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Abstract 
 

The proliferation of Wireless Highway Addressable 
Remote Transducer (WirelessHART) communications 
in support of Industrial Internet of Things (IIoT) 
applications is accompanied by increased 
vulnerability concerns that amplify the need for 
improved pre-attack security and post-attack forensic 
methods. This paper summarizes demonstration 
activity aimed at applying Time Domain Distinct 
Native Attribute (TD-DNA) fingerprinting and 
improving feature selection to increase 
computational efficiency and the potential for 
near-real time operational application. Assessments 
include both pre-classification and post-classification 
dimensional reduction using TD-DNA fingerprint 
features extracted from experimentally collected 
WirelessHART signals.  Results show that 
pre-classification selection methods are superior, 
with average percent correct classification 
differential of 8% < %CD < 1% being maintained 
using selected feature subsets containing only 24 
(10%) of the 243 full-dimensional features.   
 
1. Introduction  

The overwhelming focus in Internet of Things 
(IoT) growth has been in the so-called “Consumer 
IoT” [1] subset being used to connect an increasing 
number of household, personal, and consumer-level 
devices. While similar growth across the Industrial 
IoT (IIoT) subspace has been somewhat slower, some 
improved functionality and efficiency has been 
realized across nearly all industries [1]. This includes 
deployment of WirelessHART signaling which is “by 
far the largest digital communications technology 
deployed in the process industries with over 40 million 
field instruments supporting HART technology 
installed worldwide [2].  This includes support to over 
24,000 WirelessHART networks that logged over 5 
billion operating hours [3].  While estimates for the 

number of currently fielded WirelessHART networks 
and devices vary, there are predictions of exponential 
growth through 2028 within the oil, gas, chemical, and 
power generation industries [4]. 

Whether addressing pre-attack defense or 
post-attack forensic analysis, the preponderance of 
threat detection and protection work in process 
control systems occurs above the PHY layer [5], 
including bit-level solutions implemented in the 
upper communication protocol layers [2, 6, 7].  
Relative to IIoT vulnerability, the U.S. Industry 
Control System (ICS) Cyber Emergency Response 
Team (ICS-CERT) indicated that, “The gateway [of 
an ICS system] … is where you need to pay the most 
attention” [8].  This certainly includes all PHY layer 
communications between a process sensor and the 
gateway. Therefore, to realize the cross-layer security 
benefits envisioned in [5], the desirable architecture 
would include the ability to operate across all IIoT 
elements by balancing available resources to exploit 
information at the most vulnerable nodes and achieve 
an acceptable level of threat warning.  

One PHY-based method supporting offensive, 
defensive, and exploitive network operations is Time 
Domain Distinct Native Attribute (TD-DNA) 
Fingerprinting which has been successfully used to 
discriminate IoT and IIoT communication devices 
and their operating states [9-18]. The TD-DNA 
fingerprinting methodology therein is well-suited for 
consideration here given 1) the observed ZigBee-like 
signal characteristics of WirelessHART signals, and 
2) the ability to perform Dimensional Reduction 
Analysis (DRA) and identify the minimal subset of 
features required to achieve a given level of 
discrimination performance. 

The work here extends first-look results presented 
in [18] that included ZigBee device discrimination 
and DRA with feature selection using 1) an adopted 
post-classification Random Forest (RndF) relevance 
ranking method, and 2) a newly developed 
pre-classification Wilcoxon Rank Sum (WRS) 
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method based on nonparametric statistical testing. 
Specific extension includes 1) transition to 
WirelessHart and ZigBee-Like signal processing, and 
2) use of additional DRA methodologies with feature 
selection based on both the adopted 
post-classification Generalized Relevance Learning 
Vector Quantized Improved (GRLVQI) method, and 
the adopted pre-classification ReliefF method.  

This paper is organized as follows.   Section 2 
provides background information on the IIoT Threat 
Framework, WirelessHART, TD-DNA 
Fingerprinting, MDA/ML Discrimination, and DRA.  
Section 3 details the demonstration methodology 
used to generate Section 4 DRA Performance 
Results.  The paper concludes with Section 5 
summary and conclusions. 
 
