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Abstract 
 
Physician stress, and resultant consequences such 

as burnout, have become increasingly recognized 
pervasive problems, particularly within the specialty of 
Emergency Medicine. Stress is difficult to measure 
objectively, and research predominantly relies on self-
reported measures. The present study aims to 
characterize digital biomarkers of stress as detected by 
a wearable sensor among Emergency Medicine 
physicians. Physiologic data were continuously 
collected using a wearable sensor during clinical work 
in the emergency department, and participants were 
asked to self-identify episodes of stress. Machine 
learning algorithms were used to classify self-reported 
episodes of stress. Comparing baseline sensor data to 
data in the 20-minute period preceding self-reported 
stress episodes demonstrated the highest prediction 
accuracy for stress. With further study, detection of 
stress via wearable sensors could be used to facilitate 
evidence-based stress research and just-in-time 
interventions for emergency physicians and other high-
stress professionals. 
 
 
1. Introduction 
 

Emergency Medicine (EM) physicians care for 
high acuity patients in a variety of difficult working 
conditions and have demonstrated significantly higher 
levels of stress than other medical specialties (Bragard, 

Dupuis, and Fleet 2015). Multiple factors inherent to 
EM contribute to this including fluctuating work 
schedules, pressure to rapidly make critical decisions, 
volume of cases, exposure to violence, death of 
patients, and academic responsibilities. A long-term 
consequence of physician stress, known as “burnout”, 
has increasingly become a recognized critical issue 
within the health care system. In 1981, Maslach and 
Jackson defined burnout as “a syndrome of emotional 
exhaustion and cynicism” (Maslach and Jackson 1981) 
which prompted three decades of research on the topic. 
In physicians, this phenomenon is associated with 
increased medical errors, depression, substance abuse, 
mental health issues, early retirement, and an alarming 
rate of suicide (Drummond 2015; Williams et al. 
2007). The current estimate of burnout among United 
States physicians is estimated at a staggering 50% (Lall 
et al. 2019; Rothenberger 2017).  

 
Burnout is a multifactorial problem that is difficult 

to address due to its subjective nature. Individual 
variations in physician life circumstances, work 
environments, patient populations, and daily life 
choices, all influence day-to-day perceptions of stress 
and well-being. A study evaluating Emergency 
Medicine physicians and nursing staff found that 
burnout was associated with increased cognitive and 
emotional demands, and was coupled with decreases in 
freedom at work, social support, sense of coherence, 
and mental health (Ilic et al. 2017). Since these 
underlying stressors seem to be individualized and 
numerous, evidence-based recommendations for stress 
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detection and intervention have been limited.  A 2016 
meta-analysis reviewed 52 studies that looked at 
structural changes to the work environment and 
individuals focused interventions.   Structural level 
interventions included shortening shifts, shortening 
physician rotation times, and unspecified clinical work 
process modifications.  In contrast, individual 
interventions included facilitated small group curricula, 
stress management, self-care training, communication 
skills training, and mindfulness exercises as a means to 
reduce physician burnout (West et al. 2016). While 
many of these studies saw a decrease in burnout as 
measure by a self-administered questionnaire (Maslach 
Burnout Inventory), we currently lack evidence-based 
guidelines to determine which interventions would 
most benefit an individual physician, and which could 
be effectively deployed in various physician work 
environment. 

