
ASAS: An Approach to Support Simulation of Smart Systems

Valdemar Vicente Graciano Neto∗†‡, Lina Garcés∗†, Milena Guessi∗†, Carlos Eduardo B. Paes§,
Wallace Manzano∗, Flavio Oquendo† and Elisa Nakagawa∗
∗Universidade de São Paulo (USP), São Carlos - SP - Brazil
†Université de Bretagne Sud (UBS), Vannes, Bretagne – France
‡Universidade Federal de Goiás (UFG), Goiânia - GO – Brazil

§Pontifı́cia Universidade Católica de São Paulo (PUC-SP), São Paulo – SP – Brazil
Emails: valdemarneto@usp.br, linamgr@icmc.usp.br, milena@icmc.usp.br, carlosp@pucsp.br,

wallace.manzano@usp.br, flavio.oquendo@irisa.fr, elisa@icmc.usp.br

Abstract—Smart systems, such as smart cities, smart build-
ings, and autonomous cars, have recently gained increasing
popularity. Each such system is essentially a System-of-Systems
(SoS). SoS are dynamically established as alliances among
independent and heterogeneous software systems to offer com-
plex functionalities as a result of constituents interoperability.
An SoS often supports critical application domains, and, as
such, must be reliable. Many SoS have been specified and
evaluated for their correct operation using static models.
However, specification languages have not supported to capture
their inherent dynamic nature nor enabled to monitor their
operation. The main contribution of this paper is to present
ASAS, an approach to Automatically generate Simulation mo-
dels for smArt Systems (ASAS) in order to support evaluation
of their operation. In particular, our approach makes it possible
to transform formal models of the SoS architecture (expressed
in SoSADL) into simulation models (expressed in DEVS). We
evaluated our approach by conducting two case studies using
a flood monitoring system that is intended to be part of a
smart city. Results indicate that ASAS can successfully generate
functional simulations for the SoS operation, which in turn can
enable to reason and monitor an SoS operation, taking into
account its dynamic nature.

Keywords-System-of-Systems; Simulation; Model-Based En-
gineering.

I. INTRODUCTION

Smart systems such as smart cities are highly dynamic
systems in which software influences their entire life cycle
[1, 10]. New systems can dynamically join a smart city
such as cars that come from other cities and join the
traffic, or people that go to work and connect their mobile
phones to the smart city network. Smart systems offer unique
functionalities as a result of their interoperability, such as op-
timizing long traffic queues when it is raining or calculating
alternative routes to avoid traffic jam after accidents. Such
smart systems are broadly known as Systems-of-Systems
(SoS)1, i.e., a set of operationally and managerially inde-
pendent software-intensive systems (known as constituents)
that work together to achieve complex functionalities [11].
Besides individual systems behaviors, SoS exhibit emergent

1For sake of simplicity, SoS is used interchangeably to express singular
and plural.

behaviors, which are dynamic capabilities that emerge at
runtime as a result of the interoperability among constituents
[11], and dynamic architecture, i.e., an architecture in which
constituents and the SoS structure itself can change at
runtime [7]. Due to critical domains where SoS can be
found, faults can cause disasters, financial loss, or even
deaths. Hence, SoS must be trustworthy, that is, they must
work in a reliable way without failures [7]. To achieve
such trustworthiness, SoS must be evaluated in regards to
their dynamic operation, adopting models that can precisely
capture and represent SoS [13].

Modeling languages (such as UML2, SysML3, and CML4)
support both representation and validation of static proper-
ties of the SoS. However, they lack mechanisms to capture
SoS dynamics, hampering evaluation of the operation of SoS
[8]. Simulations provide the means to evaluate SoS operation
by anticipating failures and unveiling dynamic aspects of
systems’ operation [5, 13, 17]. Therefore, we pose the
following research question: Is it possible to automatically
generate simulation models for a SoS to support evaluating
its operation? The main contribution of this paper is to
present ASAS, an approach that automatically transforms
static SoS models (expressed in a language termed SoSADL)
into simulation models (expressed in DEVS - Discrete Event
System Specification). We applied our approach in two inde-
pendent case studies that automatically generated simulation
models for a Flood Monitoring and Emergency Manage-
ment SoS (FMSoS). Preliminary results show confidence
in our approach, which was able to successfully transform
abstract descriptions of this SoS into functional simulation
models, leveraging constituents individual capabilities and
reinforcing SoS trustworthiness. The remaining of this paper
is structured as follows: Section II presents foundations;
Section III provides details of ASAS; Section IV presents
the two case studies; and Section V concludes the paper,
along with directions for future work.

