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Abstract

Dominated by quantitative data science techniques,
social media data analysis often fails to incorporate
the surrounding context, conversation, and metadata
that allows for more complete, accurate, and informed
analysis. Here we describe the development of a
scalable data collection infrastructure to interrogate
massive amounts of tweets—including complete user
conversations—to perform contextualized social media
analysis. Additionally, we discuss the nuances of
location metadata and incorporate it when available
to situate the user conversations within geographic
context through an interactive map. The map also
spatially clusters tweets to identify important locations
and movement between them, illuminating specific
behavior, like evacuating before a hurricane. We share
performance details, the promising results of concurrent
research utilizing this infrastructure, and discuss the
challenges and ethics of using context-rich datasets.

1. Introduction

Social media data analysis is becoming a
sensationalized research area typically dominated
by machine learning, data mining, and natural language
processing. These approaches often fail, however,
to incorporate surrounding context to better situate
the content and enable more complete, accurate,
and informed analysis. This paper describes the
development of a scalable Twitter data collection
infrastructure using Kubernetes and a location-based
analysis dashboard that are designed to collect
and interrogate massive amounts of tweets based
on user conversations—not keywords—to perform
contextualized social media data analysis.1

This infrastructure was initially designed to help

1Code: github.com/Project-EPIC/context-analysis-infrastructure

researchers understand people’s perceptions and
behaviors related to approaching weather hazards
(such as whether or not to evacuate in the face of a
hurricane) by analyzing the content of Twitter users’
publicly visible tweets as a personal narrative of their
experiences [1]. When available, location information
is displayed in a dashboard that clusters and displays
geo-referenced tweets on an interactive map, allowing
analysts to interpret tweets in spatial context while
highlighting the movements of users. This can, for
example, help researchers identify users who evacuate.
Our infrastructure is designed to be scalable and
cost-effective while working within the limits of
Twitter’s APIs. In doing so, we aim to lower the entry
barrier to mixed-methods, large-scale social media data
analysis. However, analysis of social media narratives
and geo-referenced posts also raises challenges—both
technical and ethical—that we will discuss.

In the following sections, we explain the value
of including the complete conversation and context
surrounding social media posts and then review related
work. We discuss geo-referenced social media posts
and their ability to provide additional context and
present common pitfalls that researchers need to protect
against when interpreting such data. We then describe
the technical implementation of our data collection
infrastructure. Finally, we share our results and end with
a larger discussion around the challenges and ethics of
using context-rich datasets.

1.1. Context Matters

Accounting for the conversational nature of social
media is challenging both technically and analytically;
it requires collecting significantly more data and then
piecing it all together to construct the full narrative
[2, 3]. More the fault of the data collection process
than the research approach, Twitter data analysis starts
with the gathering of publicly posted tweets. This is
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most commonly done through one of the public (and
free) APIs that Twitter makes available for sampling
their massive stream of social media posts. Typically,
analysts request posts that match a set of relevant
keywords through these APIs. These keyword-based
collections, however, cannot tell the complete story.
Consider the following example (synthetic, based on
real tweets):

t1: User1 There’s a hurricane coming, I’m freaking out!
#hurricanesandy

t2: User2 @User1 Be safe! My cousin’s also in the area
and just got told to evacuate!

t3: User1 @User2 Yeah, I just got the notice, too. It’s so
scary. I’m packing now.

t4: User1 The first floor of my building is totally
underwater #hurricanesandy

t5: User2 @User1 Okay, let me know when you’re safe!
t6: User1 @User2 just got to my aunt’s house in New

Jersey. My whole family is here.