 
Wearable sensors have the potential to provide 

individualized, objective correlates of stress. These 
non-invasive devices can collect physiologic changes 
indicative of sympathetic nervous system (SNS) 
activity (such as heart rate, electrodermal activity 
(EDA), skin temperature, electromyography (EMG), 
and accelerometry) and correlate them with emotional 
state. Several published studies have explored the use 
and feasibility of wearable sensors when studying 
human emotion (Fletcher et al. 2011; Adams et al. 
2014; Healey and Picard 2005; Hui and Sherratt 2018). 
Multiple investigators have specifically evaluated the 
utility of mobile sensors to detect stress in both 
controlled and natural environments (Sano et al. 2018; 
Garcia-Ceja, Osmani, and Mayora 2016). For example, 
Hui et al., used a controlled environment with 
audiovisual headsets to evoke specific emotional 
responses by providing controlled stimuli and found 
that EDA, heart rate, and skin temperature to be the 
most useful for detection of emotional response (Hui 
and Sherratt 2018). Multiple investigators have 
specifically evaluated the utility of mobile sensors to 
detect stress in both controlled and natural 
environments (Sano et al. 2018; Garcia-Ceja, Osmani, 
and Mayora 2016). Once optimized, sensor-based 
stress detection strategies can be used to direct 
interventions to reduce the negative impacts of stress 
and improve overall emotional health. For example, 
recognition of stress via a wearable sensor could be 
used to trigger cognitive behavioral therapy (CBT)-
style interventions via a mobile phone application, as 
has been proposed in other populations (Fletcher et al. 
2011). 
 
       While strides have been made to use wearable 
sensors to identify stress in highly controlled 

environments, limited evidence exists for the 
application of these technologies to “real world” 
settings. Liu et al., used a wearable wrist-based sensor 
to study stress in patients with dementia by correlating 
staff logs of perceived patient stress/anxiety with 
wearable sensor data. The investigators found that 
participants had unique baseline biometric patterns, 
and that deviations from baseline correlated with 
observer-reported stress and anxiety (Liu et al. 2018). 
While these objective measures of stress are promising, 
the highly controlled nature of such studies limit 
generalizability.  

 
Interventions designed to combat stress in 

physicians have been shown to be beneficial in 
reducing negative consequences (Panagioti et al. 
2017), but optimal targets for these interventions are 
unclear. While periods of objectively detected stress in 
Emergency Medicine physicians are an attractive target 
for such interventions, characteristics of the work 
environment create barriers to the application of stress 
detection data from more controlled environments. By 
the nature of their work environment, Emergency 
Medicine physicians are subject to rapid fluctuations in 
physical activity and a high baseline level of stress, 
both which may create challenges for detection 
paradigms. As an initial step, the present study seeks to 
determine if physiologic features obtained from a 
wearable sensor worn by EM physicians during clinical 
work can detect episodes of stress in this dynamic 
environment. 
 
2. Methods 
 
2.1. Study Design 
 
       This was a prospective observational study 
approved by the Institutional Review Board of the 
authors’ institution. Participants were board-certified 
Emergency Medicine attending (supervising) 
physicians in a large, urban tertiary care hospital 
emergency department (ED). 
 
2.2. Hardware 
 

The E4 (Empatica, Milan, Italy), a water-resistant 
research-grade device, was used for biometric data 
collection (Figure 1). The device continuously detects 
and records three dimensional accelerometry, EDA, 
skin temperature, and heart rate variability. Data was 
stored in the sensor’s on-board integrated memory until 
downloaded to a Health Insurance Portability and 
Accountability Act (HIPAA)-compliant cloud-based 
server.  
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Figure 1: Empatica E4 

 
2.3 Study Protocol 
 

Enrolled participants were asked to wear the E4 on 
their non-dominant wrist during a total of nine clinical 
shifts worked in the ED (typically 8-10 hours in 
duration), over a six-month time period. The collection 
of data over a prolonged period was employed to 
mitigate any effect of seasonal changes in baseline 
stress levels in the work environment. Participants 
were asked to use the device’s event marker button to 
annotate any perceived episodes of stress. 
 