2UML, http://www.uml.org/
3SysML, http://sysml.org/
4CML, http://www.compass-research.eu/approach.html

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50613
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5777

II. BACKGROUND

SoS are being developed for critical domains in the
management of smart cities. Specific means of predicting
SoS operation become necessary to offer reliable services for
SoS stakeholders [15]. SoS exhibit dynamic architectures,
i.e., architectures that can assume diverse architectural confi-
gurations (i.e., also known as coalitions) during SoS runtime,
due to addition, substitution, and deletion of constituents, or
reorganization of the structure of the SoS architecture [3].

SoSADL is a novel formal language that has been created
to support the specification of SoS architectures [6, 15].
It supports the specification of abstract architectures in
which constituents are known at design-time and abstract
connectors (also referred to as mediators) that can be
dynamically realized for composing concrete architectures
of this SoS. Mediators are first-class elements representing
communication links between two or more constituents [18].
The architecture of a SoS defines policies for assembling
abstract types of systems and mediators as coalitions, which
are further characterized by behavior, data type, and gate
declarations. Gates are abstractions that enable the estab-
lishment of connections. A connection can receive stimulus
from or act on the environment, enabling the communication
among independent elements. Data types can have inherent
functions, and functions can be associated to expressions.
Mediators and systems can be also specified in terms of
gates, data types, and behaviors. Despite their expressive-
ness, SoSADL models are not yet executable. Hence, a
dynamic view of architectural descriptions expressed in this
language is missing.

In parallel, simulations can be central for engineering
SoS. DEVS is a formalism that can support SoS simulation
[20]. DEVS is based on atomic and coupled models. Atomic
models can represent individual entities, such as constituent
systems and mediators, and coupled models can represent a
combination of atomic models, such as coalitions. Atomic
models comprise the following elements: (i) ports (input and
output); (ii) a labeled state diagram that executes transitions
in response to input and output events (hence governing
the system operation); (iii) functions that can be used
to process data; (iv) data types; and (v) events. Coupled
models are expressed as a System Entity Structure (SES), a
formal structure governed by a small number of axioms that
expresses how atomic models communicate with each other
[20]. Moreover, DEVS supports dynamic reconfiguration.
Related work. Several initiatives have been proposed to
address SoS representation and evaluation considering: 1)
support for Software Architectural Description of SoS, in-
cluding constituents not totally known at design-time; 2)
support for representation and/or evaluation of SoS dynamic
architectures; and 3) support for SoS Simulation.

Table I shows a comparison among approaches related
to ASAS. Approaches highlighted in bold font are model-

Table I: Comparison among related approaches

Approach 1 2 3
Bi-graph Approach [17] 7 7 X
Cavalcante et al. [2] 7 7 X
DEVS [20] 7 X X
Falkner et al. [4] 7 7 X
Xia et al. [19] 7 X X
ASAS X X X

based approaches, i.e., they use abstract models represent-
ing the software system and make one or more model
transformations for generating a target model. The bi-graph
approach offers a mathematical solution for representing and
simulating emergent behaviors in SoS [17]. However, this
approach lacks the notion of software architectures. Caval-
cante et al. [2] report on a model transformation approach
that adopts π-ADL architectural models to describe dynamic
architectures, transforming π-ADL models into Go software
code. However, π-ADL does not provide straightforward
abstractions for some particular concepts of SoS, such as
mediators, coalitions and constituents that are not known
at design-time. DEVS is an approach to deal with the
dynamic properties of SoS [20]. In its standard form, it relies
on systems engineering concepts, which combine hardware
concepts and low-level abstractions, such as input/output and
state diagram procedures. Falkner et al. [4] propose a change
of emphasis from SoS specifications to executable models
for the purposes of performance prediction. However, their
proposal mentions drawbacks related to: (i) use of an infor-
mal description of the SoS architecture with a notation based
on UML, and (ii) lack of dynamic and functional properties.
Xia et al. [19] evaluated the SoS architectures documented
in DoDAF5 by means of a model-driven approach that
transforms system architecture models in Simulink6 into
executable models. Their approach focuses on measuring
non-functional properties, such as feasibility and efficiency,
but it does not consider software architectures.

