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ABSTRACT 

Teratogens are chemicals that can cause birth defects in the developing embryo during 

pregnancy. Major structural birth defects affect 2-5% of children, but the etiology of this developmental 

error is often unknown. Exposure to teratogens (chemicals that cause birth defects) during gestation may 

play a causative role in many of these congenital defects. Therefore, it is important to identify teratogenic 

chemicals before pregnant women are exposed to them, but there is no easy, reliable test to determine 

potential teratogenicity of pharmaceutical drugs or industrial chemicals (pesticides, herbicides, solvents, 

etc.). Current developmental and reproductive toxicity (DART) testing uses millions of pregnant animals in 

outdated, inefficient regulatory studies. Embryonic stem cell-based in vitro tests (EST) produce faster, 

clearer results and have the potential to revolutionize DART testing, but they often lack the biologic 

complexity created during embryonic gastrulation and morphogenesis. The embryo is most sensitive to 

teratogenic exposures during the first three to eight weeks of fetal life. During this time, the process of 

morphogenesis shapes nearly all three-dimensional (3-D) organs and tissue structures in the embryo. 

Many of the common birth defects (e.g., neural tube closure defects and cardiac septal defects) are 

caused by disruptions in this vital process. Since morphogenesis drives the formation of fetal structures 

and is often affected by teratogenic drugs, a screen for potential teratogens should incorporate similar 3-

D structural complexity, but this is a common deficit of in vitro teratogenicity tests. Aggregated P19C5 

stem cells spontaneously form “embryoid bodies” (EBs) and recapitulate the germ layer differentiation 

and structural remodeling that occur during embryonic gastrulation and morphogenesis. Exposure to 

teratogens disrupts EB morphology, making P19C5 morphogenesis a sensitive indicator of 

developmental toxicity. In this research project, I validated the P19C5 system as a morphology-based 

teratogen-screening assay and demonstrate that the P19C5 assay can be used to investigate teratogenic 

mechanisms that cause structural defects. We expect that this test will allow us to accurately identify 

chemicals that may cause fetal malformations and help us understand the mechanisms of teratogenic 

chemicals in order to reduce the number of children born with preventable birth defects. 
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CHAPTER 1. BACKGROUND 

1.1 - Birth defects and teratogens 

Major structural birth defects affect 3% of newborns, but the etiology of the congenital defect is 

unknown in nearly 50% of these cases (Rynn et al., 2008). Environmental exposures, including exposure 

to teratogenic chemicals may play a causative role in many of the unknown cases (Sadler, 2012). Birth 

defects are the result of abnormal development due to either genetic mutations or external factors that 

disrupt normal developmental processes in specific tissues or structures without causing overt embryonic 

or maternal death. These external factors are called teratogens, a broad term that includes drugs and 

chemicals, radiation, viral or bacterial infections, hyperthermia, and maternal metabolic conditions. A 

culturally relevant example of a viral teratogen is the Zika virus, which crosses the placenta and 

preferentially infects and kills the neural progenitor cells of the developing embryos leading to 

microcephaly in affected infants (Russo et al., 2017). Developmental toxicants (teratogenic chemicals) 

are by far the largest class of teratogens, and the number of chemical teratogens that we are exposed to 

on a daily basis continually increases as we synthesize and process new compounds and materials. Over 

the course of her pregnancy, a woman may encounter many developmental toxicants in the form of 

medications, supplements, occupational exposures, contaminated food or water, secondhand smoke, 

alcohol and illicit drugs (Jacqz-Aigrain and Koren, 2005).  

The concept of teratogens was not widely accepted until the early 1960’s. Previously, the 

scientific and medical community assumed that most birth defects were caused by genetic mutations and 

that the embryo was fully protected from any harmful environmental factors by the placenta. We now 

know, of course, that both natural and man-made teratogens have been causing birth defects for a very 

long time. For example, cyclopamine and jervine, two naturally occurring chemicals produced by the 

California corn lily (Veratrum californicum), cause holoprosencephaly or cyclopia in offspring of animals 

that graze on it. These two teratogens inhibit cholesterol synthesis and the Sonic hedgehog (Shh) 

signaling pathway. Since Shh is a crucial regulator of facial morphogenesis, its inhibition leads to cyclopia 

(Gilbert, 2010). A similar phenotype can be created in humans or animals with genetic mutations in the 

Shh pathway, demonstrating that very similar syndromes of birth defects can be caused by genetic or 

teratogenic factors that both disrupt the same developmental process.  

There are also some naturally occurring compounds that are necessary for normal development, 

but that become teratogenic if the embryo is exposed to excessively high or low levels. The best example 

of this is retinoic acid (RA), the active form of vitamin A. Like Shh, the RA signaling pathway is another of 

the major signaling pathways that regulate normal embryonic development (Niederreither et al., 1997; 

Tonk et al., 2015; Sakai et al., 2001; Rhinn and Dolle, 2012). In its active form, RA regulates the spatial 

and temporal patterns of homeobox (Hox) gene expression as well as interacting with the other major 
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signaling pathways (i.e., the Wnt, Fgf, Notch, Nodal and Bmp pathways) to establish the anterior-posterior 

axis and the embryonic body plan early in development. Because RA is responsible for patterning and 

development of the pharyngeal arch derivatives and the caudal body, abnormal levels of RA (or 

chemicals that disrupt RA signaling) are highly likely to cause characteristic defects that include small or 

absent ears and jaws, cleft palate, aortic arch abnormalities and neural tube defects (NTD) (Tonk et al., 

2015). This demonstrates that some teratogens cause predictable birth defects based on their molecular 

mechanism and the developmental process that they disrupt. 

Endocrine disruptors are another class of teratogenic compounds that are increasingly ubiquitous 

in our society. The endocrine system is composed of glands that secrete endocrine, paracrine and 

autocrine hormones as well as the receptors that respond to these secreted hormones. An endocrine 

disruptor is defined as “an exogenous agent that interferes with the production, release, transport, 

metabolism, binding, action or elimination of natural hormones in the body responsible for the 

maintenance of homeostasis and the regulation of developmental processes” (Kavlock et al., 2012). The 

development of embryonic genitalia is particularly sensitive to disruption by variability in the levels of the 

steroid sex hormones (e.g., androgens and estrogens). Therefore, chemicals that interfere with normal 

androgen or estrogen signaling have potent effects in embryos, even at levels that are innocuous in adult 

humans. A notorious example is bisphenol A (BPA), which is used as a stabilizer in polycarbonate 

plastics and is produced at a rate of 2 billion pounds per year in the US. Unfortunately, BPA leeches out 

of plastics into water or food at levels that are high enough to alter the reproductive organs of developing 

frogs, mice, primates and humans. In humans, exposure to BPA in utero causes a prostate enlargement 

and a decline in sperm count in men and increases the rate of mammary tumors in women. Other 

endocrine disruptors include dichlorodiphenyltrichloroethane (DDT; a now-banned pesticide), phthalates, 

acrylamide, nonylphenol and genistein, to name a few. It is suspected that estrogenic endocrine 

disruptors are responsible for the increasing rates of “testicular dysgenesis syndrome” (TDS) in human 

males worldwide. Male infants born with TDS have poorly formed external genitalia, low sperm counts 

and a higher risk of testicular cancer (Gilbert, 2010).  

1.2 - Identification of teratogens: Human epidemiology 

Clearly it is important to identify potential teratogens and prevent maternal exposures to 

teratogenic chemicals. Unfortunately, it is difficult to study teratogens in mammalian pregnancies and the 

current methods used to screen for teratogens—retrospective epidemiologic studies on humans and in 

vivo testing using animal models—are ineffective and inefficient, respectively.  

Although retrospective epidemiologic studies on birth defects in human pregnancies have 

identified a few of the earliest and most notorious teratogens, they are an ineffective way of preventing 

the burden of teratogen-induced birth defects in human pregnancies. To achieve a sample size sufficient 
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to identify a drug or medication as a teratogen in an epidemiologic study, the teratogenic agent in 

question must have already caused thousands of birth defects that could easily have been prevented. For 

instance, thalidomide was widely prescribed to pregnant women in the 1960’s to treat morning sickness 

and was only identified as a teratogen once the medical field noted a high incidence of babies born 

without arms or legs, a condition called phocomelia (Gilbert, 2010). 

Human gestation is divided into two stages: the embryonic period in the first eight weeks and the 

fetal period spanning the remainder of gestation. Most teratogen-induced birth defects occur between 

three and eight weeks after conception. In the first three weeks of the embryonic period, teratogens are 

unlikely to cause congenital malformations because the embryo has not undergone gastrulation and the 

formation of the three germ layers. Before embryonic cells become committed to a single cell lineage, 

they are pluripotent, meaning they can become any of the cell types in body. At this stage, a teratogenic 

insult is likely to either kill the entire embryo or damage only a few pluripotent cells without causing lasting 

effects in the embryo. At approximately three weeks post-conception, the pluripotent cells of the epiblast 

become either embryonic ectoderm (the source of neural crest cells, central nervous system [CNS], and 

surface ectoderm [skin/hair/teeth, etc.]), endoderm (the future epithelial and secretory lining of the lungs 

and gastrointestinal (GI) tract) or mesoderm (the source of musculoskeletal, cardiovascular and other 

visceral tissue) through the process, called gastrulation. After gastrulation is the period of organogenesis, 

during which the pluripotent embryonic cells become committed to specific progenitor cell lineages, each 

equipped to eventually differentiate into a single organ or tissue type. A teratogenic disruption to a 

specific progenitor cell population inhibits either the migration, differentiation or survival and proliferation 

of the cells and has lasting effects that are amplified as the organ or structure continues to develop.  

During the embryonic stage, organs and body structures develop at different times and have 

correspondingly different periods of susceptibility to teratogenic disruption. Thalidomide causes a specific 

sequence of abnormalities that depend on the timing of the embryo’s exposure (Fig. 1.1A). Although it is 

only teratogenic between 20 to 36 days of gestation, a single dose of thalidomide can cause a baby to be 

born with all four limbs absent or severely shortened. If the exposure occurs in day 20 to day 24, only the 

ears are abnormal. Exposure between day 24 to day 32 results in phocomelia of the arms and legs, 

whereas exposure on day 32 to 36 only causes abnormalities in the formation of the thumbs. This 

demonstrates an important point, teratogenic effects are determined by the timing, dose and duration of 

the teratogenic exposure. Despite the dramatic malformations that thalidomide causes, nearly 10,000 

children were born with thalidomide syndrome before the connection between thalidomide and 

phocomelia was made and it was withdrawn from the market (Gilbert, 2010). Not all teratogenic 

syndromes are distinctive enough to attract attention and implicate a single teratogenic agent, and this is 

a weakness of identifying teratogenic chemicals through epidemiologic studies.  
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Alcohol is a more subtle developmental toxicant than thalidomide, but it is undeniably one of the 

most devastating teratogens due to its high prevalence of use and the severity of the debilitation it 

causes. Fetal alcohol syndrome (FAS) was described in children born to alcoholic mothers in 1968. FAS 

is characterized by stunted growth and distinctive facial defects that include a small head, thin upper lip, 

smooth philtrum and small palpebral fissures of the eyes. Children with FAS often also have structural 

defects in their hearts, kidneys, or skeleton in addition to the characteristic facial features. The defective 

neuronal development that contributes to the small head size in affected children also results in FAS 

being the most common congenital mental retardation syndrome, affecting in 1 in 650 children born in the 

United States. Fetal alcohol spectrum disorder (FASD) is the diagnosis used for children affected by in 

utero alcohol exposure that do not meet all the criteria for an FAS diagnosis, and FASD is at least three 

times as prevalent as FAS. Unlike thalidomide, there is wide variability in the type and the severity of 

alcohol-induced birth defects. Individuals vary widely in their ability to metabolize alcohol and that fact—

along with substantial variation in the timing and dosage of fetal exposure—means that FAS and FASD 

manifest as a broad spectrum of structural defects. Additionally, alcohol appears to cause developmental 

toxicity via multiple molecular mechanisms, including the disruption of neural crest cell migration and 

differentiation, interference with cytoskeletal rearrangement, inhibition of normal Shh signaling, impaired 

cell-cell adhesion and toxicity in the cell populations that form the forebrain, cranial nerves and face. 

The variability seen in FAS and FASD is a perfect example of the phenotypic variability that 

makes it so difficult to use epidemiologic reports to study teratogens in human pregnancies. Also, since 

the period of highest susceptibility to teratogens very early, a mother may not even be aware that she is 

pregnant and thus she is unlikely to monitor environmental exposures (Sadler, 2012). Additionally, the 

noise created by variability in maternal lifestyle, metabolism and individual gene-environment interactions 

often confounds the effects of heterogeneous environmental exposures. Thus, it is exceptionally difficult 

to sift through all factors affecting a pregnancy and pinpoint a single causative agent. Epidemiologic 

studies will continue to be useful, particularly with the conversion to electronic medical records and 

increasingly comprehensive birth defect reporting systems. However, additional prophylactic screening 

methods are necessary to prevent unnecessary birth defects in human pregnancies.  

1.3 - Identification of teratogens: Animal studies 

As a result of the thalidomide crisis, the FDA instituted regulations requiring that new medications 

undergo testing to screen for teratogenic potential. The regulation and study of teratogens has been 

guided by six principles proposed by James G. Wilson in 1959:  

“Wilson’s Principles: 

(A) Susceptibility to developmental toxicity depends on the genotype of the conceptus and 

the way this interacts with adverse environmental factors.  
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(B) Susceptibility to developmental toxicity varies with the developmental stage at the time 

of exposure to an adverse influence.  

(C) Developmental toxins act in specific ways (mechanisms) on developing cells and tissues 

to initiate sequences of abnormal developmental events (pathogenesis).  

(D) The access of adverse influences to developing tissues depends on the nature of the 

influence (agent).  

(E) The four manifestations of deviant development are death, malformation, growth 

retardation, and functional deficit… 

(F) Manifestations of deviant development increase in frequency and degree as dosage 

increases [dose-responsiveness], from the no effect to the totally lethal level.” (Faqi et 

al., 2012) 

The first of Wilson’s principles has two parts: 1) certain species respond differently to particular 

teratogens and 2) individuals of the same species show variation in the frequency and intensity of 

teratogen-induced abnormalities. As a result, regulatory developmental and reproductive toxicology 

(DART) testing is done using at least two species of model animals, one rodent and one non-rodent 

mammal. Additionally, multiple replicates of each experiment are performed to address individual 

variability within a single species. The second principle highlights the fact that the period of highest 

teratogenic susceptibility is early in the first trimester, but that different organs have different windows of 

susceptibility, as seen in the case of thalidomide. In concordance with the second principle, experiments 

are conducted to assess the effects of chemical exposures at different stages in the pregnancy (i.e., 

parental exposure pre-conception, and then treatment of pregnant females either early, mid-, or late in 

gestation). To identify the dose-response curve described in the sixth principle, chemical exposures are 

administered in a range of concentrations that starts at the “no observable adverse effect level” (NOAEL) 

and “lowest observed adverse effect level” (LOAEL) to the concentrations at which the chemical begins to 

cause maternal toxicity. Finally, the endpoints of the regulatory experiments assess whether in utero 

exposure to the chemical causes: 1) fetal mortality, 2) congenital malformations, 3) alterations to growth, 

or 4) functional toxicity after birth (principle four).  

The testing methods for developmental and reproductive toxicity (DART) have remained 

essentially unchanged since they were first instituted in 1966. Since early embryonic development in 

mammals is very similar, animal models are the gold standard method to assess potential developmental 

toxicity of chemicals within the context of a placental pregnancy. The embryologic process of gastrulation 

and germ layer formation is orchestrated by a few major developmental signaling pathways—such as 

Wnt, Bmp, Fgf and retinoic acid—that coordinate the developmental fate of each fetal cell, establishing 

body axes and directing cellular migration and interactions (Tam and Loebel, 2007; Tam et al., 2006). 

These crucial signaling pathways are highly conserved across species, often allowing teratogenic effects 
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to manifest similarly in different species of animal models. Additionally, early mammalian embryos share 

nearly identical homologous structures (i.e., limbs, heart) and similar body patterning. The specialized 

adaptations that distinguish adult forms of different species do not appear until structural remodeling 

occurs later in development. Thus, teratogenic impacts in the first trimester of human pregnancies are 

often reflected in similar malformations across other non-human species.  

However, there are also a number of drawbacks to relying so heavily on in vivo teratogenicity 

assessments. First, there is some variability in the impact of teratogenic chemicals between species. 

Thalidomide was not initially identified as a teratogen because mice and rats are non-responsive to its 

teratogenic effects. Although rabbits show slight malformations after in utero exposure, the only reliable in 

vivo DART model for thalidomide is non-human primates (NHP). Additionally, all in vivo models require 

specialized facilities and trained handlers. The high cost of in vivo DART testing translates to high costs 

for drug development and delays the approval process of new therapeutics. It also gives a competitive 

advantage to the Big Pharma companies because it is prohibitively expensive for smaller companies to 

bring drugs to market. Third, the extensive experiments required to perform a thorough DART evaluation 

for a single chemical combined with the large number of compounds that need to be evaluated mean that 

DART testing has some of the highest rates of live-animal usage in research, raising ethical and animal 

welfare issues. Finally, it is very difficult to study the molecular mechanisms of teratogenic effects using in 

vivo models—a concept which is addressed in Wilson’s third principle, but that is notably absent from 

regulatory testing of medications and industrial chemicals. Without understanding how a teratogen 

causes malformations, it is difficult to confidently translate positive (teratogenic) results from animal 

studies into an accurate prediction of teratogenic risk in humans. Therefore, the need for mechanistic 

evaluations of teratogenic pathogenesis is at the forefront of developmental toxicity research, but the 

tools to investigate teratogenic mechanisms are still emerging. Altogether, these issues highlight the need 

for additional methods in developmental toxicity testing that will refine and complement in vivo 

teratogenicity tests.  

1.4 - Identification of teratogens: In vitro models 

In vitro testing methods have the potential to augment in vivo screens in a way that will increase 

efficiency and accuracy of DART testing as well as reduce the volume and cost of animal-based tests. In 

vitro methods offer a standardized testing environment that is a simplified version of normal in vivo 

processes. These methods provide a system that is robust to experimental manipulations and is easily 

accessed for data collection or visualization of results. Another benefit of alternative model systems is the 

ability to monitor the exact treatment concentrations, whereas in in vivo testing, animals are dosed by 

body weight and the actual fetal exposure level is unclear. Similarly, in vitro models provide a platform for 

experiments that are very difficult or impossible in live animals, including genetic manipulations like 

transfection, reporter assays, gene knockouts, etc. Additionally, in vitro tests may be used in conjunction 
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with human hepatic enzymes to mimic human metabolism—identifying seemingly harmless 

“proteratogens” that require enzymatic activation before they cause effects—bypassing the issue of non-

human metabolism and individual variability in a way that is nearly impossible using animal-based testing. 

All of these advantages mean that there has been substantial interest in the development of in vitro 

teratogen screening assays able to easily and accurately identify teratogens. In fact, this was a central 

focus of the 2017 Teratology Society conference, where leading developmental toxicologists evaluated 

the current regulatory protocols for developmental toxicity testing and recommended modifications and 

future directions of the field (Scialli et al., 2018). In the resulting publication, Scialli et al. (2018) write that 

in vitro and in silico models are the future of teratogenicity testing because they are compatible, “with 

hypothesis-driven testing where we take what we know about a compound or close analog and answer 

specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach” 

(Scialli et al., 2018). In vitro tests offer the advantage of clearer analytic endpoints and the flexibility to 

perform mechanistic evaluations to assess how individual chemicals cause teratogenic effects.  

Embryonic stem cell (ESC)-based tests have been explored as alternatives to in vivo teratogen 

screening assays for developmental toxicology. ESCs are derived from the inner cell mass of 

preimplantation embryos. These stem cells are pluripotent, self-renewing and retain the ability to respond 

to the major signaling pathways that regulate embryonic development. Pluripotency is the capacity to 

differentiate into any cell type of the embryonic body, including derivatives of all three germ layers 

(endoderm, mesoderm and ectoderm). ESCs retain the pluripotency of the ICM in vitro and can be 

directed to differentiate into several cell types by altering culture conditions or adding signaling molecules 

such as growth factors, hormones, chemicals or proteins (Yu and Thomson, 2008). The goal of in vitro 

testing is to provide a detailed and realistic picture that will clarify our understanding of the unclear or 

unknown processes occurring in vivo, and eventually will allow better prediction of teratogenic drug 

effects in human pregnancies. Thus far, only the cardiomyocyte embryonic stem cell test (ESTc) 

(Genschow et al., 2002) has been extensively explored by other researchers as a suitable in vitro 

alternative for teratogenicity screening (Estevan et al., 2009). The principle behind the ESTc resulted from 

Wobus et al. observing that when embryonic stem cells (ESCs) are aggregated in hanging drop culture to 

form embryoid bodies (EBs), the ESCs differentiated into progenitor cells of all three germ layers (Wobus 

et al., 1988). Treatment with retinoic acid, a well known teratogen, altered the time course and 

developmental fate of the differentiating ESCs (Estevan et al., 2009). Building on the changes seen in 

temporal and lineage specification after teratogenic treatment, ESTc uses ESCs that spontaneously 

differentiate into cardiomyocytes and evaluates a compound’s ability to inhibit both differentiation and 

proliferation (or viability) of the ESCs (Spielmann and Liebsch, 2001). After 10 days, ESC shape and 

contractility are semi-quantitatively measured to determine the extent of teratogenic effects on 

differentiation. However, the original ESTc is time-consuming, technically challenging, and uses only a 

single tissue type (cardiomyocytes) for differentiation studies.  
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Numerous publications have attempted to improve upon the original ESTc design by 

incorporating additional analytic endpoints, differentiation pathways or quantitative models. However, the 

variations of EST continue to adhere to the original format, which assesses differentiation and 

proliferation of a single embryonic cell line. Modifications to EST (additional cell types, molecular 

endpoints, reporter-based systems, etc.) increased the sensitivity, but also increased the EST’s time 

frame and complexity, making it laborious as a screening test (Estevan et al., 2009). Despite the many 

variations and modifications, a test based solely on cytotoxicity and cardiomyocyte differentiation may not 

be comprehensive enough to serve as a broad screening assay for teratogens. According to Trosko and 

Chang (2010), the “ultimate potential for in vitro testing” will be realized using a “3-D in vitro micro-

environment;” however, the typical EST lacks 3-D structural complexity and other microenvironment 

components encountered in vivo (Trosko and Chang, 2010). This issue was also discussed by Scialli et 

al. (2018) as well, as they wrote, “Experimental models that reduce a complex biological system to 

simpler assays have the benefit of facilitating quantitative evaluation of cellular and molecular responses 

to chemical perturbation but at the drawback of eliminating the cellular interactions and spatial dynamics 

that make an embryo complex in the first place. When modeling developmental processes and the toxicity 

that disrupts them, we need to rebuild this complexity.” (Scialli et al., 2018) Although in vitro tests have 

the potential to greatly reduce the animal-usage burden imposed by teratogenicity testing, only an in vitro 

system that reflects both teratogenic susceptibility and the complexity of early embryonic development 

can reasonably reduce animal usage in the field of developmental toxicity. 

1.5 - A new tool for teratogen research: The P19C5 in vitro 

gastrulation model 

The embryo is most sensitive to teratogenic exposures during the period of gastrulation and 

organogenesis when crucial developmental regulatory pathways—such as Wnt, BMP, Fgf and retinoic 

acid—coordinate the developmental fate of each fetal cell, establishing body axes and directing cellular 

migration and interactions (Tam and Loebel, 2007; Tam et al., 2006). These complex events all contribute 

to embryonic morphogenesis, the process that creates three-dimensional structures and tissues in the 

embryo. Many of the most common birth defects (neural tube closure defects, cardiac septal defects, cleft 

palate, etc.) are the result of genetic or environmental disruptions in morphogenetic process (Herion et 

al., 2014; Wilde et al., 2014). To model in vivo effects, a teratogen screening assay should evaluate 

adverse impacts on differentiation, as well as embryonic body patterning and morphogenesis. 

