tharp
Ann Bayer
ACKNOWLEDGEMENTS

I am fortunate to have had the expertise of five outstanding faculty members contributing to my writing of this dissertation, and I would like to sincerely thank each of them for their patience and guidance throughout the process of completing the study. Special thanks go to my chairman, Dr. Daniel Blaine, for his valuable assistance.

My deepest love and appreciation goes to my husband, Peter, for his ongoing encouragement and belief in my ability to complete this project.
ABSTRACT

This study was an investigation of the contribution of a selected set of cognitive abilities to students' initial acquisition of word meaning. Four different vocabulary instructional methods were used and their relative effectiveness was also examined. Seventy-one adults enrolled for credit in developmental (remedial) reading courses at Leeward Community College in Pearl City, Oahu served as the subjects. They were administered 17 factor-analytically-derived ability tests from the Kit of Factor Referenced Cognitive Tests (Ekstrom, French & Harmon, 1976). Based upon extensive research these tests were postulated to mark six factors named (a) perceptual speed, (b) induction, (c) integration, (d) memory for associations, (e) visualization and (f) verbal closure. The tests were chosen for this study based on the assumption that they tapped mental processes relevant to vocabulary acquisition under divergent instructional conditions.

A factor analysis of the Leeward Community College students' scores failed to confirm the six factors chosen as predictors of success on the post performance measures. Therefore, individual ability tests were selected for the regression equations. Regression analysis revealed that...
scores on some selected ability tests can significantly predict performance following instruction under certain conditions.

The four different treatments were presented to each student in a counterbalanced (Latin Square) design. The conditions were named (a) multisensory, (b) networking, (c) mnemonic, and (d) context. For each condition a different set of ten vocabulary words was used. After each lesson, scores on two performance measures were obtained: (a) a definition recall measure, and (b) a recognition of correct usage measure.

Analysis of variance using the scores on each of two performance measures (recall and recognition) revealed statistically significant differences among the treatments, and multiple comparisons indicated most pairwise differences were statistically significant. With both the recall and recognition performance measures, the order of effectiveness for the conditions was (a) multisensory, (b) networking, (c) keyword, and (d) context.

Repeated measures analysis of variance using the two types of performance (recall and recognition) as a fixed factor revealed statistically significant main effects for the four treatments, the two performance measures, and interaction. Average recognition scores were higher than the average recall scores. A statistically significant
interaction occurred with the keyword and multisensory methods over the recall and recognition measures. The keyword method produced statistically significantly higher recognition scores whereas the multisensory was equally effective on recall and recognition. The overall success of the multisensory method may be due to the social interaction involved (Vgotsky, 1978).

Canonical correlations were calculated using scores from all 17 ability tests as the independent set and the recall and recognition variables as the dependent set. The correlations were not significant, but the standardized coefficients suggested that specific ability tests were differentially related to recall and recognition. Subsequently, two significant canonical Rs were found relating specific abilities to scores on either recognition or recall measures.

Results generally suggest that (a) ability structures may need to be defined differently with a low achievement population, (b) some instructional methods are more successful for initial vocabulary acquisition than others, and (c) main effects and interaction may be altered by the operational definition of the outcome measure.
TABLE OF CONTENTS

Acknowledgement ....................................................... iv
Abstract ...................................................................... v
List of Tables ................................................................. x
List of Figures ................................................................. xii
Chapter 1 ..................................................................... 1
   Introduction ............................................................... 1
      Background and Statement of Problem .......... 1
      Aptitude-Treatment-Interaction .......... 4
      Vocabulary Instruction ......................... 9
         Context ......................................................... 10
         Keyword ......................................................... 17
         Structural Analysis ................................. 21
         Other Methods ........................................ 23
Chapter 2 ..................................................................... 30
   Method ................................................................. 30
      Participants and Setting ......................... 31
      Materials ......................................................... 32
         Instructional Treatments ................. 32
         Ability Measures ................................. 37
         Selection of Vocabulary .................... 43
      Procedures ................................................. 46
         Multisensory Condition ................. 46
         Network Condition ............................ 47

viii
# LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Treatment Condition Assignments</td>
</tr>
<tr>
<td>2</td>
<td>Instructional Words</td>
</tr>
<tr>
<td>3</td>
<td>Means, Standard Deviations, and Reliability Estimates for Ability Tests</td>
</tr>
<tr>
<td>4</td>
<td>Intercorrelations Among Ability Tests</td>
</tr>
<tr>
<td>5</td>
<td>Factor Structure of Ability Tests Without Perceptual Speed Tests</td>
</tr>
<tr>
<td>6</td>
<td>Means and Standard Deviations of Performance Measures</td>
</tr>
<tr>
<td>7</td>
<td>Intercorrelations Among Performance Measures</td>
</tr>
<tr>
<td>8</td>
<td>Analysis of Variance of Recall Performance Measures</td>
</tr>
<tr>
<td>9</td>
<td>Analysis of Variance of Recognition Performance Measures</td>
</tr>
<tr>
<td>10</td>
<td>Tukey's Multiple Comparisons Test: (Q) Recall Performance</td>
</tr>
<tr>
<td>11</td>
<td>Tukey's Multiple Comparisons Test: (Q) Recognition Performance</td>
</tr>
<tr>
<td>12</td>
<td>Repeated Measures Analysis of Variance Between Performance (Recall and Recognition) and Treatments</td>
</tr>
<tr>
<td>13</td>
<td>Intercorrelations Between Recall, Recognition, and Ability Tests</td>
</tr>
</tbody>
</table>
14 Canonical Correlation Between Recall and Recognition and Six Ability Tests .......... 66
15 Intercorrelations Among Ability Tests and Performance Measures ...................... 68
16 Regression Model Predicting Success on Recall Performance Following the Multisensory Treatment ........................................ 69
17 Regression Model Predicting Success on Recall Performance Following the Keyword Treatment . 69
18 Regression Model Predicting Success on Aggregated Recall Performance ................. 69
19 Regression Model Predicting Success on Aggregated Recognition Performance .......... 69
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collocation Grid</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Elementary Linkage Analysis of Intercorrelation Among Performance Measures</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Graph of Interaction Between Treatment and Performance Type</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>Sample Items from Ability Tests</td>
<td>75</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

Background and Statement of Problem

Differential psychology is predicated on the assumption that learning variables such as rate, extent, style, and quality of learning are a function of underlying ability and personal characteristics of the learner (Tobias, 1976). The relationships between a number of selected ability tests and performance on several learning tasks have been explored and described (Blaine, 1972; Cronbach & Snow, 1977; DeSoto & DeSoto, 1983; Delaney, 1978; Dunham & Bunderson, 1969; Federico, 1982; Ferguson, 1956; Glaser, 1980; Hunt, Davidson, & Lansman, 1981; Jackson, 1980; Kunzendorf, 1981; Hunt, Lunneberg & Lewis, 1975; Perfetti & Lesgold, 1977; Stankov & Horn, 1980). The suggestion is that instruction could be made more efficient by taking individual capabilities into account (Gagne, 1967; Kirby, 1980; Pellegrino & Glaser, 1982). More evidence is needed, however, to establish support for the notion that there is a robust relationship between individual abilities and methods of direct instruction (Carroll & Maxwell, 1979; Cronbach & Snow, 1977).

Evidence of an ability-instructional relationship would be valuable for teachers working with students from nursery school through graduate school. If the correct ability-
instructional relationship could be found, students could be placed, based on their ability strengths, in instructional materials to maximize the probability of a rapid increase in their competence and their subsequent learning success.

One student population that could especially benefit from facilitative placement is that of the community college remedial student. Although advanced reading skills are crucial to success in higher education, there is an increasing number of adults who need remedial reading courses when they enter community colleges (Aaronson, 1972; Bohr & Bray, 1979; Cohen & Brawer, 1982, Cross, 1976). A major component of reading remediation is instruction in vocabulary (Hiatt & Kilty, 1980).

According to Bowker (1980) in his comprehensive review, vocabulary acquisition at the college level is usually taught by giving students workbook or study module assignments. He further states that achievement is most often measured by multiple choice tests (Bowker, 1980). The vocabulary instructional model reported by Bowker (1980) appears to emulate those methods used with typical high school students or students in traditional university English courses and may not be appropriate for remedial students in community colleges.

Community college students form a unique population in part because of the open door admissions policy (Cohen &
Brawer, 1982; Rouche, 1977). These colleges offer the first two years of university courses, career education and continuing education for all who come to enroll and as a result, there is great diversity in the student population. This diversity is evident in the numbers of minorities, handicapped, and older students attending.

Because of the expanded access to community colleges, there is a large population of academically underprepared students. These students have further been assessed and classified as little concerned with learning for its own sake, low in motivation, and high in need of direct instruction (Cohen & Brawer, 1982). Attempts are made to assist these students through remedial or developmental programs. However, as Bender (1980) pointed out, there has been little scientific inquiry into selection and development of teaching strategies and learning materials for this group. He further stated that too much time is spent comparing one method against another when environment, task, and individual differences may be more important variables.

Research in vocabulary instruction with adults as well as children has focused on comparisons of teaching methods and attempted to identify the most beneficial instructional models. Although there is strong support for the direct teaching of vocabulary (Becker, 1977; Bohr & Bray, 1979;
Griffin, 1981; Herber, 1970; Johnson & Pearson, 1978; Petty, Herold, & Stoll, 1968), the relative effectiveness of vocabulary instructional programs with adult populations is largely unexplored (Bliesner & Staiger, 1962; Bowker, 1980; Greene, 1971; Kameenui, 1982). Petty, et al. (1968) suggested that the skills needed for application of different methods of teaching vocabulary may be so diverse that comparison of methods could be inappropriate. Nevertheless, over a decade later, little exploration of individual differences and their relationship to outcomes in vocabulary acquisition is in evidence (Tobias, 1981).

Consequently, the conceptual framework for this study lies in aptitude-by-treatment interaction (ATI) theory. ATI theory is based on the assumption that when more than one method of instruction is available, individual difference variables, such as specific information processing ability, predict the best method for optimal performance by a particular student.

**Aptitude-Treatment-Interaction**

There is ample evidence that there are individual differences in processing and retaining information (Berliner & Cahen, 1973; Cattell, 1971; Donaldson, Hunt, & Yantis, 1982; Fredericksen, 1980; Gagne, 1967; Guilford, 1967; Hunt & Kunzedorf, 1981; Kintsch, 1974; Kirby, 1980; Lansman, 1974; Newell & Simon, 1972; O'Neil & Spielberger,
1979; Schmeck & Ribich, 1978; Sternberg, 1977). Conversely, most research dealing with instructional improvement is concentrated on finding a "best" general instructional method, rather than searching for "best" methods for specific individuals as characterized by their individual ability profiles.

Singer and Gerson (cited in O'Neil & Spielberger, 1979) stated:

The potential interaction between instructional methods and learner capabilities should receive primary emphasis in the design of any instruction system. If the method for providing the strategies associated with learning a task are not compatible with a learner's capabilities and personal learning style, the acquisition of skill will probably be impeded. Since the desire of an instruction systems designer is to develop the most efficient way for a person to learn skills, individual differences among learners must be taken into account when establishing an instructional program. (p. 241)

More research is needed either to help us find ways to adapt instructional treatments to students based on each individual's cognitive profile or to determine if such adaptations are even feasible.
A well-known formal call for this type of research was made to psychologists by Lee J. Cronbach (1957). He described a separation at that time between the disciplines of experimental and correlational psychology. Experimentalists, he said, were interested in manipulating treatments to study variance, and individual differences were treated as error. Correlationalists were not interested in treatment variation, but in individual and group variance. Neither camp at that time was interested in interactions.

Further, Cronbach described applied psychology as suffering from the same schism. Applied experimentalists attempted to treat all persons alike, but to modify treatments in order to obtain the highest average from the group. They searched for one "best" way. Applied correlationalists, however, attempted to raise averages by modifying individual jobs, individual instructions, or individual expected outcomes.

Cronbach's appeal, then, was for a united effort between the experimentalists and the correlationists in order to make progress toward a theoretical network containing both treatment and organism dimensions. He stated that:

We are not on the right track when we conceive of adjustment or adjustive capacity in the abstract. It
is always a capacity to respond to a particular treatment. The organism which adapts well under one condition would not survive under another. If for each environment there is a best organism, for every organism there is a best environment. The job of applied psychology is to improve decisions about people. The greatest social benefit will come from applied psychology if we can find for each individual the treatment to which he can most easily adapt. This calls for the joint application of experimental and correlational methods. (p. 679)

Cronbach argued for investigating person dimensions and treatment dimensions simultaneously. The two sets of dimensions then could provide a base for allocating persons to treatments. The expectation in this case was for a strong interaction of person attributes with treatment conditions. Only then, he postulated, could prediction and explanation of human behavior be practically useful.

Cronbach's proposal was followed by a proliferation of scientific investigation coined aptitude-treatment-interaction (ATI) research. ATI research pertains to the adaptation of instruction to individuals based on personality traits and/or aptitudes. Aptitudes are psychological constructs that are operationalized by scores on some kind of task or test. An implicit assumption for
ATI research is that there are distinct, fundamental differences in aptitudes across individuals (Tobias, 1976). These differences affect the individual's ability to learn in a particular situation. Treatments, in a broad sense, are instructional variables which are manipulated by varying the pace, style, sequence, or content of the lesson. Interaction occurs when a particular situation has an effect on one individual and a different effect on another as characterized by aptitude.

In 1975, Cronbach spoke about the state of ATI research. He pointed out that, although ATIs were proving to be important, interactions were more complex than he had earlier theorized. He said:

Though enduring systematic theories about man and society are not likely to be achieved, systematic inquiry can realistically hope to make two contributions. One reasonable aspiration is to assess local events accurately, to improve short-run control (Glass, 1972). The other reasonable aspiration is to develop explanatory concepts, concepts that will help people use their heads. (p. 126)

The problem for the social scientist, according to Cronbach, is to create a reasonable sketch of man, rather than an unchanging blueprint.
Before Cronbach made his second speech, the search to isolate good aptitude and treatment matches was attempted in many curriculum spheres. At least twenty years of this research was extensively re-analyzed and reviewed by Cronbach & Snow (1977). They concluded that, although there are interesting findings that point to a need for further careful exploration, there was no solid evidence of any practical usefulness for classroom use. They postulated a need for more definitive treatments and more carefully designed studies.