III. FROM SOFTWARE ARCHITECTURES TO SIMULATION
MODELS

We present a model-based approach termed ASAS, which
automatically generates simulation models to evaluate SoS
operation. This approach implements an automated transfor-
mation from SoS architecture models expressed in SoSADL
into dynamic models expressed in DEVS. Moreover, this
transformation is accomplished in two parts: one generates
atomic models and the other generates coupled models.

Our approach encompasses five steps, which are: (i)
specification of an SoS software architecture using SoSADL;
(ii) transformation of the architecture description into a func-
tional DEVS simulation model (automatically accomplished

5The DoDAF Architecture Framework Version 2.02. US. Department of
Defense, Aug. 2010.

6http://www.mathworks.com/products/simulink/

Page 5778

by an Xtend7 script); (iii) deployment of the simulation code
in the MS4ME8 environment; (iv) simulation of the SoS
software architecture; and (v) analysis of the results.

A. Correspondences between SoSADL and DEVS models

Since DEVS and SoSADL are both founded upon rig-
orous formalizations, a transformation should preserve the
correspondences between the fundamental concepts. We
established the correspondences between both models as
shown in Table II. We describe the mapping as follows:

Table II: Mapping between SoSADL and DEVS

SoS concept SoSADL DEVS
Connection Connection Declaration DEVS Port
Constituent System System Declaration Atomic Model
Data Types Data Type Declaration Data Type
Gate Gate Declaration DEVS Port
Mediator Mediator Declaration Atomic Model
Architecture Coalition Coupled Model

Connections. A connection can be established to receive
stimuli or to act on the environment, enabling the commu-
nication among architectural elements. Translating to DEVS,
connections are mapped into ports (input and output ports).
Constituent Systems. A system plays the role of a con-
stituent that participates in the SoS. Constituents, become
atomic models in DEVS.
Data Types. A data type can be specified for the scope of
an SoS, constituent, or mediator. Data types and values in
SoSADL become data types in DEVS.
Gates. A gate is an abstraction that enables to establish
connections, and connections are abstractions of interactions
exchanged between gates of independent entities. As gates
do not have a direct mapping in DEVS, connections linked to
gates are mapped as DEVS Ports, and gates are suppressed.
Mediators. Similarly to constituent systems, i.e., each me-
diator also becomes an atomic model.
Architectures. An architecture is transformed into a coupled
model in DEVS that specifies how constituents interact in
the coalition.

To illustrate how models are generated, we show a sim-
plified version of a Flood Monitoring SoS (FMSoS), which
is composed of abstract types of sensors, gateway, and
transmitters.

B. Generating Atomic Models

Listing 1 shows a simplified code of a mediator type
named Transmitter described in SoSADL. This element
can be automatically transformed into an atomic model,
which is depicted in Listing 2. Data types are defined on
Lines 2-6. These data types are respectively transformed
to datatypes in DEVS atomic model (i.e., lines 1-22 in
Listing 2). Duties (which designate gates of mediators) with
their respective connections are defined on Lines 8-16. The

7Xtend, xtend-lang.org/
8MS4ME, http://www.ms4systems.com/pages/ms4me.php

individual behavior of this mediator is specified in lines 18-
23. In short, this behavior defines that after receiving the
coordinates of constituents that it mediates (lines 19-20),
this mediator will repeatedly receive data from one sensor
(line 22) and forward them to the other (line 23). Similarly
to gates, duties are transformed into inputs of ports in the
atomic model (lines 24-27 in Listing 2). Finally, the behavior
is translated into an automata in the atomic model (lines 29-
42 in Listing 2).

1 mediator Transmitter(distancebetweengates:
Distance) is {

2 datatype Abscissa
3 datatype Ordinate
4 datatype Coordinate is tuple { x:Abscissa, y:

Ordinate }
5 datatype Depth
6 datatype Measure is tuple { coordinate:

Coordinate, depth:Depth }
7
8 duty transmit is {
9 connection fromSensors is in { Measure }

10 connection towardsGateway is out { Measure }
11 }
12
13 duty location is {
14 connection fromCoordinate is in { Coordinate }
15 connection toCoordinate is in { Coordinate }
16 }
17
18 behavior transmitting is {
19 via location::fromCoordinate receive

coordinate
20 via location::toCoordinate receive coordinate
21 repeat {
22 via transmit::fromSensors receive measure
23 via transmit::towardsGateway send measure
24 }
25 }
26 }

Listing 1: Code in SoSADL for a mediator.