Data collections based on storm-related keywords
will only collect posts t1 and t4 (”Hurricane” and
”hurricanesandy”). Posts t3 and t6, however, provide
critical information about what preparatory actions
User1 is taking and why; yet, these tweets will not
be included in a keyword-based dataset. Depending
on the analyst’s end goal, the lack of this contextual
information likely goes unnoticed. Machine classifiers
may recognize that these users are talking about the
storm, that they are nervous, and that a building is
flooding. These pieces of information describe just
one more person in a list of potentially millions that
are affected by the storm. Far from comprehensive,
keyword datasets are still used by many; for example,
Kryvasheyeu et al. used keyword-based collections
for damage assessment, achieving correlation between
location, volume, and damage-levels [4]. These
interpretations, however, offer primarily validation
that people who tweet, tweet about their current
experiences. These tweets are then interpreted as simple
proxies for people mentioning the storm, and the rich
information contained in the post itself is not utilized.
Furthermore, Shelton et al. show that many of these
quantitative mappings of tweet densities are incapable
of understanding the various contained geographies
without more context and qualitative investigation [5].
The problem, then, is that many data science approaches
extract the single post (i.e. ”tweet”) for analysis rather
than a user’s monologue or conversation with other
users. This problem has previously been called the
tyranny of the tweet [2].

Thus, this work comments on the difficulties
of social media analysis at scale and argues that

contextualized analysis infrastructures help expose
a more accurate story, in this case about how
users are responding to a disaster, a story more
nuanced and descriptive than that provided by the
analysis of keyword collections. We stress the
concept of contextualized analysis over data science
or data analysis because our infrastructure is built to
better contextualize data to promote more responsible
interpretation and it is built for mixed-methods research
approaches to social media data, as advocated by [2, 6].

Referring back to the example conversation, to
understand the complete story of whether or not this user
evacuated, we must first collect all of a user’s tweets and
replies to create a complete narrative and conversation
for analysis. This is what our new infrastructure does
in a scalable and cost-effective way. Only with this
complete record, can we claim that the data represents
a record of the user’s experience and behaviors. From
here, we can begin contextualized analysis of the user’s
perceptions and behaviors related to the threat, a goal of
concurrent work [1, 7].

2. Background and Related Work

Researchers in the crisis informatics and information
science disciplines are developing new contextualized
knowledge by employing mixed-methods approaches to
social media analysis. Using the near real-time personal
accounts of a disaster’s impact afforded by social
media posts, researchers have extracted situational
awareness [8], identified local and community-specific
relief needs [9], and identified key distinctions between
locally-actionable information and general well-being
concerns in the global conversation [10]. Within
these fields, there has also been multiple attempts
at developing methods for the collection, analysis,
visualization, and interpretation of social media data
based on keywords [11, 12, 13, 14].

Incorporating interviews and more qualitative
analysis approaches, researchers have studied topics
such as the reunification of lost pets with families in
the wake of disasters [15], the self-organization of
digital volunteers [16], and the critical information
infrastructure that develops through social media during
a crisis [17]—as well as the misinformation that travels
across these infrastructures [18]. The rich narratives
published to social media provide on-lookers with a
window to the situation as it is unfolding on the ground.
There are major limitations, however, of what can
actually be learned from these data collections. These
datasets are not always representative of the larger
population and often have embedded biases. These
data can certainly provide insightful first-hand accounts
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of the events, and should absolutely be studied in this
capacity, but researchers need to be aware of—and
honest about—the limitations [6].

2.1. Data Collection Methods

Twitter makes collecting data available through a set
of publicly accessible APIs. The most common are
the search and filter APIs which allow users to submit
specific search rules, typically keywords. This service
is available to the public for free and, as such, does
not include all possible Twitter data; indeed, only a
small percentage of Twitter data is included. In 2018,
Twitter adjusted their API access model to offer more
options via different subscription levels, such as access
to the “decahose,” i.e., up to 10% of the current tweets
being generated at any time. Paid access to more
data has always been available, with some universities
and research groups having expanded access through
subscriptions [6]. This model of access to Twitter data
is unlikely to change. While Twitter may continue to
alter rates and provide different levels of access to data,
the fundamental access model of searching for a specific
keyword, location, or user and getting a rate-limited
response is likely to persist. This implies that every
researcher is ultimately working with a different dataset,
depending entirely on the terms with which they seeded
their search and the type of access they could afford.
While our data collection infrastructure does not solve
this issue entirely, it creates more complete datasets at
the user level by collecting all of a user’s tweets and
conversations.