2.4. Biometric Data Collection 
 
       Data from the E4 was collected continuously 
during wear. Accelerometry (in units g) was recorded 
in three axes (x, y, and z axes) at a rate of 32 Hz. Skin 
temperature (in degrees Celsius) was sampled at a rate 
of 4 Hz. Electrodermal activity (in microSiemens) was 
sampled at a rate of 4 Hz. Heart rate (in beats per 
minute) was obtained via photoplethysmography 
sensors (PPG) at a sampling frequency of 64 Hz. Event 
annotations tagged by participants were recorded in a 
separate time-stamped data file. Empatica software 
products (Empatica Manager and Empatica Connect) 
were used for graphical and numerical data acquisition 
from the E4 device. 
 
2.5. Non-Biometric Data Collection 
 
       Demographic data, including ratings of overall job 
satisfaction and perceived daily level of stress, were 
collected via a brief paper survey upon study 
enrollment. Given the subjective nature of emotional 
states and variation in scenarios that elicit diverse 
emotional states between individuals (Hui and Sherratt 
2018), we used self-reporting as a mechanism to 
identify periods of stress. Participants were asked to 
keep a written log with short descriptions of stressful 
events that they tagged during their shifts. Upon 
completion of each recorded shift, participants were 
also asked to complete a brief questionnaire regarding 

use of the device and overall perceived stress 
throughout the shift. 
 
2.6. Biometric Data Segmentation 
 
2.6.1. Pre and Post-Stress Segments. Using the 
accelerometer, EDA, and heart rate data generated 
during the data collection period, two 20-minute 
segments of the data were extracted for each stress 
event recorded. One 20-minute segment was taken 
immediately before the stress event annotation (pre-
stress), and one 20-minute segment was taken 
immediately following the stress event annotation 
(post-stress). In total, 111 20-minute intervals were 
collected for the post-stress event dataset, and 108 20-
minute intervals were collected for the pre-stress event 
dataset. Some pre and post-stress event segments were 
not collected for use during machine learning 
classification, since these segments overlapped with 
the beginning, end, or invalid (device removal) 
sections of the signal data. 
 
2.6.2. Baseline Segment. The baseline dataset was 
generated by extracting 20-minute data segments from 
the accelerometer, EDA, and heart rate data during 
periods where no stress events were reported or 
suspected. The selection of the start points for these 
20-minute intervals was arbitrary, as long as the start 
points were over an hour before or after a stress event 
and did not overlap with the start, end, or invalid 
periods of the signal. Segments from sessions free of 
stress events were also utilized in the determination of 
baseline data. In total, 86 baseline intervals were 
collected. 
 
2.7. Feature Extraction 
 
       MATLAB (MathWorks, Natick, MA) was used to 
fit the instantaneous amplitudes of each participant’s 
biometric data during the 20-minute segments to a 
distribution and calculate each segment’s multiscale 
entropy (MSE) (Costa, Goldberger, and Peng 2005) to 
test if the MSE and distribution mean, variance, shape, 
scale, and D ([Shape2 + Scale2]0.5) parameters could be 
used to detect stress events. Specifically, the data for 
each 20-minute interval was centered around the mean 
of the data, and the Hilbert transform (S 1996) was 
applied to each of these adjusted 20-minute intervals to 
generate a centered analytic signal (Chintha et al. 
2018). The magnitude of the analytic signal’s data 
points was taken to generate the amplitudes for each 
point along the signal. These amplitudes were 
distributed in a similar manner to that of a gamma 
distribution, hence this data was fitted to a gamma 
distribution by determining the distribution’s shape and 
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scale parameters. These values were then used to 
calculate the distribution’s mean, variance, and D 
values. The MSE value was calculated using the 
untransformed data for each 20-minute interval. 
 