Unfortunately, this type of structural complexity is difficult to replicate in vitro and is a common deficit in 

stem cell-based teratogenicity tests (Lee et al., 2012) 

To address the challenges faced by former in vitro tests, we propose a novel morphogenesis-

based stem cell assay as a screen for developmental toxicants. Similarly to the EBs formed by Wobus in 
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1988, EBs of aggregated P19C5 stem cells undergo a process of gastrulation and germ layer formation 

(Marikawa et al., 2009; Wobus et al., 1988). Unlike the original ESC EBs or the EST cardiomyocytes, the 

P19C5 aggregates are able to spontaneously establish and elongate along a cranial-caudal ‘body’ axis, 

recreating the process of embryonic morphogenesis in vitro (Fig. 2.1A,C). P19C5 EBs appear to recreate 

the embryonic process of gastrulation and elongation morphogenesis in vitro. During gastrulation, the 

mass of embryonic cells in the epiblast forms three separate germ layers from which all the structures in 

the body are derived (Tam and Loebel, 2007; Pfister et al., 2007). Gastrulation begins with the formation 

of the primitive streak, which elongates towards the caudal end of the embryo. The elongation of the 

primitive streak is driven by epiblast cells that undergo an epithelial-mesenchymal transition (EMT) and 

migrate through the primitive streak where they become endoderm and mesoderm.  

The P19C5 EBs show temporal and spatial gene expression patterns that mirror the gene 

expression of gastrulating embryos. Many of the key developmental regulator genes known to be 

expressed in the primitive streak and posterior mesoderm of mouse embryos at E6.5 to E8.5 increase 

over the course of four days in hanging drop culture, including: Brachyury, Sp5, Fgf8, Snai1, Lhx1, Tbx6, 

Hoxb1, Cdx2 and Wnt family members (Wnt3, Wnt3a, Wnt5a, and Wnt8a). As would be expected in a 

differentiating cell mass, pluripotency genes (such as Pou5f1, Foxd3 and Eras1) decrease after P19C5 

EB aggregation (see Pou5f1 in Fig. 4.4), and the temporal expression patterns follow the sequences seen 

in gastrulating embryos. Namely, Brachyury expression peaks at Day 1 (marking the primitive streak) 

followed by Day 2 peaks in the expression levels of mesoderm-associated markers, such as Wnt3a 

(EMT) and Tbx6 (paraxial mesoderm), whereas the expression level of Meox1 (somitogenesis) does not 

peak until Day 3 (Marikawa et al., 2009; Lau and Marikawa, 2014; Li and Marikawa, 2015). Additionally, 

whole-mount in situ analysis (WMISH) shows regionalized gene expression in P19C5 EBs that indicates 

the presences of a cranial-caudal body axis. The consistent, synchronous morphologic change seen in 

P19C5 EBs as they morph from ovoids on Day 3 to distinctly elongated forms on Day 4 is characteristic of 

convergent extension, a process uniquely seen in axial and paraxial mesoderm during elongation 

morphogenesis of the embryo along the cranial-caudal axis (Fig. 2.1A, C).  

After migratory epiblast cells enter the primitive streak, local embryonic characteristics such as 

body patterning, cell-cell interactions and 3D structural elements direct the pluripotent cells towards 

specific development pathways, identifying them as the precursors for a specific tissues or organs 

(Loebel et al., 2003; Li et al., 2003; Kruegel and Miosge, 2010). This dynamic remodeling of tissue 

identity and architecture is called morphogenesis. Morphogenesis literally means, “the creation of form,” 

thus, embryonic morphogenesis is aptly named, because it is the process that shapes all the major 

structural features of the embryonic face, limbs, vital organs, neural tube and body axes during the first 

three to eight weeks of gestation (Tam et al., 2006; Sadler, 2012). Most of the common birth defects are 

caused by slight abnormalities in the process of embryonic morphogenesis, and many teratogenic 
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malformations are the result of exogenous insults to the morphogenetic process (Herion et al., 2014). 

Experiments using pharmacologic inhibitors of major developmental signaling pathways showed 

alterations in both P19C5 EB elongation morphogenesis and gene expression profiles like what would be 

expected if those drugs were used on a developing embryo in vivo (Li and Marikawa, 2015). This implies 

that EB morphogenesis is a sensitive indicator of teratogenic effects and may aid the generation of an in 

vitro alternative to animal-based teratogenicity screens. Additionally, because embryonic morphogenesis 

depends on the collective functionality of molecular, cellular and tissue-level mechanisms, the parallel 

process of EB morphogenesis will enhance the analytic power of toxicological models, which attempts to 

assess dynamic teratogenic mechanisms rather than static analytic endpoints (Gocht et al., 2015; Daston 

et al., 2015). To the best of our knowledge, this kind of morphogenesis-based in vitro assay has never 

been submitted for validation as a developmental toxicity screening technique.  

The P19C5 elongation morphogenesis model has the potential to advance the search for an 

accurate in vitro teratogenicity test, because it encompasses the complexity of gastrulation and germ 

layer formation in an exceptionally simple, cost-effective hanging drop culture system over four days. The 

successful elongation of the EBs demonstrates that all the major developmental signaling pathways are 

intact, allowing quantification of drug impacts using simple image analysis software, ImageJ, which is 

freely available from NIH. Additionally, the ability to comprehensively investigate the molecular 

mechanisms of teratogenic effects will allow directed drug development to avoid unintended side effects 

or off-target actions of new pharmaceuticals. Finally, the simplicity and robustness of the P19C5 system 

allows for additional modifications such as gene transfection, or human metabolic enzyme additions to 

more closely mimic the impacts of teratogens on human embryonic development.  

The following chapters will describe the work I have done during my Ph.D. project to validate the 

P19C5 model against two separate panels of chemicals and to use the P19C5 model to understand the 

previously unknown teratogenic mechanism of a commonly used antidepressant. The first validation 

study assessed whether the P19C5 model was capable of a binary classification, i.e., teratogenic or non-

teratogenic, of 20 drugs known to be either safe (FDA pregnancy Category A or B) or teratogenic (FDA 

pregnancy Category X) at concentrations of 0.1 µM, 1 µM, 10 µM, and 100 µM. In the Category X 

validation study, the P19C5 model correctly identified 81% of Category X drugs as potential teratogens 

using the morphometric parameters of EB area and EDI (elongation distortion index). The Category X 

validation study was followed by a validation study that tested the P19C5 model against chemicals in the 

Daston Validation Panel. This study adjusted the concentrations of chemical exposure to match the levels 

that previously demonstrated teratogenic effects in rodents in vivo and, therefore, assessed whether the 

P19C5 model was capable of responding to teratogens at concentrations comparable to the levels an 

embryo might encounter during pregnancy. The P19C5 model was able to correctly classify chemicals as 

teratogenic or safe (within a four-fold concentration margin) with an accuracy of 82%. The third aspect of 
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my research applied the P19C5 model to a mechanistic investigation of the potential teratogenicity of 

fluoxetine, a selective serotonin reuptake inhibitor (SSRI) antidepressant. In this portion of my research, I 

found that fluoxetine appears to inhibit canonical Wnt signaling, an important signaling pathway in 

development. Finally, in Chapter 5, I will further discuss the implications and applicability of my studies 

and future research directions. 
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Figure 1.1. Susceptibility to teratogenic disruption is highest during the embryonic period of development 
and the outcome of a teratogenic exposure depends on the developmental stage at the time of exposure 
and the nature of the teratogen. (A) Organ systems form at different times and have correspondingly 
different periods of teratogenic susceptibility. Teratogenic exposure during a susceptible period can cause 
major structural birth defects (red) or functional defects and minor anomalies (yellow). (B) Exposure to 
even a single dose of thalidomide causes a syndrome of dramatic congenital malformations. The timing of 
thalidomide exposure determines the type of malformations seen in affected infants. (C) Thalidomide 
syndrome was identified in the 1960’s due to the unusually high number of exposed infants born with the 
rare condition, phocomelia, which is characterized by an absence of the long bones of the arms and legs. 
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CHAPTER 2. VALIDATION OF THE P19C5 MORPHOGENESIS MODEL – 

CATEGORY X DRUGS 

2.1 - Introduction 

Exposure to certain chemical agents during pregnancy may disturb the normal course of embryo 

development. The nature of developmental toxicity varies depending on chemical properties of agents, 

dosage, and timing of exposure. For example, chemicals that interfere with essential metabolic processes 

may cause death of early embryonic cells, leading to embryo loss at very early stages of gestation, 

perhaps even before the pregnancy is detected. Other developmental toxicants may delay embryonic cell 

cycles, which can result in growth retardation or spontaneous abortion. Cell differentiation may be 

impaired by chemicals in a tissue type-specific manner, leading to agensis or hypoplasia of the affected 

organs. Furthermore, developmental toxicants may interfere with cellular behaviors, collectively known as 

morphogenesis, such as cell migration, adhesion, or shape changes. Morphogenetic disturbance leads to 

structural anomalies, as found in various common birth defects, such as neural tube closure defects, 

heart septal defects, hypospadias, and cleft lip and palate (Parker et al., 2010; Sadler, 2012). Because 

the process of embryogenesis is spatially and temporally complex, integrating cellular proliferation, 

differentiation, and morphogenesis, identification of developmental toxicants is a highly challenging task 

and requires multiple investigative approaches. 

Many of the chemicals that are considered developmentally toxic or teratogenic to humans were 

identified through human epidemiologic studies (Friedman, 2009; Chaabane and Bérard, 2013). However, 

the identification of developmental toxicants using such retrospective methods can be achieved only after 

a significant number of tragic incidences have already happened. In order to predict potential 

developmental toxicity of new pharmaceutical agents before they are introduced to the market, chemical 

regulatory agencies, such as FDA, mandate a series of developmental toxicity tests using model animals 

(Daston, 2011). However, these animal-based tests also have disadvantages. Metabolic differences 

between species influence pharmacokinetics of drugs, causing large inter-species variations in the 

teratogenic dose, possibly resulting in incorrect classifications of potential developmental toxicants (Bailey 

et al., 2005; Hartung, 2011). Furthermore, regulatory reproductive and developmental toxicology testing is 

the largest consumer of experimental animals, posing tremendous financial and ethical burdens to the 

society and the pharmaceutical industry (Hartung and Rovida, 2009). The establishment of effective and 

economical alternatives to animal-based developmental toxicity tests may ameliorate the impact of 

metabolic variation between species and reduce the number of animals used in toxicology studies. 

In vitro toxicity tests using embryonic stem cells, collectively known as embryonic stem cell tests 

(EST), have been explored as non-animal alternatives in developmental toxicology. Embryonic stem (ES) 

cell lines derived from the epiblast of pre-implantation stage embryos are capable of differentiating into 
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various cell types in vitro (Yu and Thomson, 2008). In EST, potential developmental toxicity of chemicals 

is assessed based on their ability to inhibit in vitro differentiation of ES cells in relation to their cytotoxic 

impact on ES cell and somatic cell lines, such as NIH/3T3 fibroblast. The original EST, or ESTc, 

measures inhibitory effects of chemicals on cardiomyocyte differentiation (Spielmann et al., 1997). ESTc 

performed well in the initial validation study (Genschow et al., 2002), but it yielded a poor result in a 

follow-up study (Marx-Stoelting et al. 2009; Riebeling et al., 2012). Subsequently, numerous attempts 

have been made to improve upon the original EST by utilizing additional differentiation pathways (e.g., 

neurons and osteoblasts) and analytic methods (e.g., expression of tissue-specific molecular markers, 

transcriptional profiling, and toxicogenomic analysis) (zur Nieden et al., 2001; Buesen et al., 2004, 2009; 

Seiler et al., 2004; Suzuki et al., 2011; Seiler and Spielmann, 2011; van Dartel and Piersma, 2011; de 

Jong et al., 2012; Hayess et al., 2013; Panzica-Kelly et al. 2013; Gao et al., 2014; Li et al., 2015). 

However, in vivo embryogenesis involves coordinated differentiation and morphogenesis of hundreds of 

different cell types to construct organized body architectures. Each in vitro system represents only a 

limited aspect of this highly complex process. Therefore, rather than relying on a single system, it would 

be more realistic and productive to employ multiple in vitro models, each of which recapitulates unique 

aspects of embryogenesis, to detect a wide range of developmental toxicants. Because current versions 

of EST are based mainly on cell differentiation, additional models incorporating morphogenesis aspects 

may enhance the versatility of in vitro assays and allow the identification of a more diverse array of 

developmental toxicants. 

Previously, we demonstrated that aggregates, or embryoid bodies (EBs), of P19 mouse 

embryonal carcinoma stem cells exhibit axial elongation morphogenesis in vitro (Marikawa et al. 2009; 

Lau and Marikawa, 2014). The P19 cell line was originally isolated from a mouse teratocarcinoma, which 

was created by transplanting a normal post-implantation embryo into testes (McBurney and Rogers, 

1982). P19 cells are developmentally pluripotent, meaning that they are capable of differentiating into 

derivatives of three germ layers. P19 cells have been used by many researchers as an effective in vitro 

model to investigate the molecular mechanisms of embryonic cell differentiation (McBurney, 1993; Bain et 

al., 1994, Skerjanc, 1999; van der Heyden and Defize, 2003; Hohjoh, 2013; Voronova et al., 2013). In 

vitro morphogenesis of the P19 subclonal line, P19C5, recapitulates the key aspects of gastrulation 

driving germ layer formation and convergent extension along the cranial-caudal body axis in early 

embryos (Marikawa et al., 2009; Lau and Marikawa, 2014). Developmental regulator genes, particularly 

those involved in gastrulation, mesendoderm formation, axial patterning, caudal extension, and 

somitogenesis, are expressed during P19C5 EB morphogenesis in a temporally and spatially specific 

manner comparable to their in vivo expression patterns. Furthermore, P19C5 EB elongation is dependent 

on key developmental signals involved in cell differentiation and embryo patterning, including Wnt 

signaling pathways (Marikawa et al., 2009), suggesting that the EB morphogenesis is controlled by the 

same molecular machineries that regulate early development in normal embryos. P19C5 EBs display 
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consistent size growth and elongation within four days of culture in hanging drops, which are easily 

accessible for experimental manipulations. Thus, the P19C5 EB model may be used to effectively 

investigate the impact of chemical agents on embryonic growth, differentiation and morphogenesis. 

In the present study, we explored P19C5 EBs as an in vitro tool to assess the impacts of 20 

therapeutic drugs (Table 2.1). Sixteen of the treatment drugs are contraindicated during pregnancy due to 

their developmental and reproductive risks (FDA Pregnancy Risk Category X), whereas four are 

considered safe to be used during pregnancy (FDA Pregnancy Risk Category A). The drugs selected for 

this exploratory study encompass a wide spectrum of therapeutic targets and chemical properties. The 

panel of treatment drugs includes agents that affect: 1) lipid metabolism (orlistat [lipase inhibitor] and 

lovastatin [HMG-CoA reductase inhibitor]); 2) steroidal sex hormone signaling (mifepristone [anti-

progesterone], bicalutamide [anti-androgen], diethylstilbestrol [synthetic estrogen], leuprolide 

[gonadotropin-releasing hormone agonist], and raloxifene [estrogen agonist]); 3) retinoids (acitretin [RAR 

agonist], and bexarotene [RXR agonist]); 4) monoamine endocrine signaling molecules (doxylamine [anti-

histamine], dihydroergotamine [serotonin receptor agonist], metaclopramide [dopamine receptor 

antagonist]); 5) vitamin metabolism (folic acid, and warfarin [inhibitor of vitamin K epoxide reductase]); 6) 

antibiotic agents (ribavirin [anti-viral], and nystatin [anti-fungal]); 7) immunomodulatory agents 

(thalidomide [antiangiogenesis and immunomodulator], and misoprostol [prostaglandin E]); 8) a 

chemotherapeutic (fluorouracil [antimetabolite]); and 9) an antiarrhythmic (dronedarone [Na+ channel 

blocker]). These drugs were also evaluated for their impact on proliferation of P19C5 (embryonic) and 

NIH/3T3 (somatic) cells to assess general cytotoxicity of the test drugs. The present study shows a strong 

correlation between the in vitro effects and expected developmental toxicity of the drugs, which provides 

the crucial information on applicability and limitations of the P19C5 EB system as an in vitro assay for 

developmental toxicants. 

2.2 - Materials and methods 

2.2.1 CELL CULTURE AND EMBRYOID BODY FORMATION 

P19C5 cells (Lau and Marikawa, 2014) were maintained in the P19 culture medium (Minimum 

Essential Medium α, nucleosides, GlutaMAX Supplement [LifeTechnologies, Carlsbad, CA], 2.5% fetal 

bovine serum, 7.5% newborn calf serum, 50 units/mL penicillin, and 50 μg/mL streptomycin) and 

passaged every two days when cells had achieved 80-90% confluence in the culture flask. NIH/3T3 cells 

were obtained from the American Type Culture Collection (Manassas, VA), maintained in the 3T3 culture 

medium (Dulbecco’s Modified Eagle Medium, GlutaMAX Supplement [LifeTechnologies], 10 % fetal 

bovine serum, 50 units/mL penicillin, and 50 μg/mL streptomycin) and passaged every two days. 

Embryoid bodies (EBs) of P19C5 cells were generated in hanging drops of the culture medium 

supplemented with 1% dimethyl sulfoxide (DMSO), as previously described (Marikawa et al., 2009; Lau 
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and Marikawa, 2014). Briefly, P19C5 cells were fully dissociated with Trypsin-EDTA and suspended in the 

culture medium containing 1% DMSO at a density of 10 cells/μL. Drops (20 μL each) of cell suspension 

were deposited on the inner surface of Petri dish lids for hanging drop culture. All cells and EBs were 

cultured at 37°C in 4.5% CO2 in humidified air. 

2.2.2 DRUGS 

All drugs used in the study were purchased from Sigma-Aldrich (St. Louis, MO; lovastatin 

[PHR1285], metoclopramide monohydrochloride [M0763], ribavirin [R9644], dronedarone hydrochloride 

[D9696], leuprolide acetate [L0399], 5-fluorouracil [F6627], orlistat [O4139], doxylamine succinate 

[D3775], nystatin [N4014] and folic acid [F7876]) or from Santa Cruz Biotechnology (Dallas, TX; acitretin 

[sc-21075], misoprostol [sc-201264], mifepristone [sc-20126], bicalutamide [sc-202976], diethylstilbestrol 

[sc-204720], bexarotene [sc-217753], raloxifene hydrochloride [sc-204230], dihydroergotamine 

methanesulfonate [sc-294343], warfarin sodium [sc-204941] and thalidomide [sc-201445]). All drugs were 

dissolved in DMSO at 10 mM concentration and stored at -20°C. 

2.2.3 CELL VIABILITY ASSAY 

The impact of drugs on cell proliferation and viability was evaluated using CellTiter-Glo 

Luminescent Cell Viability Assay system, which determines the number of live cells in culture by 

measuring the amount of ATP as a quantitative proxy for the number of metabolically active cells 

(Promega, Madison, WI). P19C5 cells and NIH/3T3 cells were seeded in 96-well plates at the density of 

100 cells/well and 250 cells/well, respectively, and were cultured in the corresponding medium (100 

μL/well) supplemented with 1% DMSO containing serial dilution of the test drug (0.1, 1, 10, and 100 μM) 

or vehicle only as a control. After 4 days of culture, cells were treated with CellTiter-Glo Reagent for 

measurement of luminescence, as a readout of ATP amount, according to the manufacturer’s instruction 

(Promega), using Gene Light 55 Luminometer (Microtech, Chiba, Japan). Cell seeding density was 

optimized through a series of pilot experiments, to confirm that cell numbers at the end of 4 days of 

culture were proportionate to intensities of luminescence. Relative cell number was calculated based on 

ratio of the luminescence intensity in drug-treated cells to that in the control of the same set of 

experiments. For each drug, four sets of experiments were conducted as biological replicates, and the 

results were presented as mean ± standard deviation. 

2.2.4 MORPHOMETRIC PARAMETERS 

The experimental scheme to test drug impact on EB development is shown in Figure 1D. Each 

set of experiment consisted of five plates of hanging drops prepared using the same cell suspension: one 

control plate with no drug and four plates treated with serial dilutions of the test drug (0.1, 1, 10, and 100 
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μM). Each plate contained 16 hanging drops, which were cultured for four days after initial treatment 

without medium change. Survival and overall integrity of EBs were monitored on Days 1, 2, and 3. On 

Day 4, EBs were removed from hanging drops and placed together in a Petri dish filled with phosphate-

buffered saline for photography. Images were captured with AxioCam MRm digital camera (Carl Zeiss, 

Thornwood, NY) attached to Axiovert 200 inverted microscope with Hoffman modulation contrast optics 

(Carl Zeiss) and controlled by AxioVision software (Carl Zeiss). AxioVision image files were converted to 

JPG format, which were then opened in ImageJ program (http://rsb.info.nih.gov/ij) for morphometric 

analyses. The circumference of individual EBs was manually traced using the Polygon selections tool to 

measure the area and circularity (under shape descriptors). In the present study, the area was used to 

approximate the overall size of EBs. Elongation Distortion Index (EDI) expresses the extent of axial 

elongation and is calculated as (1/[circularity] -1), which is equivalent to the formula ([EB 

perimeter]2/4π[EB area] – 1), as described previously (Marikawa et al., 2009). Area and EDI were 

normalized by the average values of control EBs in each set of experiments to calculate relative EB size 

and relative EDI, respectively. Three sets of experiments were conducted for each drug as biological 

replicates, and all relative EB size and relative EDI were compiled and presented as mean ± standard 

deviation. 

2.2.5 STATISTICS 

Statistical differences were assessed by two-sample t-test. For cell viability assay, relative cell 

numbers of P19C5 cells from 4 experiments (n = 4) were compared with relative cell numbers of NIH/3T3 

cells from 4 experiments (n = 4) for each concentration of each drug tested. For EB morphogenesis, 

relative EDI of drug-treated EBs (n = 45 to 48, compiled from 3 experiments) were compared with relative 

EDI of control EBs (n = 45 to 48). Differences in average values were deemed significant when p values 

were less than 0.01. 

2.2.6 EXPERIMENTAL DESIGN 

Two types of assays were performed to evaluate the impact of the selected 20 drugs at four 

different concentrations (0.1, 1, 10, and 100 μM). The first assay was to examine drug impact on 

proliferation of P19C5 and NIH/3T3 cells. Cells were cultured for 4 days as mono-layer at a low density 

(to minimize contact inhibition) in the presence of test drugs, followed by measurement of total live cell 

number (see above). Relative cell number of drug-treated cells was normalized by the number of control 

cells that were cultured for 4 days in the absence of drug. This assay served two purposes: 1) to 

determine general cytotoxicity and 2) to assess selective inhibition of embryonic cell proliferation. 

“General cytotoxicity” was defined in the present study as a reduction in relative cell number of NIH/3T3 

cells below 20% of control. The rationale for this definition is as follows. Normal NIH/3T3 cells divide 
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approximately every 20 hours, and therefore they divide an average of 4.8 rounds during 4 days of 

culture, which increases cell number by ≈ 27.9-fold (= 2 4.8). If a half of cell divisions are inhibited during 

this period, cell number increases only by ≈ 5.3-fold (= 2 2.4), which is approximately 20% or less of 

control cells (= 5.3/27.9). Any drug concentrations that displayed general cytotoxicity were not considered 

“developmentally toxic” in the present study, regardless of other impacts that are described below. The 

second purpose of the assay was to assess whether a drug diminishes proliferation of P19C5 cells 

(representing embryonic cells) more strongly than NIH/3T3 cells (representing somatic cells). This was 

determined by comparing relative cell numbers between P19C5 and NIH/3T3 cells for each drug 

treatment. In the present study, significant reduction in P19C5 cell number relative to NIH/3T3 cell 

number was defined as a sign of selective adverse impact on embryonic cell proliferation. 