 
2. Background 
 
2.1. IIoT Threat Framework 

A majority of IIoT risk mitigation effort has been 
dedicated to threats posed by actors having malicious 
intent, especially when those IIoT devices support 
critical infrastructure (CI) elements.  However, when 
considering CI and IIoT in general, there are threats 
that do not originate from malicious actors that can 
have similarly catastrophic effects. As reflected in 
Fig. 1, the threat categorization in [19] sufficiently 
embodies IIoT threats under three main categories: 
accidental, malicious, and natural. 

Attack effects within the IIoT threat framework are 
captured in ICS Impact subcategories that have been 
added here and shown in Fig. 1. These include both 
1) Incidental impact (e.g., Slammer Worm at the 
Davis-Besse nuclear plant [20]), and 2) By-Design 
impact where specific IIoT element vulnerabilities 
are targeted (e.g., Tehama Colusa Canal sabotage 
[20], Stuxnet [21], Shamoon [22], and CrashOverride 
[23]). Both impact categories include insider attacks 
of given elements that can be directly accessed, with 
responsible Agent(s) including human, technological, 
and natural actors [19]. 

The By-Design impact in Fig. 1 includes creation 
of malware like TRITON/TRISIS which aims to 
degrade safety interrupt systems whereby “persons, 
property, and/or the environment could suffer 
physical harm” [24].  While malicious threats such as 
these have potentially catastrophic effects, the threat 
framework in Fig. 1 also illuminates the fact that the 
impact of accidental or natural category threats could 
have equally serious consequences. 

 

Figure 1.  IIoT threat framework with categorization 
of IIoT elements and agents from [19] and Incidental 
and By-Design ICS-impact elements added here. 
 
2.2. WirelessHART Signaling 
 WirelessHART is a variant of the wired HART 
protocol used to exchange information via 4-20 mA 
current loop signaling that exists in nearly all legacy 
systems.  WirelessHART adapters support exchange of 
the legacy 4-20 mA current information using wireless 
communications in the 2.4 GHz band.  The signaling is 
compliant with IEEE 802.15.4 PHY layer standards 
and possess ZigBee-like characteristics that have been 
successfully exploited in previous work [17,18]. 
 WirelessHART devices from two suppliers were 
considered here for demonstration, including the 
Siemens AW210 [25] and Pepperl and Fuchs Bullet 
[26] devices.  The 802.15.4 PHY layer operation for 
these devices is shown in Fig. 2.  As common in many 
wireless protocols, the transmitted bursts include a 
preamble response which was observed to be the first 
160 µSec (defined as the PreAmbRgn in Fig. 2). The 
PreAmbRgn is the primary Region of Interest (ROI) 
exploited here for TD-DNA Fingerprinting. 

 
Figure 2. WirelessHART IEEE 802.15.4 details 
[27] with 1) IEEE nomenclature and prescribed 
signal durations, and 2) experimental nomenclature 
and observed signal durations under this work.  
 

As done previously for ZigBee devices in [14, 17, 
18], WirelessHART TD-DNA features were 
extracted from experimentally collected data for 
ND = 8 like-model devices.  The signals were 
collected with a National Instruments N2952 
Software Defined Radio (SDR) having an RF 
bandwidth of WRF = 10 MHz and operating at a 
sample frequency of fS = 10 MSps in both the 
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In-phase and Quadrature-phase (I/Q) channels. Post- 
collection MATLAB processing was performed on a 
burst-by-burst basis and included baseband 
down-conversion, followed by filtering with a 
4th-order Butterworth filter having a bandwidth of 
WBB = 1 MHz.  The collections were made in a 
typical office environment (channel conditions 
consistent with WirelessHART applications) which 
yielded an average collected Signal-to-Noise Ratio of 
SNRC = 39.0 dB.  The collected signals were 
SNR-scaled by adding independent, like-filtered, 
power-scaled Additive White Gaussian Noise to 
reflect operating conditions for SNR Î [5.0, 39.0]. 
 
2.3.  TD-DNA Fingerprinting 

TD-DNA Fingerprinting utilizes various machine 
learning algorithms and concepts such as feature 
selection via DRA which has been the subject of prior 
related works [9, 18, 28]. The demonstration here 
focuses on examining DRA methods for use with an 
MDA/ML classifier, given the MDA/ML classification 
process has been shown to be computationally efficient 
while reliably discriminating IIoT signals [9, 13].  