2.8. Machine Learning Classification 
Determination 
 
2.8.1. Classification Cases and Parameters. Using 
the MATLAB Classification Learner application, three 
binary classification cases were tested to determine if 
any of the supported classification models could 
accurately classify the data for each case. The three 
cases were: pre-stress event vs post-stress event, 
baseline vs pre-stress event, and baseline vs post-stress 
event. For each case, there were five sensor signals 
analyzed: the accelerometer x-axis (ACC-X), y-axis 
(ACC-Y), and z-axis signals (ACC-Z), the 
electrodermal activity sensor signal (EDA), and the 
heart rate signal (HR). For each of these signals, there 
were six features used to represent them: the 
distribution mean, variance, shape, scale, and D 
parameters, and the MSE value. This resulted in a total 
of 30 features that could be used to train the 25 models 
supported by the Classification Learner application. 
These models fall into the following categories: 
decision trees, discriminant analysis, logistic 
regression, naïve Bayes classifiers, support vector 
machines, nearest neighbor classifiers, and ensemble 
classifiers. 
 
2.8.2. Classifier Train/Test Method. Due to the 
limited size of the dataset, it was not split into testing 
and training sets. Alternatively, 10-fold cross 
validation was applied to the entire dataset in order to 
prevent overfitting the data. This validation process 
split the randomized dataset into 10 folds, each 
containing 10% of the dataset. The classifiers were 
then trained on nine of the folds and tested on the last 
fold. This process was repeated until each fold was 
used to test the model, and the resulting classifier’s test 
error was the average of each of the 10 trained models. 
 
2.8.3. Feature Selection. The process of selecting 
features to use during classifier training utilized brute-
force feature selection (Rudnicki, Wrzesień, and Paja 
2015). This method is characterized by adding and 
removing features one at a time until some of the 
models’ validation accuracies improve. 
 
 
2.9. Event Annotation Data Analysis 
 
       Thematic analysis was used to code and analyze 
descriptions of stressful events noted on participant 

logs. The coding structure was first developed based on 
deductive codes from the anticipated responses and 
then inductive codes from review of the annotations 
themselves. Once the coding scheme was developed, 
the event logs were coded by two investigators (EK, 
SC). 
 
3. Results 
 
3.1 Participant Characteristics and Protocol 
Compliance 
 

Eight participants were enrolled and completed the 
entire the study protocol (Table 1). Mean age of the 
sample was 42.9 years (range 34-60 years), and fifty 
percent of the sample identified as female. Participants 
reported a mean job satisfaction score of 4.1 (on 1-5 
Likert scale with 5 being the highest satisfaction) and 
reported their mean daily stress level at 3 (on 1-5 
Likert scale with 5 being the highest level of daily 
stress). All participants were married and reported a 
mean daily work commute of 1.4 hours (range 0.5-2.5 
hours). 
      Participants collected an average of 4,582 minutes 
of data over the duration of the study. Mean number of 
events tagged per participant were 15 (range 4-26 
events). Four sessions (5.5%) were incomplete due to 
unintentional noncompliance (e.g. participant forgot to 
power the sensor on at the beginning of the shift, 
participant turned off the sensor prematurely).  
 
Table 1. Study participant characteristics and 

participation 
 
Subject Age Sex Total Minutes of 

Recorded Data 
# of Event 
Annotations 

1 38 F 4,550 10 
2 34 F 5,483 20 
3 42 F 4,233 6 
4 48 M 5,016 21 
5 44 M 4,563 26 
6 60 F 4,117 26 
7 40 M 4,440 4 
 
 
3.2. Machine Learning 
 
3.2.1. Pre-Stress Event Vs Post-Stress Event 
Analysis. For this analysis, the pre-stress event cases 
were designated as class 1, while the post-stress event 
cases were designated as class 2. After multiple feature 
combinations were tested, a linear discriminant model, 
trained using the features included in Table 2, provided 
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the highest accuracy rating without being 
overwhelmingly biased to classify one class over the 
other. The confusion matrix in Figure 2 shows the 
number of events correctly (green) and incorrectly 
(red) classified for each class. Designating the post-
stress events as the positive case, the model’s 
sensitivity (percentage of true positive cases correctly 
classified) and specificity (percentage of true negative 
cases correctly classified) were 58% and 53% 
respectively, while the model’s positive predictive 
value (percentage of all positive predictions correctly 
classified) and negative predictive value (percentage of 
all negative predictions correctly classified) (Parikh et 
al. 2008) were 56% and 55% respectively. Overall, the 
model’s accuracy was 54.8%, and the performance of 
the model is represented graphically by the receiver 
operating characteristic (ROC) curve with an area 
under the curve (AUC) of 0.56 (Figure 3). The AUC 
performance metric can range between 0 and 1, with 1 
being ideal. 
 