The second assay examined drug impact on growth and morphogenesis of P19C5 EBs. After 4 

days of hanging drop culture in the presence of test drugs, area and EDI were measured as 

morphometric parameters to assess EB growth and morphogenesis, respectively. In the present study, a 

reduction in EB size by more than 20% was classified as an adverse drug impact on EB growth. A 

significant decrease or increase in EDI was classified as an impact on EB morphogenesis. Although 

mechanistic causes of EDI decreases are likely to be different from EDI increases (see Discussion), both 

were grouped together as morphogenetic impact in the present study. 

Thus, if a drug caused “stronger inhibition of P19C5 proliferation”, “reduction in EB size”, and/or 

“decrease/increase in EDI” at concentrations that are not “generally toxic”, it was categorized as a 

developmental toxicant in the present study. Furthermore, if a drug displayed any of these effects at the 

lowest concentration tested (i.e., 0.1 μM), it was considered to have “high potency”. In contrast, the 

effects observed only at higher concentrations (i.e., 1, 10, and/or 100 μM) were considered to have “mild 

potency”. 
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2.3 - Results 

2.3.1 TIME COURSE OF GROWTH AND AXIAL ELONGATION MORPHOGENESIS IN P19C5 EBS 

During four days of hanging drop culture, P19C5 EBs steadily grew in size, which was 

quantitatively measured using EB area as a morphometric parameter (Fig. 2.1A, B). The overall shape of 

EBs was spherical during the first two days of culture (Days 1 and 2) but became ellipsoidal by the third 

day (Day 3) and distinctly elongated by the fourth day (Day 4; Fig. 2.1A). This temporal change in EB 

shape was quantified using another morphometric parameter, Elongation Distortion Index (EDI; see 

Materials and Methods), which significantly increased from Day 2 to Day 3 and from Day 3 to Day 4 (Fig. 

2.1C). In the following assessment of drug impact on EBs, the area and EDI were measured on Day 4 to 

assess overall growth and morphogenesis of EBs. 

2.3.2 DRUGS THAT IMPACTED P19C5 CELLS WITH HIGH POTENCY 

Eight out of the 20 drugs evaluated demonstrated high potency because they impacted P19C5 

proliferation and/or EB development at treatment concentrations as low as 0.1 µM. Highly potent drugs 

included acitretin, bexarotene, diethylstilbestrol, dronedarone, fluorouracil, mifepristone, raloxifene, and 

ribavirin. Acitretin is a synthetic retinoid that activates retinoic acid receptors and is prescribed for 

treatment of various skin diseases. Acitretin exhibited general cytotoxicity (i.e., NIH/3T3 cell number < 

20%) at 100 μM, which was also reflected in death of P19C5 cells in mono-layer culture as well as in 

hanging drops by Day 1. At lower concentrations (0.1, 1, and 10 μM), P19C5 cells aggregated into viable 

EBs and survived until Day 4, although they showed dramatic decreases in growth and morphogenesis 

(Fig. 2.2). Acitretin-treated EBs were markedly smaller than control EBs, with an average size less than 

50% of control. Additionally, acitretin-treated EBs retained the initial spherical shape void of any 

discernable elongation, as shown by marked reduction in EDI (Fig. 2.2 & Fig. 2.6A). 

Bexarotene, a synthetic retinoid that selectively targets retinoid X-receptors, is used to treat 

cutaneous T-cell lymphoma. Bexarotene at 100 μM exhibited general cytotoxicity along with death of 

P19C5 cells in hanging drops by Day 1. EBs were viable for 4 days of culture in other concentrations, but 

the EB size was markedly reduced. EDI was also significantly reduced by bexarotene at 1 and 10 μM 

(Fig. 2.2 & Fig. 2.6B). 

Diethylstilbestrol (DES) is a non-steroidal anti-estrogen and was historically prescribed to prevent 

miscarriages and premature deliveries. General cytotoxicity was observed at 100 μM, which 

corresponded to disintegration of P19C5 EBs by Day 3. EDI was slightly, but significantly increased by 

DES at 0.1 and 1 μM. DES at 10 μM also reduced the EB size by more than 20% (Fig. 2.2 & Fig. 2.6D). 
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Dronedarone is a multichannel blocker used to treat cardiac arrhythmia. Dronedarone at 10 and 

100 μM exhibited general toxicity and killed P19C5 cells in hanging drops by Day 1. Dronedarone caused 

significant reduction in P19C5 cell number relative to NIH/3T3 cells at 0.1 μM, but not at 1 μM (Fig. 2.2). 

No impact on EB development on size or EDI was observed at 0.1 μM or 1 μM (Fig. 2.6G). 

Fluorouracil is a pyrimidine analog antimetabolite and an antineoplastic agent used to treat 

various cancers. It was generally cytotoxic at 10 and 100 μM. At these concentrations of fluorouracil, EBs 

survived until Day 3 but completely disintegrated by Day 4. Significant reductions in P19C5 cell number 

and EB size were observed at 1 μM, but not at 0.1 μM. Notably, EDI was significantly increased by 

fluorouracil at 0.1 μM, and more markedly increased at 1 μM due to the drastically skinny shape of EBs 

(Fig. 2.3, Fig. 2.6H). 

Mifepristone is a synthetic steroid that inhibits progesterone receptor and is used as an 

abortifacient. It exhibited general toxicity at 100 μM, which also killed P19C5 cells in hanging drops by 

Day 1. The EB size was significantly reduced by mifepristone at 10 μM. Interestingly, EDI was 

significantly increased by mifepristone at 0.1 μM but decreased at 10 μM (Fig. 2.2 & Fig. 2.6M). 

Raloxifene is a selective estrogen receptor modulator prescribed to prevent osteoporosis in 

postmenopausal women. General cytotoxicity was observed at 100 μM, which also killed P19C5 cells in 

hanging drops by Day 1. Similarly to mifepristone, EDI was significantly increased at 0.1 μM but 

decreased at 10 μM (Fig. 2.2 & Fig. 2.6Q). EB growth was markedly diminished at 10 μM (Fig. 2.2). 

Ribavirin is a purine RNA analog used as an antiviral agent. Ribavirin exhibited general 

cytotoxicity at 100 μM. However, EB growth was only mildly impaired by ribavirin at 100 μM (Fig. 2.2 & 

Fig. 2.6R). Interestingly, EDI was altered by ribavirin at all concentrations tested, showing a significant 

increase at 0.1 μM, but decreases at 1, 10, and 100 μM (Fig. 2.2 & Fig. 2.6R). 

2.3.3 DRUGS THAT IMPACTED P19C5 CELLS WITH MILD POTENCY 

Seven drugs showed mild (i.e., at 1 μM or higher) impacts on P19C5 proliferation and/or EB 

development, including bicalutamide, dihydroergotamine, doxylamine, lovastatin, misoprostol, nystatin 

and orlistat. Bicalutamide is a non-steroidal anti-androgen used to treat prostate cancer and hirsutism. 

General cytotoxicity was observed at 100 μM (Fig. 2.3). At 10 μM, bicalutamide caused significant 

increase in EDI (Fig. 2.3 & Fig. 2.6C). 

Dihydroergotamine is semi-synthetic ergot alkaloid used to treat migraine headaches and 

orthostatic hypotension. General cytotoxicity was observed at 100 μM, which also killed P19C5 cells in 

hanging drops by Day 1. Dihydroergotamine at 10 μM concentration reduced both P19C5 cell number 
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and EB growth but promoted NIH/3T3 cell proliferation. Dihydroergotamine did not show significant 

impact on EDI (Fig. 2.3 & Fig. 2.6E).  

Doxylamine is a first generation anti-histamine used to treat respiratory allergies. At the highest 

concentration (100 μM), doxylamine promoted NIH/3T3 cell proliferation, but it caused a slight reduction 

in P19C5 cell number. At 100 µM concentration, EDI was also significantly decreased, without any 

observable impact on EB size (Fig. 2.3 & Fig. 2.6E). 

Lovastatin is a competitive HMG-CoA reductase inhibitor used to reduce LDL-cholesterol levels in 

hypercholesterolemia. Lovastatin was generally cytotoxic at 10 and 100 µM. Treatment concentrations of 

1 µM caused a reduction in EB size (< 80% of control). Notably, although no significant change in EDI 

was observed at 1 µM, the EDI standard deviation was markedly larger than the EDI standard deviation of 

the control (Fig. 2.3), suggesting that lovastatin caused more variability in EB shapes (Fig. 2.6K). 

Misoprostol is synthetic prostaglandin E1 analog used to prevent gastric ulcers induced by non-

steroidal anti-inflammatory drugs. It exhibited general cytotoxicity at 100 μM. At 10 μM, misoprostol 

caused reductions in P19C5 cell number relative to NIH/3T3 and diminished EB size. Significant increase 

in EDI was also observed at this concentration (Fig. 2.3 & Fig. 2.6N). 

Nystatin binds to cell membrane ergosterol and is used as an antifungal medication. Nystatin did 

not exhibit general cytotoxicity at any of the concentrations tested. However, a reductions in both EB size 

and EDI were observed at 100 μM (Fig. 2.3 & Fig. 2.6O). 

Orlistat is a lipase inhibitor used to treat or prevent obesity. Orlistat reduced P19C5 cell number 

more significantly than NIH/3T3 at 100 μM and caused significant reductions in EB size and EDI (Fig. 2.3 

& Fig. 2.6P). 

2.3.4 DRUGS THAT DID NOT EXHIBIT ANY IMPACT 

The following 5 drugs did not display general cytotoxicity or show observable impact on P19C5 

cells at the concentrations tested: folic acid (vitamin B9,a dietary supplement), leuprolide (a growth 

hormone-releasing hormone [GnRH] receptor agonist and inhibits gonadotropin secretion from the 

pituitary gland), metoclopramide (an antagonist of dopamine and serotonin receptors used as an 

antiemetic), thalidomide (an immunomodulatory agent), and warfarin (a vitamin K epoxide reductase 

inhibitor used as an anticoagulant) (Fig. 2.4 & Fig. 2.6I, J, L, S, and T). 
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2.3.5 CORRELATION BETWEEN DRUG IMPACT ON P19C5 CELLS AND KNOWN PREGNANCY 

RISKS 

The overall effects of the 20 drugs evaluated in the present study are summarized in Figure 5. 

Thirteen of the 16 contraindicated drugs impacted proliferation, EB growth and/or morphogenesis of 

P19C5 cells, with high or mild potency. Notably, all of the highly potent drugs (acitretin, bexarotene, DES, 

dronedarone, fluorouracil, mifepristone, raloxifene, and ribavirin) are contraindicated. Of the seven drugs 

that mildly impacted P19C5 cells, 5 are contraindicated (bicalutamide, dihydroergotamine, lovastatin, 

misoprostol, and orlistat) while 2 (doxylamine and nystatin) are considered safe for use during pregnancy. 

The impact of these safe drugs was observed only at the highest concentration (100 μM). All of the 

contraindicated drugs with mild impact, with the exception of orlistat, exhibited effects at concentrations 

lower than 100 μM. Also, although orlistat displayed significant impact only at 100 μM, it affected all three 

parameters of treated P19C5 cells, proliferation, EB size, and EDI. In contrast, doxylamine and nystatin 

impacted only two aspects parameters. Therefore, the two assays employed in the present study 

demonstrated a strong correlation between in vitro impact and known pregnancy risks of the drugs. 
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2.4 - Discussion 

To reduce animal use in developmental toxicology studies, in vitro alternatives are strongly 

desired. Because only a limited aspect of in vivo processes can be simulated in a single type of in vitro 

test, multiple tests would be required to encompass a broad range of embryonic events. Here, we 

explored the potential of P19C5 EBs, which simulate growth and axial elongation morphogenesis of early 

embryos, as an in vitro tool to study human developmental toxicants. The analysis measured 

morphometric parameters (size and EDI) of Day 4 EBs to evaluate developmental impact of 20 

therapeutic drugs with known in vivo developmental toxicity in humans (Table 2.1). The morphometric 

analysis was paired with cytotoxicity data obtained from proliferation assays of embryonic P19C5 cells 

and of somatic NIH/3T3 fibroblast cells. To our knowledge, this is the first study to incorporate the 

morphogenesis of EBs as a stem cell-based in vitro test for developmental toxicants. Although the 

effectiveness of P19C5 EB morphogenesis system needs to be further examined using a wider array of 

chemical compounds with known developmental toxicity, the present study serves as an introduction for a 

novel in vitro test that will complement other non-animal alternative methods. 

Recently, another research group has shown that EBs made of mouse ES cells (mESC) also 

display axial elongation morphogenesis reminiscent of gastrulating embryos (van den Brink et al., 2014). 

This indicates that in vitro recapitulation of morphogenesis is not a property exclusive to P19 and P19C5 

cells. An in vitro gastrulation model of mESC may be incorporated for developmental toxicity tests in 

future studies. Nonetheless, elongation morphogenesis appears to occur more easily and prominently in 

P19C5 EBs compared to mESC EBs. To generate elongating EBs, mESCs are first aggregated in 

hanging drops for 2 days, before being transferred to a non-adhesive Petri dish filled with a culture 

medium containing activators of Nodal signaling (Activin A) and Wnt signaling (CHIR99021; a 

pharmacological inhibitor of glycogen synthase kinase 3) to induce mesendoderm formation. After 

exposure to these activators, EBs begin to elongate within 2-3 days (van den Brink et al., 2014). In 

contrast, P19 and P19C5 EBs spontaneously elongate in hanging drops without a change of culture 

format or addition of Nodal and Wnt activators. The difference between mESC and P19 cells’ ability to 

initiate gastrulation may be due to the difference in the developmental stages represented by these two 

pluripotent stem cell lines. mESCs retain developmental and molecular properties that are close to the 

inner cell mass or the epiblast of the pre-implantation embryo, whereas P19 cells possess features of the 

primitive ectoderm or the epiblast of the post-implantation embryo (Jones-Villeneuve et al., 1982; Yeom et 

al., 1996; Niwa, 2007). Use of multiple stem cell lines representing different developmental stages is likely 

to enhance studies of developmental toxicants, because actions of chemical agents may differ depending 

on embryonic stages. Regardless, the relatively simple protocol to induce morphogenesis in P19C5 EBs 

offers a practical benefit by reducing the time and labor required to induce gastrulation. 
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One of the most challenging aspects of developing and validating in vitro systems for 

developmental toxicity tests is the selection of test drugs. Many efforts have been made to choose a 

suitable list of reference compounds to be used for the validation of in vitro as well as non-mammalian 

test systems. Examples of validation panels include the group of 20 compounds selected under the 

direction of the European Centre for the Validation of Alternative Methods (ECVAM) (Brown et al., 2002) 

and the additional 13 compounds chosen for follow-up studies (Marx-Stoelting et al., 2009). Although 

these compounds were selected carefully based on available, high-quality in vivo data, it is controversial 

as to whether they can serve as “gold standards” for validation of in any vitro systems (Daston et al., 

2010, 2014; Riebeling et al., 2012). In the present study, we selected 20 drugs with diverse chemical and 

therapeutic properties in order to gain insight into the applicability and limitation of P19C5 EBs to detect 

developmental toxicants. Although these drugs were selected independently from the previously chosen 

reference compounds for the other studies, there were some overlaps with the 13 follow-up compounds 

mentioned above, namely lovastatin, warfarin, doxylamine, and metoclopramide. Nonetheless, it is clear 

that further investigations are necessary using additional compounds to more fully reveal the strengths 

and weaknesses of each in vitro system. 

Because most embryonic events, including cell differentiation and morphogenesis, are tightly 

regulated by the actions of specific gene products, incorporation of molecular endpoint analysis is likely to 

allow more effective detection of developmental toxicity. Indeed, various molecular endpoints, particularly 

involving detection of cell type-specific gene expression, have been incorporated into ESTs, so that 

chemical impact on cell differentiation can be assessed more sensitively, quantitatively, objectively, and 

speedily (zur Nieden et al., 2001; Buesen et al., 2004, 2009; Seiler et al., 2004; Suzuki et al., 2011; Seiler 

and Spielmann, 2011; van Dartel and Piersma, 2011; de Jong et al., 2012; Hayes et al., 2013; Panzica-

Kelly et al. 2013; Gao et al., 2014; Li et al., 2015). P19C5 EB system is also amenable to the addition of 

molecular endpoint analyses. Previously, we showed that the Alzheimer’s medication, donepezil, 

diminishes EB elongation. While the morphogenetic impact of donepezil was detectable in Day 4 EBs as 

a significant reduction in EDI, the expressions of developmental regulator genes, such as Fgf8 and Cdx2, 

were significantly altered by donepezil in Day 2 EBs (Lau and Marikawa, 2014). In P19 and P19C5 EBs, a 

number of developmental regulator genes for gastrulation and axial patterning, such as Brachyury, Snai1, 

Wnt3a, Notch1, and Hox genes, are expressed in a temporally and spatially specific manner (Marikawa et 

al., 2009; Lau and Marikawa, 2014). Thus, future investigations incorporating gene expression analyses 

should provide deeper insight into potential developmental toxicity of various chemical agents and their 

mechanisms of action. 

P19C5 EB morphogenesis simulates only a limited stage and a limited region of embryo 

development. The temporal profile of gene expressions (Marikawa et al., 2009; Lau and Marikawa, 2014) 

suggests that the four days of P19C5 EB development represent E5.0 to E8.0 of mouse embryonic 
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stages, which roughly correspond to the second through fourth weeks of human development. Also, 

based on the spatial profile of gene expressions, P19C5 EBs appear to represent the caudal region of the 

embryo, but not the cranial structures, such as the brain and the heart. Nonetheless, many of the 

contraindicated drugs affected P19C5 EB development in the present study. It is possible that numerous 

developmental regulators that also play essential roles in other stages and regions of embryo 

development control P19C5 EB morphogenesis. Elongation morphogenesis of P19C5 EBs depends on 

various core developmental signals, specifically Wnt, Nodal/Activin, Bmp, Fgf, and retinoic acid pathways, 

which alters EB morphogenesis in a manner consistent with their roles in gastrulation and axial elongation 

and patterning in vivo (Marikawa et al., 2009; unpublished data). Chemicals that interfere with these 

signals are likely to impair P19C5 EB morphogenesis. Apart from the synthetic retinoids, acitretin and 

bexarotene, it is currently unknown whether the contraindicated drugs tested in the present study 

influence the above signaling pathways. However, genetic studies have linked anomalies in these 

signaling pathways to numerous human birth defects; for example, Wnt signaling is implicated in tetra-

amelia and congenital duplication of palm syndrome (Niemann et al., 2004; Al-Qattan et al., 2009), 

Nodal/Activin signaling is linked to heterotaxy syndrome (Ma et al., 2012), and Fgf signaling is associated 

with achondroplasia and Apert syndrome (Yamaguchi and Rossant, 1995; Hajihosseini, 2008). Thus, in 

spite of a limited representation of developmental events, P19C5 EB morphogenesis may be more 

versatile in detecting a wide range of developmental toxicants. 

In the present study, size and EDI were used as morphometric parameters of EBs to 

quantitatively measure developmental impact of drugs. EDI is calculated based on the size (area) and the 

length of circumference (perimeter) of individual EBs, and its increase implicates more elongation and/or 

distortion of the EB shape. EB elongation is driven by convergent extension, a morphogenetic process of 

orchestrated cell migration and intercalation (Tada and Heisenberg, 2012). Thus, reduction in EDI may be 

caused by impairment in convergent extension, which is likely to contribute to developmental anomalies 

in vivo, including neural tube defects (Copp et al., 2003; Ueno and Greene, 2003). In contrast, the 

mechanistic basis for an increase in EDI is currently unclear, although stimulated cell migration or 

reduced surface tension may cause pronounced elongation or distortion of EBs. Further investigations 

are required to elucidate the cellular and molecular mechanisms that are behind increased EB elongation 

or distortion. Also, EDI alone is not sufficient to distinguish between elongation and distortion effectively. 

Thus, in addition to EDI, other morphometric parameters need to be explored in future studies to detect 

various morphogenetic impacts on EBs.  

Three of the contraindicated drugs (leuprolide, thalidomide and warfarin) did not alter EB size or 

EDI, whereas two safe drugs (doxylamine and nystatin) impaired EB development at the highest 

concentration (100 μM). These five cases of apparent “misclassifications” may exemplify limitations of the 

P19C5 model in predicting certain developmental toxicants. Like most other in vitro tests, the P19C5 EB 
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system recapitulates only embryological events, but not maternal environment. Thus, it is unlikely to 

detect developmental toxicants that primarily act on maternal tissues and indirectly disturb embryo 

development. This may be the case for leuprolide, which primarily acts on the maternal pituitary gland 

and alters the levels of endocrine hormone signaling to secondarily impair embryogenesis. Furthermore, 

most in vitro systems, including P19C5 EBs, are limited by a reliance on an artificial culture environment, 

which may obscure the effects of certain drugs. Developmental toxicity of warfarin is likely due to its 

action as an inhibitor of vitamin K regeneration. Animal serum in the P19C5 culture medium may contain 

a substantial amount of vitamin K, which may negate the effects of warfarin. Because most culture media, 

supplements and sera are enriched with various essential metabolites, results of in vitro toxicity tests, 

particularly those with no impact, may require cautious interpretation with consideration of mechanisms of 

drug action. 

Developmental toxicants that exhibit species-specific effects may also be misclassified by the 

P19C5 system, which is composed of mouse stem cells. Although thalidomide is a well-known teratogen 

in humans, the limb malformations characteristic of thalidomide-induced developmental toxicity are 

essentially absent in rodents (Brent, 1964). Thalidomide binds and inhibits the cereblon protein, which 

appears to be the primary cause of its teratogenic effects (Ito et al., 2010). However, homozygous 

cereblon-knockout mice exhibit only behavioral problems with no limb defects (Rajadhyaksha et al., 

2012). Thus, failure of thalidomide to impact P19C5 morphogenesis may be reflective of species-specific 

teratogenicity. To detect developmental toxicants that specifically affect human embryos, in vitro 

morphogenesis models composed of human cells may be necessary. Many researchers have adopted 

human ES cells (hESC) as more human-relevant in vitro models to assess developmental toxicity of 

chemical agents, and some hESC systems have been shown to detect the effect of thalidomide 

(Kameoka et al., 2014; Xing et al., 2015). Previously, we established a culture condition to induce 

elongation morphogenesis in EBs made of hESCs (Lau and Marikawa, 2014). It is of particular interest to 

examine whether thalidomide affects morphogenesis of these hESC EBs in future studies. 

Although considered safe to be used during pregnancy, both doxylamine and nystatin impaired 

P19C5 EB development. This apparent misclassification highlights another limitation of the experimental 

scheme that was adopted in the present study, i.e., methodical testing of a set of predetermined 

concentrations. The concentration range of 0.1 to 100 µM may not reflect realistic levels of exposure of 

certain drugs to the developing human embryo. As an antifungal agent, nystatin is administered topically 

or orally and is minimally absorbed into circulation. Thus, the chance of embryonic exposure to high 

levels of nystatin is negligible, which likely contributed to the low pregnancy risk classification of this drug. 

However, nystatin is also known to be highly toxic when administered intravenously. The adverse impact 

on EB development may have been reflecting the toxic potential of nystatin at high plasma 

concentrations, which are unlikely to occur in pregnant women who use nystatin only topically or orally. 
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Also, the concentration of doxylamine that affected P19C5 cell number and EDI was 100 µM, which is far 

higher than the plasma concentration found after routine doses in patients (Videla et al., 2013). Therefore, 

in future studies to validate the P19C5 EB system, it is important to consider realistic exposure levels for 

each drug — a concept that is extensively discussed in recent studies by Daston et al. (2010, 2014) as a 

critical feature of effective developmental toxicant assays. 

As a potential tool for developmental toxicity testing, the P19C5 EB system has several practical 

advantages over other in vitro methods. First, the P19C5 system requires only four days from the start of 

hanging drop culture to morphometric analysis. In contrast, the standard ESTc protocol requires a total of 

10 days of culture to observe beating of cardiomyocytes (Spielmann et al., 1997; Seiler et al., 2006). 