The design and implementation of data intensive
software systems for social media research is an active
area of study [19]. This constantly evolving field—also
known as data engineering—has existed alongside and
pushed the field of crisis informatics by improving
data collection and analytics at ever-growing scales.
Some examples include infrastructures for collecting
and analyzing social media data [12, 20, 21], moving
from traditional SQL to NoSQL distributed data stores
[21], and moving to real-time social media analysis
[22, 23]. In this paper, we look at a new evolution
of this type of infrastructure that takes advantage of
services known as container orchestration systems that
are designed for massive scalability, high availability,
and strong reliability.

2.2. Cloud-Based Scalability

Open source tools like Hadoop and Spark have
made scalable, distributed computation available to the
masses. In addition, systems like Cassandra have greatly
simplified hosting internal storage. As a result of

companies open-sourcing their distributed orchestration
systems, such as Kubernetes or Mesos, data analysis
systems can scale up to handle big data loads at a
greatly reduced cost. The SMACK architecture is an
example of a distributed architecture similar to our
system [24]. SMACK distributes workloads using
Akka for actor orchestration and Mesos for container
orchestration. Our architecture uses Kubernetes and
Google Cloud Storage. We chose to use micro-services
within Kubernetes instead of Akka because Kubernetes
is 1) language agnostic through the use of containers
and 2) managed clusters are readily available from
many cloud service providers. However, similar to
work performed by Hu et al. [25] and Kiran et al.
[26], our infrastructure is not tied to any one container
orchestration system or cloud vendor. This flexibility
provides other researchers with a choice that can help to
reduce their costs if they decide to adopt our system.

2.3. Movement Prediction with
Geo-Referenced Social Media Data

Knowing the place associated with a tweet provides
another dimension for analysis: location. Knowing
the geographic location and timestamps of two tweets
from the same user can provide knowledge of a
user’s movement during an event. As early as 2008
(before Twitter introduced the geotagging API in 2009),
researchers investigated the ability of user-generated
content sites to learn about the locality of users. Using
data from Flickr, Girardin et al. identified patterns
of geo-referenced photos posted by tourists to Rome,
creating a proxy for understanding the city’s tourism
industry [27]. Most notably, this study identified
the observational advantages of this form of passive,
secondary geo-referenced data over other sources where
a user is opting-in to provide location data.

Using data from 200K Twitter users, Krumm et al.
built a machine learning classifier to predict whether a
user will visit a given location [28]. Relevant to our
work, Krumm et al. identified the most likely times
for a user to be home (middle-of-the-night) and then
identified the location most associated with tweets at
these times. We use this same process to predict a user’s
home location which is critical additional context when
investigating, e.g., evacuation behavior. As for human
movement patterns, Jurdak et al. found Twitter to be
a useful proxy for predicting human movement using
geo-referenced tweets posted in Australia [29] while
Martı́n et al. used the amount of geo-referenced social
media data, aggregated at the county level in South
Carolina as a proxy for identifying evacuation during
Hurricane Matthew [30]. Our infrastructure differs from
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their approach by creating opportunities for user-level,
not aggregated, analysis to understand these behaviors.