Table 2. Features used to train final pre-stress 

vs post-stress event analysis model 
 
Data Source Features 
ACC-X  Mean, Variance, Shape, Scale, D 
ACC-Y Mean, Variance, Scale 
ACC-Z Mean, Variance, Shape, Scale 
EDA Variance, Shape, Scale, MSE 
HR Mean, Shape, Scale, MSE 
  

 
Figure 2. Pre-stress event vs post-stress event 

confusion matrix 
 

 
Figure 3. Pre-stress event vs post-stress event 

ROC curve 
 
3.2.2. Baseline Vs Pre-Stress Event Analysis. For this 
analysis, the baseline cases were designated as class 0, 
while the pre-stress event cases were designated as 
class 1. After multiple feature combinations were 
tested, a bagged trees model, trained using the features 
included in Table 3, provided the highest accuracy 
rating without being overwhelmingly biased to classify 
one class over the other (Figure 4). Designating the 
pre-stress events as the positive case, the model’s 
sensitivity and specificity were 74% and 63% 
respectively, while the model’s positive predictive 
value and negative predictive value were 71% and 66% 
respectively. Overall, the model’s accuracy was 69.1%, 
and the performance of the model was represented 
graphically by the ROC curve with an AUC of 0.72 
(Figure 5). 
 

Table 3. Features used to train final baseline 
vs pre-stress event analysis model 

 
Data 
Source 

Features 

ACC-X  Mean, Variance, Shape, Scale 
ACC-Y Mean, Variance, Shape, Scale 
ACC-Z Mean, Variance, Shape, Scale 
EDA Variance, Shape, Scale, MSE 
HR Mean, Scale, D, MSE 
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Figure 4. Baseline vs pre-stress event 

confusion matrix 
 

 
Figure 5. Baseline vs pre-stress event ROC 

curve 
 
3.2.3. Baseline vs Post Stress Event Analysis. For 
this analysis, the baseline cases were designated as 
class 0, while the post-stress event cases were 
designated as class 2. After multiple feature 
combinations were tested, a kernel naïve Bayes model, 
trained using the features included in Table 4, provided 
the highest accuracy rating without being 
overwhelmingly biased to classify one class over the 
other (Figure 6). Designating the post-stress events as 
the positive case, the model’s sensitivity and 
specificity were 68% and 60% respectively, while the 
model’s positive predictive value and negative 
predictive value were 69% and 59% respectively. 
Overall, the model’s accuracy was 64.5%, and the 
performance of the model was represented graphically 
by the ROC curve with an AUC of 0.66 (Figure 7). 

 
Table 4. Features used to train final baseline 

vs post-stress event analysis model 
 
Data Source Features 
ACC-X  Mean, Variance, Shape, Scale, D 
ACC-Y Mean, Variance, Shape, Scale 
ACC-Z Mean, Variance, Shape, Scale, D 
EDA Mean, Variance, D, MSE 
HR Mean, Shape, MSE 
 

 
Figure 6. Baseline vs post-stress event 

confusion matrix 
 

 
Figure 7. Baseline vs post-stress event ROC 

curve 
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3.3 Content Analysis of Event Annotations 
 
      Based on the written logs provided by participants, 
several themes arose regarding descriptions of self-
reported stress events, including patient interactions, 
encounters with patient family members, co-worker 
interactions, performance of complex procedures, 
caring for critically ill patients, physical discomfort, 
and systems issues. The breakdown of events in each 
category and illustrative quotes are outlined in Table 5. 
 