Modifications of ESTc have shortened the duration of the assay by analyzing specific cardiac marker 

gene expression, but still require six days of culture (Suzuki et al., 2011). Secondly, the procedure for 

P19C5 EB culture is simple, as it takes only one series of hanging drop culture without any change of 

culture medium or culture format. This is an advantage over other EST protocols that require changes in 

culture medium and/or format in order to promote differentiation of specific cell types. Thirdly, simple 

tracing of EB circumferences in the ImageJ program can provide data on multiple morphometric 

parameters, including the size and EDI, which are altered by developmental toxicity of test compounds. 

Each morphometric parameter is likely to be affected by specific aspects of EB development. For 

example, changes in cell proliferation would impact EB size whereas alteration in cell migration and 

adhesion would affect EDI. Thus, morphometric analyses can provide mechanistic insight into the action 

of developmental toxicants without intensive labor or techniques. Lastly, the P19C5 EB system may be 

more economical. Culturing the P19C5 cell line is less expensive than culturing ES cell lines because it 

does not require supplementation of Leukemia Inhibitory Factor for the maintenance of undifferentiated 

state. Furthermore, drug impact in the P19C5 system can be assessed visually using the ImageJ 

program, which is freely available from the National Institutes of Health. These practical advantages do 

not presume effectiveness or applicability of the P19C5 EB systems. However, the establishment of 

faster, simpler, and cheaper methods is necessary for pharmaceutical companies to conduct thorough 

and extensive developmental toxicity tests on the hundreds or thousands of new therapeutic compounds. 

Though further validation studies are needed, the present study shows that the P19C5 EB system 

is a promising non-animal test for developmental toxicants, because it has potential of high accuracy, 

offers economic practicality, and is based on realistic embryologic processes of growth and 

morphogenesis that are often targeted in various birth defects. 
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Figure 2.1. In vitro morphogenesis of P19C5 embryoid bodies (EBs). (A) Photographs of control EBs over 
four days of culture to demonstrate the time course of morphological transformation. Scale bar = 500 μm. 
(B, C) Temporal changes in the EB size (B) and EDI (C). Graphs are mean + standard deviation (n = 44). 
Asterisks indicate significant differences between two adjacent groups (p < 0.01; two-sample t-test). (D) 
The experimental scheme to examine morphogenetic impact of the therapeutic drugs.  
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Figure 2.2. Drugs that impacted P19C5 cells with high potency. Three types of graphs are shown for 
each drug. Relative values are calculated as a percentage of the corresponding set’s control value. All 
control values are shown as 100. Top: Relative cell numbers of P19C5 (red line) and NIH/3T3 (blue line) 
after 4 days of mono-layer culture in the presence of drug. Mean ± standard deviation is presented for 
each cell line (n = 4). Downward black arrows indicate significant reductions in P19C5 cell number 
relative to NIH/3T3 cell number (p < 0.01). Middle: Relative size of P19C5 EBs after 4 days of hanging 
drop culture in the presence of drug. Mean ± standard deviation is presented as the data points and error 
bars respectively (n = 45 to 48). Values of “0” for relative EB size indicate death of EBs. Bottom: Relative 
EDI (Elongation Distortion Index) of P19C5 EBs after 4 days of hanging drop culture. Mean + standard 
deviation is presented as each column’s height and error bar respectively (n = 45 to 48). Downward black 
arrows indicate significant reductions in relative EDI whereas upward white arrows indicate significant 
increase in relative EDI (p < 0.01). NA: Not applicable due to death of EBs. Horizontal axes represent 
drug concentrations in micromolar.  
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Figure 2.3. Drugs that impacted P19C5 cells with mild potency. Relative values are calculated as a 
percentage of the corresponding set’s control value, and all control values are shown as 100. Top: 
Relative cell numbers of P19C5 (red line) and NIH/3T3 (blue line) after 4 days of mono-layer culture in the 
presence of drug. Mean ± standard deviation is presented for each cell line (n = 4). Downward black 
arrows indicate significant reductions in P19C5 cell number relative to NIH/3T3 cell number (p < 0.01). 
Middle: Relative size of P19C5 EBs after 4 days of hanging drop culture in the presence of drug. Mean ± 
standard deviation is presented as the data points and error bars respectively (n = 45 to 48). Bottom: 
Relative EDI (Elongation Distortion Index) of P19C5 EBs after 4 days of hanging drop culture. Mean + 
standard deviation is presented as each column’s height and error bar respectively (n = 45 to 48). 
Downward black arrows indicate significant reductions in relative EDI whereas upward white arrows 
indicate significant increase in relative EDI (p < 0.01). NA: Not applicable due to death of EBs. Horizontal 
axes represent drug concentrations in micromolar. 
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Figure 2.4. Drugs that did not impact P19C5 cells. Top: Relative cell numbers of P19C5 (red line) and 
NIH/3T3 (blue line) after 4 days of mono-layer culture in the presence of drug. Mean ± standard deviation 
is presented for each cell line (n = 4). Middle: Relative size of P19C5 EBs after 4 days of hanging drop 
culture in the presence of drug. Mean ± standard deviation is presented (n = 45 to 48). Bottom: Relative 
EDI (Elongation Distortion Index) of P19C5 EBs after 4 days of hanging drop culture. Mean + standard 
deviation is presented (n = 45 to 48). Horizontal axes represent drug concentrations in micromolar.  
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Figure 2.5. Summary diagram of drug impacts. See text for details. 



33 
 

Figure 2.6. Example images of P19C5 EBs after four days of treatment in hanging drop culture. 
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Figure 2.6. (Continued). Example images of P19C5 EBs after four days of treatment in hanging drop 
culture. 
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Figure 2.6. (Continued). Example images of P19C5 EBs after four days of treatment in hanging drop 
culture. 
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Figure 2.6. (Continued). Example images of P19C5 EBs after four days of treatment in hanging drop 
culture. 
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Table 2.1. Compounds used in the Category X validation study. 

Drug Name 
(CAS RN*1) 

Pregnancy Risk Therapeutic Target Chemical Properties References*2 

Acitretin (CAS 
55079-83-9) 

Contraindicated Dermatologic 
diseases 

Synthetic retinoid 
(RAR receptor 
agonist) 

Barbero et al., 2004; 
Geiger et al., 1994 

Bexarotene (CAS 
153559-49-0) 

Contraindicated Cutaneous T-cell 
lymphoma 

Synthetic retinoid 
(RXR receptor 
agonist) 

Lu et al., 1997; Elmazar 
and Nau, 2004 

Bicalutamide (CAS 
90357-06-5) 

Contraindicated Prostate cancer, 
Hirsutism 

Non-steroidal anti-
androgen 

Sadar et al., 1999; 
Cockshott, 2004 

Diethylstilbestrol 
(CAS 56-53-1) 

Contraindicated Miscarriage; 
Premature 
deliveries 

Non-steroidal 
estrogen 

Mahawong et al., 2014; 
Reed and Fenton, 2013 

Dihydroergotamine 
(CAS 511-12-6) 

Contraindicated Migraine Synthetic ergot 
alkaloid 

Bérard and Kori, 2012; 
Hohmann and Künzel, 
1992 

Doxylamine (CAS 
469-21-6) 

Safe Allergy First generation 
antihistamine 

Gilboa et al., 2014; 
Slaughter et al., 2014 

Dronedarone 
(CAS 141626-36-
0) 

Contraindicated Arrhythmia Multi-channel blocker  Marzocchi and 
Lombardi, 2011; Eskes 
and Wiersinga, 2009 

Fluorouracil (CAS 
51-21-8) 

Contraindicated Cancer Thymidylate synthase 
inhibitor 

Kuwagata et al., 1998; 
Murthy et al., 2014 

Folic Acid (CASRN 
59-30-3) 

Safe Used as dietary 
supplement 

Vitamin B9 van Mil et al., 2010; 
Charles et al., 2005 

Leuprolide (CAS 
53714-56-0) 

Contraindicated Endometriosis; 
Prostate cancer 

LHRH receptor 
agonist 

Abu-Heija et al., 1995; 
Cahill et al., 1994 

Lovastatin (CAS 
75330-75-5) 

Contraindicated Hyper-
cholesterolemia 

HMG-CoA reductase 
inhibitor  

Lankas et al., 2004 
Godfrey, 2012 

Metoclopramide 
(CAS 364-62-5) 

Safe Nausea Dopamine receptor 
antagonist 

Pasternak et al., 2013; 
Matok and Perlman, 
2014 

Mifepristone (CAS 
84371-65-3) 

Contraindicated Used as 
abortifacent 

Progesterone 
receptor antagonist 

Chen et al., 2014; 
Blanch et al., 1998 

Misoprostol (CAS 
59122-46-2) 

Contraindicated Gastric ulcers Prostaglandin E1 
analog 

Bos-Thompson et al., 
2008; Schüler et al., 
1999 

Nystatin (CAS 
1400-61-9) 

Safe Fungal infection Ergosterol-binding King et al., 1998; Larson 
et al., 2000 

Orlistat (CAS 
96829-58-20) 

Contraindicated Obesity Lipase inhibitor Källén, 2014; Browne et 
al., 2006 

Raloxifene (CAS 
84449-90-1) 

Contraindicated Osteoporosis; 
Breast cancer 

Selective estrogen 
receptor modulator 

Gizzo et al., 2013; 
Komm and Mirkin, 2014 

Ribavirin (CAS 
36791-04-5) 

Contraindicated Viral infection Purine analog Roberts et al., 2010; De 
Santis et al., 2003 

Thalidomide (CAS 
50-35-1) 

Contraindicated Leprosy; Multiple 
myeloma 

Immuno-modulatory 
agent 

Vargesson, 2009; Ito 
and Handa, 2012 

Warfarin (CAS 81-
81-2) 

Contraindicated Used as blood 
thinner 

Vitamin K epoxide 
reductase inhibitor 

Starling et al., 2012; 
Mehndiratta et al., 2010 

 
*1 CAS RN: Chemical Abstracts Service Registration Number 
 
*2 References that are relevant to pregnancy risk and/or mechanisms of actions 
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CHAPTER 3. EXPOSURE-BASED VALIDATION OF AN IN VITRO 

GASTRULATION MODEL FOR DEVELOPMENTAL TOXICITY ASSAYS 

3.1 - Introduction 

In utero exposure to developmental toxicants can interfere with the normal course of embryonic 

development and result in abnormalities, such as death, growth retardation and malformations. Many 

medications, herbicides and industrial byproducts are known to be developmental toxicants (Schardein 

and Macina, 2006). However, many more compounds have not been sufficiently evaluated for potential 

developmental toxicity, so that continued efforts are required to identify adverse impact on embryos and 

to minimize harmful exposures to women of child-bearing age. In vitro model systems, particularly those 

using pluripotent stem cells, are promising screening tools for developmental toxicants. Pluripotent stem 

cells, such as embryonic stem (ES) cells, can differentiate into multiple tissue types in vitro and display 

embryo-like properties. Thus, pluripotent stem cells can recapitulate certain aspects of embryonic 

development and serve as in vitro models to demonstrate the impacts of developmental toxicants. ES cell 

tests, or ESTs, evaluate the developmental toxicity of compounds based on their inhibitory effects on ES 

cell differentiation (Riebeling et al., 2012; Theunissen et al., 2012), but each individual EST system 

recapitulates only a limited aspect of embryonic development, i.e., differentiation of cardiomyocytes, 

neurons, or osteoblasts. Thus, it is more likely that a panel of complementary in vitro systems — each 

representing distinct aspects of embryonic development — can comprehensively screen a broad range of 

developmental toxicants. 

To assemble a panel of complementary assays, each assay must undergo a series of validation 

studies using known developmental toxicants to assess its applicability and limitations. However, 

selection of proper reference compounds to validate in vitro screening assays has been challenging, 

partly because developmental impact of compounds varies depending on timing, dose and duration of 

exposure to embryos (Friedman, 2010; Jelínek, 2005). For example, a given compound can exert 

developmental toxicity when exposed at a high dose, but the same compound may pose no risk at lower 

doses (Daston et al., 2010). Therefore, dichotomic designation of compounds as developmental toxicants 

or non-toxicants is ineffective in properly validating assays. To that end, Daston and colleagues have 

proposed an “exposure-based validation list” for developmental toxicity screening assays (Daston et al., 

2014). This list (referred hereafter as the Daston list) consists of 20 “positive exposures” known to cause 

embryo-fetal death or structural malformation in rats, and 19 “negative exposures”, which have no 

adverse impacts on rat embryo development. Eleven of these compounds demonstrate both a positive 

exposure at a high concentration and a negative exposure at a low concentration. The Daston list is a 

significant step forward in validating in vitro assays for developmental toxicity screening. 
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The objective of the present study is to validate the in vitro gastrulation model of P19C5 stem 

cells using the compounds on the Daston list. P19C5 cells are mouse embryonal carcinoma stem cells 

that possess properties similar to the pluripotent epiblast lineage of post-implantation embryos. Three-

dimensional culture of P19C5 cell aggregates results in spontaneous differentiation of mesendoderm 

along with steady increase in size and axial elongation (Lau and Marikawa, 2014). This morphogenetic 

transformation of P19C5 cell aggregates, or embryoid bodies (EBs), resembles gastrulation, the 

morphogenetic process of early embryonic development that creates the germ layers and elongated body 

shape along the anterior-posterior axis. Growth and axial elongation of the P19C5 gastrulation model are 

impaired by pharmacological inhibitors of the major developmental signals that are crucial for embryo 

body patterning, namely Wnt, Nodal, Fgf and retinoic acid signaling pathways (Li and Marikawa, 2015). 

The morphogenesis of P19C5 EBs is also sensitive to various therapeutic drugs under the Food and Drug 

Administration (FDA) Pregnancy Risk Category X, i.e., those contraindicated for use during pregnancy 

(Warkus et al., 2016). Furthermore, valproic acid (VPA) at 0.8 mM, one of the positive exposures in the 

Daston list, affects the P19C5 morphogenesis, such that VPA-treated EBs are smaller, distorted, and less 

elongated (Li and Marikawa, 2016). These studies suggest that the P19C5 gastrulation model can serve 

as an effective in vitro tool to detect developmental toxicants. 

Here, we validated the P19C5 gastrulation model using the 34 exposures compiled in the Daston 

list. While the morphology-based assay correctly classified many of the Daston exposures, the present 

study also revealed some limitations of the assay based on the cases where exposures were 

misclassified. 
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3.2 - Materials and methods 

3.2.1 TEST COMPOUNDS 

Compounds of the Daston list (Daston et al., 2014) used in the present study are shown in Table 

1. Four compounds in the Daston list, namely HEPP (positive exposure), SB-209770 (positive and 

negative exposures), tapentadol (negative exposure), and valproic acid (positive exposure), were not 

evaluated for the following reasons. HEPP and SB-209770 were unavailable from major chemical 

suppliers. Tapentadol was available from one supplier (Sigma-Aldrich, St Louis, Missouri) as a solution of 

1.0 mg/mL dissolved in methanol (Catalog Number T-058). However, to achieve the concentration 

indicated in the Daston list (252 mg/L), about 25% of the culture medium would be methanol, which is not 

compatible with our assay (see below). The morphogenetic effect of valproic acid on the P19C5 

gastrulation model has been evaluated previously, including the concentration cited in the Daston list (0.8 

mM) (Li and Marikawa, 2016). Note that the concentration of desloratadine indicated in the Daston study 

(1.5 mM) (Daston et al., 2014) is apparently a typographical error, as the original study referenced therein 

(FDA, 2001) indicates 1.5 μM instead. Accordingly, desloratadine was evaluated at 1.5 μM as a negative 

exposure in the present study. 

3.2.2 CELL CULTURE 

 P19C5 cells, a subline of P19 mouse embryonal carcinoma cell line (Lau and Marikawa, 2014), 

were propagated in culture medium (Minimum Essential Medium Alpha with nucleosides and GlutaMAX 

Supplement [LifeTechnologies, Carlsbad, California], 2.5% fetal bovine serum, 7.5% newborn calf serum, 

50 units/mL penicillin, and 50 μg/mL streptomycin). Embryoid bodies (EBs) of P19C5 cells were 

generated according to the method previously described for P19 cell aggregates (Marikawa et al., 2009). 

Briefly, P19C5 cells were fully dissociated with Trypsin-EDTA, and suspended in culture medium 

containing 1% dimethyl sulfoxide (DMSO) at the density of 10 cells/μL with or without specific amount of a 

test compound (Fig. 3.1). Drops (20 μL each) of cell suspension were spotted on the inner surface of Petri 

dish lids for hanging drop culture. NIH/3T3 (derived from mouse embryonic fibroblast), HEK293 (derived 

from human embryonic kidney), and JEG3 (derived from human choriocarcinoma) were obtained from the 

American Type Culture Collection (Manassas, Virginia), and propagated in culture medium (Dulbecco’s 

Modified Eagle Medium, GlutaMAX Supplement [LifeTechnologies], 10% fetal bovine serum, 50 units/mL 

penicillin, and 50 μg/mL streptomycin). 

3.2.3 IMAGE ANALYSIS 

Embryoid bodies (EBs) were removed from hanging drops and grouped together for photography 

using an AxioCam MRm digital camera connected to an Axiovert 200 microscope with Hoffman 
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modulation-contrast optics (Carl Zeiss, Thornwood, NY). Image files were converted to JPEG format and 

opened in ImageJ (http://rsb.infonihgov/ij). Morphological parameters of individual EBs were measured on 

ImageJ by tracing their circumference. In the previous studies (Lau and Marikawa, 2014; Li and 

Marikawa, 2015; Warkus et al., 2016), tracing of EB circumference was performed manually using the 

polygon selection tool. In the present study, however, we formulated a series of program operations to 

enable tracing of EB circumference in a faster and less laborious fashion. The details of the program 

operations are described in Appendices A and B. Briefly, the first set of operations (e.g., Image 

Calculator, Find Edges, Brightness/Contrast and Binary) was applied to convert the inside of EBs into 

solid black while the background into white. The second set of operations (e.g., Wand Tool and Fit 

Splines) was applied to detect the outlines of blackened areas, corresponding to the circumference of 

EBs. The third set of operations (e.g., Measure) was applied to selected regions of interest (ROI) to 

determine their morphological parameters, namely area and circularity (= 4 × π × area / perimeter2). 

Measurements were exported to Microsoft Excel, where Elongation Distortion Index (EDI = 1 / circularity − 

1) was calculated. As described previously, area was used as a proxy for the size of EB, whereas EDI 

was used to gauge the extent of EB axial elongation (Warkus et al., 2016). 

3.2.4 VIABILITY ASSAY 

The impact of drugs on cell proliferation and viability was evaluated using CellTiter-Glo 

Luminescent Cell Viability Assay system (Promega, Madison, Wisconsin), which determines the number 

of live cells in culture by measuring the amount of ATP as a quantitative proxy for the number of 

metabolically active cells. P19C5, NIH/3T3, HEK293 and JEG3 cells were seeded in 96-well plates at the 

density of 100, 250, 250 and 500 cells/well, respectively, and were cultured in the corresponding medium 

(100 μl/well) supplemented with 1% DMSO with or without specific amount of a test compound. After 4 

days of culture, cells were treated with CellTiter-Glo Reagent for measurement of luminescence, as a 

readout of ATP amount, according to the manufacturer’s instruction (Promega), using Gene Light 55 

Luminometer (Microtech, Chiba, Japan). Cell seeding density was optimized through a series of pilot 

experiments, to confirm that cell numbers at the end of four days of culture were proportionate to 

intensities of luminescence. Relative cell number was calculated based on ratio of the luminescence 

intensity in compound-treated cells to that in non-treated cells of the same set of experiments. For each 

compound exposure, three sets of experiments were conducted as biological replicates. 

3.2.5 STATISTICAL ANALYSES 

Experiments to assess morphological impacts of compound exposures on EB morphology were 

conducted in three biological replicates using different collections of cell suspensions. For each replicate, 

16 hanging drops were generated per exposure (a specific concentration of compound) in parallel with 16 
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control (i.e., no compound) hanging drops (Fig. 3.1). Area and EDI of individual Day 4 EBs were 

normalized against the average of control EBs, and defined as relative area and relative EDI, 

respectively, expressed in percentages (i.e., averages of relative area and relative EDI of control EBs are 

100%). Data from 3 replicates were compiled, and their averages are shown with 95% confidence 

intervals (Fig. 3.2). Thus, a total of 46 to 48 EBs were scored for each exposure (1 or 2 EBs were 

occasionally lost or damaged during operations). To verify that observed effects on EBs were statistically 

significant, two-sample t-test was performed between compound-treated group and the matching control 

group. All morphological impacts that were defined as adverse in the present study were statistically 

significant (P < 0.01). 
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3.3 - Results 

3.3.1 EXPERIMENTAL DESIGN 

The overall experimental scheme is shown in Fig. 3.1. In the present study, we examined several 

concentrations for each compound in addition to those in the Daston list (Daston et al., 2014). 

Particularly, when Daston’s positive exposures had no apparent effect on P19C5 EBs, higher 

concentrations were also evaluated. EBs were observed daily for survival and integrity. On the fourth day 

of culture (Day 4), EBs were photographed and analyzed using the ImageJ program to measure the 

morphometric parameters, namely area and EDI (see Materials and Methods). Impact of each compound 

exposure was assessed based on changes in area or EDI relative to control EBs. In the present study, a 

compound exposure was classified as having an “adverse” effect on EB morphogenesis when it caused 

either of the following three outcomes: (1) degeneration (i.e., death) of EBs at any time point in culture or 

cell aggregation failure, (2) a reduction in the average area by more than 20% relative to control EBs, and 

(3) a decrease or increase in the average EDI by more than 40% relative to control EBs. Note that an 

increase in the average EDI accompanied by an increase in the average area was not classified as 

“adverse”, because such condition suggests “promotion” of EB growth and morphogenesis rather than 

“impairment” (see Discussion).  

3.3.2 EFFECTS OF THE POSITIVE AND NEGATIVE EXPOSURES ON EB MORPHOGENESIS 

Morphogenetic impacts of compound exposures on P19C5 EBs are shown in Fig. 3.2 and 

summarized in Tables 2 and 3 with respect to specific concentrations indicated in the Daston list. Sample 

images of EBs, namely those that were distinctly affected by exposures, are shown in Fig. 3.3. Based on 

the classification criteria described above, 58.8% (10 out of 17) of the positive exposures tested had 

adverse impact on P19C5 EBs (Table 2.2). Specifically, acetazolamide (120 μM) reduced relative area by 

25% and reduced relative EDI by 45%; all-trans retinoic acid (ATRA; 200 nM) reduced relative area by 

60% and reduced relative EDI by 90%; caffeine (325 μM) increased relative EDI by 70%; hydroxyurea 

(350 μM) caused death; mono(2-ethylhexyl) phthalate (MEHP; 150 μM) reduced relative area by 25%; 

methoxyacetate (5 mM) reduced relative area by 25% and reduced relative EDI by 90%; methylmercury 

(5 μM) caused death; nilotinib (28 μM) prevented cell aggregation (without apparent cell death); 

ramelteon (80 μM) increased relative EDI by 45%; and salicylic acid (3 mM) reduced relative area by 

60%. In contrast, only 17.6% (3 out of 17) of the negative exposures exhibited adverse effects on EB 

development (Table 3.3). Namely, butylparaben (110 μM) reduced relative area by 55%; nilotinib (2 μM) 

reduced relative area by 25%; and propylene glycol (850 mM) caused death. Overall, a significantly 

higher percentage of the positive exposures exhibited adverse impacts on EBs than the negative 

exposures (P = 0.013; chi-square test). 
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No adverse effect was observed in the P19C5 gastrulation model in response to seven of the 

Daston’s positive exposures, namely abacavir (80 μM), artesunate (20 nM), dabigatran (7 μM), ethylene 

glycol (57 mM), fingolimod (67 nM), glycolic acid (5 mM), and methanol (270 mM). Thus, we further 

examined whether EBs could be affected by these compounds at higher concentrations than those 

indicated in the Daston list. Artesunate, fingolimod, or methanol did not show any adverse effect on EB 

morphogenesis even at four times higher concentrations (Fig. 3.2), suggesting that the P19C5 

gastrulation model is unable to detect developmental toxicity of these compounds at physiologically 

relevant concentrations. However, abacavir at four times higher concentration (320 μM) reduced relative 

area by 25%; dabigatran at two times higher concentration (14 μM) reduced relative area by 21%; 

ethylene glycol at four times higher concentration (228 mM) reduced relative area by 25%; and glycolic 

acid at four times higher concentration (20 mM) reduced relative area by 80% and reduced EDI by 70%. 