3. Geo-Referenced Social Media Data

The location from where a tweet was posted provides
powerful additional context, especially if there are no
other location clues in the post. Most tweets do
not contain any geo-referencing, making those that
do include this extra metadata all the more valuable.
Complicating the ability to learn from this information,
however, are the different forms of geo-referencing
available to users. In some cases, we think users are
likely not even aware they are posting their location
information on Twitter. Techniques, norms, and options
available for geo-referencing one’s social media posts
have changed over the years. When discussing these
behaviors, we make the following distinction between
the terms geo-reference, geo-tag, and geo-location:

Geo-Reference Either form of location information below:
Geo-Tag Includes the actual coordinates (the

precise lat/lon) as reported by the GPS of
the posting device

Geo-Location Includes a relative location of varying
resolution: “Miami” or “USA”

In comparing various disaster-event datasets
collected from Twitter over the last six years, we find
a decrease in geo-tagged content and an increase in
geo-located content. In that time, the Twitter mobile
app changed the location-sharing interface to make it
easier for users to geo-locate their post than to geo-tag
their post. This is achieved by providing the user
with a list of suggested locations above the geo-tag
(coordinates) when choosing to geo-reference their post.
Moreover, many geo-referenced posts are cross-posted
from hundreds of other services such as Foursquare or
Instagram. Each of these sources then has their own
method of geo-locating or geo-tagging. Foursquare,
for example, intentionally obscures the exact location
of ”homes” [31]. Table 1 shows the number of distinct
sources per event type for various disaster-related
Twitter datasets we have collected since 2012.

Geo-referenced tweets always hold point-location

Figure 1. User movement between Miami and

South Beach. Red dot represents exact coordinates

for ”Miami” geo-location.

Event Type Geo Tweets % of total Sources
Earthquake 2,463,303 2.13 684
Flood 890,409 1.99 701
Hurricane 458,225 0.64 660
Tornado 402,077 1.21 567

Table 1. Geo-referenced tweets collected since 2012

from disaster events and the number of services

posting them to Twitter, via the source attribute.

information in one of two attributes: coordinates
or geo (now deprecated by Twitter). These fields
record the point as an exact latitude/longitude. The
trouble with this point-coordinate resolution, however,
is that those using the data may incorrectly assume
that the point represents the exact coordinates from
where the tweet was posted (a geo-tag). Given the
multitude of sources for this geo-reference, there can
be no guarantee that this is an accurate point location.
For example, many cross-posts from Instagram contain
geo-tags that are really geo-locations. Figure 1 shows
geo-referenced tweets posted by a user during Hurricane
Irma in Fall 2017. The two points represent “Miami”
(red) and “South Beach.” In fact, many cross-posts
from Instagram for “Miami” appear to be from the red
point in Figure 1. It is unlikely that all of these users
are standing in that exact location, which happens to
be a parking lot for a Yacht club. Since we also find
hundreds of Instagram photos cross-posted to Twitter
from Hurricane Matthew (2016) at this exact location, it
is probably the case that these coordinates are returned
by a geo-coding lookup service for “Miami,” and are
then embedded into the tweet. As an overview, the
resolution of these coordinates representing the city is
fine, but if looking for neighborhood or block-level
resolution, the precision of this geo-reference becomes
problematic; users were not at that specific location as
one might initially assume from the exact coordinates
embedded in the tweet.

To address this confusion, geo-referenced tweets
include a place attribute with additional information
about the location the user is geo-referencing. This
includes a geographic bounding box, the full name of the
location, and a description of the geographic resolution:
A city, county, state, etc. The place attribute is
a powerful feature for Twitter as a data-provider for
geographic search and filtering, but the nuances of
this attribute seem too often to be ignored by data
analysts: people simply produce maps of individual
tweets as points from their collected dataset. We also
find examples in our datasets of the place attribute
either missing or containing incorrect descriptions of the
geo-reference. With so many different services posting
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to Twitter (see Table 1), these errors seem inevitable:
different services handle location data differently,
such as FourSquare intentionally obscuring a private
residence. What gets recorded in the tweet, however,
is an exact coordinate representing some location within
some distance of the original address, with no additional
context to warn future analysts that the user is not
actually standing at that location. Similarly, during
Hurricane Matthew, hundreds of Instagram cross-posts
were embedded with the coordinates for the “Miami”
location in Figure 1, however, the tweets do not
correctly specify “city” as the place type within the
place attribute, so they appear to be exact geo-tags.
Ultimately, many geo-referenced tweets appear to
have better spatial accuracy than they actually do.
Differentiating the spatial resolution of a geo-reference
is not straightforward without more context about the
user’s activity.