A domain of considerable importance that has been relatively unexplored using an ATI methodology is that of verbal learning. There have been a few ATI studies in reading (Cronbach & Snow, 1977), focusing mainly on beginning reading instruction with young children. Reading comprehension is highly correlated with and perhaps even dependent upon vocabulary knowledge (Yap, 1979), yet little ATI exploration of vocabulary acquisition has been reported.

**Vocabulary Instruction**

Vocabulary instruction is typically an endeavor to have students learn new word and meaning associations through the use of varying types of formal exercises. Petty et al.'s (1968) review of research in vocabulary instruction included methods known as (a) context, (b) analytical, and (c) direct teaching through word lists. More recent research reports
include additional methods based on cognitive theories of memory structure such as those of Rumelhart, Lindsey and Norman (1972), Collins and Quillian (1970) and Kintsch (1974). These methods have the names (a) networking and (b) semantic mapping.

Most of the research in vocabulary acquisition centers on comparing instructional methods as in the following examples.

**Context**

Several studies report the contextual analysis paradigm as being the most effective teaching method. Contextual analysis refers to a reader's use of the surrounding context in order to infer the meaning of an unknown vocabulary word.

Gipe (1979) used four methods to teach word meanings to third and fifth graders and hypothesized that the context method would produce the greatest increase in vocabulary. The methods were (a) association, (b) categorization, (c) context, and (d) dictionary. The association method paired the new word with a synonym or brief definition and the task involved memorizing the pairings in order to write them without referral to a study sheet. The categorization method utilized the placing of a new word in a list of three familiar words. For example, the words **mean**, **cruel**, **barbarian**, and **robber** were categorized under the heading **Bad People**. **Barbarian** was the new word. Students then added
words from their own background to the list. Four new words were utilized in this manner. The second part of the method was to correctly categorize a random list of all previously provided words.

The context method consisted of reading new words in meaningful sentences, supplying, in writing, the new words in meaningful sentences, and responding, in writing, to a question connecting a student's past experience to the meaning of the new word. The dictionary method involved looking up the meaning of the new word and writing the definition and an original sentence using the target word. The criterion was a cloze test. A cloze test is a test of the ability to correctly complete a thought based on the available context. For the cloze test, students were asked to place the target words correctly in sentences. For both third and fifth graders, the context method was significantly better (p < .01) than all other methods. This superiority, however, could be explained by the fact that the criterion had the same format as the context learning task. In other words, in the context method, students had specific practice placing the target words correctly in meaningful sentences.

Using 70 undergraduate introductory psychology students, Crist and Petrone (1977) compared "context" learning with "definition" learning of unfamiliar words.
Fifteen words and their definitions were chosen from vocabulary workbooks designed to improve college student's vocabularies. One subject group was then given five separate presentations of fifteen unfamiliar words. Each presentation consisted of a different contextual use of the words. Another group saw the words five times with the same definition. Two posttests were given. The first consisted of context sentences similar to those studied by the context group with instructions to supply the word. The second test was comprised of the definitions with instructions to supply the word. A 2 x 2 analysis of variance revealed a statistically significant interaction ($p < .05$) between study conditions and posttest scores, but no significant main effect. The context group outscored the definition group on the context test as expected. Surprisingly, the context group scored equally as well as the definition group on the definition test. The finding suggests that word definition can be effectively acquired from several varied contexts. In the case of this particular study, the contextual sentences were created by the experimenters. Therefore, the contexts may have been particularly "rich", or saturated with meaning. An interesting extension would be to repeat the study using a variety of contexts from textbooks that already exist.
In some studies, the comparison of vocabulary instructional methods is intertwined with some aspect of reading comprehension. Pany and Jenkins (1977), for example, used three instructional conditions with learning disabled students to test whether or not direct teaching of vocabulary had any effect on reading comprehension. These conditions were (a) getting meaning from context, (b) being given meanings while reading, and (c) practice in reciting meanings before reading. Meanings from context called for inferring word meaning from the passage content. Students were told the meanings of target words as they read in the meanings-given condition. For the practice condition, students practiced reciting target word meanings before they read a story. Nine stories from the students' regular reader were chosen and randomly divided among the three treatments. Six students were used in a randomized block design and treatment sequences were randomly assigned.

Three dependent measures were used. The first, a measure of unaided oral recall of the target word definition was given at story completion and again three to eight weeks later. No mention was made of how delay time was randomized. The second dependent measure involved using the target words in context. Six sentences, each containing one of the target words, were constructed. For three of the sentences, students were asked to replace the target word
with a correct synonym or phrase. For the other three sentences they were asked to choose a correct meaning from four choices. The third dependent measure was a factual comprehension test about the story. Ten questions were given, four of which contained one target vocabulary word. Significant \( p < .01 \) treatment effects were found for all three vocabulary measures. Further, a multiple comparison test revealed that in each case, the practice in reciting meanings condition was significantly different from the other two treatments. The meanings-in-context condition had the poorest results. There were no effects due to treatment on the reading comprehension measure.

In further exploration using the same design with 12 fourth graders reading at or above grade level, Pany and Jenkins (1978) found again that the meanings-practiced condition was significantly effective compared to all other conditions \( p < .01 \). The poorest results came from the meanings-in-context condition. It is, of course, difficult to generalize from the Pany and Jenkins studies because of the small number of subjects.

On the other hand, Sternberg, Powell and Kaye (1983) have recommended the context method as the most effective instructional method. This recommendation is based on what they call "armchair criteria" of (a) internal and external connectedness and (b) ease of use. The concept of
internal and external connectedness originated with Mayer and Greeno (1972), and is defined by two instructional forms. According to Sternberg et al. (1983), in the case of learning new vocabulary, "internal connectedness" is created through learning derivations of words and subtleties of their meanings. "External connectedness" is created by relating new vocabulary definitions to previously learned concepts through synonyms, antonyms, rhymes and examples of usage. Because research has suggested that internal and external connected knowledge successfully retained in memory, Sternberg et al. (1983) deem this connectedness extremely important. The components of the connectedness criterion, however, are more complex than the components of what most authors refer to as the "context method".

"Ease of use" refers to the practicality of a method for determining word meaning in everyday life; i.e., when a dictionary is not handy. Therefore, the context method appears to be an "easy" way to ascertain the meaning of a word since no outside source of information is required.

Johnson and Pearson (1978) devote a chapter in their book to ways of teaching contextual analysis. They caution, however, that this form of determining meanings of words is not a finite set of generalizable rules, but that it is a whole approach to reading. They also state that for adults it is the most common approach to learning word
meanings. Further, Werner and Kaplan (1950) studied acquisition of word meaning through verbal contexts and found that the ability to correctly assign meaning to new vocabulary words increased with age. These points suggest that the ability to use context to gain meaning develops over time, and that herein may lie the reason for its lack of effectiveness when used as a single method, especially with younger children.

Strong criticism of the context method comes from Deighton (1959). He culled passages from 500,000 words of reading material which appeared in technical texts and reading anthologies. He then used these examples to illustrate context revealing meaning through definition, example, modifiers, restatement, inference, and inference through established connections. His conclusion was that meaning is not easily revealed through context as often as we might think. Four of his major arguments are:

1. Inferring from context depends a great deal on the reader's experience. Most students who desperately need vocabulary development have meager experiential and literary backgrounds.

2. It is rare to find complete meaning revealed through context outside of instructional materials written strictly for the purpose of teaching the context method.
(3) A meaning revealed through context is specific rather than elaborative. It is questionable, he claims, whether or not even that specific meaning is learned.

(4) Learning new words as they naturally occur in discourse is a slow way to increase vocabulary.

Deighton's analysis of the problems of the use of context to acquire meaning pointed to the problems inherent in promoting it as an exclusive method.

Keyword

A mnemonic technique called the keyword method has empirical support in current literature on vocabulary instruction. This technique, originated for teaching foreign language vocabulary by Raugh and Atkinson (1975), is now being adapted to successful teaching of native vocabulary to students from kindergarten through college (Levin, 1981; Pressley & Levin, 1981; Pressley, Levin & Miller, 1982).

The keyword method uses the mnemonic device of imagery linking, both acoustic and visual. Here is Pressley and Levin's (1981) standard example of how the method is used. For the new word "carlin" which means old woman, CAR: is given as a key. The image of an old woman driving a car is used to encode the connection between word and definition. Thus the definition of "carlin" is elaborated by a visual image called an "interactive image." If, when learning the
definition of "carlin", one were asked merely to visualize an old woman, the image would be "noninteractive."

According to Levin (cited in Sternberg, et al., 1983) theoretical learning principles that are in use in the keyword method are: (a) Meaningful stimuli are more reliably encoded than are nonmeaningful stimuli; (b) interactive images (refer to example above) are more reliably associated than noninteractive images; (c) the greater the similarity between two stimuli, the more reliably one will evoke the other; and (d) thematic interactions (such as creating a story to help in remembering isolated facts) are reliably retrieved from appropriate cues.

Using fifth graders, divided high and low achieving groups, Levin et al. (1984) compared three vocabulary instructional strategies. One instructional strategy was an adaptation of Atkinson's (1972) keyword method. Students were taught a "keyword" for each target vocabulary word and were then shown a picture relating the keyword to the target vocabulary word's meaning. In the adaptation for this study, the keyword was phonetically related to the target word. For example, when the target word was "angler," the keyword was "angel." The picture, in cartoon fashion, showed an angel catching fish from a pond. Two observing angels discussed the fact that the angel knew a lot about

18
fishing because he was an expert angler. All target words and their accompanying keyword were initially presented on cards and read aloud by the experimenter.

Semantic mapping was the second method used. Semantic mapping is a form of categorization. For example, the word angler could be broadly connected with sports and hobbies and then connected with names for people with hobbies, such as gardener, stamp collector, and equestrian. Another segment of the "map" could list equipment used for sports and hobbies, such as trowel, magnifying glass, saddle, and rod and reel. For the semantic mapping method, target words and definitions were first presented on cards and read by the experimenter. Students then generated their own personal "maps" to connect relevant information about the target word.

The third method was contextual analysis. First, the target words and definitions were presented on cards and read aloud by the experimenter. Then a paragraph containing the target vocabulary word was read to students as they followed their own written copy. They were instructed to underline anything in the paragraph that would help them remember the meaning of the target word. At the end of all three treatment sessions, the experimenter read each target word aloud and the students read the accompanying definition.
Four kinds of tests were given following the treatment. These tests were: (a) definition recall (the principle outcome measure), (b) judgment of correct usage, (c) sentence completion, and (d) definition matching. With both high and low achieving groups, the keyword method produced statistically significant higher means on definition recall compared to the other two methods. With the higher achieving group, the keyword method also produced significantly higher means on sentence usage.

Pressley, Levin, and Miller (1982) used 120 introductory psychology undergraduates in a study comparing two versions of the keyword method and three verbal-contextual methods with a control group. Thirty-two low frequency words with an imageable key in the first syllable were chosen from The Official Scrabble Player's Dictionary (1978). The dependent measure was recall of the definition when given the word. A scoring system was devised to allow full or partial credit depending on the level of response. The keyword imagery method was superior to all other conditions and to the control. A surprising finding was that the sentence context condition was not better than the control condition.

In a review of educational research on the keyword method, Pressley, Levin, and Delaney (1982) found general support for this method both in native and foreign language
learning. They reported, however, that only a few individual differences variables had been examined with the keyword method.

Imagery methods appear to work most effectively with nouns, herein lies the focus of criticism of the method (Bowker, 1981). Although in one study, with students learning a foreign language, Delaney (1978) found facilitating results with the keyword method whether or not the definition referent was abstract or concrete, there appears to be no other reported research on using the keyword method with words other than concrete nouns.

**Structural Analysis**

There are many proponents of vocabulary instruction through structural analysis (Lehr, 1979; Reedy, 1981; Scanlan, 1980; Sebesta, 1979). In this type of instruction a student learns the meaning of roots, prefixes, and suffixes and then practices deriving whole word meanings from the sum of the parts. An advantage of this form of learning word meanings seems to be transferability (Brown, J., 1980).

In his vocabulary text, Brown (1980) includes the information that there are 14 magic words that contain the 20 most important prefixes and the 14 most important roots. He further states that these roots and prefixes then "unlock" between 14,000 and 100,000 words. For example, the
word "nonextended" contains "non" (not), "ex" (out, beyond), and "tendere" (stretch). "Monograph" contains the prefix "mono" (alone, one) and the root "graphein" (write). Theoretically, if one learns the 14 words, one also learns the meanings of the prefixes and roots.

Despite its apparent value as an instructional method, the structural analysis approach, according to published research seems to fare well only with average and superior students (Clark, 1981; Culyer, 1978; Weintraub, 1968). Furthermore, there is the problem of variation in the meaning of word parts in different words (Brown, 1981). This inconsistency is difficult for students. For example, the prefix "meta" may mean "change" as in the word "metamorphosis" or it may mean "going beyond" as in the word "metaphysics." The prefix "in" may mean "not" as in inconclusive or it may mean "into" as in the word "inhale." Finally, there is often little motivation on the part of students (especially remedial students) to learn lists of roots, suffixes, and prefixes.

The small amount of empirical scrutiny of structural analysis compared to other methods is surprising because many widely used vocabulary instructional texts have a strong focus on this method. [See, for example, 101 Ways to Improve Your Vocabulary (White, 1983)].
Other Methods

Descriptive reports, rather than empirical studies, constitute a major proportion of the literature on vocabulary acquisition. These reports cover a variety of approaches to instruction. Carpenter (1979) reported on vocabulary expansion modules for community college adults in which half the class period was spent in the formal instruction of word analysis, context use and etymology, and half was spent playing word games. These games were modeled after Bingo (called "Wordo"), Charades, and popular television games such as Jeopardy, Concentration, and Password. For example, in Wordo, the player cards contained 30 definitions of words previously studied. The instructor chose at random from the study words, used them in sentences, and students matched them. She found improvement in vocabulary on standardized tests significant at the .001 level when compared to pretests. Content tests at the end of the semester covered over 1000 words and were consistently passed at the 80% level. In her report, Carpenter (1979) gave credit for the results to the games rather than to the structural analysis. Games were also reported to be successful for Crist and Anderson (1979), Jernee (1982), and McHale (1982).