Results here are based on TD-DNA fingerprints 
generated from WirelessHART burst preamble 
responses and are generated using a methodology 
consistent with prior related works [9-18]. The 
instantaneous amplitude (AMP), phase (PHZ), and 
frequency (FRQ) responses of the PreAmbRgn ROI 
are divided into NR = 26 subregions.  All ROI samples 
are used for generating features as well, for a total of 
NR = 26+1 = 27 fingerprinting regions. A total of 
NStat = 3 statistics of variance (s2), skewness (g), and 
kurtosis (k) are computed within each region to form, 

𝑭𝑺𝒕𝒂𝒕 = 	 [𝝈𝟐 ⋮ 𝜸 ⋮ 	𝜿]𝟏×𝟑 , (1) 

where ⋮ denotes concatenation. Accounting for the 
NR+1 = 27 regions and each instantaneous response, 
the Regional Statistic Vector is given by, 

𝑭𝑹𝒈𝒏 = 	 4𝑭𝑹𝟏𝑺𝒕𝒂𝒕 ⋮ 𝑭𝑹𝟐𝑺𝒕𝒂𝒕 ⋮ ⋯ ⋮ 𝑭𝑵𝐑8𝟏
𝑺𝒕𝒂𝒕 9

𝟏×[𝟑(𝑵𝐑8𝟏)]
	. (2) 

The regional vectors are used to form the Composite 
TD Fingerprint Vector given by, 

𝑭𝑻𝑫 =	 4𝑭𝑨𝑴𝑷
𝑹𝒈𝒏 ⋮ 𝑭𝑷𝑯𝒁

𝑹𝒈𝒏 ⋮ 𝑭𝑭𝑹𝑸
𝑹𝒈𝒏9

𝟏×𝑵𝐅
	, (3) 

where NF is the total number of features.  For three 
instantaneous response with NR+1 = 27 and NStat = 3 
statistics, the full-dimensional set of fingerprint 
features considered here includes NFD = 243 features.   
 
2.4. MDA/ML Processing 
 The MDA/ML processing used here is a readily 
implementable, computationally efficient process that 
has provided reliable device discrimination in prior 
TD-DNA works [9, 11-18].  As detailed in [18], MDA 

is effectively a feature selection process that performs 
best when input class features and their corresponding 
projections are Gaussian distributed.  The process 
includes generation of projection matrix W with a 
goal of maximizing between-class separation 
(projected class means) while minimizing within-class 
spread (projected class variance).  For discriminating 
NCls classes using input fingerprints (F) having NF 
features, W has dimension NF x (NCls-1) and 
effectively projects (1xNF)-dimensional F into the 
(NCls-1)-dimensional decision space. 

Given a trained MDA “model” (projection matrix 
W, input fingerprint scale factors, projected class 
training means, and projected class training 
variances) a 1 vs. NCls called-class estimate (correct 
or incorrect) for an input “unknown” testing 
fingerprint FTst is defined as 𝑭GHI𝑾 = 𝑭GHI𝐖, where 
𝑭GHI𝑾  is the projection of FTst in the Fisher space. The 
classification estimate is based on the conditional 
probability relationship in the Fisher projection 
space. Assuming equal probability of class 
occurrence and equal error costs, the probability 
relationship becomes a Maximum Likelihood (ML) 
estimate. The class yielding the highest probability 
becomes the called-class for 𝑭GHI𝑾 . 

Overall cross-class percent correct classification 
(%C) is calculated as the percent of correct 
called-class estimates from the total number of 
classification decisions. Given that the classification 
decisions represent independent Monte Carlo trials, 
95% Confidence Interval (CI95%) analysis consistent 
with [9] is used for comparative (best, same, 
different, etc.) assessments. For visual clarity, the 
CI95% intervals are intentionally omitted from figures, 
and the vertical extent of data markers appropriately 
sized such that they encompass the CI95% intervals. 
Thus, overlapping data markers represent statistically 
identical and/or indeterminate performance and 
non-overlapping data markers represent statistically 
different performance.  
 
2.5. DRA Feature Selection 

With the surge of available data for machine 
learning applications, there has been renewed interest 
in DRA as a means to reduce the scale of the input 
data to a manageable size [29].  As depicted in Fig. 3, 
the feature selection aspect of DRA may be 
categorized as using label information (supervised, 
semi-supervised, and unsupervised) and selection 
strategies (filter, wrapper, and embedded) [29, 30, 31]. 