Moreover, the presence of a geo-reference does not
imply that the user is actually at that location. Twitter
even notes in the API documentation that “Tweets
associated with Places are not necessarily issued from
that location but could also potentially be about that
location” [32]. We have found tweets from users who
appear geographically vulnerable by geo-locating their
tweets at casinos in Atlantic City, New Jersey near
the time of Hurricane Sandy’s landfall when the region
was supposed to be evacuated. In reality, they were
expressing their concern for the business and chose to
geo-reference the location as additional context, making
the tweet about that place, not from that place.

4. Technical Architecture

In this work, our goal was to create a scalable
architecture that optimized performance by distributing
the workload of data collection between different
types of workers. This requires two components:
the user-crawler and the user-requester. We
use a container-based deployment system in the
cloud—Kubernetes—that enables us to scale the
number of workers as necessary. When scaling
these components, our primary concern lies with
rate-limiting. Twitter implements API rate-limiting to
keep their services functional and available; this limit
constrains the amount of data available for collection by
outside systems. In this context, scalability refers to the
ability to work within the bounds of API rate-limiting
and still retrieve data at an acceptable rate. An odd
trade-off in the big data era is that to be cost-effective,
what each crawler spends most of its time doing is
simply waiting for an API limit to reset; for Twitter, that
interval is typically 15 minutes.

4.1. User crawler

Inspired by web crawlers, this component is a client
of Twitter’s REST API; it pulls a user’s entire timeline
(all of a user’s tweets, up to limits set by Twitter). The
user crawler is a single, robust command-line utility
written in Python. Input is either a list of users through
stdin, a file containing a list of Twitter usernames,
or usernames that arrive via a specific Kafka topic
(i.e. message queue). The program authenticates
with Twitter via credentials stored by Kubernetes as
environment variables within the container created for
the web crawler.

As of June 2018, the Twitter user timeline API can
return a user’s most recent 3,200 tweets. Each single
request to the API can return 200 tweets. Obtaining all
(available) tweets for a user therefore takes 16 requests.
This public Twitter API endpoint is rate-limited to 1,500
requests every 15 minutes. This imposes a maximum
retrieval of 93 users per 15 minutes (or 6 users per
minute). In reality this number is slightly higher because
many users have not tweeted 3,200 times, so their
entire timelines are retrievable in less than 16 requests.
When a user’s entire available timeline is downloaded,
the results are saved to a cloud storage bucket in a
line-delimited JSON file (one tweet per line).

Within each storage bucket, files are stored under an
event subdirectory. Events are defined by start and end
dates. For each event, there are four subdirectories to
further organize the results:

complete Successfully collected tweets from a user
that fall within the entire time of an event

incomplete A user has tweeted more than 3,200 times
since the start of the event; there may be
tweets from the user during the event that
we cannot collect.

failed A user has tweeted more than 3,200 times
since the end of the event; none of the
tweets returned were posted during the
time of interest.

not accessible A user’s tweets are protected or the
account no longer exists

While every event varies drastically in terms of the
number of users who are actively talking about it on
social media, this number is rarely small. The Twitter
rate limit then becomes the primary bottleneck in the
collection. Distributing to multiple workers allows us to
use more API keys and alleviate this concern, linearly
scaling the number of tweets per minute we can obtain
at the rate of >6 users per minute per worker.
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Figure 2. Crawler microservices system architecture overview on Kubernetes

4.1.1. Reply Crawler Tweets authored by a single
user only represent one side of the conversation. To
get the other half, we run the reply crawler. This
microservice uses the search API to pull mentions of
a user that are replies. For example, the search string
"@User1 filter:replies" queries for replies to
tweets authored by @User1. We do not use the
query operator "to:" because it only pulls tweets that
directly reply to @User1 which excludes any reply from
a third user. Consider the example conversation below.
The reply crawler will capture both t2 and t3. Using
the "to:" operator would only retrieve t2. This is
important because t3 is technically a reply to t2/@User2
and therefore the author of t3 may be unaware of
t1/@User1, other than the mention of @User1 in t2.

t1: User1 There’s a hurricane coming, I’m freaking out!
#hurricanesandy

t2: User2 @User1 Be safe! My cousin’s also in the area
and just got told to evacuate!

t3: User3 @User1 @User2 Yeah, I just got the notice,
too. It’s so scary. I’m packing now.