On the other hand, Plaister (1980) who teaches English as a second language, and Ignoffo (1980) who teaches native
speakers prefer using analogies for vocabulary instruction because of the cognitive problem solving that must take place to solve the analogy. An analogy consists of four terms for which some kind of relationship is to be determined. If myriad and sparse are the first terms, the student must reason that the first two terms are adjective antonyms and therefore the next two terms must also be adjective antonyms. As an activity, the student may be given the third term with a group of possible answers for the fourth term. For example:

myriad : sparse :: many : ________

(a) large  (b) few  (c) dainty  (d) heavy.

Word bank instruction is recommended by Reifman (1981). A word bank is made from a student's collections of unfamiliar vocabulary words discovered through reading and listening. The basic premise behind a word bank is that the student will learn more easily when she or he has a personal need to know.

Kurth (1980) prefers teaching vocabulary through concept development. Concept learning instruction includes practice in naming (a) critical attributes (necessary characteristics of the concept), (b) noncritical attributes, (c) positive examples, and (d) non-examples. For example, after initial instruction about the concept desert, students may be given practice exercises such as the following:
Directions: Circle any answer that is correct.

1. A desert is (a) dry (b) wet (c) cold

2. Girls and boys play hide and seek in the tall grass and behind the many trees.
   (a) This is a desert.
   (b) This is not a desert.

3. They saw few plants and no animals in the large dry area of land.
   (a) This is a forest
   (b) This is a prairie
   (c) This is a desert

4. Write all the important features of a desert.

A collocation grid, illustrated in Figure 1, is an instructional device recommended by Channel (1981). To create a collocation grid the following steps are necessary: (a) select a category, (b) list words within the category, (c) list some features shared by words in the category, and (d) put plusses and minuses in the proper spaces.

Figure 1
Collocation Grid

<table>
<thead>
<tr>
<th>words: 2 wheel 4 wheel motor passenger enclosed handle rubber bars tires</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi-cycle + - - + - + + +</td>
</tr>
<tr>
<td>motor-cycle + - + + - + + +</td>
</tr>
<tr>
<td>car - + + + + - +</td>
</tr>
<tr>
<td>skate-board - + - - - - -</td>
</tr>
</tbody>
</table>

25
Both the concept development method and the collocation grid appear to be more salient for use with nouns than with other parts of speech.

Channel (1981) uses yet another approach through semantic emphasis in which words that share an aspect of meaning are studied together in what is called a "network" or "field." For example, the words walk, run, amble, stroll, trot, and jog are all movement verbs and this links their meaning. The "movement" verb field can then be expanded by taking one word, such as \textit{run}, and putting it in a group of words such as gallop, dash, and sprint. Now there is a "fast movement" verb field.

Others recommend teaching vocabulary by a combination of methods rather than by a single technique (Angelotti, 1978; Bowker, 1981; Crist & Anderson, 1979; Dale & O'Rourke, 1979; Herber, 1970; Johnson & Pearson, 1978; Swinton, 1977). These recommendations are supported in cognitive psychology by the encoding variability theory. The encoding variability model stresses the importance of giving different types of examples as elaboration on the presentation of a vocabulary word. For example, one could present descriptive, contextual, and semantic information about the word. This would create an expanded representation in a single memory trace resulting in more efficient recall. Sternberg and Powell (1983) caution,
though, that variability may create an overload for individuals who have difficulty with integration. This overload in turn may hinder rather than enhance memory.

Rote-learning, another vocabulary instructional method, is basically the straightforward memorizing of definitions. The standard procedure in rote-learning of vocabulary is for students to make a collection of words and definitions using three by five cards on which they write the word, definition and a sentence using the word. Instruction for learning words this way is found in many vocabulary building and reading instructional books. See, for example, College Vocabulary Skills by J. F. Shepherd (1987).

Two 1000 word boxes of vocabulary cards are commercially published by Visual Education Association, 1981. The cards are printed with the word, pronunciation, and a sentence on one side; the meaning on the other side. Students are exhorted to study and learn a few at a time and to watch for them in their reading.

A rote-learning format appears in the popular press in trade books such as 30 Days to a More Powerful Vocabulary (Lewis & Funk, 1981). In these books there is heavy use of multiple-choice and matching tests. The implication is that reading and self-testing will enhance recall.

Despite the apparent popularity, rote learning is not a
recommended method because the resultant learning tends to be semantically impoverished, and the associations restricted (Sternberg & Powell, 1983). With rote-learning, long-term retention suffers and students' ability to use the words in new situations is not developed.

The research reported in this review generally fail to address the major recommendations of Petty, Herold & Stoll (1968). In a research project report for the National Council of Teachers of English, they exhorted researchers to design better studies through (a) more carefully stated hypotheses and definition of terms, (b) better isolation of variables being studied, (c) more adequate population samples, (d) more valid and reliable measuring instruments, and (e) more attention to other variables, such as time limits, word types, and experimenter bias. (These criticisms are, in fact, applicable to most research; not just vocabulary research.)

Comparisons of instructional methods is, at this time, the predominant thrust of the research on vocabulary acquisition. The major portion of this research is descriptive rather than experimental, and interaction is often ignored. The bulk of the research has been done with elementary school children because vocabulary is most often taught there. Nevertheless, there is a growing need for
more informative research with adults, and this research should consider interaction as well as method main effects.
CHAPTER 2

Method

A counterbalanced design in which students served as their own controls and participated in all experimental conditions was used in this study. Forty unfamiliar target words were randomly divided into four groups of ten words each. The word groups were then randomly assigned to four different treatment conditions. Presentation of treatments was ordered according to a Latin square arrangement (see Table 1).

Table 1

**Treatment Condition Assignments:** A=Network, B=Multisensory, C=Mnemonic, D=Context

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>
On the class day following a treatment, participants were given two performance measures. The first measure tested recall of the definition of the word and the second tested recognition of correct usage in a sentence. Prior to the treatments, scores from 17 ability measures were obtained from each student. Following all treatments, a multiple-choice test of definition recognition containing all 40 target words was administered.

Participants and Setting

The participants were 70 adults enrolled in four sections of a one semester developmental reading course (English 21) at Leeward Community College. The sample included 27 males and 43 females ranging in age from 18 to 30 with a mean age of 19. Twelve ethnic groups were represented.

The developmental reading course is designed for students who are native speakers, but score below the 25th percentile on the Nelson-Denny Reading Test (1980). The components of the course content are comprehension, vocabulary and study skills. Participants were informed that they were receiving special formulated instruction for the purpose of research and that this instruction was not a digression from the normal objectives of the course. They received points toward course completion for their participation.
Classes met twice a week, either on Tuesdays and Thursdays or Mondays and Wednesdays. Ability testing was conducted during the first four weeks of the study. Treatments and task performance measures were given over the next five weeks. Because students registered into the classes at a time of their own choosing, they were not distributed equally across classes.

**Materials**

In this dissertation, Cronbach and Snow's (1977) recommendations for exploring individual differences were followed. First, *divergent* treatments were designed in order to increase the likelihood of significant main effects. Second, ability measures most likely to correlate with specific experimental treatments were chosen in order to increase the likelihood of significant interaction.

**Instructional Treatments**

Four instructional treatments were developed using models and recommendations from the literature on previous research in vocabulary instruction. These treatments were labeled (a) multisensory, (b) networking, (c) context, and (d) mnemonic.

**Multisensory.** The multisensory method was primarily based on recommendations from Herber (1970) and Perfetti and Lesgold (1982). These authors indicated that remedial
students need vocalization, repetition, and speeded practice in verbal processing. Herber (1970) also suggests that visual memory for words can be enhanced by exercises that call for close attention to the configuration of the word. Therefore the multisensory treatment included (a) oral and written repetitive practice with word and meaning associations and (b) speeded exercises in visually discriminating target words from other words. Samples of the exercise types in the multisensory method are presented below:

1. This practice is for quick visual recognition of the study words. Mark the word on the right that is the same as the target word. For example:

ennui erratic erudite ennui evoke exploit

Go as fast as you can and record your time when you are finished.

ennui enervate engross exploit evoke enigma
colloquy conclusion confidence colloquy complacent

2. Here is the same type of exercise, but in this case the words are close together and may appear more than once. The target word is listed first.

deletious dissonance disparage diversity deleterious dubious

3. Here are definitions of the study words. Read the word and the definition out loud.
enigma a perplexing, usually ambiguous statement; riddle

colloquy a conversation; especially a formal discussion; conference

4. Now spend ten minutes in oral practice associating the word and definition in memory. Work with a partner.

5. Now read the definition and see if you can write the word on the line without referring back to the list. Check yourself when you are finished.

A perplexing statement; riddle ________________________

A conversation; especially a formal discussion; conference ________________________

Networking. The networking treatment exercises contained exercises that elaborated on the target words through synonyms, antonyms, and examples of usage. Networking was modeled after recommendations by Johnson and Pearson (1978) and Herber (1970). Here are samples of the types of exercises in the network method:
1. Circle the **three** words in each line that are related in meaning. Use the list of meanings to help you.

enervate    weaken    energize    exhaust

2. Match the words in the two columns that are most nearly opposite by drawing lines between them.

belligerent not skillful
adroit     peaceful

3. Match the correct study word to a phrase by drawing a line between them.

A person who shows extreme anger.   adroit
A fine surgeon.                    belligerent

4. Underline the best word or phrase to complete the sentence. Sometimes both words or phrases will be correct.

His shrewd strategy on the tennis court made him an easy winner. He (is, is not) adroit.
**Context.** The context treatment, chosen because it appears to have strong support in the literature, followed the standard format used in several vocabulary instructional texts. That is, the student was given three sentences containing the same "unknown" word. The student was instructed to determine the meaning of "gregarious" from "clues" in the sentence. For example:

*Gregarious* people are usually fun to know.

A *gregarious* person, not an introvert, is most likely to become class president.

Someone who is *gregarious* will never turn down a chance to be with other people.

The correct answer was provided immediately on the following page.

**Keyword.** Based on the highly touted keyword method, the mnemonic treatment was modeled, in part, after Pressley and Levin (1981). "Keys" from the target words, and interactive images were given orally to the students. The interactive images were developed by the experimenter, and two samples of these are presented below:
<table>
<thead>
<tr>
<th>Word</th>
<th>Key</th>
<th>Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanguine</td>
<td>sanguine</td>
<td>A person singing because he/she is cheerful and confident. (Visualize someone singing cheerfully.)</td>
</tr>
<tr>
<td>Voluble</td>
<td>voluble</td>
<td>Lubricating gears to make them turn easily; a voluble person talks easily. (Visualize someone lubricating their vocal cords and then talking very fast with lots of words.)</td>
</tr>
</tbody>
</table>

See Appendix A for the complete worksheets and all keyword imagery.

**Ability Measures**

In defining "ability," Ferguson (1956) stated: "The abilities of man, including the reasoning, number,
perceptual and spatial abilities, and whatever is subsumed under intelligence, are attributes of behaviour, which through learning have attained a crude stability or invariance in the adult..." (p. 121)

Scientists, in an attempt to quantify the state of this "crude stability," have analytically formulated performance measures or tests. An inference may then be made, from the results of one's performance, about the comparative level of one's ability in the particular domain tested.

Ability measures for this study were chosen on the assumption that they would tap the abilities utilized in the vocabulary acquisition task. The source of the measures used was the Kit of Factor-Referenced Cognitive Tests (Ekstrom, French & Harmon, 1976), hereafter called the KFCT.

The tests in the KFCT are markers for ability factors that have been identified by extensive research with adolescents and adults. One criterion for the inclusion of an aptitude factor in the kit was that the construct underlying the factor be found in a minimum of three factor analyses at two separate laboratories, or by two different researchers (Ekstrom, et al., 1976).

Seventeen tests, each with separately timed halves, from the KFCT collection were chosen for this study. See Appendix B for sample test items with instruction pages (included by permission of the Educational Testing Service,
Princeton, NJ). These tests, representing six ability factors, are described below. The rationale for the inclusion of each test is also explained.

**Perceptual Speed (P).** This factor is described as possibly being "related to or a part of an 'automatic process' factor" (Ekstrom et al., 1976, p. 123). Samuels (1979) stated that more attention can be given to comprehension when less attention is required for decoding. In other words, "automaticity" in decoding a word may leave more processing capacity available for learning new information. Perfetti and Lesgold (1977) concluded from their research that verbal coding speed is a general factor in comprehension. Therefore, there may be some relationship between the perceptual speed factor and the multisensory practice learning task which has a perceptual speed component.

There are three tests used to define the P factor. **Finding Aa** presents five columns of words in which the student must cross out any word containing an "a". **Number Comparisons** presents the task of inspecting pairs of multi-digit numbers and determining any pair that is different. **Identical Pictures** presents a target picture with a comparison row of pictures. The student is to choose a match for the target.
**Associative Memory (MA).** This factor is described as "the ability to recall one part of a previously learned but otherwise unrelated pair of items when the other part of the pair is presented (Ekstrom et al., 1976, p.93)." The tasks used to measure this factor are similar to tasks used in research on paired-associate learning. Therefore, there was hypothesized to be a relationship between this factor and the multisensory practice which contains a simple rote paired-associative learning component.

There are three tests used to define the MA factor. The **Picture-Number Test** presents the student with pictures of common objects, each paired with a two digit number. After a short study period, the pictures are presented to the student in a different order. The task requirement is to remember the appropriate number for each picture. The **Object-Number Test** pairs object words with numbers, such as car-17 and horse-12. The task is to remember the numbers when presented the object name. The task in the **First-Last Names Test** is to remember the first name when the last name is presented.

**Verbal Closure (CV).** Ekstrom et al. (1976, p. 33) describe this factor as "the ability to solve problems requiring the identification of visually presented words when some of the letters are missing, scrambled, or embedded among other letters". Ohnmacht, Weaver, and Kohler (1970)
and Weaver and Kingston (1963) found the cloze technique to be possibly related to this factor. Because context must be used for success with the cloze technique, there may be a relationship between the verbal closure factor and the context practice learning task.