This suggests that the P19C5 gastrulation model may still be able to detect these four developmental 

toxicants, albeit with slightly less sensitivity than in vivo. 

Ten of the Daston compounds evaluated (abacavir, ATRA, caffeine, dabigatran, ethylene glycol, 

glycolic acid, MEHP, methanol, nilotinib, and ramelteon) are categorized as both positive and negative 

exposures depending on concentrations. Such compounds are the most useful to rigorously validate the 

sensitivity and specificity of screening assays (Daston et al., 2014). Accordingly, to the classification 

criteria described above, the P19C5 EB model was able to distinguish between positive and negative 

exposures for four of these compounds (ATRA, caffeine, MEHP, and ramelteon). If four times higher 

concentrations were also to be included for positive exposures, additional four compounds (abacavir, 

dabigatran, ethylene glycol, and glycolic acid) can also be differentially classified by the P19C5 EB model. 

3.3.3 CYTOTOXICITY ON SOMATIC CELL LINES 

Three of the negative exposures adversely impacted the P19C5 gastrulation model. Namely, 

butylparaben and nilotinib reduced EB size, whereas propylene glycol caused death of EBs. Thus, these 

negative exposures appeared to be detrimental to growth or survival of P19C5 EBs, raising the possibility 

that the gastrulation model may be overly sensitive to these compound exposures, leading to 

misclassifications. To test whether harmful effects of these exposures are unique to the P19C5 EBs, we 

performed cell viability assay using monolayer cultures of P19C5 cells as well as three types of somatic 

cell lines, NIH/3T3 (mouse embryonic fibroblast-derived), HEK293 (human embryonic kidney-derived), 

JEG3 (human trophoblast-derived). These cell lines were cultured for four days in the presence of 

butylparaben, nilotinib, or propylene glycol, and impact on cell proliferation or survival was scored. All cell 

lines were completely killed by propylene glycol at the negative exposure concentration (850 mM) (Fig. 

3.4). Butylparaben at the negative exposure concentration (110 μM) also consistently reduced relative cell 

numbers of all four cell lines (Fig. 3.4). Thus, these two negative exposures appeared to exhibit cytotoxic 
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effects on not only P19C5 cells but also on other cell lines. On the other hand, relative cell numbers were 

not consistently reduced by nilotinib in any of the cell lines at the negative exposure concentration (2 μM) 

(Fig. 3.4). 
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3.4 - Discussion 

The present study evaluated our in vitro gastrulation model of P19C5 stem cells in reference to 

the Daston list of compound exposures for developmental toxicity assays. Based on the morphogenetic 

effects on EBs, 10 out of 17 positive exposures were classified as adverse, whereas 14 out of 17 

negative exposures were non-adverse. As shown in the previous study, valproic acid at 0.8 mM, another 

positive exposure in the Daston list, also causes adverse effect on P19C5 EB morphogenesis (Li and 

Marikawa, 2016). Thus, altogether, 25 out of 35 exposures in the Daston list (71.4%) were correctly 

classified by morphology-based assay using the P19C5 gastrulation model. When up to four times higher 

concentrations are included in assessment of the positive exposures, additional four exposures were also 

classified correctly, totaling 29 out of 35 (82.9%), although the validity of such an ad hoc criterion will 

require additional biological and toxicological justification. 

To date, various types of non-animal alternatives have been explored as developmental toxicity 

screening assays, including those utilizing differentiation, migration, or metabolomics of mouse or human 

ES cells (Kuske et al., 2012; Palmer et al., 2013; Seiler and Spielmann, 2011; Theunissen et al., 2012; 

Xing et al., 2015), rodent whole embryo culture (Piersma et al., 2004), micromass culture of limb bud 

mesenchyme (Pratten et al., 2012), and non-mammalian model systems, namely zebrafish embryos 

(Sipes et al., 2011). At present, it may not be fruitful to discuss effectiveness of the P19C5 gastrulation 

model in comparison with these assays, because no validation study has been reported in reference to 

the Daston list, to the best of our knowledge. Evaluations of other non-animal alternatives using the 

Daston list should provide solid framework for direct comparisons between different assays to reveal their 

strengths and weaknesses and help to assemble a proper battery of tests to screen a broad range of 

developmental toxicants. 

In the present study, the effects of compound exposures on the P19C5 gastrulation model were 

evaluated solely based on the morphological features, namely the size and shape of EBs. However, the 

effects of compounds may also be evaluated through gene expression analyses, because P19C5 EBs 

exhibit distinct temporal and spatial gene expression patterns that are characteristic of early 

embryogenesis during axial elongation and patterning (Lau and Marikawa, 2014; Li and Marikawa, 2015; 

Marikawa et al., 2009). Effects on gene expression are generally considered to be more sensitive 

endpoints when assessing developmental toxicity, and various types of gene expression analyses have 

been incorporated into stem cell-based in vitro assays, particularly ESTs, to augment their detection of 

developmental toxicants (Buesen et al., 2009; Gao et al., 2014; Panzica-Kelly et al., 2013; Pennings et 

al., 2011; Suzuki et al., 2011; zur Nieden et al., 2001). This notion applies to the response of P19C5 EBs 

to DAPT, a pharmacological inhibitor of Notch signaling, which markedly down-regulates expression of 

somitogenesis regulator genes, such as Hes7, Lfng, and Nrarp, without significantly altering EB size or 

shape (Li and Marikawa, 2015). However, the use of gene expression analyses to detect developmental 
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toxicants requires cautious interpretation, as the heightened sensitivity may increase the rate of false 

positive results. Mouse genetic studies, using the targeted gene knockout technology, have demonstrated 

in various cases that the loss of important developmental regulator genes fails to cause overt phenotypic 

abnormalities, due to existence of compensatory or redundant mechanisms (Barbaric et al., 2007; Nowak 

et al., 1997). Thus, alterations in gene expression may not correlate with the dramatic phenotypic effects 

(e.g., embryonic death or major fetal malformations) referenced in the Daston list. 

Among the 34 exposures from the Daston list examined here, the negative exposure of ATRA 

(1.7 nM) was particularly unique in that it markedly increased relative area of EBs. Because relative EDI 

was concomitantly increased, ATRA at the low concentration appeared to promote growth and axial 

elongation of EBs. Although ATRA is teratogenic at excessively high concentrations, it also acts at low 

physiological concentrations as an endogenous regulator of cell proliferation and embryo body patterning 

(Clagett-Dame and Knutson, 2011). Inactivation of Aldh1a2 gene, which encodes retinaldehyde 

dehydrogenase to synthesize ATRA, impairs growth and axial elongation in mouse embryos 

(Niederreither et al., 1999). Likewise, treatment of P19C5 EBs with BMS493, a pharmacological 

antagonist of retinoic acid receptors, reduces relative area and EDI, suggesting that active retinoic acid 

signaling is essential for growth and axial elongation in the in vitro gastrulation model (Li and Marikawa, 

2015). The source of retinoic acid or its precursors in the culture medium used in the present study was 

possibly bovine serum (Materials and Methods), and it may not have contained sufficient amount to 

support maximal growth and axial elongation of EBs. Thus, supplementation of a small amount of ATRA 

(as in the case for 1.7 nM exposure) would be beneficial for more robust EB development in vitro. 

Artesunate, fingolimod and methanol caused no adverse effect on the P19C5 gastrulation model 

even at four times higher concentrations than those indicated as positive exposures in the Daston list. 

These “false negative” misclassifications may exemplify some of the limitations and weaknesses of the 

model. Artesunate, an anti-malaria medication, is rapidly converted to its active metabolite 

dihydroartemisinin, which exerts developmental toxicity by generating free radicals that damage 

embryonic erythroblasts (Clark et al., 2008; Li et al., 2009). Depletion of primitive embryonic erythroblasts 

likely accounts for the observed cardiovascular and skeletal abnormalities caused by artesunate 

treatment (Clark, 2009; White et al., 2006; Clark et al., 2008; White and Clark, 2008). The developmental 

toxicity of fingolimod, an immunomodulator, also manifests as abnormal vascular maturation and cardiac 

malformation, mediated by inhibition of the sphingosine-1 phosphate receptor (FDA, 2010; Schmid et al., 

2007). The P19C5 gastrulation model may not accurately identify such developmental toxicants that 

selectively disrupt hematologic processes, because in vitro development of EBs does not require a 

vascular system. On the other hand, the developmental toxicity of methanol may be mediated by its 

metabolic byproduct, formate (Andrews et al., 1995). Compounds that become teratogenic only after 

chemical modifications by maternal metabolism are termed, “proteratogens” (Wells and Winn, 1996). 
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Detection of proteratogens is often considered a weakness of in vitro screens for developmental 

toxicants, because these assays usually lack the maternal metabolic system. Future studies will address 

whether the P19C5 model is susceptible to formate, and explore the incorporation of an exogenous 

metabolic activation system, such as co-culture with hepatocytes (Hettwer et al., 2010; Oglesby et al., 

1986) or liver microsome fractions (Luijten et al., 2008; Zhao et al., 1993). 

Practically speaking, misclassification of negative exposures (i.e., false positives) may be more 

detrimental for effectiveness of developmental toxicity assays, as compared to misclassification of 

positive exposures (i.e., false negatives). Unnecessary dismissal of safe compound exposures based on 

incorrect assay outcomes is disadvantageous for pharmaceutical development and burdensome for 

regulatory agencies (Waring et al., 2015). In the case of the P19C5 gastrulation model, three negative 

exposures gave false positive outcomes: butylparaben at 110 μM (reduction in area by 55%), nilotinib at 2 

μM (reduction in area by 25% and increase in EDI by 60%), and propylene glycol at 850 mM (death). The 

butylparaben and propylene glycol exposures diminished proliferation or survival of three somatic cell 

lines. Such general cytotoxicity may lead to misclassification of these exposures by other in vitro assays 

as well. It is unclear how such cytotoxic exposures are apparently harmless to developing embryos in vivo 

(Daston et al., 2014). It is important to note that the compound concentrations indicated in the Daston list 

are Cmax, and therefore developing embryos may not be exposed to such concentrations in a continuous 

manner, especially when compound clearance by the mother is rapid. Indeed, both butylparaben and 

propylene glycol have elimination half-lives of approximately four hours and undergo biotransformations 

in vivo (Aubert et al., 2012; Morshed et al., 1988). Additional pharmacokinetics information, namely area 

under the curve (AUC), may be more applicable to in vitro experimental conditions, and may help resolve 

this potential discrepancy. In contrast, the nilotinib negative exposure did not consistently diminish 

proliferation of the somatic cell lines, suggesting that adverse effect was specific to the P19C5 

gastrulation model. Interestingly, nilotinib at the high concentration (28 μM; positive exposure in the 

Daston list), exhibited an unusual impact, i.e., P19C5 cells in hanging drops failed to aggregate while they 

were still alive and proliferating. Although spontaneous cell aggregation is an essential step in generating 

EBs, this process does not correspond to normal embryonic development. Thus, nilotinib may be altering 

cellular properties that are not embryologically relevant, and such non-physiological effects of nilotinib, 

even at lower concentrations, may have contributed to false positive misclassification of the compound 

exposure. 

 In the future, the exposure-based validation list (Daston et al., 2014) will likely be expanded and 

refined as additional in vivo data on developmental toxicity and pharmacokinetics become available for 

various compounds. As previously suggested (Wise, 2016), it may be important to categorize positive 

exposures into distinct groups according to severity and nature of developmental toxicity. For example, 

the mechanism of an exposure that results in embryonic death is fundamentally different from an 
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exposure that causes spina bifida or microcephaly. Should such differences in in vivo impact be reflected 

in the outcomes of in vitro assays? In the present study, the P19C5 gastrulation model exhibited various 

responses to the positive exposures, ranging from total degeneration to a reduction in axial elongation. 

The range of phenotypic responses warrants further investigations to examine whether these variations in 

EB integrity and morphology correlate with the nature and severity of in vivo effects observed after 

exposure to the corresponding developmental toxicants. 
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Figure 3.1. The experimental scheme to examine morphogenetic impact of the compound exposures. 
See Materials and Methods for details.  
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Figure 3.2. Impact of the Daston compounds on P19C5 EB morphogenesis. For each compound, 
concentrations tested are indicated in the top row of the table with a summary of observed morphogenetic 
impact on EB area and EDI, indicated with upward arrowheads (increase) and downward arrowheads 
(reduction). No area or EDI value is available when EBs were dead (D) or cells did not aggregate (NA). 
Arrows above the table indicate negative (white arrow) and positive (black arrow) exposures as cited in 
the Daston list. Column graphs below the summary tables show averages of relative area (white columns) 
and relative EDI (gray columns), for the corresponding compound concentrations indicated above. Error 
bars show 95% confidence intervals. Asterisks indicate adverse impacts, which are defined in the present 
study as a change in average area by >20% or a change in average EDI by >40% relative to controls. 
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Figure 3.2. (Continued). Impact of the Daston compounds on P19C5 EB morphogenesis. For each 
compound, concentrations tested are indicated in the top row of the table with a summary of observed 
morphogenetic impact on EB area and EDI, indicated with upward arrowheads (increase) and downward 
arrowheads (reduction). No area or EDI value is available when EBs were dead (D) or cells did not 
aggregate (NA). Arrows above the table indicate negative (white arrow) and positive (black arrow) 
exposures as cited in the Daston list. Column graphs below the summary tables show averages of 
relative area (white columns) and relative EDI (gray columns), for the corresponding compound 
concentrations indicated above. Error bars show 95% confidence intervals. Asterisks indicate adverse 
impacts, which are defined in the present study as a change in average area by >20% or a change in 
average EDI by >40% relative to controls. 
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Figure 3.3. Representative images of P19C5 EBs. Not all compound exposures are shown (see text). 
Each set of images shows a control group of EBs (no test compound) and one or two compound-treated 
groups of EBs, made from the same cell suspension as the control. Scale bars = 500 μm. 
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Figure 3.4. Relative cell numbers of four cell lines, P19C5, NIH/3T3, HEK293 and JEG3, that are cultured 
as monolayer in the presence of butylparaben, nilotinib, or propylene glycol, at the negative exposure 
concentration indicated in the Daston list. Data points for three biological replicates are shown using 
different marker styles. 
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Figure 3.5. Extended ranges of treatment concentrations to identify the LOAELs of selected chemical 
exposures in the Daston list. Initial treatment ranges included the concentrations listed by Daston et al. 
and included 2- and 4-fold increases or decreases (Fig. 3.2). If the chemical showed no significant effects 
at the initial concentrations tested, then the range was increased to the LOAEL or the maximum possible 
treatment (e.g., artesunate, fingolimod, methanol, saccharin and zaleplon). Chemicals that had effects at 
concentrations lower than specified in the Daston list (e.g., acetazolamide, butylparaben, methylmercury, 
nilotinib, propylene glycol and salicylic acid) were treated with additional lower dilutions until the NOAEL 
was reached.  
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Table 3.1. Compounds used in the Daston validation study. 

Compound 
 

Vendor Catalog Number Stock 

Abacavir Sigma-Aldrich SML0089 50 mM in water 

Acetazolamide Sigma-Aldrich A6011 50 mM in DMSO 

All-trans retinoic acid Sigma-Aldrich R2625 200 μM in DMSO 

Artesunate Sigma-Aldrich A3731 50 mM in DMSO 

Butylparaben Sigma-Aldrich PHR1022 50 mM in DMSO 

Caffeine Sigma-Aldrich C0750 1 M in water 

Dabigatran Santa Cruz Biotech. sc-351724 20 mM in DMSO 

Desloratadine Sigma-Aldrich D1069 1 mM in DMSO 

Ethylene glycol Sigma-Aldrich 324558 18 M (100%) 

Fingolimod Sigma-Aldrich SML0700 20 mM in water 

Glycolic acid Sigma-Aldrich G8284 1 M in water 

Hydroxyurea Sigma-Aldrich H8627 100 mM in water 

MEHP Santa Cruz Biotech. sc-396467 100 mM in DMSO 

Methanol Fisher Scientific A412P-4 24.7 M (100%) 

Methoxyacetate Sigma-Aldrich 194557 10 mM in water 

Methylmercury Sigma-Aldrich 442534 10 mM in DMSO 

Nilotinib Santa Cruz Biotech. sc-202245 50 mM in DMSO 

Oseltamivir Santa Cruz Biotech. sc-208135 50 mM in water 

Propylene glycol Sigma-Aldrich PHR1051 13.62 M (100%) 

Ramelteon Santa Cruz Biotech. sc-219934 20 mM in DMSO 

Saccharin Sigma-Aldrich 240931 20 mM in water 

Salicylic acid Sigma-Aldrich 247588 1 M in DMSO 

Zaleplon Sigma-Aldrich Z-004 3.28 mM in methanol 

Zidovudine Sigma-Aldrich PHR1292 100 mM in DMSO 

 
DMSO: Dimethylsulfoxide, MEHP: Mono(2-ethylhexyl) phthalate 
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Table 3.2. Adverse impacts of the Daston positive exposures on EB morphology. 

Compound Concentration Adverse impact Comments 
 

Abacavir 80 μM No Area reduction at 4× higher 
conc. (320 μM) 

Acetazolamide 121 μM Yes (120 μM) Area and EDI reduction 
 

ATRA 200 nM Yes Area and EDI reduction 
 

Artesunate 20 nM No  
 

Caffeine  325 μM Yes EDI increase 
 

Dabigatran 7 μM No Area reduction at 2× higher 
conc. (14 μM) 

Ethylene glycol 57 mM No Area reduction at 4× higher 
conc. (228 mM) 

Fingolimod 67 nM No  
 

Glycolic acid 5 mM No Area and EDI reduction at 
4× higher conc. (20 mM) 

Hydroxyurea 350 μM Yes Dead 
 

MEHP 146 μM Yes (150 μM) Area reduction 
 

Methanol 270 mM No  
 

Methoxyacetic acid 5 mM Yes Area and EDI reduction 
 

Methylmercury 5 μM Yes Dead 
 

Nilotinib 28 μM Yes No aggregation 
 

Ramelteon 81 μM Yes (80 μM) EDI increase 
 

Salicylic acid 3 mM Yes Area reduction 
 

 
ATRA: All-trans retinoic acid, MEHP: Mono(2-ethylhexyl) phthalate 
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Table 3.3. Adverse impacts of the Daston negative exposures on EB morphology. 

Compound Concentration Adverse impact Comments 
 

Abacavir 18 μM No (20 μM) 
 

 

ATRA 1.7 nM No EDI increase accompanied 
by area increase (see text) 

Butylparaben 110 μM Yes Area and EDI reduction 
 

Caffeine 7.7 μM No 
 

 

Dabigatran 1 μM No 
 

 

Desloratadine 1.5 μM No 
 

Concentration listed as 1.5 
mM in Daston et al. 2014. 

Ethylene glycol 1.4 mM No 
 

 

Glycolic acid 275 μM No 
 

 

Methanol 22 μM No 
 

 

MEHP 1 μM No 
 

 

Nilotinib 2 μM Yes Area reduction, EDI 
increase 
 

Oseltamivir 12 μM No 
 

 

Propylene glycol 850 mM Yes Dead 
 

Ramelteon 19 nM No 
 

 

Saccharin 24 μM No 
 

 

Zaleplon 12 μM No 
 

 

Zidovudine 227 μM No 
 

 

 
ATRA: All-trans retinoic acid, MEHP: Mono(2-ethylhexyl) phthalate 
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CHAPTER 4. FLUOXETINE INHIBITS CANONICAL WNT SIGNALING TO 

IMPAIR EMBRYOID BODY MORPHOGENESIS: POTENTIAL TERATOGENIC 

MECHANISMS OF A COMMONLY USED ANTIDEPRESSANT 

4.1 - Introduction 

Many chemical compounds have the potential to disrupt sensitive processes of embryonic 

development, resulting in miscarriage or birth defects. For this reason, pregnant women are advised to 

avoid using any unnecessary medications, supplements or recreational drugs. However, some women 

with pre-existing medical conditions, such as depression, must continue taking medications during their 

pregnancies to maintain maternal physical and mental well-being. Depression affects 8 to 16% of women 

of reproductive age in the United States (Farr et al., 2010; Ko et al., 2012; Willet et al., 2012). Because 

untreated depression during pregnancy is associated with a range of adverse pregnancy outcomes, such 

as miscarriage, preterm birth, and lower birth weights (Udechuku et al., 2010), antidepressants are often 

prescribed for use during pregnancy. Unfortunately, some epidemiologic studies have suggested a higher 

incidence of birth defects in children exposed to antidepressants during embryonic development. To 

minimize the risk of preventable birth defects in human pregnancies, it is important to know which 

antidepressants are most likely to be teratogenic and which are least likely to cause harm if used during 

pregnancy. This understanding can only be obtained through continued investigations on the 

developmental toxicity of antidepressants using retrospective human epidemiologic studies as well as 

more prospective and mechanistic analyses using animal and in vitro models. With such information, 

clinicians can differentiate various types of antidepressants based on their relative safety for use during 

pregnancy and prescribe the safest medications to the patients. 

Fluoxetine (a.k.a. Prozac) is one of the most commonly prescribed antidepressants of the 

selective serotonin reuptake inhibitor (SSRI) class. By inhibiting the serotonin transporter (SERT; 

encoded by the SLC6A4 gene), fluoxetine and other SSRIs increase the synaptic levels of serotonin (5-

hydroxytryptamine or 5-HT), a monoamine neurotransmitter that helps to regulate mood. Several human 

epidemiologic studies have identified significant associations between maternal use of fluoxetine during 

pregnancy and an increased incidence of specific congenital anomalies, such as cardiac defects, 

pulmonary hypertension, gastroschisis and omphalocele (Ellfolk and Malm, 2010; Reefhuis et al., 2015; 

Wemakor et al., 2015)). The mechanism linking fluoxetine to these birth defects is unclear, but there are 

three primary possibilities: fluoxetine may inhibit SERT in the fetus, inhibit SERT in the mother, or affect 

an off-target molecule unrelated to serotonin signaling altogether. In the mouse embryo, SERT is 

expressed in the heart and liver as early as the E10.5 stage (Narboux-Nême et al., 2008). Fluoxetine may 

inhibit SERT in these embryonic tissues to directly cause organ malformations. Alternatively, the 

developmental toxicity of fluoxetine may be indirect if it acts on SERT in the pregnant mother, altering 

maternal physiology (i.e., decreasing placental blood flow) and resulting in adverse effects on embryonic 
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development. For example, fluoxetine causes severe anorexia in rats, leading to maternal starvation with 

secondary adverse reproductive outcomes (Sloot et al., 2009; Wong et al., 1988). Finally, fluoxetine may 

target non-SERT molecules that play essential roles in embryogenesis. In vivo studies with humans or 

model animals are often too complex to distinguish which of these possibilities is responsible for the 

teratogenic action of fluoxetine. On the other hand, in vitro tests are devoid of maternal factors and are 

more amenable to experimental manipulations and molecular analyses. Thus, in vitro models may 

provide valuable mechanistic insight into the developmental toxicity of fluoxetine. 

One such in vitro model uses stem cell-derived embryoid bodies capable of spontaneous axial 

morphogenesis to study the effects of developmental toxicants. These EBs are created from P19C5 

mouse stem cells, which possess developmental properties similar to the epiblast, the pluripotent 

embryonic precursor of the fetal body (Lau and Marikawa, 2014). P19C5 cells can be aggregated in a 

hanging drop of culture medium to differentiate as an embryoid body (EB), which transforms from a 

spherical mass to an elongated structure during four days of culture. This morphological transformation is 

an in vitro recreation of gastrulation, the morphogenetic process of body patterning and elongation along 

the cranial-caudal embryonic axis. The developmental toxicity of chemical agents can be assessed based 

on their adverse impact on the in vitro morphogenesis of P19C5 EBs, a model that was recently validated 

using the Daston list of reference chemical exposures (Daston et al., 2014; Warkus and Marikawa, 2017). 