This component works in a similar way to the user
crawler. Inputs can be a list of users via stdin, a
file, or a Kafka topic. It uses the Standard Search
API. Each request returns a maximum of 100 tweets
and is rate-limited to 450 requests every 15 minutes.
In addition, as of May 2018, Twitter has restricted
the access of this endpoint to tweets published in the
last seven days. The new Premium APIs allow for
searches that go further back in time. It should be noted
though, that the new premium APIs do not have the
"filter:replies" operator. This limits our reply

queries to seven days after the event, so analysts must
act quickly to identify users of interest.

4.2. Scaling

The primary purpose of distributing this
infrastructure on Kubernetes is to increase download
speed. For this, we use a publish-subscribe,
asynchronous micro-service architecture. We utilize
an external micro-service acting as a web interface to
easily input the list of usernames to be downloaded. To
communicate this to the crawlers we use a distributed
Kafka cluster with a topic for the users, partitioned for
each worker. Distribution between partitions is done in
a round robin fashion which ensures that each of our
components will be reading approximately the same
amount of users without skipping a user.

4.2.1. Handling Twitter rate-limits To avoid
abuse of its service, Twitter implements strict
rate-limits on each API endpoint. Twitter data
collection infrastructures are required to work
within these requests-per-minute constraints. Our
architecture increases performance by using different
API credentials for each worker, running all of the
crawlers in parallel. In practice, a small number of
workers (less than ten) is sufficient to meet the needs of
many crisis events.

Given the 15 minute interval to reset the rate
limits, each worker sits idle for many minutes at a
time. We currently utilize this time to create GeoJSON
files (described below) when geographic metadata is
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present. This is just one example; these idle times
could be used for any number of automated user-level
analyses. Additional techniques could include sentiment
analysis, language detection, location analysis, or even
identification of more users to collect.

4.2.2. Making Use of the Cloud To make it
easier to deploy and scale, we dockerized the whole
infrastructure to allow for distributed deployment in
Kubernetes. This container orchestration system
allows a system administrator to deploy code without
having to worry about languages, operating systems,
or dependencies. Kubernetes is quickly becoming a
de facto standard to deploy cloud-based infrastructure
thanks to its compatibility with various cloud providers.
It allows a research team to choose among the major
cloud hosts when deploying software infrastructure.

Kubernetes simplifies deployment and makes the
task of deployment efficient. With its abstraction,
we can deploy several microservices in isolated
environments without needing a separate machine for
each. This allows us to deploy complex systems with a
simpler and reduced underlying infrastructure, keeping
infrastructure costs lower than if we had to deploy a
machine for each microservice. In our case, our whole
testing infrastructure is deployed on only two virtual
machines on Google Cloud. For this implementation,
we use Google’s Kubernetes Engine (GKE). It offers
a more advanced interface and is capable of meeting
our needs better than current competitors. In addition,
taking into account that our infrastructure creates heavy
network traffic through the transferring of many tweets
in parallel, network performance is a primary concern.
Using the latest Google networking systems to route
requests, we find GKE provides great performance at
low cost (roughly $100/month).