Three tests are used to define the verbal closure factor. **Scrambled Words** is a series of items, each consisting of scrambled letters that can make a common English word. In the **Hidden Words Test**, the student is given the task of finding common four-letter words in a 10 x 10 square of letters. For the **Incomplete Words Test**, the student is asked to provide missing letters for partial words.

**Induction (I).** Ekstrom et al. (1976, p. 79) describe this factor as identifying "the kinds of reasoning abilities involved in forming and trying out hypotheses that will fit a set of data. Induction has been identified as a process used in determining the meaning of words from context (Cook, Heim & Watts, 1963; Sternberg & Powell, 1983) and therefore it was hypothesized that there may be a relationship between Induction and the context practice learning task. Three tests define the Induction factor. For the **Letter Sets Test** the student must determine the rule that governs four out of five sets of letters. Each group contains five sets of four letters. The **Locations Test** presents students
with items containing places and gaps. Rules govern both the places and the gaps. Students must determine the rule in four rows and mark a fifth row place accordingly. Figure Classification is made up of items presented in groups of geometric figures that are alike according to some rule. The student's task is to discover the rule and assign test figures to the proper group.

Integrative Processes (IP). This factor has been defined as "the ability to keep in mind simultaneously or to combine several conditions, premises, or rules in order to produce a correct response (Ekstrom et al., 1976, p. 87)." The network practice learning condition requires the student to encode with a variety of examples. Therefore it seems reasonable to expect a relationship between the integrative processes factor and the network practice condition. Two tests are used to identify the integrative processes factor. The Calendar Test requires the student to find a date after being given some directions that are fairly complex. Following Directions is a test of the students success in finding a point in a matrix of letters. The set of directions is fairly complex.

Visualization (VZ). Ekstrom et al. (1976, p. 173) define this factor as "the ability to manipulate or transform the image of spatial patterns into other arrangements." The keyword method is predominantly "image
linking" rather than image manipulating, but a relationship is postulated because both the visualization tests and the keyword method call for "seeing with the mind's eye."

Three tests define this factor. In the Form Board test each item consists of five shaded drawings of pieces. Some or all of these pieces can be put together to form a target figure. Students are asked to determine correct pieces. For the Paper Folding test, successive drawings illustrate two or three folds made on a square of paper. The last drawing shows a hole punched in the paper. The student selects the drawing the illustrates where the hole would be if the paper were completely open. Surface Development presents items that are representations of solid forms. Each item is a drawing showing how a piece of paper or metal might be folded and cut in order to make the solid form. The diagram shows by a mark a corresponding surface in the drawing. The student is to show which flat sides correspond to the surfaces on the folded form.

Selection of Vocabulary

The 40 vocabulary words taught were chosen from college reading course books and instructional kits. The words were tested for unfamiliarity in two ways: (1) by a frequency study (Dunn-Rankin, 1973) and (2) by testing a sample of remedial reading students who did not participate in the experiment. From an alphabetized list and using a random
numbers table, an assignment was made to each treatment condition. In order to minimize effects of confounding methods and words, the word lists were subsequently balanced on the basis of word frequency (Thorndike, 1944), word length, and parts of speech. The words, with the frequency code for each, and treatment assignment are shown in Table 2.
Table 2

<table>
<thead>
<tr>
<th>Context</th>
<th>Mnemonic</th>
<th>Network</th>
<th>Multisensory</th>
</tr>
</thead>
<tbody>
<tr>
<td>astute</td>
<td>tacit</td>
<td>adroit</td>
<td>ennui</td>
</tr>
<tr>
<td>blatant</td>
<td>voluble</td>
<td>enervate</td>
<td>evoke</td>
</tr>
<tr>
<td>specious</td>
<td>sanguine</td>
<td>intrapid</td>
<td>enigma</td>
</tr>
<tr>
<td>empirical</td>
<td>ephemeral</td>
<td>assiduous</td>
<td>erudite</td>
</tr>
<tr>
<td>ingenuous</td>
<td>diffident</td>
<td>innocuous</td>
<td>colloquy</td>
</tr>
<tr>
<td>parsimony</td>
<td>vicarious</td>
<td>garrulous</td>
<td>vociferous</td>
</tr>
<tr>
<td>oreadulous</td>
<td>ubiquitous</td>
<td>fortuitous</td>
<td>dissonance</td>
</tr>
<tr>
<td>introspect</td>
<td>connotation</td>
<td>scurrilous</td>
<td>deleterious</td>
</tr>
<tr>
<td>pernicious</td>
<td>perspicacious</td>
<td>implacable</td>
<td>ostentatious</td>
</tr>
<tr>
<td>concomitant</td>
<td>surreptitious</td>
<td>belligerent</td>
<td>supercilious</td>
</tr>
</tbody>
</table>

*The number after the word is the Thorndike (1944) frequency code for the number of occurrences per million of the word in general reading material. Thorndike's general reading material included literature, textbooks, catalogs, concordances, newspaper articles, and magazines.*
Procedures

Four treatment conditions for teaching the target vocabulary were: (a) multisensory, (b) network, (c) mnemonic, and (d) context. Each condition had three identical components: (a) seeing the word, (b) hearing it pronounced and (c) reading the correct definition. Each condition had one mutually exclusive component. This component is detailed in the forthcoming explanation of each condition. Individual paper-and-pencil practice was used in the multisensory, network and context conditions (see Appendix A for complete practice materials.) For the mnemonic condition, the experimenter made a group presentation using the chalkboard for display of the lesson. For each condition the presentation time was approximately ten minutes. Working time for students on paper and pencil practice was limited to 20 minutes. Worksheets were returned to the experimenter at the conclusion of each treatment session.

Multisensory Condition.

In this condition the exclusive component consisted of vocalizing the words, doing visual perception drills, writing the targeted words and orally practicing rote association of the word and the definition. Vocalizing consisted of three choral readings and one individual reading of the target words. The first reading was echoic.
That is, the experimenter said the word, and then the students said the word. The second reading was by the group and experimenter together. The third reading was by the group alone. Next the students individually read each word aloud to a partner.

After the vocalizing practice, students worked a timed perceptual matching exercise with four variations. Students were then directed to read aloud the words and the definitions. This was done both in choral fashion and by students working in pairs.

Finally, the experimenter read each word individually and the participants were instructed to write the word and the definition without referring to the worksheet. Subjects were then allowed to check answers and correct errors and once more read the word and definition orally.

Network Condition.

For this condition, students worked with the target words in four ways. All words and instructions were read orally to the students before they began the individual written activities. First they chose synonyms for the target word from a set of four words. Secondly, the target words were matched with a correct antonym. Next, phrases were matched to a correct target word. For example, the phrase "a lion trainer" would match the word "intrepid." The final activity had a sentence completion format. For
example, "He went intrepidly to ask his boss for a raise. He was (fearful, fearless)." The student was directed to underline the correct choice in parentheses. When the working time was up, students checked their own papers as the experimenter read the correct answers.

**Context Condition.**

In this condition, students inferred the meanings of the targeted words by reading each word in three different sentences. These sentences contained facilitative context clues. The first sentence gave only minimal clues to meaning. The second sentence gave a little more help, and the third sentence gave optimal help. (Two independent judges determined the degree of context facilitation in each sentence.) The experimenter orally read the instructions and guided the students' completion of a sample set of sentences. Students were instructed to determine, to the best of their ability, a meaning for the word and write it on their worksheet. The correct definition was exposed on the following worksheet page. All target words were read orally to the class before the written work began.

**Mnemonic Condition.**

During this condition, students utilized a technique coined the "keyword" method. With this method, linking associations were formed between a part of the target word
and the definition of the target word. Students were given two examples using the method before being given the target words to learn.

One target word at a time was displayed on the chalkboard with a "key" underlined and the definition written beside it. The experimenter then orally gave an associative link; i.e., an image. The students were directed to close their eyes and visualize the linkage. All words, definitions and visualizations were repeated once. Finally, students were directed to close their eyes, listen to the word alone (spoken by the experimenter) and visualize the associative link.

**Performance Measures**

Each treatment was administered on the first class day of the week and was followed on the next class day by two performance measures (See Appendix C). The first measure entailed students' recalling and writing the ten target word definitions. The second measure required the recognition of correct usage of the words in context. Each measure contained one trial each corresponding to the ten words presented during the instructional period. The time allowed for the completion of the performance measures was ten minutes.

At the end of four weeks, when all treatments and performances measures were completed, a multiple-choice test
of definition recognition covering all 40 words was administered (See Appendix D). The time limit for this test was 15 minutes.
CHAPTER 3
Results

Factor Structure of Ability Measures

The means, standard deviations, and estimates of reliability for 17 mental ability tests from the Kit of Factor-Referenced Cognitive Tests (Ekstrom et al, 1976) are presented in Table 3. These tests, as illustrated, theoretically represent six factors. Pearson product moment correlations between the tests are shown in Table 4.

It was expected that the six factors chosen for this study would be replicated to a certain degree with the Leeward Community College sample and that these factors could then be used as predictors of success in initial vocabulary acquisition. Unfortunately, a simple confirmation of the factors was not the case. The scores on the ability tests were factor analyzed by the principle components method, but when six factors were rotated both to a varimax and promax criterion, none of the six original factors was pure or well defined.

When five factors, indicated by the minimum eigenvalue criterion (1.0), were rotated to a varimax and promax solution, (Sarle, 1979) again none of the factors was pure or well-defined. These factor matrices are given in Appendix E.
### Table 3

<table>
<thead>
<tr>
<th>Test</th>
<th>N</th>
<th>No. of items</th>
<th>M</th>
<th>SD</th>
<th>rxx&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Perceptual Speed</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finding As</td>
<td>66</td>
<td>200</td>
<td>38.79</td>
<td>6.88</td>
<td>.73</td>
</tr>
<tr>
<td>Identical Pictures</td>
<td>68</td>
<td>96</td>
<td>78.44</td>
<td>12.78</td>
<td>.84</td>
</tr>
<tr>
<td>Number Comparison</td>
<td>69</td>
<td>96</td>
<td>23.02</td>
<td>7.45</td>
<td>.84</td>
</tr>
<tr>
<td><strong>Verbal Closure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidden Words</td>
<td>67</td>
<td>111</td>
<td>73.78</td>
<td>16.74</td>
<td>.85</td>
</tr>
<tr>
<td>Scrambled Words</td>
<td>69</td>
<td>50</td>
<td>40.78</td>
<td>8.18</td>
<td>.78</td>
</tr>
<tr>
<td>Incomplete Words</td>
<td>67</td>
<td>36</td>
<td>19.24</td>
<td>5.28</td>
<td>.71</td>
</tr>
<tr>
<td><strong>Memory for Associations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture-Number</td>
<td>69</td>
<td>42</td>
<td>18.99</td>
<td>7.71</td>
<td>.76</td>
</tr>
<tr>
<td>Object-Number</td>
<td>68</td>
<td>30</td>
<td>10.69</td>
<td>5.64</td>
<td>.66</td>
</tr>
<tr>
<td>First-Last Names</td>
<td>65</td>
<td>30</td>
<td>13.11</td>
<td>6.32</td>
<td>.78</td>
</tr>
<tr>
<td><strong>Induction</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter Sets</td>
<td>68</td>
<td>30</td>
<td>16.30</td>
<td>6.23</td>
<td>.82</td>
</tr>
<tr>
<td>Locations</td>
<td>69</td>
<td>28</td>
<td>6.08</td>
<td>4.50</td>
<td>.67</td>
</tr>
<tr>
<td>Figure Classification</td>
<td>68</td>
<td>224</td>
<td>73.80</td>
<td>31.21</td>
<td>.57</td>
</tr>
<tr>
<td><strong>Integrative Processes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar Test</td>
<td>56</td>
<td>20</td>
<td>8.13</td>
<td>4.29</td>
<td>.77</td>
</tr>
<tr>
<td>Following Directions</td>
<td>57</td>
<td>20</td>
<td>6.75</td>
<td>3.74</td>
<td>.63</td>
</tr>
<tr>
<td>** Visualization**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper Folding</td>
<td>64</td>
<td>20</td>
<td>6.96</td>
<td>4.26</td>
<td>.76</td>
</tr>
<tr>
<td>Formboard</td>
<td>64</td>
<td>120</td>
<td>0.02</td>
<td>15.38</td>
<td>.70</td>
</tr>
<tr>
<td>Surface Development</td>
<td>63</td>
<td>60</td>
<td>21.63</td>
<td>13.59</td>
<td>.86</td>
</tr>
</tbody>
</table>

<sup>a</sup> All reliability estimates are based on the Spearman-Brown estimate of whole-test reliability from separately timed halves.
<table>
<thead>
<tr>
<th>Measures</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>2 IP</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>3 NUM</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4 LETT</td>
<td>35</td>
<td>39</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5 LOCA</td>
<td>34</td>
<td>12</td>
<td>02</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>6 FIG</td>
<td>16</td>
<td>47</td>
<td>10</td>
<td>47</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>7 CAL</td>
<td>36</td>
<td>30</td>
<td>32</td>
<td>66</td>
<td>50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>8 DIREC</td>
<td>29</td>
<td>29</td>
<td>18</td>
<td>48</td>
<td>30</td>
<td>30</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>9 PICNO</td>
<td>06</td>
<td>09</td>
<td>00</td>
<td>10</td>
<td>00</td>
<td>20</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 OBJNO</td>
<td>11</td>
<td>15</td>
<td></td>
<td>08</td>
<td>04</td>
<td>01</td>
<td>19</td>
<td>-03</td>
<td>07</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 FRLST</td>
<td>38</td>
<td>27</td>
<td>28</td>
<td>14</td>
<td>04</td>
<td>27</td>
<td>38</td>
<td>42</td>
<td>39</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 PRFLD</td>
<td>09</td>
<td>35</td>
<td>-22</td>
<td>39</td>
<td>24</td>
<td>53</td>
<td>35</td>
<td>31</td>
<td>09</td>
<td>10</td>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 FMHDR</td>
<td>21</td>
<td>34</td>
<td>-02</td>
<td>54</td>
<td>46</td>
<td>41</td>
<td>38</td>
<td>46</td>
<td>01</td>
<td>-01</td>
<td>05</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 SRDEY</td>
<td>14</td>
<td>57</td>
<td>05</td>
<td>53</td>
<td>38</td>
<td>62</td>
<td>23</td>
<td>20</td>
<td>-02</td>
<td>08</td>
<td>-07</td>
<td>58</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 SCRWD</td>
<td>45</td>
<td>24</td>
<td>16</td>
<td>32</td>
<td>18</td>
<td>17</td>
<td>38</td>
<td>26</td>
<td>00</td>
<td>-04</td>
<td>34</td>
<td>12</td>
<td>42</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 INCWD</td>
<td>50</td>
<td>08</td>
<td>25</td>
<td>20</td>
<td>08</td>
<td>05</td>
<td>26</td>
<td>26</td>
<td>00</td>
<td>-03</td>
<td>31</td>
<td>-12</td>
<td>09</td>
<td>07</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 HIDWD</td>
<td>58</td>
<td>32</td>
<td>19</td>
<td>43</td>
<td>36</td>
<td>14</td>
<td>43</td>
<td>41</td>
<td>07</td>
<td>09</td>
<td>33</td>
<td>06</td>
<td>27</td>
<td>15</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

*a decimal omitted*
Because neither a five nor a six factor solution was satisfactory, several other factor analyses were conducted. These analyses consisted of varimax and promax rotational solutions on subset groupings of the mental ability tests. For example, in one case, only the two most highly correlated tests in each original factor were retained. In a second case, the tests with reliability below .70 were deleted. The factor structures in these analyses were not markedly improved over earlier solutions. In a third case, all three perceptual speed tests were deleted, because in each previous factoring they loaded on separate factors. The results of this analysis approximate a meaningful structure. This finding is reported in Table 5 and discussed in Chapter 4.