The methods here use supervised approaches, i.e., 
labeled data, whereas semi-supervised and 
unsupervised approaches use partially-labeled or 
unlabeled data, respectively [29].  The DRA methods 
here include two selection strategies that include filter  
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Figure 3.   Feature selection categories from [29] and 
[30].  Shading indicates areas covered here. 
 
(pre-classification) and wrapper (post-classification). 
Filter strategies most often employ pre-classification 
ranking and statistical techniques [31], have low 
computational cost, and are well-suited for higher 
dimensional data [30].   

Wrapper methods differ in that they “use the 
intended learning algorithm itself to evaluate the 
features” [29] and are optimized for that learning 
algorithm [30]. While this “optimization” could be a 
strength, wrapper methods are limited since they are 
only intended to work with that same learning 
algorithm, and therefore may suffer from 
overfitting [31]. The selection strategies considered 
here include two pre-classification filtering and two 
post-classification wrapper approaches.  All methods 
produce an output vector of NF sorted features with 
associated weights. A brief summary of each DRA 
method is provided in the following sections.  

 
2.5.1.   Post-Classification RndF 
 The Random Forest (RndF) classifier includes an 
ensemble of single decision tree classifiers that 
collectively produce a single classification decision 
and provide a feature relevance metric [32].  Among 
the hyperparameter tuning for RndF, there are two 
fundamental parameters that affect classifier 
performance, including 1) the number of decision trees 
(classifiers), and 2) the number of predictors (features) 
sampled at each node. The classifier considers all 
available features at the initial node, then makes 
subsequent splits based on a random predictor 
selection and threshold values at each child node. All 
features are not considered at each of the child nodes 
and the selection is done with replacement, thus a 
feature may be used as a splitting criterion at multiple 
nodes. The features selected as the splitting criterion 
include those producing the largest change in 
Gini-Index (GI) [9].  The RndF process supports 
post-classification DRA by providing a mean decrease 
in the GI metric [9, 10] that is computed for the kth 
feature by averaging the change in GI each time the kth 
feature is used at a splitting decision.  

 
2.5.2.  Post-Classification GRLVQI 
 General Relevance Learning Vector Quantization 
Improved (GRLVQI) is an extension of Kohonen’s 
Learning Vector Quantization (LVQ) [33] which is in 
the family of self-organizing Neural Network (NN) 
approaches using nearest Prototype Vector (PV) 
optimization.  As a classifier, LVQ associates a PV 
with a given class (typically multiple PVs per class).  
When an observation is input to the network, the PV 
closest to the observation “fires” and the prediction 
accuracy is based on whether or not the firing PV(s) 
are associated with the correct class for the 
observation.  GRLVQI extends LVQ by incorporating 
cost functions, learning methods, and logic and 
operation improvements [33].  There are five 
fundamental hyperparameters for GRLVQI 
processing, including the gradient descent learning 
rate, relevance learning rate, conscience rate(s), and 
the number of class PVs. The correct model 
construction requires expertise or appropriate 
heuristics [33].  
 
2.5.3.  Pre-Classification WRS 
 The Wilcoxon Rank Sum (WRS) method is a 
nonparametric statistical approach and is therefore 
unconstrained in terms of the assumptions required for 
parametric statistical methods, e.g., normality of the 
underlying distribution. The WRS requires only that 
the samples are independent and from a continuous 
distribution [34]. The output of the WRS test is a 
determination as to whether or not two observations 
are from distributions with equal medians, regardless 
of the exact nature of the two underlying distributions. 
As a DRA method, the WRS test was developed in 
[18] and is utilized to comapre a feature across all 
classes for a given classification problem. A feature is 
considered more relevant the more instances the WRS 
test concludes that the cross-class comparison has a 
different median. The feature relevance is computed 
as a two factor product: 1) the raw count of WRS test 
failures and 2) the entropy of the repsective p-values 
(an aggregate measure of confidence of each separate 
WRS test).  The only parameter to modify is the 
a-value for the statistical test.  