1 A Distance has a value!
2 the range of Distance’s value is Integer!
3 use distance with type Distance!
4
5 A Abscissa has a value!
6 the range of Abscissa’s value is Integer!
7 use abscissa with type Abscissa!
8 A Ordinate has a value!
9 the range of Ordinate’s value is Integer!

10 use ordinate with type Ordinate!
11 Coordinate has x and y!
12 the range of Coordinate’s x is Abscissa!
13 the range of Coordinate’s y is Ordinate!
14 use coordinate with type Coordinate!
15
16 A Depth has a value!
17 the range of Depth’s value is Integer!
18 use depth with type Depth!
19 Measure has coordinate and depth!
20 the range of Measure’s coordinate is Coordinate!
21 the range of Measure’s depth is Depth!
22 use measure with type Measure!
23
24 accepts input on FromCoordinate with type

Coordinate!
25 accepts input on ToCoordinate with type Coordinate

!
26 accepts input on FromSensors with type Measure!
27 generates output on Measure with type Measure!
28
29 to start hold in s0 for time 1!
30 hold in s0 for time 1!
31 from s0 go to s1! //Unobservable
32 passivate in s1!

Page 5779

33 when in s1 and receive Coordinate go to s2!
34 passivate in s2!
35 when in s2 and receive Coordinate go to s3!
36 passivate in s3!
37 when in s3 and receive Measure go to s4!
38 hold in s4 for time 1!
39 after s4 output Measure!
40 from s4 go to s5!
41 hold in s5 for time 1!
42 from s5 go to s3! //Unobservable

Listing 2: An atomic model for a Mediator generated in DEVS.

Listing 3 shows part of the transformation code in Xtend
that generates state transitions for the atomic model behavior
based on elements specified in SoSADL. If the transforma-
tion consists of an input transition, the code in lines 2-7 is
executed. If it consists of an output transition, the code in
lines 9-15 is executed.

1 def compile(Element e) {
2 if ((connection.type == INPUT) or (action.type ==

RECEIVE)) {
3 if(e instanceOf Connection) ports += ’’’
4 accepts input on <<connectionName.toFirstUpper>>

with type <<dataReceived.type>>!’’’
5
6 if(e instanceOf Action) transitions += ’’’

passivate in s<<fromState>>!
7 when in s<<fromState>> and receive <<

dataReceived>> go to s<<toState>>!’’’
8
9 }else if((connection.type == OUTPUT) or (action.

type == SEND)){
10 if(e instanceOf Connection) ports += ’’’

generates output on <<this.connection.
typeName>> with type <<dataSent.type>>!’’’

11
12 if(e instanceOf Action) transitions += ’’’hold

in s<<fromState>> for time 1!
13 after s<<fromState>> output <<this.connection.

typeName>>!
14 from s<<fromState>> go to s<<toState>>!
15 ’’’
16 }
17 }

Listing 3: Excerpt of transformation code in Xtend

The names of connections in SoSADL are preserved by
the transformation. The code in lines 4 and 10 in Listing
3 use the connection name to create namesake ports in
DEVS, as shown in lines 24-27 of Listing 2. Besides that,
the type of data received or sent is used for typifying data
that are allowed to be transmitted in a DEVS port (lines 4
and 10 in Listing 3). Furthermore, receive instructions in
SoSADL create receive transitions, such as lines 33, 35, and
37 in Listing 2. In turn, passivate are instructions used
to make the sensor wait for a data that will be received,
such as in Lines 32, 34, and 36 in Listing 2. Besides,
send instructions in SoSADL generate three lines of code in
DEVSNL: one that holds in a particular state for 1 second
(we established this time as a default), one that produces
the output of some data, and another that performs the state
transition to the next state (lines 12-14 in Listing 3).

C. Generating Coupled Models

Listing 4 shows the SoSADL code that specifies a con-
crete software architecture for the FMSoS. In particular,

the architectural configuration of this SoS comprises four
sensors, one gateway, and four transmitters (lines 4-12). The
bindings (lines 13-23) specify how connections between
constituents and mediators are established through gates,
which compose the interface of the software architecture
of this SoS and define their dynamics for transmitting data
among sensors towards a gateway station that is able to
process them. A sensor collects the water level through
actuators, encapsulating it with the specific location where it
was obtained and its corresponding time stamp. After that,
sensors can transmit observations to the closest transmitter9,
which forwards them to a nearby sensor or gateway. Follow-
ing, additional details about the content of a binding block
are presented.