A perusal of the raw score distributions of the 17 measures indicated non-normality in some cases. Therefore, Kendall's tau-b was used to create a correlation matrix which was subsequently examined in two ways: (a) multidimensional scaling using KYS-2 (Kruskal, Young & Seery, 1976) and nonmetric hierarchical clustering (Johnson, 1967). Neither scaling nor clustering confirmed the original six factor interpretation.

Because the six ability factors were not distinguishable in the Leeward Community College sample, the
resolution, for this study, was to use individual marker tests, rather than the factors, as predictors.

Table 5  
**Varimax Rotated Factor Matrix: Ability Tests Without a Perceptual Speed**  

<table>
<thead>
<tr>
<th>Test</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Induction</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter Sets</td>
<td>47</td>
<td>03</td>
<td>48</td>
<td>-27</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>Locations</td>
<td>27</td>
<td>-04</td>
<td>30</td>
<td>-25</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>Figure Classification</td>
<td>83</td>
<td>-27</td>
<td>10</td>
<td>00</td>
<td>-00</td>
<td>78</td>
</tr>
<tr>
<td><strong>Integrative Processes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar</td>
<td>02</td>
<td>10</td>
<td>85</td>
<td>-28</td>
<td>32</td>
<td>91</td>
</tr>
<tr>
<td>Follow Directions</td>
<td>12</td>
<td>13</td>
<td>91</td>
<td>-03</td>
<td>06</td>
<td>87</td>
</tr>
<tr>
<td><strong>Memory for Associations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture/Number</td>
<td>-22</td>
<td>-41</td>
<td>-18</td>
<td>76</td>
<td>-19</td>
<td>86</td>
</tr>
<tr>
<td>Object/Number</td>
<td>-12</td>
<td>-33</td>
<td>-31</td>
<td>83</td>
<td>-21</td>
<td>96</td>
</tr>
<tr>
<td>First/Last Names</td>
<td>-49</td>
<td>14</td>
<td>33</td>
<td>55</td>
<td>-50</td>
<td>91</td>
</tr>
<tr>
<td><strong>Visualization</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formboard</td>
<td>79</td>
<td>15</td>
<td>22</td>
<td>-26</td>
<td>34</td>
<td>87</td>
</tr>
<tr>
<td>Paperfolding</td>
<td>89</td>
<td>-22</td>
<td>15</td>
<td>-04</td>
<td>08</td>
<td>88</td>
</tr>
<tr>
<td>Surface Development</td>
<td>89</td>
<td>-05</td>
<td>-13</td>
<td>-31</td>
<td>23</td>
<td>95</td>
</tr>
<tr>
<td><strong>Verbal Closure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrambled Words</td>
<td>-01</td>
<td>89</td>
<td>09</td>
<td>-30</td>
<td>-08</td>
<td>90</td>
</tr>
<tr>
<td>Hidden Words</td>
<td>-33</td>
<td>69</td>
<td>28</td>
<td>02</td>
<td>45</td>
<td>86</td>
</tr>
<tr>
<td>Incomplete Words</td>
<td>-48</td>
<td>77</td>
<td>08</td>
<td>-26</td>
<td>-12</td>
<td>91</td>
</tr>
</tbody>
</table>

*Decimal points are omitted*
**Results of the Performance Measures**

Means and standard deviations for the eight performance measures and the cumulative forty word quiz are presented in Table 6. Intercorrelations among the performance measures are presented in Table 7.

Table 6

<table>
<thead>
<tr>
<th>Measure</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multisensory 1</td>
<td>51</td>
<td>4.07</td>
<td>2.46</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Multisensory 2</td>
<td>51</td>
<td>4.08</td>
<td>1.80</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Network 1</td>
<td>54</td>
<td>3.03</td>
<td>2.71</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Network 2</td>
<td>54</td>
<td>3.37</td>
<td>1.78</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Keyword 1</td>
<td>58</td>
<td>1.79</td>
<td>1.91</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Keyword 2</td>
<td>58</td>
<td>3.36</td>
<td>1.64</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Context 1</td>
<td>50</td>
<td>0.82</td>
<td>1.12</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Context 2</td>
<td>50</td>
<td>1.80</td>
<td>1.32</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Forty Word Quiz</td>
<td>57</td>
<td>18.86</td>
<td>5.18</td>
<td>10</td>
<td>33</td>
</tr>
</tbody>
</table>
Table 7

Intercorrelations Among Performance Measures: 1 = Recall, 2 = Recognition

<table>
<thead>
<tr>
<th>Measure</th>
<th>M1</th>
<th>M2</th>
<th>N1</th>
<th>N2</th>
<th>K1</th>
<th>K2</th>
<th>C1</th>
<th>C2</th>
<th>40 wd</th>
<th>quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Multil</td>
<td></td>
</tr>
<tr>
<td>2. Multi2</td>
<td>.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Net1</td>
<td>.33</td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Net2</td>
<td>.33</td>
<td>.45</td>
<td>.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Key1</td>
<td>.24</td>
<td>.29</td>
<td>.33</td>
<td>.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Key2</td>
<td>.22</td>
<td>.27</td>
<td>.22</td>
<td>.24</td>
<td>.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Contx1</td>
<td>.27</td>
<td>.41</td>
<td>.57</td>
<td>.26</td>
<td>-.01</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Contx2</td>
<td>.40</td>
<td>.48</td>
<td>.12</td>
<td>.41</td>
<td>.39</td>
<td>.00</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 40 wd</td>
<td>.37</td>
<td>.31</td>
<td>.53</td>
<td>.31</td>
<td>.28</td>
<td>.26</td>
<td>.59</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Tabled values are Pearson product moment correlations

Intercorrelations among the performance measures (Table 7) indicated that, for this sample, the measures were more related in "type of task" than in content. This is illustrated in Figure 2 by McQuitty's (cited in Dunn-Rankin, 1983) elementary linkage analysis. Linkage analysis classifies variables into objectively determined "types." Double line arrows indicate the highest correlation in the matrix, and single line arrows indicate sequentially related variables based on correlation.
strength. Recall and recognition tasks were highly related only under the Network condition.

The forty word quiz had a statistically significant correlation \( (p < .05) \) with each performance measure except recognition following the context method. The split-half reliability was .93.

For all subsequent analyses, subjects who had missing data on two or more performance measures were deleted. This created a subject pool of 50.

A repeated measures analysis of variance of mean performance on performance measures following each of the four treatments revealed a significant difference between
most of the variables. Results are reported in Tables 8 and 9.

Results of Tukey's test of multiple comparisons on separate tasks are reported in Tables 10 and 11.

Table 8
**Analysis of Variance of Recall Performance**

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trials</td>
<td>298.74</td>
<td>3</td>
<td>99.58</td>
<td>30.07</td>
<td>&lt;.01</td>
</tr>
<tr>
<td>Subjects</td>
<td>361.55</td>
<td>50</td>
<td>7.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>496.74</td>
<td>150</td>
<td>3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1157.03</td>
<td>203</td>
<td>5.699</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9
**Analysis of Variance of Recognition Performance**

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trials</td>
<td>120.52</td>
<td>3</td>
<td>40.17</td>
<td>22.85</td>
<td>&lt;.01</td>
</tr>
<tr>
<td>Subjects</td>
<td>234.33</td>
<td>50</td>
<td>4.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>265.09</td>
<td>150</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>619.94</td>
<td>203</td>
<td>3.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10

**Tukey's Multiple Comparisons Test: (Q) Recall Performance**

<table>
<thead>
<tr>
<th>Measure</th>
<th>Multi</th>
<th>Net1</th>
<th>Key1</th>
<th>Contx1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net1</td>
<td></td>
<td>4.04*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key1</td>
<td>8.34*</td>
<td>4.29*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contx1</td>
<td>12.44*</td>
<td>8.67*</td>
<td>4.07*</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05

Table 11

**Tukey's Multiple Comparisons Test: (Q) Recognition Performance**

<table>
<thead>
<tr>
<th>Measure</th>
<th>Multi2</th>
<th>Net2</th>
<th>Key2</th>
<th>Contx2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net2</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key2</td>
<td>3.50</td>
<td>.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contx2</td>
<td>11.04*</td>
<td>7.73*</td>
<td>4.53*</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05

The order of the mean differences between treatments was the same following both performance tasks. Multisensory, in each case, was first, followed by networking, mnemonic, and context.
Repeated measures analysis of variance using the two types of performance conditions (recall and recognition) as a fixed factor revealed significant main effects for the four treatments, the two performance measures, and interaction. Results are shown in Table 12 and Figure 3.

Table 12
Repeated Measures Analysis of Variance Between Performance (Recall and Recognition) and Treatments

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance (P)</td>
<td>49.07</td>
<td>1</td>
<td>49.07</td>
<td>18.8</td>
<td>&lt;.01</td>
</tr>
<tr>
<td>Treatments (T)</td>
<td>391.25</td>
<td>3</td>
<td>130.42</td>
<td>43.3</td>
<td>&lt;.01</td>
</tr>
<tr>
<td>P * T</td>
<td>36.10</td>
<td>3</td>
<td>12.03</td>
<td>5.7</td>
<td>&lt;.01</td>
</tr>
<tr>
<td>Subjects (S)</td>
<td>473.49</td>
<td>50</td>
<td>9.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P * S</td>
<td>130.41</td>
<td>50</td>
<td>2.61</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>T * S</td>
<td>452.13</td>
<td>150</td>
<td>3.01</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>P * T * S</td>
<td>316.25</td>
<td>150</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effects of treatment order were tested by calculating and comparing the performance means as they occurred in the
counterbalanced design. There was a slight learning effect over the four trials, but no order effect.

Relationship Between Ability Tests and Performance Measures

The initial thrust of this study was predicated on using six factors from the KFCT as predictors for performance following four treatments. However, factors did not emerge as expected, and as the elementary linkage analysis (Dunn-Rankin, 1983) indicated, performance measures related more to the type of task (i.e., recall and recognition) than to the type of treatment (i.e., multisensory, mnemonic, etc.). Therefore a question that seemed apropos was whether a set of ability variables would predict performance separately on recall and recognition. To determine the answer, the following procedures were performed.

First, scores on the performance measures were aggregated to create two variables called recall and recognition. Second, in order to maximize the n size for each analysis, means were substituted for missing data (Britton, 1986). Missing data were randomly dispersed among the 50 subjects and the replacement of the mean only affected two percent of the total number of scores. Third, with scores from the 17 ability measures as the independent set, and with scores from the recall and recognition
variables as the dependent set, relationships were investigated by canonical correlation.

Results of the canonical correlation revealed only one statistically significant \( p < .05 \) correlation. However, the standardized correlation coefficients suggested that there were specific ability tests relating to recall and recognition. Therefore, using the qualification that there be a .20 or greater differential in correlation coefficients between recall and recognition, (see Table 13) with the restriction that at least one test from each factor be included, six ability variables were chosen for another canonical analysis.

The ability tests that met the qualifications were (a) Identical Pictures, (b) Letter Sets, (c) Calendar, (d) First-Last Names, (e) Form Board, and (f) Incomplete Words. Using these six tests, two significant canonical Rs were found. See Table 14.
Table 13

Pearson Correlations Between Recall, Recognition, and Ability Tests

<table>
<thead>
<tr>
<th>Measures</th>
<th>Recall</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22</td>
<td>-05</td>
</tr>
<tr>
<td>IP</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>NUM</td>
<td>-02</td>
<td>-07</td>
</tr>
<tr>
<td>LETT</td>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>LOCA</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>FIG</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>CAL</td>
<td>35</td>
<td>61</td>
</tr>
<tr>
<td>DIREC</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>OBJNO</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>PICNO</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>PRFLST</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>PRFLD</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>SRDEV</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>FMBRD</td>
<td>49</td>
<td>38</td>
</tr>
<tr>
<td>HID</td>
<td>20</td>
<td>05</td>
</tr>
<tr>
<td>INCWD</td>
<td>-04</td>
<td>-31</td>
</tr>
<tr>
<td>SCRWD</td>
<td>20</td>
<td>08</td>
</tr>
</tbody>
</table>

\^ decimal omitted
Table 14

Canonical Correlations Between Recall and Recognition and Six Ability Tests

| Canonical Correlation | Approximate Standard Error | Squared Canonical Correlation | Pr > F  
|-----------------------|-----------------------------|-------------------------------|---------
| 1                     | 0.62                        | 0.09                          | 0.04    | 0.0007 |
| 2                     | 0.49                        | 0.11                          | 0.24    | 0.0306 |

Standardized canonical coefficients for treatments

<table>
<thead>
<tr>
<th>Dependent Variable 1</th>
<th>Dependent Variable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>-0.19</td>
</tr>
<tr>
<td>Recognition</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Standardized canonical coefficients for abilities

<table>
<thead>
<tr>
<th>Independent Variable 1</th>
<th>Independent Variable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>0.03</td>
</tr>
<tr>
<td>INCWD</td>
<td>-0.71</td>
</tr>
<tr>
<td>FRLST</td>
<td>0.20</td>
</tr>
<tr>
<td>LETT</td>
<td>0.56</td>
</tr>
<tr>
<td>CAL</td>
<td>0.30</td>
</tr>
<tr>
<td>FMBRD</td>
<td>0.17</td>
</tr>
</tbody>
</table>

The weights greater than 1.0 suggest the existence of some form of suppression.