5. Extending with Geo-Location

In addition to saving the JSON representation
of a user’s tweets, the user crawler script creates
a simplified geojson feature representation with the
following schema:

{"type":"Feature",
"geometry": <geojson point>,
"properties": {

"tweetID": <string>
"user": <string>
"date": <string (ISO Timestamp)>
"text": <string>

}}

If a tweet does not have a geo or coordinates

property, the geometry is set to null. If even one
tweet has a valid point geometry, a GeoJSON feature
collection is created with all of the tweets and saved
to a cloud bucket. The GeoJSON format is a lossless,
non-compressed, human-readable format for storing
geographic data. The limited tweet attributes included
here ensure that a user’s entire available contextual
stream typically remains under 1MB in size for ease
of transfer across the web while maintaining enough
valuable information for standalone visualization. We
include the original tweet id to ensure it is easy
to look up the post on Twitter. If there is a
reply conversation (@user) associated with this user’s
contextual stream, a separate script will stitch together
the entire conversation chronologically. For this reason,
the user attribute is important to include in every feature.

Figure 3. Visualization Dashboard populated with

1798 geo-tagged tweets.

5.1. Web-Based Interactive Visualization

To view a user’s tweet stream with geographic
context, we created an interactive web map built on
Mapbox-GL (mapbox.com/maps) embedded within a
larger javascript-powered dashboard. This visualization
tool shows a map alongside a scrollable timeline of
a user’s entire contextual stream. The dashboard is
populated by loading a single GeoJSON file from a
location specified in the URL, making it easy to share
links for specific users among teams of analysts. As seen
in Figure 3, geo-referenced tweets appear as interactive,
clickable points on the map, while all of a user’s tweets
populate the accompanying user timeline on the side.
Clicking on geo-referenced tweets in the timeline will
pan and zoom the map to the location of the tweet.
Above the map is a graph showing the volume of
tweets overtime. The user depicted in Figure 3 tweeted
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more during Hurricane Sandy than any other time that
year. Selecting a time range filters the tweets shown
on the map to only those posted during that time while
simultaneously auto-scrolling the contextual timeline on
the side to the beginning of that time period. Analysts
may also choose to filter tweets in the timeline to only
those visible on the current map. In this way, both
the map and the timeline are capable of driving the
interaction of the other.

5.2. Clustering, Home Location, and
Movement

Using a javascript implementation of DBScan2, all
of a user’s tweets (not replies or conversations) are
spatially clustered in the browser. This identifies
areas of consistent posting. If users are consistently
geo-tagging their tweets from a similar location, the
noise in the GPS signal will show many points close
together, but never in the same exact place. Conversely,
geo-located tweets that represent the same location will
appear with exactly the same coordinates, directly on
top of one another. Clustering these points simplifies the
noise and provides valuable additional information at a
glance, such as which cluster does the user tweet from
most frequently? As shown in Figures 3 and 4, clusters
are differentiated by color.

Home location detection provides further context to
the geographic footprint of a user’s activity. Using only
the time and geo-cluster associated with the tweet, we
use the same approach as Krumm et al., identifying
likely home times and then classifying the clusters with
the most recurring Twitter activity during these times
as their potential home location [28]. In practice, we
have found that these locations may not be homes but
instead gyms, work, or school. We found, however, that
the accuracy of a home location is not as important as
the identification of a location that represents normalcy
during non-storm times [33]. Figure 3 shows the
user’s calculated home location as a transparent blue
circle. Given the proximity to the shore (and the
mandatory evacuation order of that area), we consider
this user to be geographically vulnerable [10]. Using
this dashboard, we found that this user tweeted from
this calculated home location before the storm, then
from a motel further inland during landfall, and then
from the home location again after the storm, a strong
signal of evacuation: all learned from the geographic
metadata only, and then confirmed later by a single tweet
days after the storm near the home location saying “It
feels so great to be home. *sigh*”. Additionally, the
existence of any two geo-referenced tweets may imply

2github.com/Turfjs/turf/tree/master/packages/turf-clusters-dbscan

movement between these two points. We create lines
connecting each of a user’s geo-referenced points as a
separate feature that analysts can toggle on/off on the
map to see a user’s path of movement.