 
2.5.4.  Pre-Classification ReliefF 
 ReliefF processing is derived from the Relief 
algorithm developed in [35, 36]. Relief is an 
instance-based learning algorithm that was originally 
conceived to implement a statistical approach to 
feature selection (as opposed to a purely heuristic 
search) resulting in improved learning time and 
accuracy compared to other feature selection methods 
[36].  Relief picks a sample of m triplets from the total 
NF features and computes a Euclidian distance-based 
comparison metric. A feature weight vector is 
routinely updated as the algorithm runs. Similar to the 
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pre-classification WRS method, there is one parameter 
to modify, k, which corresponds to the number of 
nearest neighbors considered during comparison. 
ReliefF overcomes the noted limitations in [35, 36] by 
modifying the Relief algorithm to allow for incomplete 
data sets and NCls > 2 classes [37, 38].  
 
3.   Demonstration Methodology 
 Compairson of the four DRA feature selection 
methods included the following steps: 
 
3.1. Step 1:  Analysis SNR Selection 
 For all DRA selection methods, proper subsets of 
NDRA < NFD full-dimensional fingeprint feaures were 
selected and classification performed.  Given that 
feature relevance is SNR dependent, the specific SNR 
used for DRA assessments was selected by 
considering the average percent correct (%C) using 
the NFD feature set with the MDA/ML, RndF, and 
GRLVQI classifiers.  All subsequent classification 
performance results, with the exception of those 
presented in Fig. 4, are for MDA/ML classification. 
The analysis SNR values are selected based on the 
Fig. 4 results which show %C performance for all 
three classification methods using the full-
dimensional NFD features set. 

 
Figure 4. Classification performance of MDA/ML, 
RndF, and GRLVQI using the full-dimensional 
NFD = 243 feature set. 
 

 The results in Fig. 4 did not use “optimized” RndF 
nor the GRLVQI processes; the results were generated 
using empirical hyperparameter settings from prior 
wireless signal discrimination work similar to 
WirelessHART.  Collectively, all three classifiers 
achieve the %C ≥ 90% benchmark for SNR ≥ 7 dB 
and the MDA/ML classifier maintains %C ≥ 99% for 
SNR ≥ 14 dB.  Therefore, results of RndF and 
GRLVQI processes were used for DRA feature 
selection based on rank-ordering feature relevances at 
SNR = 7 dB and SNR = 14 dB. 

3.2. Step 2: Qualitative DRA Application 
 Qualitative DRA is performed using NDRA = NFD /3 
(66% reduction) feature subsets denoted as 
AMP-Only, PHZ-Only, and FRQ-Only DRA sets.  
Segmentation of the NFD features into response-centric 
subsets is accomodated by the sequential construct of 
FTD fingerprint elements in (3).  Qualitative DRA 
assessment was used for identifying the most useful 
response features and for comparison with quantative 
DRA selection in Section 3.3.  Segmentation of a 
representative TD-DNA fingerprint into AMP-Only, 
PHZ-Only, and FRQ-Only subsets is shown in Fig. 5 
for fingerprints of NFD = 234 features. 

 

 
Figure 5.  Representative TD-DNA fingerprint 
from (3) showing the relative location of feature 
regions using normalized feature values.  

 
3.3. Step 3: Quantative DRA Application 

Quantitative DRA is based on feature relevance, 
such as presented in Fig. 6 for the full-dimensional 
NFD = 243 feature set at SNR = 7 dB.  This figure 
shows normalized relevance weighting versus unsorted 
feature index number for post-classification RndF 
(Fig. 6a) and GRLVQI (Fig. 6b) processes, and 
pre-classification WRS (Fig. 6c) and ReliefF (Fig. 6d) 
processes.  The subplots also show the relationship of 
quantitative feature relevance to the qualitative index 
boundaries used for selecting the AMP-Only, 
PHZ-Only, and FRQ-Only features considered in 
Section 3.2. 
 For DRA feature selection, the unsorted relevance 
metrics in Fig. 6 are rank-ordered (sorted highest to 
lowest) for each of the DRA methods. These 
higher-is-more-relevant metrics show that 1) the RndF 
and GRLVQI plots decrease rapidly (lower number of 
more relevant features) and become near-zero, 
whereas 2) the WRS and ReliefF plots decrease less 
rapidly (higher number of more relevant features) 
with fewer (WRS) or no (ReliefF) near-zero relevant 
features. 
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(a) Post-Classification RndF Relevance 
 

(b) Post-Classification GRLVQI Relevance 
 

(c) Pre-Classification WRS Relevance 
 

(d) Pre-Classification ReliefF Relevance 

Figure 6.  Normalized relevance versus unsorted 
feature index number for full-dimensional NFD = 243 
feature set at SNR = 7 dB.  The AMP-Only, 
PHZ-Only, and FRQ-Only qualitative DRA feature 
regions are shown for comparison.  