Canonical correlations were also performed using the individual performance measures (i.e., multisensory, recall and recognition; networking, recall and recognition; etc.)
and the six ability tests listed above. None of these correlations was significant.

**Multiple Regression**

Pearson correlations were computed between scores on each ability test and scores on each performance measure. See Table 15. A two-stage conditional regression approach was then employed to assess the combined contributions of ability test variables to success on performance measures. First, appropriate ability test variables for entry into the equation were selected based on a combination of the intercorrelations between the ability tests and the performance measures and theoretical considerations. That is, a relationship between ability and performance was judged to exist if a test appeared to require, from the subject, the same skill that appeared to be required for the performance.

When one test from each KFCT factor was placed in the equation, no combinations were found in which all six tests contributed significantly to the multiple R. Subsets of the ability tests that appeared to contribute to the multiple R were then created and entered into the equations. In four cases, there were statistically significant results. These models are presented in Tables 16 through 19.
Table 15

Pearson Correlations Between Ability Tests and Performance

Measures: 1 = recall, 2 = recognition

<table>
<thead>
<tr>
<th>Measures</th>
<th>MLTI 1</th>
<th>MLTI 2</th>
<th>NET 1</th>
<th>NET 2</th>
<th>KEY 1</th>
<th>KEY 2</th>
<th>CNTX 1</th>
<th>CNTX 2</th>
<th>40 wd quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>31</td>
<td>07</td>
<td>05</td>
<td>-13</td>
<td>25</td>
<td>-24</td>
<td>-01</td>
<td>14</td>
<td>03</td>
</tr>
<tr>
<td>IP</td>
<td>14</td>
<td>22</td>
<td>31</td>
<td>16</td>
<td>28</td>
<td>-13</td>
<td>15</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>NUM</td>
<td>00</td>
<td>10</td>
<td>04</td>
<td>-15</td>
<td>05</td>
<td>08</td>
<td>01</td>
<td>-22</td>
<td>15</td>
</tr>
<tr>
<td>LETT</td>
<td>14</td>
<td>41</td>
<td>25</td>
<td>35</td>
<td>37</td>
<td>04</td>
<td>08</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>LOCA</td>
<td>08</td>
<td>45</td>
<td>33</td>
<td>27</td>
<td>37</td>
<td>05</td>
<td>14</td>
<td>45</td>
<td>09</td>
</tr>
<tr>
<td>FIG</td>
<td>-10</td>
<td>27</td>
<td>25</td>
<td>27</td>
<td>46</td>
<td>-00</td>
<td>-04</td>
<td>25</td>
<td>-00</td>
</tr>
<tr>
<td>CAL</td>
<td>24</td>
<td>35</td>
<td>14</td>
<td>35</td>
<td>40</td>
<td>28</td>
<td>-10</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>DIREC</td>
<td>26</td>
<td>14</td>
<td>29</td>
<td>32</td>
<td>25</td>
<td>33</td>
<td>-06</td>
<td>-01</td>
<td>16</td>
</tr>
<tr>
<td>OBJNO</td>
<td>13</td>
<td>03</td>
<td>22</td>
<td>33</td>
<td>21</td>
<td>-00</td>
<td>25</td>
<td>-07</td>
<td>34</td>
</tr>
<tr>
<td>PICNO</td>
<td>30</td>
<td>09</td>
<td>18</td>
<td>30</td>
<td>30</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>06</td>
</tr>
<tr>
<td>FRLST</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>19</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>-08</td>
<td>36</td>
</tr>
<tr>
<td>PRFLD</td>
<td>05</td>
<td>22</td>
<td>25</td>
<td>31</td>
<td>36</td>
<td>18</td>
<td>07</td>
<td>30</td>
<td>05</td>
</tr>
<tr>
<td>SRDEV</td>
<td>-02</td>
<td>19</td>
<td>25</td>
<td>22</td>
<td>31</td>
<td>-03</td>
<td>11</td>
<td>25</td>
<td>-07</td>
</tr>
<tr>
<td>FMBRD</td>
<td>11</td>
<td>24</td>
<td>34</td>
<td>23</td>
<td>34</td>
<td>21</td>
<td>06</td>
<td>24</td>
<td>06</td>
</tr>
<tr>
<td>HID</td>
<td>21</td>
<td>16</td>
<td>17</td>
<td>02</td>
<td>23</td>
<td>-03</td>
<td>19</td>
<td>-05</td>
<td>35</td>
</tr>
<tr>
<td>INCWD</td>
<td>11</td>
<td>-09</td>
<td>17</td>
<td>-15</td>
<td>05</td>
<td>-14</td>
<td>-04</td>
<td>-16</td>
<td>13</td>
</tr>
<tr>
<td>SCRWD</td>
<td>13</td>
<td>20</td>
<td>19</td>
<td>04</td>
<td>15</td>
<td>13</td>
<td>08</td>
<td>-07</td>
<td>12</td>
</tr>
</tbody>
</table>

a decimal omitted
Table 16  
**Regression Model Predicting Success on Recall Performance Following the Multisensory Treatment (p < .002)**

Multil = .41picno + .31a - .26fig  
Multiple R = .52

Table 17  
**Regression Model Predicting Success on Recall Performance Following the Keyword Treatment (p < .0003)**

Keyl = .43fig + .21fmbrd  
Multiple R = .54

Table 18  
**Regression Model Predicting Success on Aggregated Recall Performance (p < .002)**

Recall = .35fr1st + .29fmbrd  
Multiple R = .48

Table 19  
**Regression Model Predicting Success on Aggregated Recognition Performance (p < .001)**

Recog = .47cal - .31incwd  
Multiple R = .50
The results reported in the previous section establish three focal points for discussion. These are (a) the nature of the factor structures created from the scores of the Leeward Community College group, (b) the comparisons between the four different instructional treatments, and (c) the relationships between the ability tests and performance measures following treatment.

Factor Structures

The factors, based on tests from the Kit of Factor-Referenced Cognitive Tests (KFCT), in this study were (a) perceptual speed, (b) verbal closure, (c) induction, (d) integration, (e) memory for associations, and (f) visualization. The nature of the abilities of the sample, however, became an issue after the data were initially analyzed. According to field studies with the KFCT, cognitive factors resist strict classification (Ekstrom, French & Harmon, 1976) and this phenomenon was manifested in the present study. Ability factors in the KFCT were originally created from scores of normal adolescents and adults. These same ability factors were not clearly defined in the community college sample. Three anomalies found in the study sample data are particularly noteworthy. These anomalies concern the tests defining (a) perceptual speed,
(b) memory for associations, and (c) visualization (see Appendix E for factor matrices).

Each of three perceptual speed tests loaded on separate factors. The failure to "find" perceptual speed as a factor in this study could possibly be due to the lack of "purity" of the perceptual speed factor as reported by other researchers (Adcock & Webberley, 1971; Coombs, 1941; Thurstone, 1938; Vandenberg, 1973). A more likely explanation, however, is that surface test features rather than the postulated cognitive process were more salient for the community college group. Specifically: (a) the Identical Pictures test has a graphic format and loaded strongly on a factor defined by the visualization tests, which also have graphic formats; (b) The Hidden As Test, which consists of finding all words containing an "a" from a column of words, loaded on a factor defined by the verbal closure tests. The tasks on the verbal closure tests, like the Hidden As Test, are dependent on perception of the linear arrangements of individual letters as they form words; and (c) Number Matching consistently loaded as a separate factor and was the only test, from all measures given, that dealt exclusively with numbers.

Memory for associations has defined a single factor in other studies (French, 1951; Kelley, 1964), but that finding was not supported here. In this study, the three KFCT
tests which mark the associative memory factor loaded bipolarily on several factors. This phenomenon does not appear to have been previously reported, and it is not easily explained. To merely say that if one does well in associative memory tasks, one does not do well in visualization, verbal closure, etc. seems inadequate. Further use of these ability measures with comparable samples would be helpful in exploring this result.

Ability tests with visual or spatial orientations are generally reported to define a strong visualization factor that is clearly separate from verbal factors (Cattell, 1971; Royce, 1973; Thurstone, 1938). The lack of confirmation for a strong visualization factor from this sample was the most surprising result of the factor analyses.

One explanation for the lack of definitive factor structures is the small sample size. Also, as Gorsuch (1974) explained, the general low ability of most individuals in the study may have prevented their handling of the intricacies of certain tests. Evidence of this inability appears especially on the Form Board Test (visualization factor) which had, from a possible total score of 120, a mean of 0.02 (scores were corrected for guessing) with a range of -40 to 36.

Another reasonable explanation for lack of structure is implicit in the cross-cultural studies of how people
think. Coles and Means (1981) stated that every aspect of an experiment with unequal groups is subject to differing amounts of variance attributable to motivation, interpretation, and familiarity. Theoretically, then, this extraneous variance could account for the occurrence of different ability factor structures between subgroups of a population. Therefore, ability structures may need to be defined differently with a low achievement population. In fact, community college remedial students might be described as "being from a different culture than traditional college students." Rouche (cited in Ramey, 1981) described the culture of the remedial student as:

characterized by lower social and economic status, lower educational achievement, marginal employment, and limited participation in community affairs. Students are dis-advantaged to the extent that their culture has failed to provide them with experience typical of the students that traditional colleges serve.

(page 17)

An assumption could be made that the difference in "culture" of the non-traditional student would create a unique pattern of response to "traditional" ability tests. Evidence of a subgroup ability factor structure is supported by the rational interpretations that can be made for the factor loadings that occurred in this study.
For instance, tests with high loadings on factor one are from the original factors of (a) visualization, (b) induction, and (c) memory for association (bipolar). According to Ekstrom, et al. (1975), subjects sometimes use analytic reasoning to solve certain kinds of problems presented by visualization tests. This may partially explain why, with this sample, the induction and visualization tests loaded on the same factor.

Loading highest on factor two are all three tests from the original verbal closure factor and one test from the perceptual speed factor. As suggested earlier, this combination could be explained by the similarity between the perceptual speed test of Hidden As and the verbal closure tests.

The four tests with the highest loadings on factor three are from the original factors of induction and integration. Finding the two factors together supports Ekstrom, et al. (1975) who found certain types of reasoning factors, such as induction, combining with integration.

All the tests with high loadings on factor four have graphic rather than verbal formats. See Figure 4 for sample items. This similarity of format is a plausible explanation for the result.
When the perceptual speed tests were deleted from a factor analysis, a promax rotation of the remaining tests resulted in a structure that approached that of the KFCT. Replication is needed to test whether or not the same ability factors are stable in community college samples.

**Treatment Comparison**

The instructional treatments used in this study were (a) multisensory, (b) networking, (c) mnemonic, and (d) context. The performance measures following each treatment required two types of responses. The first task was to recall and write the target word definitions. The second
task entailed the recognition of correct usage of a target word in context. Each performance measure contained ten trials corresponding to the ten words presented during the instructional period. One should keep in mind that this study deals only with initial acquisition of word knowledge and not with long term retention or usage.

The order of the mean differences between treatments was the same following both performance tasks and most of these differences were significant ($p < .05$). Multisensory, in each case, was first, followed by networking, mnemonic, and finally, context. So, although highly touted in the literature on vocabulary instruction, strong support for the context method of vocabulary acquisition was not borne out in this study. In fact, for initial vocabulary acquisition, with the community college group, context was significantly worse than the other three methods on both performance measures. This result occurred despite the fact that definitions for words were provided as part of the context treatment. The poor showing on the recognition performance measure was particularly surprising because the treatment consisted of reading sentences with the target words in context.

Under the recall performance measure the multisensory method was significantly better than the other three methods. An examination of individual scores confirmed that
there were only three cases out of all the performance measures in which a subject scored lower following the multisensory treatment than following another treatment.

The multisensory instructional technique had a component consisting of verbalizing and writing the definition of words. Therefore, success on the recall measure following the multisensory treatment was expected. On the other hand, the multisensory method had no component similar to the recognition task, i.e., words were not presented in context at all. Nevertheless, on recognition performance, a significantly higher mean was maintained by the multisensory method over the mnemonic and the context methods. The overall success of the multisensory method may be due in part to the social interaction created when students verbalized the words and definitions with each other (Vgotsky, 1978).

One should keep in mind, however, that in the analysis of variance, performance type differences i.e., recall and recognition, accounted for a significant amount of variance. In addition, there was an interaction between treatment and type of performance. (The mnemonic method was relatively more successful on the recognition task.) These results confirm (a) that relationships between variables in educational research are often complex and (b) that a task-treatment-interaction paradigm may be required for
meaningful interpretation of treatment comparison data.

Based on results of the treatment comparisons some recommendations can be made for curriculum development. Instructional materials for initially teaching vocabulary to remedial community college students should be composed of exercises like those found in the multisensory method. Networking, keyword, and context exercises should be introduced and practiced as reinforcement rather than as initial instructional devices. Then, for a more comprehensive picture of student achievement, evaluation should encompass different performance modes.

**Relationship between Ability Tests and Performance Measures**

An important question intended for this study was that of the relationship between ability factors and performance following different instructional treatments. The learning outcomes supported the notion that the four treatments were indeed different, and this bodes well for differential prediction. However, because the original factors did not emerge as expected, only separate ability measures could be used as predictors in post hoc analyses.

As cited earlier, when one test representing each of six KFCT factors was entered in a regression equation, no equation was found to be significant. However, there were four subsets of the six ability tests that did make sizable and significant contributions to prediction ($p < .01$). The
performance variables that could be significantly predicted were (a) recall following the multisensory treatment, (b) recall following the mnemonic treatment, (c) recall as an aggregate, and (d) recognition as an aggregate.