The Daston list consists of 39 exposures, i.e., in vivo concentrations of specific compounds that cause 

adverse effects on embryos or lack thereof (Daston et al., 2014). Growth and morphogenesis of P19C5 

EBs were significantly altered by the adverse exposures in the Daston list, but not by the non-adverse 

exposures, with a total concordance of 71.4 to 82.9% (Warkus and Marikawa, 2017). Thus, the 

morphogenesis-based P19C5 EB assay can serve as an effective in vitro alternative to evaluate 

developmental toxicity of compounds at physiologically-relevant concentrations. 

The P19C5 EB morphogenesis model is also a useful tool to identify the molecular mechanisms 

of developmental toxicity. During the four days of culture, EBs exhibit dynamic gene expression patterns 

in a distinct temporal pattern that is similar to the time course of gene regulation in the in vivo embryo. For 

example, pluripotency maintenance genes (e.g., Pou5f1 and Nanog) are down-regulated by Day 1 of EB 

culture, whereas genes associated with the initial step of gastrulation (e.g., Brachyury, Mixl1, and Cdx1) 

show a strong peak expression on Day 1. In contrast, the genes involved in caudal development and 

somite formation have peak expression levels on Day 2 (e.g., Wnt3a, Tbx6, Notch1, and Hes7) or Day 3 

(e.g., Meox1 and Mesp2) (Lau and Marikawa, 2014; Li and Marikawa, 2015, 2016) (Table 4.1). The 

intensity and temporal patterns of these gene expressions are regulated by specific molecular signals, 

namely Wnt, Nodal, Fgf, Bmp, Notch, and retinoic acid, which was demonstrated using pharmacological 

inhibitors against each of these signaling pathways (Li and Marikawa, 2015). Disruption of a particular 

signal in EBs by the inhibitor causes distinct alterations in the gene expression patterns, yielding 
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“disruption profiles” that are specific to each signaling pathway. Comparison of these disruption profiles to 

the gene expression patterns of EBs exposed to a teratogen can provide mechanistic insight to identify 

which molecular signals are impacted by the teratogenic exposure. This strategy was demonstrated to be 

effective in a recent study, which revealed that valproic acid (a well-known teratogen) adversely affects 

morphogenesis by enhancing retinoic acid signaling (Li and Marikawa, 2016). 

In the present study, we used the P19C5 EB system to investigate the mechanism of fluoxetine’s 

effects on embryonic morphogenesis, particularly concerning its adverse concentration levels, impact on 

gene expression profiles, and molecular pathways that are independent of SERT inhibition. 
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4.2 - Materials and methods 

4.2.1 COMPOUNDS 

All chemical compounds used in the present study were commercially obtained, and their details 

are described in Table 2. 

4.2.2 CELL CULTURE AND EMBRYOID BODY GENERATION 

P19C5 cells were cultured and induced for in vitro morphogenesis, according to the methods 

described previously (Lau and Marikawa, 2014; Warkus and Marikawa, 2017). Briefly, cells were 

maintained in the P19 culture medium (Minimum Essential Medium Alpha, nucleosides, GlutaMAX 

Supplement [LifeTechnologies, Carlsbad, California], 2.5% fetal bovine serum, 7.5% newborn calf serum, 

50 units/mL penicillin and 50 μg/mL streptomycin). For embryoid body (EB) generation, cells were 

dissociated with TrypLE Express (LifeTechnologies) and suspended at a density of 10 cells/µL in the 

culture medium containing a final concentration of 1% (v/v) dimethyl sulfoxide (DMSO) with or without a 

test compound. Droplets (20 µL each) of cell suspension were deposited on the inner surface of Petri dish 

lids and were cultured for up to 4 days in an incubator with 4.5% CO2 at 37°C in humidified air. EBs were 

monitored daily for survival and overall integrity before being harvested for morphometric and gene 

expression analyses (Fig. 4.1). 

4.2.3 MORPHOMETRIC ANALYSES 

Images of EBs were obtained after 4 days of hanging drop culture (Day 4) and opened in the 

ImageJ program (http://rsb.info.nih.gov/ij) for morphometric analyses, as previously described (Warkus 

and Marikawa, 2017). Briefly, the outline (perimeter) of individual EBs was automatically identified using a 

macro and measured to obtain morphometric parameters, such as area and circularity (Fig. 4.10). Area 

was used to estimate the overall size of EBs, whereas the elongation distortion index (EDI), which is 

calculated from circularity (EDI = 1/circularity - 1), was used to assess the extent of EB axial elongation. 

Area and EDI were normalized by the average values of control EBs in each set of experiments, and 

were reported as relative area and relative EDI, respectively, expressed in percentages (the average 

values of control are 100%). Three sets of experiments were conducted for each treatment condition as 

biological replicates, and relative area and relative EDI were compiled and presented as mean ± 95% 

confidence intervals. Adverse morphogenetic effects were defined as a reduction in relative area by >20% 

and/or a change in relative EDI by >40%, which are thresholds based on the criteria established in the 

previous validation study (Warkus and Marikawa, 2017). 
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4.2.4 REVERSE TRANSCRIPTION AND POLYMERASE CHAIN REACTION (RT-PCR) ASSAYS 

Total RNA was extracted from cell suspension prior to aggregation (Day 0) and from EBs on 

Days 1, 2, 3, and 4, using TRI reagent (LifeTechnologies) and Direct-zol RNA MiniPrep kit (Zymo 

Research, Irvine, CA), and processed for cDNA synthesis using M-MLV Reverse Transcriptase 

(Promega, Madison, WI) and oligo-dT (18) primer. The preparation of cDNA from the mouse whole 

embryo was described previously (Li and Marikawa, 2015). Standard RT-PCR was used to detect mRNAs 

of Slc6a4 (encoding the serotonin transporter) and Slc6a2 (encoding the norepinephrine transporter), 

using JumpStart REDTaq DNA Polymerase (Sigma-Aldrich) with the following conditions: initial 

denaturation at 94°C for 5 min; 35 cycles of 94°C for 15 sec, 60°C for 20 sec, and 72°C for 40 sec; and a 

final extension at 72°C for 5 min. Amplified products were resolved in a 1% agarose gel and visualized by 

staining with ethidium bromide. Note that primers for Slc6a4 (F: 5’-GTT CTG CAG CGA CGT GAA GGA 

AAT-3’, R: 5’- GCT TAG AGG GGA GGA GTC AAG GTG-3’) and Slc6a2 (F: 5’- GTG GTG GTC AGC 

ATC ATC AAC TTC-3’, R: 5’- AAC CAG CGT CAC GGA ATC ATT AGT-3’) were designed as intron-

spanning, so that PCR products amplified from cDNA could be distinguished from those from genomic 

DNA based on the product size (416 and 420 bp for Slc6a4 and Slc6a2 mRNA, respectively). 

Quantitative RT-PCR was performed using the CFX96 Real-Time PCR Detection System (Bio-

Rad, Hercules, CA) with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) as follows: initial 

denaturation at 94°C for 5 min, followed by up to 45 cycles of 94°C for 15 sec, 60°C for 20 sec, and 72°C 

for 40 sec. Data files were opened in CFX Manager software (Bio-Rad) and Ct values were transferred to 

the Excel program for further analyses. Actb, which encodes ß-Actin, was used as a constitutively-

expressed housekeeping gene to standardize the expression levels of the other genes. Relative 

expression level was calculated as a percentage relative to the total expression level of control EBs (a 

sum of Days 0, 1, 2, 3 and 4 values) in each set of experiments. Three sets of experiments were 

conducted for each treatment condition as biological replicates, and relative expression levels were 

compiled and presented as mean ± standard deviation. 

4.2.5 LUCIFERASE REPORTER ASSAYS 

The plasmids used for luciferase reporter assays were obtained commercially or from other 

researchers. TOPFLASH (Upstate, Charlottesville, VA) consists of the firefly luciferase gene controlled by 

the transcriptional promoter containing multiple TCF-binding sites and serves as a reporter for active 

canonical Wnt signaling. FOPFLASH (Upstate), used as a negative control for TOPFLASH, contains 

inactivating mutations in the TCF-binding sites. pRL-TK (Promega) encodes the Renilla luciferase gene 

under the control of a constitutive promoter (thymidine kinase promoter) and was used to normalize the 

luciferase activities of TOPFLASH and FOPFLASH. L1CBD-G4DBD encodes a chimeric protein 
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containing the ß-Catenin-binding domain of LEF1 and the DNA-binding domain of GAL4. Like 

TOPFLASH, L1CBD-G4BD serves as a monitoring tool for active canonical Wnt signaling, as previously 

described (Tamashiro et al., 2008). Binding of ß-Catenin to L1CBD-G4DBD forms a transcriptional 

activator to turn on the expression of the firefly luciferase from pG5-Luc, which contains multiple GAL4-

binding sites (Promega). G4DBD, which is GAL4-binding domain without a ß-Catenin domain, was used 

as a control for L1CBD-G4DBD (Tamashiro et al., 2008). ARE-Luc (a gift from Dr. Malcom Whitman; 

Harvard Medical School) consists of the firefly luciferase controlled by the activin response elements and 

serves as a reporter for active Nodal/Activin signaling (Weisberg et al., 1998). P19C5 cells in monolayer 

were transfected with the plasmids using Lipofectamine 2000 (LifeTechnologies). After 24 hours, cells 

were lysed and examined for luciferase activity using the Dual-Luciferase Reporter Assay System 

(Promega) with Gene Light 55 Luminometer (Microtech, Chiba, Japan). All experiments were repeated 

independently three times. The results are shown as mean ± standard deviation. 

4.2.6 CELL VIABILITY ASSAY 

Effect of chemical treatment on cell proliferation and viability was determined with the CellTiter-

Glo Luminescent Cell Viability Assay System (Promega), as described previously (Warkus et al., 2016). 

Briefly, P19C5 cells were seeded in 96-well plates at a density of 100 cells/well in 100 µL of culture 

medium supplemented with 1% DMSO containing the test compound or vehicle only as a control. After 4 

days of culture, cells were treated with CellTiter-Glo Reagent. The resulting luminescence was measured 

using Gene Light 55 Luminometer as a readout of ATP amount, which serves as a quantitative proxy for 

the number of metabolically active cells. The intensity of the luminescence was normalized to the control 

level (vehicle only) in each set of experiments and reported as relative light units. All experiments were 

repeated independently three times, and the results are shown as mean ± standard deviation.  

4.2.7 STATISTICS 

Statistical differences were assessed by two-sample t-test. For EB morphogenesis, relative area 

and relative EDI were compared between two groups of EBs, typically compound-treated EBs and 

vehicle-treated control EBs (n = 45–48 for each group, compiled from 3 sets of independent experiments), 

unless otherwise stated. Differences in average values were deemed significant when P values were < 

0.01. For luciferase reporter assays, normalized luciferase activities, i.e., ratios of the firefly luciferase to 

the Renilla luciferase signals, from three independent experiments were compared between compound-

treated and control (vehicle only) groups. For the cell viability assay, relative light units from three 

independent experiments were compared between compound-treated and control cells. 
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4.3 - Results 

4.3.1 FLUOXETINE IMPAIRS MORPHOGENESIS OF P19C5 EMBRYOID BODIES IN A DOSE-

DEPENDENT MANNER 

The teratogenic potential of fluoxetine was evaluated using the P19C5 embryoid body (EB) 

morphogenesis system (Fig. 4.1). P19C5 cells were aggregated in hanging drops of culture medium 

containing various concentrations of fluoxetine, and the morphology of the resulting EBs was examined 

after four days of culture. We focused on a concentration range between 2 and 10 µM, because our pilot 

study suggested that fluoxetine at 1 µM or less had no morphological impact whereas fluoxetine 

concentrations higher than 10 µM were detrimental to the survival of EBs. Treatment effects were 

quantified using two morphometric parameters, the two-dimensional area of EBs, which is a proxy for EB 

size, and the elongation distortion index (EDI), which was used to evaluate the extent of axial elongation. 

Following the previous validation study, morphologic impacts were only considered to be adverse if drug 

treatment caused a reduction in relative area by >20% or a reduction in relative EDI by >40% compared 

to control EBs (Warkus and Marikawa, 2017). EB morphogenesis was adversely affected by fluoxetine 

treatment at the exposures levels of 6 µM and higher, which reduced both relative area and relative EDI 

in a dose-dependent manner (Fig. 4.2A, B).  

We then evaluated the effects of R-fluoxetine, S-fluoxetine, and norfluoxetine on EB 

morphogenesis. Fluoxetine is a racemic mixture of R- and S-enantiomers. R-fluoxetine and S-fluoxetine 

are similar in their potency as serotonin reuptake inhibitors (SSRIs), although the latter (S) is slightly more 

potent than the former (R) (Wong et al., 1995). Norfluoxetine, the major metabolite of fluoxetine, is a 

potent SSRI with a longer half-life in the circulating plasma (Hiemke and Härtter, 2000). The 

morphogenetic effects of these compounds were tested at 2, 6, 10, and 20 μM, to match the experiments 

done with fluoxetine. All the compounds adversely affected EB morphogenesis at 6 μM and higher, 

although S-fluoxetine appeared slightly less potent than the others with respect to the extent of reduction 

in area and EDI (Fig. 4.2C, D). Thus, the morphogenesis of EBs was susceptible to exposures to 

fluoxetine, its enantiomers, and metabolite with largely similar dose-dependency. 

4.3.2 THE MORPHOGENETIC EFFECTS OF FLUOXETINE ARE NOT DUE TO INHIBITION OF THE 

SEROTONIN TRANSPORTER  

We assessed whether the action as an SSRI is responsible for the adverse morphogenetic 

effects of fluoxetine. First, expression of the Slc6a4 gene was examined in P19C5 EBs, as it encodes the 

serotonin transporter (SERT), the main target of SSRI action. For comparison, expression of the Slc4a2 

gene, which encodes the norepinephrine transporter (NET) was also examined, as both SERT and NET 
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are inhibited by antidepressants of the serotonin and norepinephrine reuptake inhibitor (SNRI) class, such 

as venlafaxine. Both Slc6a4 and Slc6a2 mRNAs were robustly expressed in the mouse embryo at the 

stage E10.5. Conversely, in P19C5 EBs (as a mixture of Days 0, 1, 2, 3, and 4), only Slc6a2 mRNA was 

robustly expressed (Fig. 4.3A). Quantitative RT-PCR analysis showed that Slc6a2 mRNA was highly 

expressed only at Day 0 (i.e., before cell aggregation), and that the expression of Slc6a4 mRNA was very 

low—less than 5% of the whole embryo level—at all stages of EBs (Fig. 4.3B). 

Although the level was very low, the expression of SERT may be sufficient to cause adverse 

effects in EBs if inhibited by fluoxetine. Thus, we evaluated the morphogenetic impact of other inhibitors 

of SERT, specifically citalopram (SSRI) and venlafaxine (SNRI). EB morphology was assessed after four 

days of treatment with either citalopram or venlafaxine at 0, 2, 6, 10 or 20 µM. Neither citalopram nor 

venlafaxine exhibited adverse effects even at the highest concentrations tested (Fig. 4.3C, D). Since 

SSRIs elevate the levels of extracellular 5-HT, we also tested the impact of excessive 5-HT on EB 

morphogenesis. None of the concentrations tested (ranging from 10 µM to 100 µM) caused adverse 

morphogenetic effects (Fig. 4.3E, F). These results indicate that the SSRI action is not responsible for the 

adverse morphogenetic effects of fluoxetine and suggest that fluoxetine may target molecular 

mechanisms unrelated to SERT when it interferes with embryonic morphogenesis. 

4.3.3 FLUOXETINE ALTERS EXPRESSION PATTERNS OF VARIOUS DEVELOPMENTAL REGULATOR 

GENES 

To gain mechanistic insight into the morphogenetic effects of fluoxetine, we examined how 

fluoxetine treatment alters expression patterns of key developmental regulator genes in EBs. EBs were 

treated with fluoxetine at the concentrations of 0 µM (control), 2 µM and 6 µM, and harvested at Days 0, 

1, 2, 3, and 4 for gene expression analyses by quantitative RT-PCR (Fig. 4.1). These concentrations were 

selected because 2 µM had no morphogenetic impact, whereas 6 µM was the lowest concentration that 

altered both area and EDI (Fig. 4.2B). The developmental regulators examined are transcription factors 

and signaling molecules that are crucial for embryo patterning and germ layer formation, and their 

characteristics are summarized in Table 1. 

Fluoxetine at 2 µM did not significantly alter the transcript levels of any of the developmental 

regulators during EB development (Fig. 4.4A). However, fluoxetine at 6 µM changed the expression 

patterns of a number of genes relative to the patterns in vehicle-treated controls. In control EBs, the levels 

of the pluripotency maintenance genes (i.e., Pou5f1 and Nanog) were markedly down-regulated by Day 

1, whereas the genes involved in the initial phase of gastrulation (i.e., Brachyury, Mixl1 and Cdx1) were 

strongly up-regulated, indicating a swift initiation of the differentiation program within one day of 

aggregation culture. In contrast, EBs treated with fluoxetine (6 µM) exhibited a delay in differentiation, 



67 
 

such that the pluripotency genes continued to be highly expressed at Day 1 and the up-regulation of the 

initial gastrulation genes was less robust than control (Fig. 4.4A). A delay in differentiation was also 

evident in the expression patterns of other genes, such as the regulators of caudal patterning and somite 

formation (i.e., Wnt3a, Tbx6, Hes7, and Meox1). In these genes, the up-regulation towards the peak 

expression (on Day 2 for Wnt3a, Tbx6, and Hes7, and on Day 3 for Meox1) was diminished in fluoxetine-

treated EBs compared to control EBs (Fig. 4.4A). This delayed differentiation seemed specific to the 

mesodermal lineage since genes expressed in the neural lineage (i.e., Sox2, Otx2, Hoxc6, and Pax3) 

were either elevated or largely unaffected by fluoxetine treatment (Fig. 4.4A). These results suggest that 

fluoxetine treatment (6 µM) is detrimental for mesodermal differentiation but is neutral or even permissive 

for neural differentiation in P19C5 EBs. 

Several major developmental signaling pathways, namely Wnt, Nodal, Fgf, Bmp, and retinoic acid 

(RA), regulate germ layer differentiation and body patterning during embryogenesis. These major 

pathways also control morphogenesis and gene expression in P19C5 EBs (Li and Marikawa, 2015). To 

assess whether fluoxetine alters these major developmental signals to cause adverse effects, we 

compared the gene expression profiles in fluoxetine-treated EBs with the “disruption profiles” of these 

signaling pathways. The previous study (Li and Marikawa, 2015) showed that the expression patterns of 

Pou5f1, Nanog, and Brachyury were differentially affected by inhibition of each of the major signaling 

pathways at Day 1 and Day 2, and, therefore, may be used to identify which pathway is disrupted (Fig. 

4.4B). The impact of fluoxetine (6 µM) was most similar to that of XAV939 (5 µM), an inhibitor of the 

canonical Wnt signaling pathway (Fig. 4.4B). However, two other signaling inhibitors (SB431542 [Nodal 

inhibitor] and PD173074 [Fgf inhibitor]) also caused a decrease in the Day 1 expression of the early 

mesoderm gene Brachyury, similarly to the impact of fluoxetine. To assess whether these three signaling 

pathways—Wnt, Nodal, and Fgf—are linked to the molecular impact of fluoxetine, we examined the target 

genes of these pathways: Sp5 for canonical Wnt signaling, Nodal for Nodal signaling, and Spry2 for Fgf 

signaling. Fluoxetine treatment caused a reduction in the expression of Sp5 at Day 1 but did not reduce 

Nodal or Spry2 expression (Fig. 4.4A), suggesting that fluoxetine at 6 µM may inhibit canonical Wnt 

signaling during EB development to alter EB morphogenesis.  

4.3.4 FLUOXETINE INHIBITS CANONICAL WNT SIGNALING IN P19C5 CELLS 

We tested whether fluoxetine inhibits canonical Wnt signaling using two luciferase reporter 

assays, both of which measure the transcriptional activation mediated by ß-Catenin (CTNNB1) as a 

readout of Wnt signaling activity (Fig. 4.5A). One assay employs TOPFLASH (Korinek et al., 1997), and 

the other utilizes L1CBD-G4DBD (Tamashiro et al., 2008). P19C5 cells in monolayer were transfected 

with the reporter constructs and treated with fluoxetine at various concentrations for 24 hours. The 

TOPFLASH signal was significantly reduced by fluoxetine at 6 µM or higher in a dose-dependent manner, 
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whereas the negative control FOPFLASH (containing mutations in the TCF-binding sites) yielded low 

signals regardless of fluoxetine concentration (Fig. 4.5B). Similarly, the L1CBD-G4DBD-dependent 

luciferase activity was significantly reduced by fluoxetine at 6 µM or higher (Fig. 4.5C). In contrast, the 

activity of ARE-Luc, a reporter construct for Nodal/Activin signaling (Weisberg et al., 1998), was not 

significantly reduced by fluoxetine or XAV939, whereas it was robustly repressed by SB431542 (Fig. 

4.5D). These results indicate that fluoxetine inhibits canonical Wnt signaling at the same concentrations 

that adversely affected EB morphogenesis. 

The impact of the fluoxetine enantiomers and the other SERT inhibitors was also assessed using 

the luciferase assays to further clarify the relationship between Wnt inhibition and morphogenetic effects. 

Both R-fluoxetine and S-fluoxetine reduced the TOPFLASH signal in a dose-dependent manner (Fig. 

4.5E). S-fluoxetine appeared to be slightly less potent than R-fluoxetine, which corresponded to the 

observed impact on EB morphogenesis (Fig. 4.2C). The TOPFLASH signal was not significantly reduced 

by citalopram, venlafaxine, or 5-HT at any of the concentrations tested (Fig. 4.5F), suggesting that 

inhibition of SERT does not diminish canonical Wnt signaling. Overall, the inhibitory impact of the 

chemical exposures on canonical Wnt signaling was consistent with their adverse effects on EB 

morphogenesis. 

4.3.5 ACTIVATION OF CANONICAL WNT SIGNALING PARTIALLY ALLEVIATES THE ADVERSE 

EFFECTS OF FLUOXETINE 

We then tested whether the adverse morphogenetic effects of fluoxetine can be rescued by 

forced activation of canonical Wnt signaling. CHIR99021 is a pharmacological inhibitor of GSK3 and is 

widely used to activate canonical Wnt signaling in various cell types (Fig. 4.5A). In P19C5 cells, 

CHIR99021 increased the TOPFLASH signal in a dose-dependent manner in the presence of fluoxetine 

at the adverse effect concentrations (6 and 10 µM), indicating that CHIR99021 can overcome fluoxetine 

to activate canonical Wnt signaling (Fig. 4.6A). However, high concentrations of CHIR99021 alone also 

adversely affected EB morphology. EBs treated with CHIR99021 at 1 µM or higher were rounder than 

control EBs, resulting in a significant reduction in EDI (Fig. 4.6B). This finding suggests that excessive 

and ubiquitous activation of canonical Wnt signaling is also detrimental to proper axial morphogenesis. 

Therefore, a rescue experiment for fluoxetine needs to be executed using concentrations of CHIR99021 

lower than 1 µM to avoid overactivation of Wnt signaling. 

EBs were treated with fluoxetine (6 µM) together with CHIR99021 at 0.1 or 0.3 µM, and EB 

morphology was assessed after four days of culture. Compared to fluoxetine alone, EBs treated with 

fluoxetine and CHIR99021 were more elongated (Fig. 4.6C). Both 0.1 and 0.3 µM of CHIR99021 were 

able to significantly increase the EDI of fluoxetine-treated EBs, but the 0.1 µM treatment appeared to be 
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more effective (Fig. 4.6D). Although the extent of rescue was partial, this result supports that the inhibition 

of canonical Wnt signaling is responsible for the adverse morphogenetic effects of fluoxetine. 