Figure 4. A User’s common tweeting location

clusters with movement between them.

One complication of working with these types
of geo-referenced social media data is the meaning
of the location metadata. As mentioned before, a
geo-reference does not imply a user is actually at that
location. The tweet could simply be about that location.
These tweets are still important to provide context, but
one must understand their intention. For example, many
media or storm-tracking accounts geo-reference their
tweets to the location of the story or the current path
of a storm [34]. This practice ensures that these tweets
show up in spatial queries. A simple filtering approach
is to identify the speed a user traveled between any two
consecutive geo-referenced points and determine if the
point is a plausible physical location of the user, or
if it’s merely about the place. We use the approach
demonstrated in [29] as reference, but we do not
remove the data entirely, instead we show the calculated
speed in the tweet timeline within the dashboard to
provide context. If users are traveling thousands of
miles per hour between their tweets then some of the
geo-references must be about the place, not from the
place. We leave this interpretation to the analyst.

6. Results

Our infrastructure was recently used in one of
our research studies [33] to help identify evacuation
behavior to create a training set for automated detection
of evacuation behavior based both on textual clues in
a user’s tweets as well as their physical movements.
The tool is currently deployed for various research
efforts associated with [1] and continues to prove
itself a stable, scalable social media post collection
infrastructure. We currently have two machines running
three user-crawlers. This system costs $3.33 per day and
can download contextual streams for 30k users per day.
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7. Discussion

The ability to use social media posts as a near
real-time personal account of those experiencing a
crisis or disaster is a powerful affordance of our
modern information environment. All researchers in this
space should be able to access and perform informed,
contextualized analysis of these rich narratives. We
created our data collection infrastructure to allow
just that, but recognize that it is potentially at odds
with official Twitter guidelines. Additionally, this
infrastructure is less useful for those with expanded
access to Twitter data as they may be able to perform
more complex queries and may not be limited to a user’s
last 3,200 tweets. With that, we offer this infrastructure
and discussion of potential difficulties to all researchers
currently performing analysis of keyword-based tweet
collections obtained from public Twitter APIs.

The distinction made here between geo-tag and
geo-location is not common language, but the lack of
this distinction has the potential to affect many social
media studies. Further, distinctions about tweeting from
a place versus tweeting about a place are difficult to
automatically discern.

When offering a technical infrastructure that aims
to lower the barriers to big social media data analysis,
specifically an infrastructure that focuses on individual
users and not the aggregate, we identify an additional
responsibility to inform other researchers of the ethical
gray areas associated with publicly accessible personal
data and the associated privacy concerns. We find this
particular conversation timely and appropriate given that
the GDPR went into effect in May 2018. While all
of our data is publicly accessible, we doubt that the
users who appear in these datasets truly consent to their
data being used in this manner. Twitter’s terms of
service clearly describe the potential of public tweets
being collected and analyzed by third parties; however,
research indicates that users remain unaware of how
their data is actually used and likely do not consent [35].

8. Conclusion

We have presented a cloud-based Twitter data
collection infrastructure based on collecting all tweets
from and to specific users rather than specific keywords
to allow for more contextualized analysis, especially
in support of mixed-methods research approaches
to social media data analysis. The infrastructure
scales to maximize the number of users it can
collect while working within the artificially imposed
rate-limits of Twitter’s public API endpoints. For
tweets with geo-referencing information available,

the infrastructure creates additional files that drive
an interactive map-based visualization to provide
additional geographic context for analysis. This work
addresses concerns put forth by researchers [2, 6] with
respect to the lack of contextualization and reliance on
privileged access to data streams streams that dominates
in social media research, specifically in the fields of
hazards research and disaster response.

The infrastructure has been developed, used, and
tested by crisis informatics researchers to better identify
and understand the decisions made by social media
users who are geographically vulnerable to impending
hurricanes. Through further use, we anticipate that
this infrastructure and the underlying philosophies
and approach can support more contextualized, more
powerful data science.
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