Success on recall following the multisensory treatment was predicted by the Picture-Number associative memory test, the Hidden As perceptual speed test, and the Figure Classification induction test. The Picture-Number Test and the Hidden As Test are from factors hypothesized, for this study, to be predictors of success following the multisensory treatment. The relationship of the Figure Classification Test cannot be readily explained. Although it marks an induction factor in the KPCT, Thurstone and Thurstone (1941) found it to mark a general intelligence factor. In this study, as noted earlier, it loaded on a factor with the visualization tests. The ability underlying success with the Figure Classification Test appears to be not clearly defined.

Success on recall following the mnemonic treatment was predicted by the Figure Classification Test and the Form Board Test. The Formboard test marks the KPCT visualization factor, and was hypothesized to be a predictor of the mnemonic treatment. The Figure Classification Test has a graphic format similar to the visualization tests.
Therefore, its appearance as a significant predictor in this equation is plausible.

Recall, as an aggregate, was predicted by **First-Last Names**, an associative memory test, and **Form Board**, a visualization test. Recognition, as an aggregate, was significantly predicted by **Incomplete Words**, a verbal closure test, and **Calendar**, an integration test.

Two of the relationships from the aggregate results are quite rational. One would expect a memory test to relate to later recall of information, and one would expect an integration test to relate to a more complex task, such as recognition of correct information embedded in context. However, because canonical correlations, at best, are complex representations and difficult to interpret, one must be cautious in the conclusions to which one comes without the foundation of validating replications.

Replication would, of course, be important for all aspects of this study. The results indicate that such replication could make a worthwhile contribution to the bodies of research on ability structures and on aptitude-treatment-interaction. In the meantime, one can assert with some confidence that structuring learning tasks and performance measures so that they are congruent with individuals should continue to be explored.
APPENDIX A

INSTRUCTIONAL WORKSHEETS
Here are ten valuable vocabulary words to add to your lexicon. Use the definitions to help you complete the exercises that follow.

implacable    adroit    scurrilous    assiduous    fortuitous
innocuous    garrulous    belligerent    enervate    intrepid

Here are definitions for the ten study words.*

implacable      not placable; that cannot be appeased or pacified; relentless; inexorable
adroit         skillful in a physical or mental way; clever; expert
scurrilous     using indecent or abusive language; coarse; vulgar; foul-mouthed
assiduous      done with constant and careful attention
fortuitous     happening by chance; accidental
innocuous      that does not injure or harm; harmless
garrulous      talking much or too much, especially about unimportant things; loquacious
belligerent    seeking war; warlike
enervate       to deprive of strength, force, vigor, etc.; to weaken physically, mentally, or morally
intrepid       not afraid; bold; fearless; dauntless; very brave

* from Webster's (1974) New World Dictionary (college edition)
Here are five of the words to work with first.

enervate  adroit  assiduous  intrepid  belligerent

1. Circle the **three** words in each line that are related in meaning.

enervate  weaken  energize  exhaust
incompetent  adroit  skillful  competent
assiduous  persevering  lazy  industrious
brave  intrepid  fearless  cowardly
warlike  unaggressive  belligerent  militant

2. Match the words in the two columns that are most nearly opposite by drawing lines between them.

belligerent  lazy
adroit  cowardly
assiduous  peaceful
intrepid  strengthen
enervate  unskilled

3. Match the correct study word to a phrase by drawing a line between them.

A person who shows extreme anger.  **intrepid**
A fine surgeon.  **belligerent**
The feeling a person might have after eight hours of hard work.  **assiduous**
A lion trainer.  **adroit**
A serious athlete in training.  **enervated**
4. Underline the best word or phrase to complete the sentence. Sometimes both words will be correct.

His shrewd strategy on the tennis court made him an easy winner. He (is, is not) adroit.

Because the boy was completely enervated, the coach had him (stay in the game longer, leave the game sooner).

He went intrepidly to ask his boss for a raise. He was (fearful, fearless).

She spent a great deal of time at the coffee machine. She was not (attentive, assiduous) in her commitment to the job.

The accused sat quietly in the courtroom. He (did, did not) show any belligerence.

Here is the second set of five words.

implacable, scurrilous, fortuitous, garrulous, innocuous

5. Circle the three words in each line that are related in meaning.

unchangeable, implacable, unyielding, inflexible
slanderous, flattering, scurrilous, ridiculing
fortuitous, by luck, intentional, by chance
inoffensive, innocuous, harmless, harmful
multiloquent, overtalkative, garrulous, using few words
6. Match the words in the two columns that are most nearly opposite by drawing lines between them.

innocuous                      intentional
garrulous                     flattering
fortuitous                     persuaded to give in
scurrilous                    deadly
implacable                    not talkative

7. Match the correct study word to a phrase by drawing a line between the two.

Being unwilling to change an opinion.          innocuous
Teenager telephone talk                            scurrilous
Mild muscle soreness                             implacable
Winning a lottery                                   garrulous
Playing a dirty joke on someone                   fortuitous

8. Underline the best word or phrase to complete the sentence correctly. Sometimes both words may be correct.

She was implacable about her decision. Her mind (could, could not) be changed.
He praised her in glowing terms. His manner (was, was not) scurrilous.
She had not intended to see him. Their meeting (was, was not) fortuitous.
If you want to hear idle chatter you (will, will not) seek out a garrulous person.
The bite of a malaria-carrying mosquito (is, is not) innocuous.
MULTISENSORY PRACTICE

The exercises that follow are to help you learn the meaning of these ten words:

erudite dissonance deleterious enigma ostentatious
ennui supercilious vociferous evoke colloquy

1. This is practice is for quick visual recognition of the study words. Mark the word on the right that is the same as the target word. For example:
ennum erratic erudite ennum evoke exploit

Go as fast as you can and record your time when you are finished.

enigma enervate engross exploit evoke enigma
colloquy conclusion confidence colloquy complacent consummate
erudite exploit engross erudite erratic esoteric
evoke erratic erudite exploit esoteric evoke
supercilious sporadic sedentary sanguine surreptitious supercilious
vociferous vacillate vivacious verbose vivid vociferous
deleterious deleterious dissonance disparage diversity dubious
ostentatious ominous omnivorous obscure ostentatious omnipresent
dissonance deleterious diversity dissonance disparage dubious
ennui exploit ennum erratic erudite evoke

Seconds
Lines correct
Here is the same type of exercise, but in this case the words are close together and may appear more than once. The target word is listed first.

deleterious dissonance disparage diversity deleterious dubious
enmui exploit ennui erratic evoke ennui
dissonance deleterious dissonance diversity dissonance dubious
ostentatious ominous ostentatious omnivorous obscure ostentatious
vociferous vociferous vacillate vivacious verbose vociferous
supercilious sporadic sedentary supercilious surreptitious sanguine
erudite erudite engross erratic erudite exploit
colloquy cursory colloquy confidence conclusion complacent
enigma enervate engross exploit evoke enigma

Seconds

Lines correct
Here are definitions* of the study words. Read the word and the definition out loud.

enigma a perplexing, usually ambiguous statement; riddle
colloquy a conversation; especially a formal discussion; conference
erudite having or showing a wide knowledge gained through reading
evoke to call forth or summon (a spirit, demon, etc.) as by chanting magical words; conjure up
supercilious haughtiness; disdainful or contemptuous
vociferous loud, noisy, or vehement in making one's feelings known; clamorous
deleterious harmful to health; well-being, etc.; injurious
ostentatious showy display, as of wealth, knowledge, etc.; pretentiousness
dissonance an inharmonious sound or combination of sounds; discord
ennui weariness and dissatisfaction resulting from inactivity or lack of interest; boredom


Now spend ten minutes in oral practice associating the word and definition in memory. Work with a partner.
Read the definition and see if you can write the word on the line without referring back to the list. Check your spelling from the list before going on to the next word.

Haughtiness; disdainful and contemptuous

A conversation; especially a formal discussion conference

Loud, noisy, or vehement in making one's feelings known; clamorous

To call forth or summon (a spirit, demon, etc.) as by chanting magical words; conjure up

Weariness or dissatisfaction resulting from inactivity or lack of interest; boredom

A perplexing, usually ambiguous statement

Showy display, as of wealth, knowledge, etc.; pretentiousness.

Having or showing a wide knowledge gained through reading.

An inharmonious sound or combination of sounds; discord.
CONTEXT PRACTICE

Sometimes when you are reading you will be able to figure out the meaning of a word by using the ideas in the sentence containing the word. This analysis is called "using context." See if you can determine the meaning of the word "gregarious" from these sentences. Write your guess each time on the line below.

Gregarious people are usually fun to know.

A gregarious person, not an introvert, is most likely to become class president.

Someone who is gregarious will never turn down a chance to be with other people.

Answer: gregarious  fond of the company of others; sociable

The context exercises that follow are to help you learn the meaning of these words.

ingenious  blatant  empirical  specious  credulous
concomitant  astute  pernicious  parsimony  introspect

After you read the sentence, make a guess at the meaning of the underlined word, and write your guess on the line. When you have completed the three sentences, turn the page to find the correct definition.

1. Sometimes her ingenious manner made her seem insensitive.

2. Although he seemed ingenious, he was really hiding his true feeling.
3. She was very frank with her opinions, very **ingenuous**.

---

**Answer:** ingenuous frank; open; candid; naïve; artless; without guile

The **blatant** colors of the rug and furniture, red, orange, and bright yellow, made the room seem hot.

---

**Contemporary heavy metal music is blatant rather than melodious.**

---

A quiet discussion can become **blatant** if a great deal of disagreement is evident.

---

**Answer:** blatant disagreeably loud or boisterous; offensively noisy; clamorous

The scientist backed up his statement with **empirical** evidence.

---

**Some beliefs are empirically based and others are theoretical.**

---

She carefully observed the animal's behavior; **empirically** checking all sleeping, eating, mating, hunting, and playing habits.
Answer: **empirical** relying or based solely on experiment or observation rather than theory

He gave a **specious** rationalization for his actions.

---

The debater used logic that was **specious** rather than true.

---

Most advertisements contain **specious** information that sounds true, but is in fact, false.

---

Answer: **specious** seeming to be good, sound, correct, logical, etc. without really being so; plausible, but not genuine

Many salespersons hope their customers will be **credulous**.

---

He was skeptical rather than **credulous** about the story.

---

She is so **credulous** she believes everything she reads.

---

Answer: **credulous** tending to believe too readily; easily convinced
During the experiment, the *concomitant* problems were severe.

Sky diving, with the *concomitant* danger, appeals to only a small percentage of the population.

When one has an income there is usually a *concomitant* outgo in the form of taxes.

**Answer:** *concomitant* accompanying; attendant

In business, one must be very *astute*.

The best chess players are *astute*, not careless, about the moves they make.

She is an *astute* doctor who rarely makes an incorrect diagnosis.

**Answer:** *astute* having or showing a clever or shrewd mind; cunning; crafty; wily

Alcoholism is *pernicious*.

**A poisonous animal's bite can be pernicious.**
Alcoholism is a **pernicious** habit.

---

**Answer:** *pernicious* causing great injury, destruction or ruin; fatal, deadly

She was well known for her **parsimony**.

---

His extreme **parsimony** had resulted in a huge savings account.

---

Her designer clothes and expensive jewelry indicated extravagance rather than **parsimony** in her spending habits.

---

**Answer:** *parsimony* a tendency to be overcareful in spending; unreasonable economy; stinginess

The diving champion was described as an **introspective** man.

---

A way to learn about oneself is to **introspect**.

---

She was careful to **introspect** before she acted or spoke.

---

**Answer:** *introspect* to look into one's own mind, feelings, etc.
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanguine</td>
<td>sanguine</td>
<td>A person singing because he/she is cheerful and confident. (Visualize someone singing cheerfully)</td>
</tr>
<tr>
<td>Voluble</td>
<td>voluble</td>
<td>Lubricating gears to make them turn easily; a voluble person talks easily. (Visualize someone lubricating their vocal cords and then talking very fast with lots of words.)</td>
</tr>
<tr>
<td>Perspicacious</td>
<td>perspicacious</td>
<td>A spy (spi) has to be very clever; with keen understanding. (Visualize spy with magnifying glass looking for clues or having to cleverly escape an enemy.)</td>
</tr>
<tr>
<td>Connotation</td>
<td>connotation</td>
<td>The notion associated with a word; the &quot;extra&quot; meaning. (Visualize the word &quot;home&quot; with all the things that go into a home hanging on it.)</td>
</tr>
<tr>
<td>Ubiquitous</td>
<td>ubiquitous</td>
<td>I won't quit working for disarmament until it is &quot;all over everywhere&quot;. (Visualize yourself carrying a poster for disarmament in U.S., Russia, etc.)</td>
</tr>
<tr>
<td>Vicarious</td>
<td>vicarious</td>
<td>In my imagination I drive an Alfa Romeo convertible.</td>
</tr>
<tr>
<td>Diffident</td>
<td>diffident</td>
<td>I feel shy about going to the dentist. (Visualize the scene)</td>
</tr>
<tr>
<td>Ephemeral</td>
<td>ephemeral</td>
<td>Hem lengths only last a short period of time. (Visualize hems going up and down quickly)</td>
</tr>
<tr>
<td>Tacit</td>
<td>tacit</td>
<td>You and your boyfriend, girlfriend, spouse, have a silent agreement that you will go to sit (sit) in a corner when you are ready to go home from a party. (Visualize the scene. See yourself looking at each other without talking.)</td>
</tr>
<tr>
<td>Surreptitious</td>
<td>surreptitious</td>
<td>Reptiles move in a secretive, sneaky manner. (Visualize a snake quietly moving across the floor.)</td>
</tr>
</tbody>
</table>
APPENDIX B

DIRECTIONS AND SAMPLES FROM ABILITY TESTS

used with permission of the Educational Testing Service; Princeton, NJ.
PLEASE NOTE:

Copyrighted materials in this document have not been filmed at the request of the author. They are available for consultation, however, in the author's university library.