4.3.6 TRIFLUOROMETHYLPHENYL MOIETY OF FLUOXETINE IS ESSENTIAL IN CAUSING THE 

ADVERSE EFFECTS OF FLUOXETINE 

XAV939 is a pharmacological inhibitor of tankyrases (TNKS; (Huang et al., 2009), which are 

negative regulators of AXIN, the rate-limiting component of the ß-Catenin destruction complex (Fig. 4.5A). 

In examining the chemical structure of XAV939 and fluoxetine, we noticed that both molecules contain a 

trifluoromethylphenyl group (Fig. 4.7A, B). Norfluoxetine, which had similar morphologic effects to its 

parent molecule, fluoxetine (Fig. 4.2C), also contains a trifluoromethylphenyl group (Fig. 4.7A). Because 

of the structural similarity, it is possible that fluoxetine may act similarly to XAV939 to inhibit canonical 

Wnt signaling and alter EB morphogenesis. To assess whether the trifluoromethylphenyl moiety in 

fluoxetine was necessary in causing its adverse impacts, we examined the effect of nisoxetine, a 

norepinephrine reuptake inhibitor (NRI). Nisoxetine is structurally similar to fluoxetine, except that a 

trifluoromethyl group on the aromatic ring (in para position) is replaced with a methoxy group (in ortho 

position) (Fig. 4.7A, B). Nisoxetine did not adversely affect EB morphogenesis even at the highest 

concentration evaluated (20 µM; Fig. 4.7C). In addition, nisoxetine did not significantly inhibit canonical 

Wnt signaling, based on the TOPFLASH assay (Fig. 4.7D). These results suggest the 

trifluoromethylphenyl moiety in fluoxetine mediates its morphogenetic impact and its inhibitory effect on 

Wnt signaling. 

4.3.7 FLUOXETINE DIMINISHES CELL PROLIFERATION INDEPENDENTLY OF ITS INHIBITORY 

EFFECTS OF WNT SIGNALING OR SERT 

Despite the similarities in structure and inhibitory effect on canonical Wnt signaling, XAV939 and 

fluoxetine exhibit different impacts on EB morphogenesis. XAV939 (0.5 - 5 µM) causes a marked 

reduction in EDI without affecting area (Li and Marikawa, 2015), whereas fluoxetine (6 - 10 µM) lowered 

both area and EDI (Fig. 4.2A). A reduction in area indicates that fluoxetine diminishes cell proliferation or 

viability during EB development. To further assess the cytostatic impact of fluoxetine, P19C5 cells in 

monolayer were cultured for four days in the presence of fluoxetine at various concentrations, and the 

number of viable cells was measured. Compared to the control, fluoxetine caused a dose-dependent 

decrease in the number of viable cells at 6 µM and higher (Fig. 4.8A). Note that 6 µM of fluoxetine 

decreased the viable cell number by about 20%, which was comparable to the extent of reduction in EB 

area at the same concentration of fluoxetine (Fig. 4.2B). Fluoxetine treatment at higher than 10 µM, which 

was detrimental to the survival of EBs, decreased the viable cell number by >95% in monolayer culture. 

This suggests that cytostatic effects of fluoxetine reduce EB growth. 
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R-fluoxetine, S-fluoxetine, and norfluoxetine also decreased the number of viable cells in 

monolayer culture in a dose-response manner comparable to the effect of fluoxetine, although S-

fluoxetine again appeared slightly less potent (Fig. 4.8A). In contrast, the viable cell number was not 

markedly reduced by nisoxetine even at the highest concentration examined (20 µM; Fig. 4.8A), 

suggesting that the trifluoromethylphenyl moiety is essential for the cytostatic effect of fluoxetine. 

Importantly, XAV939 (up to 2.5 µM) did not reduce the number of viable cells, although it markedly 

suppressed the TOPFLASH signal (Fig. 4.8B). Therefore, neither the inhibition of canonical Wnt signaling 

nor the possession of a trifluoromethylphenyl group was sufficient to diminish cell proliferation. 

Lastly, to test whether the action as an SSRI is linked to the cytostatic effect, the viable cell 

number in monolayer culture was assessed after exposure to citalopram, venlafaxine, or 5-HT (Fig. 4.8C, 

D). None of these compounds significantly decreased the viable cell number, suggesting that inhibition of 

SERT is not responsible for the cytostatic effect of fluoxetine. 
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4.4 - Discussion 

In the present study, we used the P19C5 EB morphogenesis model to investigate the 

developmental toxicity of fluoxetine, a common SSRI antidepressant that is often prescribed to women of 

reproductive age. EB morphogenesis was adversely affected by fluoxetine and norfluoxetine at 6 µM and 

above. Comparison to other serotonin reuptake inhibitors suggested that the adverse morphogenetic 

effects of fluoxetine were not mediated by SERT inhibition. Gene expression analyses in EBs showed 

that various developmental regulators were affected by fluoxetine, particularly those involved in 

mesodermal differentiation, and implied inhibition of canonical Wnt signaling. Signaling reporter assays 

confirmed that fluoxetine inhibits canonical Wnt signaling. Fluoxetine also exhibited cytostatic effects on 

P19C5 cells independently of its inhibition of SERT and Wnt signaling. We propose that the adverse 

morphogenetic impacts of fluoxetine reflect its effects on canonical Wnt signaling and cell proliferation 

rather than its therapeutic effects as a serotonin reuptake inhibitor (Fig. 4.9). Considering the 

epidemiological findings linking maternal fluoxetine intake with an increased incidence of birth defects, the 

present study provides mechanistic insight for further investigations into the safety of antidepressant use 

during pregnancy. 

The findings of this study are only relevant if developing embryos in vivo are exposed to 

fluoxetine and norfluoxetine at the levels that cause adverse effects in EBs (i.e., 6 µM or higher). A large 

multicenter study has shown that the mean plasma concentrations (± standard deviation) of fluoxetine, 

norfluoxetine, and a sum of the two in depressed patients are 0.31 ± 0.16 µM, 0.41 ± 0.16 µM, and 0.73 ± 

0.26 µM, respectively (Amsterdam et al., 1997). Other studies involving depressed patients or healthy 

volunteers are also consistent with these plasma concentrations (Brunswick et al., 2002; Cheer and Goa, 

2001; Teter et al., 2005). As fluoxetine and norfluoxetine appear to cross the placental barrier readily, in 

utero concentrations may be comparable to the maternal plasma levels (Kim et al., 2004, 2006). If that is 

the case, exposure levels to developing embryos on average may be one order of magnitude lower than 

the concentrations that caused adverse morphogenetic effects in the present study. However, fluoxetine 

and norfluoxetine exhibit tissue-specific accumulation, and their levels in the brain have been measured 

at concentrations 10 - 20 times higher than the plasma levels (Bolo et al., 2000; Karson et al., 1993). 

Thus, it is important to determine whether similar accumulation occurs in the embryo or the reproductive 

tract. Furthermore, other conditions, such as hepatic impairment, intake of other medications that inhibit 

metabolizing enzymes, and accidental overdose, may significantly increase the plasma concentrations of 

fluoxetine and norfluoxetine (Cheer and Goa, 2001). Therefore, although the average fluoxetine 

concentration during pregnancy may be below the adverse effect levels, many factors may temporarily 

increase exposure levels in certain individuals and contribute to the higher incidence of congenital 

malformations. 
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Fluoxetine inhibited canonical Wnt signaling in P19C5 cells. Although the exact mechanism by 

which fluoxetine interferes with Wnt signaling is unclear, the structural similarity to XAV939 raises the 

possibility that fluoxetine may act as an inhibitor of TNKS (tankyrase) to stabilize AXIN (Fig. 4.5A). 

Inhibition of canonical Wnt signaling by fluoxetine was also reported in a recent study using chondrogenic 

cells, in which the TOPFLASH signal and Wnt-mediated osteoarthritis-related phenotypes are attenuated 

by fluoxetine treatment (Miyamoto et al., 2017). The concentrations of fluoxetine that inhibited Wnt 

signaling in these cells (e.g., ≥ 5 µM to reduce the TOPFLASH signal) are comparable to the fluoxetine 

exposures (≥ 6 µM) that diminished Wnt signaling activity and altered EB morphology in the present 

study. Miyamoto et al. (2017) also demonstrated enhanced binding of ß-Catenin (CTNNB1) to AXIN in 

cell lysate in the presence of fluoxetine, suggesting that fluoxetine may directly inhibit canonical Wnt 

signaling by stabilizing the association of ß-Catenin with the destruction complex. Conversely, another 

study using hippocampal neural precursor cells (NPC) has reported that fluoxetine activates, rather than 

inhibits, canonical Wnt signaling, as evidenced by increases in nuclear ß-Catenin amount and the 

TOPFLASH signal (Hui et al., 2015). Note, however, that the activation of canonical Wnt signaling in 

NPCs is induced by fluoxetine treatment at 1 µM, which is substantially lower than the levels that inhibited 

Wnt signaling in chondrogenic and P19C5 cells. Interestingly, the accumulation of nuclear ß-Catenin and 

Wnt-induced cell proliferation are attenuated in NPCs by co-treatment with WAY-100635, an antagonist of 

the 5-HT receptor, which implies that the activation of Wnt signaling is caused by the SSRI action of 

fluoxetine (Hui et al., 2015). Thus, the apparent contradiction on how fluoxetine modulates Wnt signaling 

might be explained by the ability of NPCs to respond to the elevated 5-HT level caused by inhibition of 

SERT, which appears to be absent in P19C5 cells. If fluoxetine can directly act on the signaling 

components, such as TNKS, AXIN and ß-Catenin, then higher concentrations of fluoxetine might inhibit 

canonical Wnt signaling in NPCs as well. 

Inhibition of canonical Wnt signaling may contribute to the etiology of birth defects associated with 

maternal fluoxetine intake, specifically cardiac malformations, such as ventricular septal defect (VSD), 

atrioventricular septal defect (AVSD), and right ventricular outflow tract obstruction (RVOTO) (Ellfolk and 

Malm, 2010; Gao et al., 2017; Kioussi et al., 2002; Reefhuis et al., 2015; Ruiz-Villalba et al., 2016; 

Grigoryan et al., 2008; Azhar and Ware, 2016). Genetic studies in mouse embryos have demonstrated 

that canonical Wnt signaling plays crucial roles in the development of the heart (Gessert and Kühl, 2010; 

Ruiz-Villalba et al., 2016; Grigoryan et al., 2008; Azhar and Ware, 2016). Functional ß-Catenin is required 

for the differentiation of cardiac progenitors (Lin et al., 2007), the growth and diversification of the second 

heart field precursors into right ventricular and interventricular myocardium (Ai et al., 2007; Kwon et al., 

2007; Klaus et al., 2007), the migration of cardiac neural crest (Kioussi et al., 2002), and the formation of 

the septum from the endocardial cushion (Liebner et al., 2004). Misregulation of these events during heart 

development may result in cardiac malformations, such as VSD, AVSD, and RVOTO (Lalani and 

Belmont, 2014). Note, however, that these genetic studies are mainly based on the loss of ß-Catenin in 
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specific embryonic tissues, which probably abolishes the activity of canonical Wnt signaling completely. In 

contrast, Wnt signaling inhibition by fluoxetine at 6-10 µM appeared to be more modest than the loss of ß-

Catenin, judging from the extent of the TOPFLASH signal reduction (Fig. 4.5B). Further investigations are 

warranted to understand how moderate inhibition of canonical Wnt signaling affects the developing heart. 

The reduction of EB growth caused by fluoxetine was likely due to its cytostatic activity 

independently of its inhibitory effects on SERT and canonical Wnt signaling. Fluoxetine diminishes cell 

proliferation and viability in a variety of cell types, including breast cancer cell lines (Bowie, 2015; Sun et 

al., 2015), ovarian cancer cell lines (Lee et al., 2010), neuroblastoma cell lines (Choi et al., 2017), 

pheochromocytoma cells (Han and Lee, 2009), hippocampal cells (Post et al., 2000; Schaz et al., 2011), 

and hypothalamic neuroprogenitor cells (Sousa-Ferreira et al., 2014), at concentrations that correspond 

to the adverse effect levels in P19C5 cells. The negative impact of fluoxetine on cellular proliferation 

and/or survival has been hypothesized to occur via a number of molecular pathways, including induction 

of endoplasmic reticulum (ER) stress, generation of reactive oxygen species (ROS), activation of NF-κB, 

increased influx of extracellular calcium, and phosphorylation of mitogen-activated kinases (MAPKs) (Lee 

et al., 2010; Post et al., 2000; Choi et al., 2017). The anti-proliferative effects of fluoxetine may not be 

mediated by inhibition of SERT in some cases. In the pheochromocytoma cell line, fluoxetine enhances 

the effect of a cytotoxic agent (1-methyl-4-phenylpyridinium), whereas another SERT inhibitor 

amitriptyline attenuates the cytotoxic effect (Han and Lee, 2009). In the human embryonic kidney cell line, 

the dose-response profiles of the anti-proliferative effects of fluoxetine are similar between unmanipulated 

cells (no SERT expression) and those with SERT overexpression (Schaz et al., 2011). The mechanism by 

which fluoxetine interacts with the molecular pathways described above in an SERT-independent manner 

is still unclear. Nonetheless, it is of interest to investigate the involvement of these pathways in the 

fluoxetine-induced reduction in P9C5 EB growth and the inhibition of canonical Wnt signaling. 

In addition to fluoxetine, various other types of SSRIs are frequently prescribed to reproductive-

age women. Epidemiologic studies that compiled data for all SSRIs together as a single class indicate the 

absence of a significant association between maternal SSRI intake and the occurrence of birth defects 

(Ornoy and Koren, 2017). However, fluoxetine may cause birth defects through mechanisms unrelated to 

its SSRI action, as suggested in the present study. For this reason, it is crucial to investigate the 

developmental toxicity of individual medications with consideration for unexpected off-target effects. 

Currently, animal-based tests are the gold standard to assess the developmental toxicity of chemical 

compounds. However, animal experimentation is costly, labor-intensive, and it poses ethical issues 

concerning animal welfare, especially given the large number of compounds that need to be tested. In 

vitro assays, such as the P19C5 EB morphogenesis-based tests, may be effectively used to gain valuable 

information on dose-response relationships and molecular mechanisms for a number of compounds in a 

practical and ethical manner. Our ongoing investigation using P19C5 EBs suggests that a few other 
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commonly prescribed antidepressants, notably paroxetine and sertraline, also have adverse effects on 

developmental processes. Tests like this are important because, with a better understanding of the 

properties of individual medications, physicians can choose the most appropriate options to treat 

depressed women while minimizing the risk of causing unnecessary birth defects in human babies. 
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Figure 4.1. The experimental scheme to assess the morphogenetic and molecular impact of chemical 
exposures using the P19C5 embryoid body morphogenesis system. 
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Figure 4.2. Fluoxetine impairs morphogenesis of P19C5 embryoid bodies. (A) Representative images of 
embryoid bodies (EBs) on Day 4 that have been treated with fluoxetine at the indicated concentrations. 
All images show a set of EBs that were generated from the same cell suspension. (B) Morphometric 
parameters of Day 4 EBs treated with fluoxetine. Graphs show averages of relative area (open columns) 
and relative EDI (shaded columns) with error bars representing the 95% confidence intervals. Asterisks 
indicate adverse impacts, which are defined as a reduction in average relative area by > 20% and/or a 
change in average relative EDI by > 40%, compared to the control (0 µM). All adverse impacts are 
statistically significant (P < 0.01; two-sample t-test). (C) Morphometric parameters of Day 4 EBs treated 
with fluoxetine’s R- or S- enantiomers or primary metabolite, norfluoxetine, presented in the same format 
as described for (B). No area or EDI values are available when EBs are dead (noted as “D”). (D) 
Representative images of control and compound-treated Day 4 EBs. Scale bars in (A, D) = 500 µm. 
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Figure 4.3. The morphogenetic effects of fluoxetine are not due to inhibition of the serotonin transporter. 
(A) RT-PCR products of the Slc6a2 (norepinephrine transporter) and Slc6a4 (serotonin transporter) 
mRNA, amplified from the embryoid body (EB; a mixture of Days 0, 1, 2, 3, and 4) and the mouse whole 
embryo (WE; embryonic stage E10.5) cDNAs. M: 100 bp ladder molecular marker. (B) Quantitative RT-
PCR analysis of Slc6a2 and Slc6a4 expressions in EBs, relative to the level in WE. Graphs show 
averages of relative expression levels, and error bars show standard deviation. (C) Representative 
images of Day 4 EBs treated with citalopram or venlafaxine. (D) Morphometric parameters of Day 4 EBs 
treated with citalopram or venlafaxine. (E) Representative images of Day 4 EBs that were treated with 
serotonin (5-HT). Morphometric parameters of Day 4 EBs treated with 5-HT. Graphs in (D, F) show 
averages of relative area and relative EDI with error bars of 95% confidence intervals. Scale bars in (C, E) 
= 500 µm. 
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Figure 4.4. Fluoxetine alters the expression patterns of various developmental regulator genes. (A) 
Temporal expression profiles of developmental regulator genes during EB development, determined by 
quantitative RT-PCR analysis. EBs were treated with fluoxetine (2 or 6 µM) or DMSO (control). Horizontal 
axes represent days of culture, and vertical axes represent relative expression levels in arbitrary units. 
Graphs show average relative expression levels, and error bars represent standard deviation. (B) 
Comparisons of expression profiles for Pou5f1, Nanog, and Brachyury on Days 1 and 2 between EBs 
treated with fluoxetine and EBs treated with pharmacological inhibitors of the major developmental 
signals. The disruption profiles for the WNT, NODAL, FGF, BMP, and retinoic acid (RA) signaling 
inhibitors are based on the previous study (Li and Marikawa, 2015). NS: No significant change.  
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Figure 4.5. Fluoxetine inhibits canonical Wnt signaling in P19C5 cells. (A) A schematic diagram of the 
canonical Wnt signaling pathway, highlighting the key regulatory components and pharmacological 
inhibitors (XAV939 and CHIR99021). (B, C, D) Relative luciferase activity of TOPFLASH and FOPFLASH 
(B), pG5-Luc driven by L1CBD-G4DBD and G4DBD (C), and ARE-Luc (D), in P19C5 cells in monolayer 
culture, treated with the indicated compounds for 24 hours. (E, F) Impact of fluoxetine R- or S- 
enantiomers (E), citalopram, venlafaxine, and 5-HT (F) on the relative luciferase activity of TOPFLASH in 
monolayer culture. All graphs show averages of relative luciferase activities with error bars of standard 
deviation. 
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Figure 4.6. Activation of canonical Wnt signaling partially alleviates the adverse effects of fluoxetine. (A) 
Relative luciferase activity of TOPFLASH in monolayer P19C5 cells treated with fluoxetine and 
CHIR99021 at various concentrations for 24 hours. (B) Representative images (top) and morphometric 
parameters (bottom) of Day 4 EBs treated with CHIR99021. Graphs show the averages of relative area 
and relative EDI and error bars represent the 95% confidence intervals. (C) Representative images of 
Day 4 EBs treated with fluoxetine and CHIR99021. (D) Morphometric parameters of Day 4 EBs treated 
with fluoxetine and CHIR99021, presented in the same format as described for (B). Asterisks in (A, D) 
indicate statistically significant differences between the two groups indicated (P < 0.01; two-sample t-test). 
Scale bars in (B,C) = 500 µm. 
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Figure 4.7. Trifluoromethylphenyl moiety of fluoxetine is essential in causing the adverse effects of 
fluoxetine. (A) Chemical structures of fluoxetine, norfluoxetine, nisoxetine, and XAV939. 
Trifluoromethylphenyl groups are highlighted in yellow. (B) Structure of the trifluoromethylphenyl group, in 
which a trifluoromethyl substituent is on the aromatic ring in the para position relative to R. (C) 
Representative images (top) and morphometric parameters (bottom) of Day 4 EB treated with nisoxetine. 
Graphs show averages of relative area and relative EDI with error bars showing 95% confidence 
intervals. Scale bar = 500 µm. (D) Relative luciferase activity of TOPFLASH in P19C5 cells treated with 
nisoxetine for 24 hours in monolayer culture. Graphs show average ± standard deviation of relative 
luciferase activity. 
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Figure 4.8. Fluoxetine diminishes cell proliferation independently of its inhibitory effects on Wnt signaling 
or SERT activity. (A) Impact of fluoxetine, R-fluoxetine, S-fluoxetine, norfluoxetine, and nisoxetine on the 
number of viable cells in monolayer culture after 4 days of treatment, assessed by the CellTiter-Glo 
Luminescent Assay. (B) Impact of XAV939 on the number of viable cells (left; 4 day treatment) and on the 
TOPFLASH activity (right; 24 hour treatment) of P19C5 cells in monolayer culture. (C) Impact of 
citalopram and venlafaxine (left), and 5-HT (right), on the number of viable cells in monolayer culture after 
4 days of treatment. All graphs show average and standard deviation of relative light unit or luciferase 
activity. 
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Figure 4.9. A proposed mechanism of action by which fluoxetine adversely affects morphogenesis. 
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Table 4.1. Genes examined in the fluoxetine study. 
 

Gene 
name 

Characteristics *1 Expression in 
EBs *2 

Primer sequences (5’  3’) 

Actb Cytoplasmic actin; Constitutively expressed 
house keeping gene; Used as a loading control 
to normalize the expression levels of other genes  

Constitutive F: GAGAGGGAAATCGTGCGTGACATC 
R: CAGCTCAGTAACAGTCCGCCTAGA 

Brachyury T-box transcription factor; Associated with the 
initiation of gastrulation; Expressed in the early 
primitive streak 

Day 1 peak F: CCTCGGATTCACATCGTGAGAGTT 
R: AGTAGGTGGGCGGGCGTTATGACT 

Cdx1 Homeodomain transcription factor; Expressed in 
the early primitive streak; Regulator of cranial-
caudal axial patterning 

Day 1 peak F: TCAGGACTGGACATGAGGTAGAGG 
R: TGGGAAGGTGGGCATGAGCAGGTA 

Hes7 BHLH transcription factor; Expressed in 
presomitic mesoderm; Transcriptional target of 
Notch signaling 

Day 2 peak F: CATACCCTTCTCCCACCTTTAGGC 
R: AGTGACGAGAAAGCGATTCAAAGG 

Hoxc6 Homeodomain transcription factor; Regulator of 
cranial-caudal axial patterning; Expressed in the 
neural tube 

Up-regulation 
toward Day 4 

F: TTCGCCACAGGAGAATGTCGTGTT 
R: CGAGTTAGGTAGCGGTTGAAGTGA 

Meox1 Homeodomain transcription factor; Regulator of 
somite segmentation; Expressed in somitic 
mesoderm 

Day 3 peak F: AAAAATCAGACTTCCCAGCGACAG 
R: TTCACACGTTTCCACTTCATCCTC 

Mixl1 Homeodomain transcription factor; Associated 
with the initiation of gastrulation; Expressed in 
the early primitive streak 

Day 1 peak F: CGACAGACCATGTACCCAGACATC 
R: TGAGGCTTCAAACACCTAGCTTCA 

Nanog Homeodomain transcription factor; Regulator of 
pluripotency maintenance; Expressed in the 
epiblast 

Down-
regulation after 
Day 0 

F: GCTTTGGAGACAGTGAGGTGCATA 
R: GCTACCCTCAAACTCCTGGTCCTT 

Nodal Ligand for Nodal signaling; Transcriptional target 
of Nodal signaling 

Down-
regulation after 
Day 0 or 1 

F: GTACATGTTGAGCCTCTACCGAGA 
R: TCTACAGACAGCTGTCCCTCCTGG 

Otx2 Homeodomain transcription factor; Expressed in 
the neural tube 

Down-
regulation after 
Day 0 or 1 

F: GAAACAGCGAAGGGAGAGGACGAC 
R: CCCAAAGTAGGAAGTTGAGCCAGC 

Pax3 Paired-box transcription factor; Expressed in the 
neural tube 

Up-regulation 
toward Day 4 

F: GCTTCTCAGCGTGCAATACTGTGT 
R: TTTCTGTTCTAGCCCTGCCTTTTG 

Pou5f1 POU-domain transcription factor; Regulator of 
pluripotency maintenance; Expressed in the 
epiblast 

Down-
regulation after 
Day 0 

F: AGGCAGGAGCACGAGTGGAAAGCA 
R: GGAGGGCTTCGGGCACTTCAGAAA 

Sox2 SRY-box transcription factor; Regulator of 
pluripotency maintenance; Expressed in the 
epiblast and neural tube 

Down-
regulation at 
Day 2 

F: CACATGAAGGAGCACCCGGATTAT 
R: CTGGAGTGGGAGGAAGAGGTAACC 

Sp5 Zinc finger transcription factor; Transcriptional 
target of canonical Wnt signaling; Expressed in 
the early primitive streak 

Day 1 peak F: CAGGACAGGAAACTGGGTCGTAGT 
R: GGCCTAGCAAAAACTTAGGCCTTG 

Spry2 Antagonist of RTK signaling; Transcriptional 
target of FGF signaling 

Up-regulation 
after Day 0 

F: TTGCATAAGCTAAAGCAGCCAACA 
R: TTTGTGACTGTGCCATGAAGCATA 

Tbx6 T-box transcription factor; Regulator of paraxial 
mesoderm specification; Expressed in the caudal 
end 

Day 2 peak F: GGCCTCTCTTCCACCCTTTAGTTC 
R: CACTAGTAACAAGGCCCCCAGGAG 

Wnt3a Ligand of the Wnt signaling; Regulator of paraxial 
mesoderm specification; Expressed in the caudal 
end 

Day 2 peak F: GCCACAAGAGCTTCCTGATTGGTA 
R: CCAGGCAGAAGACAGTCAGTCACC 

 
*1. Functional and structural properties of the encoded proteins and the expression patterns in normal 
mouse embryos around the time of gastrulation;  
*2. Temporal expression profiles in unmanipulated (control) P19C5 EBs based on the previous studies 
(Lau and Marikawa, 2014; Li and Marikawa, 2015, 2016) and the present study. 
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Table 4.2. Compounds used in the fluoxetine study. 