 

3.4. Step 4: MDA/ML Classification 
 MDA/ML classification performance was 
assessed using the qualitative NDRA = 81 AMP-Only, 
PHZ-Only, and FRQ-Only DRA subsets from Step 2 
and quantitative NDRA Î {0.10, 0.15, …, 0.50}xNFD 
DRA subsets selected using the sorted feature 
rankings from Step 3.  That is, using the top-ranked 
10%, 15%, …, 50% of the NFD = 243 of the 
full-dimensional features.  Performance is assessed 
relative to the %C ≥ 90% benchmark for individual 
DRA subsets as well as accumulated averages of %C 
for pre-classification and post-classification 
methods. 
 
4.  DRA Performance Results 
 
4.1. Qualitative DRA Feature Selection 

MDA/ML classification using qualitatively 
selected DRA feature sets are shown in Fig. 7 and are 
useful for identifying the response(s) (AMP, PHZ, or 
FRQ) that contributes most to classification accuracy.  
The plots show 1) full-dimensional NFD = 243 results 
from Fig. 4, overlaid with 2) results using the 
NDRA = 81 (66% of the NFD) qualitatively selected 
AMP-Only, PHZ-Only, and FRQ-Only subsets.  

 

 
Figure 7.  MDA/ML classification performance for 
NFD = 243 full-dimensional and qualitatively selected 
NDRA = 81 feature subsets showing that PHZ-Only 
features are dominant. 

 
The results from Fig. 7 suggest DRA feature 

selection at SNR = 7 dB to be a point of interest since it 
corresponds to the %C » 90% point from Fig. 4 and 
that despite the overall trend, AMP-Only features 
produce a higher %C than PHZ-Only. Similarly, 
SNR = 14 dB is shown to be a point of interest because 
the PHZ-Only features dominate in %C and produce 
statistically similar results to the full-dimensional set.  
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Indicates %C = 99.96% for 
NDRA = NFD @ SNR = 14dB

Indicates %C = 93.35% for 
NDRA = 81 PHZ-only feats    

@ SNR = 14dB

Indicates %C = 99.96% for 
NDRA = NFD @ SNR = 14dB

Largest  approximate deviation 
where 0.2% < %CD < 1% when 
NDRA = 10% of NFD = 24 feats

Table 1. Comparison of Fig. 7 %C performance at 
SNR = 7 dB and SNR = 14 dB for full-dimensional and 
qualitatively selected DRA feature sets. 
 

Qualitative 
DRA Subset 

%C @ 
SNR = 7 dB 

%C @ 
SNR = 14 dB 

AMP 63.00% 64.66% 
PHZ 56.92% 99.35% 
FRQ 27.55% 49.51% 

Full-Dim 90.50% 99.96% 
 

Table 1 shows a comparison of Fig. 7 results at 
SNR = 7 dB and SNR = 14 dB. At SNR = 7 dB, the best 
case DRA performance is %C » 63.0% for AMP-Only 
feature subset, and second best %C » 56% using the 
PHZ-Only subset. By comparison with 
full-dimensional performance of %C ≥ 90%, there is a 
clear loss in discriminating “information” using the 
DRA feature subsets.  This is potentially attributable to 
a loss in AMP-PHZ-FRQ feature synergism or simply 
using considerably fewer (66% of the 
full-dimensional) features. 
 The noted disparity in Table 1 results is examined 
further in the quantitative DRA results in Section 4.2. 
At SNR = 14 dB, the best case DRA performance is 
%C » 99.35% for PHZ-Only features, nearly the same 
as the full-dimensional set with %C » 99.96%. This 
indicates at this SNR, there is little information gained 
from adding in the remaining features to a subset. 
 