These consist of pages:

 Appendix B Pages 97-113
APPENDIX C

PERFORMANCE MEASURES
MULTISENSORY PRACTICE QUIZ

As completely as you can, write the definition for each word. If you do not recall the exact definition, write anything you remember about the word.

1. ennui

2. evoke

3. enigma

4. erudite

5. colloquy

6. vociferous

7. dissonance
8. deleterious

9. ostentatious

10. supercilious

Place a check beside any sentence in which the study word is used correctly. Another form of the word may be used.

__1. He felt very energized and full of ennui.

__2. His enigmatic behavior caused everyone to understand him.

__3. We knew she was erudite because she never used fancy words.

__4. She spoke harshly to him in order to evoke his attention.

__5. The colloquy was held so everyone could express his or her opinion.

__6. The dog barked in a vociferous manner at the stranger.

__7. The singer was right on key and created a good deal of dissonance.

__8. Expert nutritionists recommend whole grains as being deleterious to one's health.

__9. He dressed in an ostentatious manner with few jewels and no fancy suits.
10. With her head down and her shoulders drooping, she gave the appearance of being supercilious.

NETWORK PRACTICE QUIZ

As completely as you can, write the definition for each word. If you do not recall the exact definition, write anything you remember about the word.

1. adroit

2. enervate

3. intrepid

4. assiduous

5. innocuous

6. garrulous

7. fortuitous
8. scurrilous

-------------------------------------

9. implacable

-------------------------------------

10. belligerent

-------------------------------------

Place a check beside any sentence in which the study word is used correctly. Another form of the word may be used.

____ 1. His **adroit** strategy resulted in his winning the tournament.

____ 2. She drank some orange juice in order to become **enervated**

____ 3. The **intrepid** diver was afraid to go into the water with the sharks.

____ 4. The **assiduous** worker was often not on the job.

____ 5. For an alcoholic, a single drink is **innocuous**.

____ 6. Since she needed to talk to him, his arrival at the party was **fortuitous**.

____ 7. A gentleman will often use **scurrilous** language.

____ 8. The **garrulous** gentleman never opened his mouth.

____ 9. She was **implacable** in her decision, determined not to change.

____ 10. **Belligerent** behavior often leads to peace.
CONTEXT PRACTICE QUIZ

As completely as you can, write the definition for each word. If you do not recall the definition, write anything you remember about the word.

1. astute

2. blatant

3. specious

4. empirical

5. ingenuous

6. parsimony

7. credulous
8. introspect

9. pernicious

10. concomitant

Place a check beside any sentence in which the study word is used correctly. Another form of the word may be used.

__ 1. He used all the money in his astute business deal.
__ 2. A mail-order diploma is a specious document.
__ 3. In periods of drought it is unwise to be parsimonious in water consumption.
__ 4. She spoke softly in a blatant manner.
__ 5. Good research is always empirical.
__ 6. His wide experience made him very ingenuous.
__ 7. Thunder is not concomitant with lightning.
__ 8. She was so credulous she believed nothing she read.
__ 9. When he is talking, he is being introspective.
__ 10. A mosquito bite is very pernicious.
KEYWORD PRACTICE QUIZ

As completely as you can, write the definition for each word. If you do not recall the exact definition, write anything you remember about the word.

1. tacit

2. voluble

3. sanguine

4. ephemeral

5. diffident

6. vicarious

7. ubiquitous
8. connotation

9. perspicacious

10. surreptitious

Place a check beside any sentence in which the study word is used correctly.

__ 1. Their tacit agreement was clearly spoken.

__ 2. His speech was short and voluble.

__ 3. Her tears showed how sanguine she was.

__ 4. In comparison with the life span of some turtles, man has an ephemeral existence.

__ 5. He was diffident and outspoken.

__ 6. Vicarious adventures cost a good deal of money.

__ 7. In this country, small businesses are less ubiquitous than they once were.

__ 8. The word "slender" has a more positive connotation than the word "skinny".

__ 9. Guerrilla bands must never meet surreptitiously or they will be discovered.

__ 10. Self-made millionaires are perspicacious.
APPENDIX D

FORTY WORD QUIZ
Final 40 Word Quiz

Record the letter of the word or words that is closest in meaning to the underlined word.

1. *colloquy* means
   a. illustrate
   b. discuss
   c. write
   d. sing

2. *voluble* means
   a. quiet
   b. full
   c. empty
   d. talkative

3. *belligerent* behavior is
   a. belittling
   b. warlike
   c. friendly
   d. unfriendly

4. to *introspect* is to
   a. discuss
   b. think
   c. observe
   d. go blank

6. to *envoke* means to
   a. expel
   b. call forth
   c. demonstrate
   d. send back

7. *vociferous* means
   a. eating and drinking
   b. weeping and wailing
   c. shouting and crying
   d. fun and laughter

8. *ostentatious* means
   a. fat
   b. skinny
   c. showy
   d. plain

9. to be *implacable* is to be
   a. expressionless
   b. impressionable
   c. merciful
   d. unyielding

Name ____________________
5. **perspicacious** means 10. **specious** means
   a. having keen judgment  a. absolutely false
   b. jumping to conclusions  b. apparently false
   c. keen judgment  a. absolutely false
   d. gaining perspective  d. absolutely true

11. **vicarious** experience is
   a. fascinating  a. surprising
   b. vicious  b. irrational
   c. imaginary  c. secretive
   d. unique  d. rational

12. **empirical** evidence is
   a. impractical  a. rare
   b. practical  b. accidental
   c. political  c. planned
   d. social  d. unfortunate

13. **ennui** means
   a. patience  a. discord
   b. nervousness  b. dissuasion
   c. boredom  c. disgust
   d. happiness  d. disturbance
14. deleterious means

a. offensive
b. injurious
c. delightful
d. courteous

15. scurrilous means

a. eloquent
b. facetious
c. slanderous
d. adulatory

19. a credulous audience is

a. quiet
b. skeptical
c. noisy
d. believing

20. something pernicious is

a. lively
b. deadly
c. strong
d. weak

21. a tacit agreement is

a. mutual
b. group
c. broken
d. unspoken

26. a sanguine temperament is

a. calm and easygoing
b. excitable and moody
c. gloomy and shy
d. cheerful and confident

22. concomitant is

a. preceding
b. accompanying
c. passing
d. following

27. assiduous attention is

a. fleeting
b. varying
c. constant
d. invariable
23. **innocuous** means
   a. harmful
   b. important
   c. harmless
   d. trivial

24. a **garrulous** person is
   a. quiet
   b. talkative
   c. quarrelsome
   d. bitter

25. an **enigma** is a
   a. puzzle
   b. situation
   c. disaster
   d. disease

28. **ubiquitous** means
   a. above and below
   b. nowhere in particular
   c. side by side
   d. everywhere at one time

29. **parsimony** is
   a. generosity
   b. meanness
   c. recklessness
   d. stinginess

30. **blatant** means
   a. increasingly fast
   b. pleasantly soft
   c. increasingly slow
   d. unpleasantly loud

31. to be **astute** is to be
   a. clever
   b. bold
   c. shy
   d. stupid

31. an **ephemeral** vision lasts
   a. a brief period of time
   b. a long period of time
   c. an indefinite period of time
   d. a definite length of time
32. an *enervated* person 37. to be *adroit* means to be has

a. energy
b. nerves
c. no energy
d. no nerves

a. indirect
b. skillful
c. careless
d. dominating

33. a *connotation* is an 38. a *supercilious* person is

a. exact definition
b. opposite idea
c. inferential idea
d. associated idea

a. friendly
b. brilliant
c. scornful
d. superb

34. a *diffident* person 39. an *ingenuous* person is

a. confused
b. timid
c. stubborn
d. defiant

a. not genuine
b. not smart
c. innocent
d. imaginative

35. an *erudite* person 40. to be *intrepid* is to be

a. violent
b. shallow
c. learned
d. calm

a. fearless
b. timid
c. rude
d. skillful
APPENDIX E

FACTOR MATRICES
## Varimax Rotated Factor Matrix: Ability Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Factor I</th>
<th>Factor II</th>
<th>Factor III</th>
<th>Factor IV</th>
<th>Factor V</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Perceptual Speed</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidden As</td>
<td>-09</td>
<td>89</td>
<td>05</td>
<td>02</td>
<td>03</td>
<td>80</td>
</tr>
<tr>
<td>Identical Pictures</td>
<td>05</td>
<td>23</td>
<td>04</td>
<td>92</td>
<td>05</td>
<td>86</td>
</tr>
<tr>
<td>Number Comparison</td>
<td>-13</td>
<td>10</td>
<td>08</td>
<td>-13</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td><strong>Induction</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter Sets</td>
<td>59</td>
<td>01</td>
<td>66</td>
<td>25</td>
<td>-06</td>
<td>86</td>
</tr>
<tr>
<td>Locations</td>
<td>70</td>
<td>-02</td>
<td>55</td>
<td>-11</td>
<td>-19</td>
<td>84</td>
</tr>
<tr>
<td>Figure Classifying</td>
<td>28</td>
<td>-37</td>
<td>13</td>
<td>71</td>
<td>-21</td>
<td>78</td>
</tr>
<tr>
<td><strong>Integrative Processes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar</td>
<td>20</td>
<td>17</td>
<td>90</td>
<td>01</td>
<td>17</td>
<td>90</td>
</tr>
<tr>
<td>Follow Directions</td>
<td>-06</td>
<td>12</td>
<td>89</td>
<td>12</td>
<td>-01</td>
<td>82</td>
</tr>
<tr>
<td><strong>Memory for Associations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture/Number</td>
<td>-59</td>
<td>-54</td>
<td>-22</td>
<td>-28</td>
<td>-32</td>
<td>87</td>
</tr>
<tr>
<td>Object/Number</td>
<td>-62</td>
<td>-46</td>
<td>-35</td>
<td>-24</td>
<td>-42</td>
<td>91</td>
</tr>
<tr>
<td>First/Last Names</td>
<td>-91</td>
<td>10</td>
<td>14</td>
<td>-15</td>
<td>08</td>
<td>90</td>
</tr>
<tr>
<td><strong>Visualization</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formboard</td>
<td>68</td>
<td>03</td>
<td>35</td>
<td>39</td>
<td>-34</td>
<td>86</td>
</tr>
<tr>
<td>Paperfolding</td>
<td>42</td>
<td>-30</td>
<td>21</td>
<td>57</td>
<td>-50</td>
<td>88</td>
</tr>
<tr>
<td>Surface Development</td>
<td>68</td>
<td>-14</td>
<td>-01</td>
<td>67</td>
<td>-20</td>
<td>97</td>
</tr>
<tr>
<td><strong>Verbal Closure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrambled Words</td>
<td>17</td>
<td>85</td>
<td>05</td>
<td>-01</td>
<td>06</td>
<td>76</td>
</tr>
<tr>
<td>Hidden Words</td>
<td>-04</td>
<td>74</td>
<td>39</td>
<td>-17</td>
<td>02</td>
<td>73</td>
</tr>
<tr>
<td>Incomplete Words</td>
<td>-11</td>
<td>86</td>
<td>-04</td>
<td>-28</td>
<td>25</td>
<td>89</td>
</tr>
</tbody>
</table>

\* Decimal points are omitted \n
130
### Promax Rotated Factor Matrix Ability Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Perceptual Speed</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidden As</td>
<td>-95</td>
<td>86</td>
<td>14</td>
<td>-21</td>
<td>-25</td>
<td>80</td>
</tr>
<tr>
<td>Identical Pictures</td>
<td>27</td>
<td>-04</td>
<td>10</td>
<td>89</td>
<td>-07</td>
<td>86</td>
</tr>
<tr>
<td>Number Comparison</td>
<td>-20</td>
<td>29</td>
<td>04</td>
<td>-24</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td><strong>Induction</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter Sets</td>
<td>75</td>
<td>04</td>
<td>76</td>
<td>42</td>
<td>-11</td>
<td>86</td>
</tr>
<tr>
<td>Locations</td>
<td>75</td>
<td>01</td>
<td>64</td>
<td>11</td>
<td>-21</td>
<td>84</td>
</tr>
<tr>
<td>Figure Classification</td>
<td>46</td>
<td>45</td>
<td>18</td>
<td>81</td>
<td>-42</td>
<td>78</td>
</tr>
<tr>
<td><strong>Integrative Processes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendar</td>
<td>36</td>
<td>28</td>
<td>93</td>
<td>08</td>
<td>21</td>
<td>90</td>
</tr>
<tr>
<td>Follow Directions</td>
<td>14</td>
<td>19</td>
<td>88</td>
<td>15</td>
<td>02</td>
<td>82</td>
</tr>
<tr>
<td><strong>Memory for Associations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture/Number</td>
<td>-67</td>
<td>-58</td>
<td>38</td>
<td>-33</td>
<td>-40</td>
<td>87</td>
</tr>
<tr>
<td>Object/Number</td>
<td>-68</td>
<td>-55</td>
<td>49</td>
<td>-21</td>
<td>-48</td>
<td>91</td>
</tr>
<tr>
<td>First/Last Names</td>
<td>-88</td>
<td>13</td>
<td>-01</td>
<td>-36</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td><strong>Visualization</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formboard</td>
<td>83</td>
<td>-03</td>
<td>49</td>
<td>58</td>
<td>-40</td>
<td>86</td>
</tr>
<tr>
<td>Paperfolding</td>
<td>60</td>
<td>-41</td>
<td>28</td>
<td>74</td>
<td>-66</td>
<td>88</td>
</tr>
<tr>
<td>Surface Development</td>
<td>81</td>
<td>-23</td>
<td>13</td>
<td>83</td>
<td>36</td>
<td>97</td>
</tr>
<tr>
<td><strong>Verbal Closure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrambled Words</td>
<td>17</td>
<td>85</td>
<td>17</td>
<td>-06</td>
<td>32</td>
<td>76</td>
</tr>
<tr>
<td>Hidden Words</td>
<td>01</td>
<td>78</td>
<td>45</td>
<td>-23</td>
<td>28</td>
<td>73</td>
</tr>
<tr>
<td>Incomplete Words</td>
<td>-17</td>
<td>90</td>
<td>02</td>
<td>-41</td>
<td>54</td>
<td>89</td>
</tr>
</tbody>
</table>

*Decimal points are omitted*
BIBLIOGRAPHY


138