 
Compound name 

 

 
CASRN 

 
Vendor (catalog number) 

 
Stock concentration 

(solvent) 
 

Fluoxetine hydrochloride 56296-78-7 Sigma-Aldrich (F132) 
 

50 mM (DMSO) 

R-(−)-Fluoxetine hydrochloride 114247-09-5 Sigma-Aldrich (F1678) 
 

20 mM (DMSO) 

S-(+)-Fluoxetine hydrochloride 114247-06-2 Sigma-Aldrich (F1553) 
 

20 mM (DMSO) 

Norfluoxetine hydrochloride 
 

57226-68-3 Sigma-Aldrich (F133) 10 mM (DMSO) 

Citalopram hydrobromide 
 

59729-32-7 Sigma-Aldrich (C7861) 50 mM (DMSO) 

Venlafaxine hydrochloride 99300-78-4 Sigma-Aldrich (V7264) 
 

50 mM (H2O) 

5-Hydroxytryptamine 
hydrochloride 

153-98-0 Sigma-Aldrich (H9523) 
 

50 mM (DMSO) 

XAV939 284028-89-3 Sigma-Aldrich (X3004) 
 

10 mM (DMSO) 

SB431542 49843-98-3 StemCell Technologies 
(72232) 

10 mM (DMSO) 

CHIR99021 252917-06-9 Stemgent (04-0004) 10 mM (DMSO) 

 
CASRN, Chemical Abstracts Service Registry Number; DMSO, dimethyl sulfoxide;  
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CHAPTER 5. CONCLUSION 

5.1 - The future of developmental toxicology research is in vitro 

The flaws of the current animal-based developmental toxicity screens necessitate that in vivo 

testing be augmented or supplanted by in vitro systems, which are fast, cheap and robust to a variety of 

experimental techniques. The cost of in vivo testing alone is a significant factor making in vitro methods 

desirable, because the reliance on animal-based testing makes drug development prohibitively expensive 

for all but the largest pharmaceutical companies, resulting in a regulatory bottleneck that prevents 

potentially life-saving therapies from reaching patients and emphasizing the profitability of 

pharmaceuticals over medical need. To address a small part of this issue, the FDA relaxed the 

requirement for regulatory testing for “orphan drugs,” medications that are developed to treat, diagnose or 

prevent rare illnesses. Globally, 6-8% of the population is affected by one of approximately 7,000 rare 

diseases. The prohibitive cost of drug development means that very few treatments for these diseases 

are brought to market (Gammie et al., 2015; Blankart et al., 2011; Franco, 2013). Although reducing the 

regulatory requirements for this small group of drugs may help a few beneficial therapies reach patient 

populations, the vast majority of potential pharmaceuticals face a gauntlet of regulatory testing. To reduce 

the cost of drug development and promote the search for new beneficial medications, we should 

emphasize increasing the ease and efficiency of regulatory test methods using the myriad in vitro 

technologies that have been developed since 1966 rather than depending solely on outdated animal-

based methods. Additionally, the relevance of in vivo DART testing results to human pregnancies is not 

always clear. As seen with the thalidomide tragedy, the “apical endpoints” that result from in vivo DART 

testing, such as fetal death or malformation, are not well-suited for comparisons between species and 

sometimes are inconsistent even within strains of the same species (Tonk et al., 2015). However, since 

the mechanisms that regulate embryogenesis—particularly within mammals—are highly conserved, “it is 

anticipated that mechanistic information on the interference of chemicals with embryogenesis on the 

molecular level would provide a more informative background for hazard and risk assessment for 

man…such approaches not only allow a more detailed insight into mechanisms of dysmorphogenesis in 

animals, but also facilitate direct comparison with the human situation” (Tonk et al., 2015). Although it is 

difficult to elucidate teratogenic mechanisms in animal-based models, in vitro tests are well suited for this 

type of hypothesis-based developmental toxicity research.  

In vitro tests are advantageous in many ways. Relative to in vivo testing, in vitro test methods 

make it easier to standardize experimental conditions and allow more objective quantification of results. 

For DART testing, pregnant animals are usually dosed by body weight, which, combined with individual 

differences in maternal metabolism and discrepancies in experimenter techniques, leads to large 

variability in the actual fetal exposure to the treatment chemical. In vitro systems allow better control of 

experimental variables and more accurate treatment doses. Similarly, the outcomes of DART studies are 



87 
 

obtained by semi-quantitative scoring of fetal malformations, which requires extensive experimenter 

training and potential for human error. In vitro systems allow objective quantification of experimental 

endpoints and reduce inter-laboratory variability. Additionally, while in vivo methods are cumbersome and 

low-throughput, in vitro models allow high-throughput screening of hundreds or thousands of chemicals, a 

scalability that is increasingly needed for regulatory testing. Finally, in vitro systems are advantageous 

because they provide a platform for many different types of experimentation that are difficult or impossible 

using animal models. Using multiple stem cells lines, it is easy to assess whether a chemical is generally 

toxic or whether it causes toxicity in a specific type of cell. Additionally, embryonic stem cells can be 

directed to differentiate into specific tissue types or recreate certain processes of embryonic development 

in vitro. This allows a better understanding of teratogenic susceptibility to a given chemical and makes it 

easier to extrapolate to humans.  

Perhaps the most useful aspect of in vitro developmental toxicity testing, particularly in 

mechanistic evaluations, is the use of gene expression analyses. In contrast to the high volume of 

chemicals tested using high-throughput methods, gene expression analyses, a.k.a., toxicogenomics, 

enable high-content screening of potentially teratogenic chemicals. This is a major component of the 

SEURAT (‘Safety Evaluation Ultimately Replacing Animal Testing’) initiative and was discussed 

extensively in the publication that summarized results of the SEURAT first phase: “Methods such as 

toxicogenomics are attractive because virtually all toxic responses are preceded by changes in gene 

expression, and the pattern of gene expression can be diagnostic of mode of action and ‘critical biological 

targets’. Furthermore, because gene expression analysis usually covers the entire genome, the 

methodology is able to detect off-target effects provided that the offending target or pathway is expressed 

in the model system(s) being tested. There is already a reasonable amount of research to show that 

toxicogenomic responses from in vitro systems are rich enough to recapitulate in vivo responses, but 

more needs to be done to fully define the potential and limitations of in vitro systems as the platforms for 

toxicogenomics” (Daston et al., 2015). High-content assays allow investigation of biological responses to 

developmental toxicants at cellular and molecular levels and are increasingly valuable as a method of 

understanding teratogenic mode of actions (Knudsen et al., 2011). Between the breadth of analysis 

offered by high-throughput methods and the depth of mechanistic understanding achieved with high-

content toxicogenomic assays, in vitro models are changing the field of developmental toxicology for the 

better.  

The dose of chemical used in developmental toxicity testing remains an important consideration 

that has been difficult to address with in vivo DART methods. Teratogens are not always teratogenic. The 

developmental toxicity of a chemical varies based on the magnitude and timing of embryonic exposure. 

Ideally, developmental toxicity testing would identify the exact concentrations at which a chemical 

exposure goes from having no effect (NOAEL) to causing structural malformations in susceptible 
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embryos. However, this is difficult to do in vivo due to the effects of maternal metabolism, chemical-

specific pharmacokinetics, and a relatively limited window of teratogenic susceptibility. Historically, 

pregnant animals are treated relatively infrequently with high-dosages of the test chemical, and only a few 

different dosages are tested, which is problematic for several reasons. First, human exposures usually 

occur at chronic low-level doses, and it is likely that some teratogenic effects will be the result of the 

cumulative damage to target tissues or organs over time, which is not reflected in the dosing profile of in 

vivo protocols even with the same cumulative daily exposure (Scialli et al., 2018). Additionally, different 

exposure levels of a teratogenic chemical are likely to activate different adverse outcome pathways 

(Ankley et al., 2010). This effect was seen in the case of fluoxetine, which affects serotonin reuptake at 

therapeutic concentrations, inhibits canonical Wnt signaling at slightly higher concentrations and 

adversely affects cellular proliferation and viability via an unknown mechanism(s) at even higher 

concentrations. Third, high dosages like those used in animal models may cause fetal death and obscure 

the presence of malformations occurring at lower doses. “[D]ose metric provides the most meaningful 

basis for interpreting observed effects” of DART testing in animal models to a prediction of the effects in 

human pregnancies (Ankley et al., 2010). Without establishing dose-response curves for teratogenic 

effects, it is risky to attempt to extrapolate results to an estimate of human risk. In vitro tests are well-

suited to aid in the creation of dose-response curves because it is easy to alter doses to more accurately 

match human pharmacokinetic data and gene expression assays are often able to give an indication of 

dose-response before effects are seen at the organ or organism level. Therefore, discussion of dose is a 

perfect example of how in vitro testing methods can supplement, inform and enhance the power of in vivo 

testing.  

Despite many advantages, there are limitations to in vitro screening that must be addressed. The 

robustness, flexibility and efficiency of in vitro tests largely come from their inherent simplicity. Rather than 

trying to understand drug effects on multiple organ systems, in vitro screens assess effects on a single 

cell type. As a result, it is unlikely that any single in vitro assay will be able to fully represent the broad 

spectrum of teratogenic susceptibility during development. To address this, coordinated panels of in vitro 

models, each representing different developmental stages or cell types, will likely be used together to 

screen for teratogenic chemicals. Even so, there is a limited ability of in vitro cells to represent the 

collective responses of tissues within a complex organism, which maintains homeostasis through several 

compensatory mechanisms. The best example of this is the effect of maternal metabolism on the actual 

embryonic exposure to developmental toxicants. Although it may be possible to simulate maternal 

metabolism in vitro, that and other aspects of biologic adaptability remain a hurdle for in vitro screens 

(Luijten et al., 2008). Additionally, a model is only valuable to the extent that it can simulate the process or 

system that we wish to predict. To accurately interpret the results of in vitro screens, we must understand 

what embryologic processes are represented and ensure that those processes are a valid reflection of 

human biology or development. Many in vitro models attempt to mimic a complex developmental process 
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in the absence of the three-dimensional structural complexity, patterning, spatial dynamics and cellular 

interactions that are ubiquitous in organismal development (Tonk et al., 2015). This issue was also 

discussed by Scialli et al. as well, as they wrote, “When modeling developmental processes and the 

toxicity that disrupts them, we need to rebuild this complexity” (Scialli et al., 2018). The balance between 

quantifiable simplicity and realistic complexity will likely be addressed through the coordination of a 

variety of in vitro models and advancements in the way developmental toxicology data is accumulated 

and processed (De Abrew et al., 2016; Ankley et al., 2010; Knudsen et al., 2011). If we remember the 

limitations of in vitro models and interpret results accordingly, these alternative developmental toxicity 

assays are a powerful tool in the study of teratology and embryonic development.  

5.2 - The P19C5 morphogenesis model adds complexity to in vitro 

developmental toxicity screens 

P19C5 model recreates some of the structural complexity and cellular heterogeneity that many in 

vitro models lack. After the initial induction of differentiation, P19C5 EBs do not require any additional 

experimental manipulations to undergo in vitro processes similar to embryonic gastrulation and 

morphogenesis. Since EBs demonstrate a substantial ability to self-organize and establish body axes and 

patterning in a consistent temporal manner, it is likely that they are following the early progression of 

developmental steps that create embryonic complexity in vivo. The process of morphogenesis represents 

the successful function of many critical processes, so the consistent Day 4 elongation of EBs further 

supports that prerequisite developmental processes are also represented in the P19C5 embryoid body 

model. A biologically active chemical can exert effects in three general manners: 1) acting against a 

single specific target or pathway, 2) non-selectively disrupting many pathways or targets (e.g., chemicals 

that have general toxicity), and 3) affecting multiple, unrelated biologic pathways partially selective 

manner. In making recommendations for the field of predictive toxicology, Daston et al. (2015) assert that 

this third type of chemical is the most difficult to using in vitro systems and that, “[s]uch chemicals with 

pleiotropic behavior will probably require more sophisticated systems biology approaches to predict which 

types of toxicity might be anticipated, and at what concentrations” (Daston et al., 2015). Because P19C5 

EBs demonstrate a higher level of complexity than most in vitro models, they may be better suited to 

identify the teratogenic chemicals that have pleiotropic effects and can disrupt several developmental 

pathways. Finally, the P19C5 model is useful because it can be used for high-content genomic assays 

and may be amenable to modifications allowing high-throughput screening. Because the P19C5 EBs are 

simple to create and are evaluated using simple morphologic parameters that can be assessed with 

largely automated image analysis software, it is theoretically possible to automate many parts of the 

P19C5 model in a way that would allow high-throughput screening. If P19C5 EBs are to be used in 

regulatory testing, we also must consider the limitations of the model. P19C5 cells are a murine stem cell 

line, and like in vivo rodent models, the P19C5 cells do not respond to primate-specific teratogens like 
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thalidomide. In the future, we would like to create a similar morphogenesis-based model using human cell 

lines, which would respond to these species-specific developmental toxicants. Additionally, P19C5 EBs 

develop and elongate without detectable Shh signaling activity, which is crucial for normal development of 

anterior structures. This may be because P19C5 EBs appear to recreate only the caudal portion of 

embryonic gastrulation and elongation morphogenesis. If so, it is appealing to hypothesize that the high 

activity of caudal signaling pathways such as RA, Fgf and Wnt may suppress Shh activity. Nonetheless, it 

is important to consider the advantages as well as the limitations of the P19C5 model when it is applied to 

developmental toxicity research.  

5.3 - Future directions and concluding remarks 

Within the past decade, the focus in developmental toxicology has shifted away from animal-

based testing methods towards in vitro methods. Animal-based toxicity screens are an unwieldy, low-

throughput approach that cannot reasonably meet the need to comprehensively screen high numbers of 

chemicals for potential developmental toxicity. In 2007, the National Research Council released the 

report, “Toxicity Testing in the 21st Century,” (TT21C) which emphasized the need for a paradigm shift in 

regulatory toxicology towards an approach based on in vitro methods capable of high-throughput 

screening of chemicals rather continuing the traditional reliance on resource-intensive in vivo models 

(Committee on Toxicity Testing and Assessment of Environmental Agents, 2007). The TT12C report 

described the value of assessing teratogenic mechanisms and discussed the concept of “toxicity 

pathways” as a framework for the study of teratogens. The TT12C report was followed by the 

Organization for Economic Co-operation and Development (OECD) report in 2012 that promoted adverse 

outcome pathways (AOPs) as a more informative and relevant structure for future DART research and 

screening. Although the terminology varies slightly, the NRC toxicity pathways and the OECD adverse 

outcome pathways, represent similar functional paradigms that emphasize the importance of identifying 

the molecular initiation event (MIE) for any given teratogen. Ankley et al. (2010) defined the AOP as, “a 

conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular 

initiating event and an adverse outcome at a biological level of organization relevant to risk 

assessment…[and] can focus toxicity testing in terms of species and endpoint selection, enhance across-

chemical extrapolation, and … facilitate use of molecular or biochemical endpoints (sometimes referred to 

as biomarkers) for forecasting chemical impacts on individuals and populations.” (Ankley et al., 2010). 

The AOP provides a structure for mechanistic information from many types of toxicologic models to be 

integrated into a single cohesive description of teratogenic mechanism.  

Compared to in vivo DART testing, the AOP method of DART assessment allows more inclusive 

incorporation of existing knowledge on teratogenic mechanisms, a better identification of endpoints 

relevant to assessing human risk, and more efficient delegation of limited resources for DART testing to 

the areas where additional information on teratogenic mode of action is vital to risk assessment (Ankley et 
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al., 2010). If testing is done at the mechanistic (or “mode of action” level), then it may be possible to 

identify “critical biological targets” (Daston et al., 2015) that will enable the identification of “a small 

number of key events at a molecular or cellular level that predict an adverse outcome for which testing 

could be preformed in vitro or in silico or, rarely, using limited in vivo models” (Scialli et al., 2018). The 

future of developmental toxicology research will emphasize the importance of the third of Wilson’s 

principles: “Developmental toxins act in specific ways (mechanisms) on developing cells and tissues to 

initiate sequences of abnormal developmental events (pathogenesis)” (Faqi et al., 2012). This represents 

a hypothesis-based approach to teratology research that seeks to answer key questions rather than 

blindly screening chemicals using outdated methods. “A key component in the development of 

hypothesis-driven testing is the understanding that there are a finite number of modes of action involved 

in developmental toxicity. We do not yet know all possible modes of action or the number of pathways 

that could be involved, but we believe that these pathways are knowable” (Scialli et al., 2018). The AOP 

framework allows the integration of information from several in vitro models to create a comprehensive 

picture of potential developmental toxicity for a given chemical that can be more easily extrapolated to a 

risk assessment in human pregnancies. The P19C5 model and other in vitro systems are a promising 

addition to the field of developmental toxicology research and may one day be a fundamental part of 

regulatory DART testing for pharmaceutical chemicals.  
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APPENDIX A: MACRO SCRIPT FOR IMAGEJ MORPHOMETRIC ANALYSIS 

OF EBS 

I wrote the following macro code to semi-automate the morphometric analysis of P19C5 EBs. 

This ImageJ macro (written in the ImageJ language, “.ijm,”) enabled EB images to be analyzed in 

approximately one tenth of the the amount of time that it took to outline EBs by hand, using the polygon 

selection tool in ImageJ. In order for the P19C5 system to accommodate high-throughput analyses, it 

must be amenable to automation and modifications that increase efficiency. Since a major drawback of 

both in vivo testing and the ESTc is the necessity for skilled, semi-quantitative scoring of apical endpoints, 

this macro demonstrates that the P19C5 system may be an advantageous innovation for high-throughput 

screening in DART testing.  

Yellow highlighted regions within the following code indicate command sequences that are 

illustrated with pictures in Appendix B. The bold, red letters corresponding to the highlighted phrases 

indicate which picture matches the text and are not part of the macro code. The macro code is as follows: 

  roiManager("reset"); 

(A)  path = File.openDialog("Select file"); 

  open(path); 

   

(B) Dialog.create("EB Image Analysis Parameters"); 

   Dialog.addNumber("Analyze_Partcles_(Min):", 10000);  

   Dialog.addNumber("Analyze_Partcles_(Max):", 10000000); 

   Dialog.addNumber("Interpolation Interval:", 1); 
   Dialog.show(); 

    

   APmin = Dialog.getNumber(); 

   APmax = Dialog.getNumber();; 

   Interval = Dialog.getNumber();;; 

   

  name=File.nameWithoutExtension; 

  parent=File.getParent(path); 

(C) run("Set Scale...", "distance=0.3940 known=1 pixel=1 unit=uM global"); 

   

  run("Duplicate...", name+"-1"); 

(D) run("Invert"); 

(E) imageCalculator("Min create", name+"-1.tif", name+".tif"); 

  selectWindow("Result of "+name+"-1.tif"); 

   

(F) run("Find Edges"); 

  run("8-bit"); 

(G) setMinAndMax(0, 125); 
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  call("ij.ImagePlus.setDefault16bitRange", 8); 

  run("Apply LUT"); 

  setMinAndMax(40, 125); 
  call("ij.ImagePlus.setDefault16bitRange", 8); 

  run("Apply LUT"); 

   

(H) //setTool("brush"); 

  setLineWidth(3); 

  setForegroundColor(0,0,0); 
  setBackgroundColor(255,255,255); 

   

(I) waitForUser("Pause","Separate EBs with Paintbrush tool (Color = Black,  

  Brush Width = 3 pixels). Click OK when done."); 

   

   

(J) run("Make Binary"); 

   

  for(i=0;i<3;i++){ 

(K)  run("Close-"); 

(L)  run("Fill Holes"); 

  } 
   

  waitForUser("Pause","Are all EBs complete and/or separated? Click OK if  

  yes."); 

   

(M) run("Erode"); 

   
 run("Analyze Particles...", "size=&APmin-&APmax clear add"); 

   

  roiManager("Show All with labels"); 

  for(i=0; i<roiManager("count"); i++){ 

   roiManager("select", i); 
  run("Interpolate", "interval=&Interval"); 

(N)  run("Fit Spline"); 

   roiManager("Update"); 

  } 

   

(O) run("Set Measurements...", "area mean standard modal min centroid center  

  perimeter bounding fit shape feret's integrated median skewness kurtosis  

  area_fraction display add redirect=None decimal=3"); 

  roiManager("Deselect"); 

  selectWindow(name+".tif"); 

  roiManager("Show All with labels"); 

(P) roiManager("Measure"); 
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  selectWindow(name+".tif"); 

  save(path); 

   
  output=getDirectory("Choose Folder for Results"); 

  selectWindow("Results"); 

  saveAs("Results", output+name+"_results.csv"); 

   

  selectWindow(name+"-1.tif"); 

  close(); 
  selectWindow("Result of "+name+"-1.tif"); 

  close(); 
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APPENDIX B: EXAMPLE IMAGES CORRESPONDING TO APPENDIX A 

MACRO SCRIPT FOR IMAGEJ MORPHOMETRIC ANALYSIS OF EBS 

Images to accompany EB image analysis macro script are demonstrative of the general concepts 

and .ijm commands only. Different ImageJ versions may look slightly different. Some variables of the 

macro sccript (i.e., particle size, min/max threshold, etc.) may need to be adjusted if using this macro for 

images captured through any methods other than those described in the materials and methods portions 

of the preceding text. 

(A) Open file (B) Set EB particle size (C) Set scale 

 
 

 
(D) Duplicate and invert (E) Min create (F) Find edges 

  

 

(G) Set min/max threshold (H) Select brush tool (I) Separate EBs with 
brush tool* 
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(J) Make binary (K) Close (L) Fill holes 

   
(M) Erode (N) Interpolate/fit spline (O) Set measurements 

  

 
(P) Measure   

 

* Note: Brush lines in (I) were 
illustrated in red. During actual 
image analysis brush lines 
would be black. 
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