4.2. Quatitative DRA Feature Selection 
 MDA/ML classification results for quantitatively 
selected DRA feature sets are shown using 
SNR = 14 dB and SNR = 7 dB.  DRA feature selection 
was based on the rank-ordered feature relevance plots 
like those shown in Fig. 6. Of note, the Fig. 6a (RndF) 
and Fig. 6b (GRLVQI) post-classification method 
plots clearly reflect a steep drop-off in feature 
relevance with increasing sorted index number.  This 
differs from the pre-classification sorted relevances in 
Fig. 6c (WRS) and Fig. 6d (ReliefF) which do contain 
observable “breaks” that could serve as DRA 
selection criteria.  As noted in Step 4 of Section 3.4, 
the quantitative NDRA Î {0.10, 0.15, …, 0.50}xNFD 
DRA subsets were selected using sorted feature 
rankings to identify the top-ranked 10%, 15%, …, 
50% of the NFD = 243 of the full-dimensional features 
at both SNR = 7 dB and SNR = 14 dB.  

Classification performance for 24 £ NDRA  £ 122 
features (approximately 10% to 50% of NFD) are 
shown in Fig. 8 for SNR = 14 dB.  Performance of the 
NFD = 243 full-dimensional %C = 99.96% (dashed 
line) is also provided for reference.  Based on CI95% 
analysis, these results show that all methods except 

GRLVQI achieve statistically similar classification as 
the full-dimensional set. The RndF method achieves 
%C = 99.96% at NDRA = 97 features whereas the two 
pre-classification methods achieve it at NDRA = 122 
features. The largest deviation in %C from the full-
dimensional set occurs at NF = 24 features 
(approximately 10% of NFD).  Even with only 10% of 
the full-dimensional set, all four methods are 
approximately within %C  » 1%.   

 

Figure 8.  MDA/ML classification versus NDRA with 
NFD = 243 full-dimensionl reference for SNR = 14 dB 
and quantitatively selected DRA subsets. 

 

Figure 9.  MDA/ML classification using full 
dimensional features and collective DRA performance 
aaverages for SNR = 14 dB calcuated for 1) two pre-
classification (WRS and ReliefF) methods, and 2) two 
post-classification (RndF and GRLVQI) methods, 
with pre-classification being generally superior. 

 
The cross-method averages for individual method 

results in Fig. 8 are presented in Fig. 9 to enable a 
general assessment of post-classification versus 
pre-classification DRA selection methods.  For 
reference, the plot also includes the NFD = 243 
%C = 99.96% (upper dashed line) and NDRA = 81 best 
case qualitative PHZ-Only %C = 99.35% (lower 
dashed line) performances.  As Fig. 9 results show, the 
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pre-classification selection methods outperform the 
post-classification selection methods when using up to 
97 of the 122 features. 

Classification results for NDRA = 24 features (10% 
of NFD) to NDRA = 122 features (50% of NFD) are shown 
in Fig. 10 for SNR = 7 dB.  The NFD = 243 
full-dimensional %C = 90.5% (dashed line) is 
provided for reference.  These results show none of the 
DRA subsets achieve full-dimensional performance 
and there is no single method that consistently 
outperforms the others for all NDRA considered.  As 
indicated, the WRS-selected feature performance is 
1) best at the two higher NDRA values, and 2) consistent 
with RndF, WRS, and ReliefF for a majority of 
NDRA considered.  The GRLVQI selected subsets are is 
the overall poorest. 

 
 

Figure 10.  MDA/ML classification versus NDRA 
showing the NFD = 243 full-dimensionl reference for 
SNR = 7 dB and quantitatively selected DRA subsets. 
 
 

Figure 11.  Full-dimensional MDA/ML performance 
and collective DRA averages for SNR = 7 dB 
calculated across the 1) two pre-classification (WRS 
and ReliefF) methods, and 2) two post-classification 
(RndF and GRLVQI) methods.  Averages indicate that 
pre-classification is generally superior.  

The cross-method averages for individual method 
results in Fig. 10 are presented in Fig. 11 to enable a 
general assessment of post-classification versus 
pre-classification DRA selection methods.  For 
reference, the plot also includes the NFD = 243 
full-dimensional %C = 90.5% (upper dashed line) and 
NDRA = 81 best case qualitative AMP-Only 
%C = 63.0% (lower dashed line) performances.  As 
Fig. 11 results show, the pre-classification selection 
methods outperform the post-classification selection 
methods for all but the lowest NDRA = 24 subset 
considered.  However, it is obvious from Fig. 10 that 
GRLVQI performance is the major contributor to the 
poorer post-classification average. 