Table 5. Themes of event annotations 
 
Theme # of 

tags 
Illustrative Quotes 

Patient 
/Family 
Interactions 

22 “Agitated patient-threatened to murder provider”  
“Crazy patient. Restraints, police, drugs [sedation] 
necessary” 
 “Mentally challenged patient yelling at me while his staff 
member tells me she doesn’t want to take him home” 

Coworker 
Interactions 

23 “Stressful phone call – arguing with consultant” 
“Same intern asked 4 times how Tylenol [acetaminophen] 
is dosed” 
 “Social worker interrupted conversation, was rude to 
patients”  

Performance 
of Complex 
Medical 
Procedures 

9 “Difficult intubation” [Trouble placing a breathing tube] 
“Stressful central line [Large catheter in the major veins of 
the body] placement” 

Critically Ill 
Patients 

21 “STEMI [heart attack] coming…and septic [severe 
infection] patient” 
 “Pediatric trauma, stroke activation, and STEMI [heart 
attack] activation simultaneously” 
“Patient screaming/vomiting/decompensating, concern for 
ICH [intracranial bleeding]”. 

Physical 
discomfort 

4 “Need to eat/use bathroom – too busy” 
“I feel palpitations after getting belly pain. [My] kid’s sick 
with belly aches. I’m thinking I have it too” 

Systems 
issues 

21 “[ the electronic medical record) is slow again”  
“Can’t get into [radiograph image digital review system] 
or [Microsoft] outlook, intern also can’t get into 
[radiograph image digital review system]” 
 “I was infuriated with IT and let them know it…”. 

Other 
Category/No 
description 

22  

 
 
4. Discussion 
 

Our data from this pilot study suggest that specific 
features in wearable sensor data can be used to identify 
EM physician stress in the clinical environment. 
Overall, participants were accepting of a wearable 
sensor to tag stress events during their clinical practice. 
All participants successfully wore the sensors and 
recorded sessions during clinical shifts, and there was 
only a 5% incidence of failure to capture complete 
data. Using a variety of machine leaning approaches, 
the best algorithm to detect stress compared to baseline 
data utilized the data collected twenty minutes prior to 
a reported stress episode (accuracy of approximately 
70%); this suggested that wearable sensors can detect 
stress before it is reported or even recognized by the 
individual.  
 

        The best performing classification scheme was to 
use the pre-stress (or more accurately the “pre-
annotation”) state compared to baseline, which is 
intuitively logical. This time likely represented a 
period of building physiologic stress, where the time of 
annotation represents when the participant actually 
recognized the stress. In other words, we suspect that 
when participants were experiencing a stressful event, 
the initial focus would be on the situation at hand. 
Subsequently, they would become consciously aware 
of their emotional state and engage with the sensor to 
annotate. Furthermore, ED shifts may represent a 
period of somewhat chronic stress; the baseline in the 
ED may not be what and individual’s baseline 
measurement outside the ED would be. This “elevated 
baseline” may make detection more difficult by 
decreasing the delta. 
 
       Content analysis of the event annotations 
confirmed somewhat expected, largely environmental 
issues that correlate with the detected stress episodes 
and make emergency physicians an excellent 
population to target for just-in-time stress reduction 
interventions. As discussed in the results above, 
emergency physicians interact with a variety of 
patients, family members, and other professionals in a 
rapid fire, high stakes environment. Caring for 
critically ill patients, exposure to hostility and violence, 
technical difficulties with electronic medical record 
systems, and negotiation of an inefficient health care 
system all contribute to personal stress, while the 
constant need to multitask amplifies the stress 
associated with any one of these scenarios.  In the 
future, content analysis could be used to identify 
stressors and to validate theorized/anecdotal stressors 
on an individual and institutional level with objective 
data. These could then be targets for workplace 
interventions and process improvements geared 
towards decreasing the number of stress inducing 
factors in the work environment.  The process of 
identifying and addressing modifiable stressors in an 
evidenced based fashion has the potential to bring 
about meaningful change that directly reduces 
physician stress.  
 