1 sos FloodMonitoringSos is {
2 architecture FloodMonitoringSosArchitecture() is

{
3 behavior coalition is compose {
4 sensor1 is Sensor
5 sensor2 is Sensor
6 sensor3 is Sensor
7 sensor4 is Sensor
8 gateway is Gateway
9 mediator1 is Mediator

10 mediator2 is Mediator
11 mediator3 is Mediator
12 mediator4 is Mediator
13 } binding {
14 relay gateway::notification::alert to

warning::alert and relay gateway::
request to request and

15 unify one { sensor1::measurement::measure }
to one { mediator1::fromSensors } and

16 unify one { mediator1::transmit::
towardsGateway } to one { sensor2::
measurement::pass } and

17 unify one { sensor2::measurement::measure }
to one { mediator2::fromSensors } and

18 unify one { mediator2::transmit::
towardsGateway } to one { gateway::
notification::measure } and

19 unify one { sensor3::measurement::measure }
to one { mediator3::fromSensors} and

20 unify one { mediator3::transmit::
towardsGateway } to one { sensor4::
measurement::pass } and

21 unify one { sensor4::measurement::measure }
to one { mediator4::fromSensors} and

22 unify one { mediator4::transmit::
towardsGateway } to one { gateway::
notification::measure }

23 } }

Listing 4: Description of an architecture of an FMSoS in SoSADL.

As shown in this listing, SoSADL specifies a connec-
tion in the form system :: gate :: connection.
Indeed, the same gate can hold one or more connections.
For each pair of sensors with a transmitter between them,
an unification is established by an unify statement (lines
15-22). These statements specify that an output connection
measure from the gate measurement of a particular sen-
sor is linked to the input connection called fromSensors
of the closest transmitter; and that a transmitter gathers

9This part of the code is specified in an atomic model which represents
the operation of the constituent. These details will be presented in a
forthcoming paper.

Page 5780

data from one sensor (lines 11-14) and forwards it to the
next sensor. Transmitters have an output connection named
towardsGateway, which are linked to sensors through
an input connection called pass of gate measurement.
This enables them to receive data for being transmitted and
forward them to a gateway (lines 16, 18, 20, and 22). Lines
22 and 23 link the output connection of transmitters to a
gateway connection, which is named measure. In this case,
a transmitter mediates a sensor and a gateway. The relay
statement (line 14) establishes the communication between
the FMSoS and external systems, connecting the notification
gate of a gateway to one external connection.

Listing 5 presents transformation rules that translate
a software architecture expressed in SoSADL into a
coupled model in DEVS. It depicts three transforma-
tion rules: one that receives a SoSADL type called
ArchitectureDecl as input (lines 1-4), one that re-
ceives an ArchBehaviorDecl as input (lines 5-16), and
one that compiles Unify statements (lines 17-40). The first
transformation rule is responsible for producing the first line
of the DEVS code which declares a Decomposition. This
rule assumes the name of the architecture, and passes the
remaining part to the next transformation rules10. In the sec-
ond transformation rule, a list of the systems that compose
the architecture is enumerated in the DEVS target model,
hence completing the DEVS decomposition. Bindings are
compiled in the next transformation rule that begins in line
17. The compilation of unifications, i.e., the specification
of the data exchanged between systems and mediators in a
coalition proceeds as follows. The sender and the receiver
names are required for documenting the communication
between systems in DEVS. Thus, the names are separated
from data type in unifications, using the :: as a marker
to split the String (line 30). However, it is also necessary
to know data types that are being transferred between two
elements in the coalition for creating the simulation code.
This data is not available in the architecture specification
in SoSADL, but it is available in the specification of the
constituents and mediators in SoSADL (hidden here due to
lack of space).