 
4.3. DRA Method Analysis 

Previous section results demonstrate that the 
quantitative DRA methods used here are valid for 
feature selection when comparing their performance 
to qualitatively selected NRA = 81 feature subsets 
(Fig. 7) and corresponding NFD = 243 
full-dimensional feature set.  The collective 
cross-method average performance of 
pre-classification methods in Fig. 9 and Fig. 11 reflect 
superior performance relative to the post-classification 
selection methods.  Individual method results when 
features are selected at SNR = 14 dB in Fig. 8 show all 
methods except GRLVQI achieve performance 
statistically equal to the full-dimensional set. 
Furthermore, at only 10% of the full-dimensional set, 
the maximum performance deviation is %CD » 1% 
which is still %C ≥ 99%.  When selecting features at 
SNR = 7 dB, Fig. 10 shows that no DRA method 
achieved performance statistically equivalent to 
%C = 90.5% using the NFD = 243 set.   

Regardless of the NDRA value, the DRA method, or 
the SNR value considered, all quantitative DRA 
methods outperform qualitative DRA. This supports 
the notion that quantitative DRA improves the 
performance as compared to simple qualitative DRA 
through the selection of a more relevant feature subset. 
Between the two sets of quantitative DRA methods, 
pre-classification methods are generally superior. 

To fairly represent the post-classification methods, 
it is important to note that the RndF and GRLVQI 
results presented were generated using empirical 
hyperparameter values from prior wireless signal 
discrimination work and not necessarily optimized for 
the WirelessHART application.  Therefore, without 
hyperparameter tuning it is unknown if the RndF and 
GRLVQI results are representative of their best 
performance. In terms of DRA applications, however, 
the very fact that the post-classification methods have 
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hyperparameters that require “tuning” adds a degree of 
feature selection complexity that the pre-classification 
methods do not possess. With that consideration, the 
fact that both pre-classification methods considered 
produce %C results that are better than, statistically 
equivalent to, or consistent with (i.e., within 
%CD » 4% for SNR = 7dB), the best performing RndF 
post-classification method over the range of NDRA 
investigated suggests their computational advantage 
may outweigh any realized performance gain.  

 
5. Summary and Conclusions  
 Security within the IIoT domain poses certain 
challenges and PHY-based protection mechanisms 
remain largely unexploited. This includes security of 
WirelessHART signaling which is the largest digital 
communications technology deployed in process 
control industries, including over 40 million fielded 
devices [2]. The challenges are further increased when 
considering projections that predict exponential 
WirelessHART growth through 2028 within the oil, 
gas, chemical, and power generation industries [4]. 
 PHY layer information may be reliably extracted 
from various elements within the IIoT infrastructure 
and support cross-layer security architectures [5] 
providing timely and reliable defensive, offensive, and 
exploitive actions. The extraction of useful PHY layer 
information is addressed here using Time Domain 
Distinct Native Attribute (TD-DNA) features from 
WirelessHART signals.  Specific emphasis is place on 
Dimensional Reduction Analysis (DRA) methods with 
a goal of improving computation efficiency and 
moving closer to near-real time implementation by 
reducing the number of fingerprint features required to 
achieve desired discrimination performance. 
 The fingerprint DRA methods considered here 
include 1) two post-classification RndF and GRLVQI 
processes, and 2) two pre-classification WRS and 
ReliefF statistical analysis methods. Collective 
performance of pre-classification DRA methods was 
superior to post-classification methods, with average 
correct percent classification (%C) being 1) within 
8% < %CD < 3% of full-dimensional (243 features) 
%C = 90% performance at SNR = 7 dB using only 24 
of 243 (~10%) and 122 of 243 (~50%) features, 
respectively, and 2) within %CD » 1% of 
full-dimensional %C = 99% at SNR = 14 dB.  While 
some %C trade-off is expected and observed, the 
DRA methods considered enable reliable feature 
selection (reduction). This in-turn increases 
computational efficiency and the potential for faster 
TD-DNA fingerprinting in operational applications. 
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