In addition to data gathering and intervention 
planning, the stress identifying algorithm built through 
this process offers a means of identifying physician 
stress in real time. Even while participating in a study 
that presumably increased awareness of stress, our data 
suggests that participants may have had a delayed 
recognition of the stress state. Early recognition would 
provide a prime target of de-escalation and may 
increase overall wellness. Other investigators have 
demonstrated this in various populations. For example, 
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a study by Rajan S. et al., used a wrist-worn sensor, 
which measured motion in three axes and EDA, on 
adolescent mothers to demonstrate the ability to detect 
stress in a real-world scenario (Rajan et al. 2012). In 
this study, data was streamed directly to the 
participants’ phone and was accessible to them 
throughout the recorded session. Multiple study 
participants reported monitoring their biometric data 
on their smart phones and using it as a guide for 
behavioral modifications that they had learned from 
mindfulness exercises and cognitive behavioral therapy 
training prior to study participation. Our data could be 
applied to a similar paradigm but with an automated 
alert function using our stress detection algorithm. This 
would be an important tool for helping physicians 
become more aware of their emotional state and cue 
them to initiate personal and institutional interventions 
aimed at decreasing stress in physicians. 

Additional work is needed before these finding 
can impact physician wellness. Larger validation 
studies with a similar population across various clinical 
sites is a critical next step. This would allow for 
refinement of the algorithms. If the pre-event marker 
vs baseline biometric pattern can be confirmed, this 
work can be applied to different clinical settings to 
capture a more diverse population and to understand 
individual and subgroup level factors that may 
influence detection accuracy (e.g. gender, race, 
baseline stress level). The long-term goal of this work 
is to pair just-in-time interventions to manage 
physician stress to improve job satisfaction, work 
productivity, career longevity, and patient care. 
Decreasing stress can ultimately improve outcomes for 
physicians and their patients. 
 
5. Limitations 
 
       This was a small preliminary that was designed to 
determine proof of concept; therefore, we were unable 
to evaluate patterns within subgroups. As such, there 
may be different features based on gender or perceived 
level of stress that we were not able to capture. An area 
of future work would be a similar study using a larger 
population over several ED sites.  This would improve 
the accuracy of our stress detecting algorithm and 
provide sufficient power to perform subgroup analyses. 
The self-report nature of study design creates potential 
for measurement bias in that participants many have 
neglected to self-report some stressful events, thus we 
lack pure ground truth data to validate our measures. 
Busy EM physicians are already burdened with a 
tremendous workload (hence the motivation of the 
study), creating a challenge to obtain perfectly accurate 

real time annotations. In addition, some forms of stress 
in the ED are not momentary; for example, caring for a 
critically ill patient or interacting with a patient’s 
particularly difficult family member could create stress 
over a period of hours, creating a challenge in our 
detection paradigm. 

There are also several important limitations in our 
data capture and classification methods. Due to the 
self-report nature of the study, some of the time 
segments selected as the baseline may have overlapped 
with some unreported stress events, thereby potentially 
affecting the abilities of the machine learning 
classifiers to accurately classify a stress event. By 
performing 10-fold cross-validation during the training 
of the machine learning classifiers, overfitting of the 
data should be reduced, but may still be present to a 
lesser extent when compared to training the models 
with no validation or test dataset. 
 
 
6. Conclusion  
 

Wearable sensors have potential to be used in the 
clinical setting for monitoring of physician stress. 
Wearable sensor data 20-minutes prior to a self-
reported stress episode was indicative of stress when 
compared to an individual’s baseline. Larger studies 
are needed to better characterize this phenomenon and 
to identify opportunities for interventions based on 
stress detection. 
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