1 def compile(ArchitectureDecl a) {
2 var String result = ’’’From the top perspective

, <<a.name.toFirstUpper>> is made of <<a.
behavior.compile>>’’’

3 result
4 }
5 def compile(ArchBehaviorDecl a){
6 var int size = a.constituents.size
7 var int cont = 0
8 var result = ’’’’’’
9 for (Constituent c: a.constituents){

10 cont++
11 result += ’’’<<IF (cont == size)>> and <<c.

name.toFirstUpper>><<ELSE>><<c.name.
toFirstUpper>>, <<ENDIF>>’’’

12 }

10These transformation rules were structured as presented for separation
of concerns, reuse, and modularization purposes

13 result +=’’’!’’’
14 result += ’’’<<a.bindings.compile>>’’’
15 result
16 }
17 override def compile(Unify u){
18 var String sender = u.connLeft.compile.toString

()
19 val String[] vector = sender.split(’::’)
20 var int firstIndex = sender.indexOf("::")
21 var String connectionSender = sender.substring(

firstIndex+2,sender.length)
22 sender = vector.get(0)
23
24 var String receiver = u.connRight.compile.

toString()
25 val String[] vector2 = receiver.split(’::’)
26
27 receiver = vector2.get(0)
28 var String data = "";
29 //Hidden code that reads connections data types

from a file
30 val String[] vectorConnections = data.split("-")
31 for(String s: vectorConnections){
32 val String[] vectorAux = s.split(";")
33 var String connectionName = vectorAux.get(0).

replace(" ","") if(
connectionSender.compareTo(connectionName)
==0){

34 data = vectorAux.get(1).toFirstUpper
35 } }
36 var String result = ’’’
37 From the top perspective, <<sender.toFirstUpper

>> sends <<data>> to <<receiver.toFirstUpper
>>!

38 ’’’
39 result
40 }

Listing 5: Transformation rule from a SoSADL model to a DEVS
model in Xtend.

Still in Listing 5, a portion of code that opens a file in which
there is a specification of the connections and their respective
data types was hidden for space reasons. The code in lines
31 to 35 compares the name of each pair gate-connection to
the gates and connections specified in the coalition, inferring
the type of data that they transmit. This data is assigned to
the variable data when it is found (Line 34). Line 36 shows
the format of the output String, with sender, receiver, and
data, and Line 39 prints the result. The transformation rule
for Unify is called once for each unification in the SoSADL
specification. Each binding specified in SoSADL is mapped
into one coupled model in DEVS.

Listing 6 shows the equivalent code derived for the
architecture of the FMSoS. Line 1 shows that the
FloodMonitoringSoSArchitecture is formed by
the same systems specified in the SoSADL code. Lines 2 to
9 show data exchange between the systems and mediators
derived from the SoSADL specification. Each line depicts a
unification statement of the bindings block in the SoSADL
model. Finally, the DEVS tool converts that code into an
executable simulation model.

1 From the top perspective,
FloodMonitoringSosArchitecture is made of
Sensor1, Sensor2, Sensor3, Sensor4, Gateway,
Mediator1, Mediator2, Mediator3, and
Mediator4!

2 From the top perspective, Sensor1 sends Measure to
Mediator1!

3 From the top perspective, Mediator1 sends Measure

Page 5781

to Sensor2!
4 From the top perspective, Sensor2 sends Measure to

Mediator2!
5 From the top perspective, Mediator2 sends Measure

to Gateway!
6 From the top perspective, Sensor3 sends Measure to

Mediator3!
7 From the top perspective, Mediator3 sends Measure

to Sensor4!
8 From the top perspective, Sensor4 sends Measure to

Mediator4!
9 From the top perspective, Mediator4 sends Measure

to Gateway!

Listing 6: Coupled Model for FMSoS generated in DEVS.

Moreover, Listing 6 shows that sensors transmit their
data to the closest transmitter (Lines 2, 4, 6, and 8). Then,
transmitters forward these data in Lines 3, 5, 7, and 9 to a
nearby sensor or gateway. Since Sensor2 and Sensor4
send data to Mediator2 and Mediator4 respectively
(lines 4 and 6), the gateway is already reached (lines 5
and 9). When these data arrive in the gateway, their values
are tested against a predetermined depth threshold. If they
are higher, the gateway behavior of sending a flood alert
is triggered. Hence, this architectural configurations can
successfully accomplish the SoS mission that is reliably
producing flood alerts.

IV. EVALUATION

ASAS was evaluated in a case study on a Flood Moni-
toring SoS (FMSoS), which is a SoS that is intended to be
part of a smart city. FMSoS monitors rivers crossing urban
areas, which pose great danger in rainy seasons, potentially
damaging property, threatening lives, and spreading disease.
FMSoS notifies possible emergency situations to residents,
businesses owners, pedestrians, and drivers located near of
the flooding area, and also to governmental entities and
emergency systems. FMSoS is composed of five different
types of constituents, as illustrated in Figure 1:

1) smart sensors, which are fixed embedded systems
monitoring flood occurrences in urban areas, located
on river edges;

2) gateways, which gather data from constituents and
share them with other systems;

3) crowd-sourcing systems, which are mobile applica-
tions used by citizens for real-time communication
of water level rising; danger level is a pre-defined
value (between 1 and 6, 1 being no risk, and 6 being
flood effectively occurring) that can be classified by
the human user according to what he/she observes;

4) drones, which are UAVs also used to complement
sensors observations by monitoring the river water
level while they fly over it, sending pictures if some
change in the water level occurs; and

5) drone bases, which are fixed basis from where drones
departure, and to where they come back for battery
recharging, and data transmission.

Moreover, it is intended the FMSoS be part of a larger SoS
composed of Wireless River Sensors, Telecommunication
Gateways, Unmanned Aerial Vehicles (UAVs), Vehicular
Ad Hoc Networks (VANETs), Meteorological Centers, Fire
and Rescue Services, Hospital Centers, Police Departments,
Short Message Service Centers and Social Networks, as
described in [15]. Such SoS involves the National Center
for Natural Disaster Monitoring, which monitors 1000 cities,
with 4700 sensors, including 300 hydrological sensors, and
4400 rain gauges.

To investigate the reliability of ASAS approach, we
performed a case study, i.e., an exploratory type of em-
pirical method for investigating a phenomena in its natural
environment using data gathered from few entities (people,
organizations, and sensors) [16]. It refers to a contemporary
phenomenon observed in its real-world context. We eval-
uated our approach considering two cases, in the context
of the FMSoS, that aims: (i) to investigate the accuracy
of the transformation to create a valid simulation model
that represents functional capabilities of the FMSoS (i.e.,
flood monitoring), and (ii) to investigate if the generated
simulation model supports modifications in the FMSoS
software architecture at runtime, and if with such model it is
possible to evaluate different configurations for the FMSoS
architecture. Each case is explained in the remaining of this
section detailing the research questions that each case must
resolve, the rationale for each question, the metrics used
to answer such questions, collected data and procedures for
data analysis and a discussion of results for each case.

A. Case 1: Accuracy of Simulation Model of the FMSoS
Architecture

We specified one FMSoS architecture with 42 sensors, 9
crowd-sourcing systems, and 18 drones, following the model
shown in Figure 1. Each drone has its own base (18 drone
bases), and transmits the information collected through a
gateway that will be in the vicinity. 18 gateways are spread
along the river boards. Mediators were produced as much as
necessary to mediate these constituents. FMSoS is concerned
with a single behavior: flood alert.
RQ1. Was the transformation successful?
Rationale. Since the simulation model is automatically
generated, it is important to check the validity of the
produced model. A transformation can be considered
successful if the simulation runs without errors.
M1. Simulation failures: given by the quantity of detected
failures during model simulation, such as simulation
crashing or stopping.
RQ2. How accurate was the simulation in supporting the
monitoring of an SoS operation?
Rationale. This question addresses whether or not the
simulation is capable of reproducing SoS behavior,
monitoring it and guaranteeing that it can be considered
trustworthy.

Page 5782

Figure 1: A Flood Monitoring System-of-System (FMSoS) as part of a
Smart City System.

M2. Accuracy: measured by the proportion of alerts
correctly triggered by the FMSoS.

Procedures for the analysis of collected data.

To analyze our data, we chose the following indices
[12]:
True Positive (TP) (equivalent to the hit): when a flood
alert in the simulation represents an actual real flood;
True Negative (TN) (equivalent with correct rejection):
when the alarm was not triggered in the simulation, as it
was not triggered in reality, since there was not a flood;
False Positive (FP) (false alarm, known as Type I error):
when it was triggered, but there was not a flood. This
can happen, for instance, due to accumulation of sediment
within the sensitivity radius of the actuator;
False Negative (FN) (miss, known as Type II error): when
there was a flood, and the alarm was not triggered.

We also defined supplementary metrics related to RQ2,
which are [12]:
Sensitivity (S): proportion of positives that are correctly
identified as such;
Specificity (Sp): proportion of negatives that are correctly
identified as such;
Accuracy (A): relation between the correct diagnostics (TP
+ TN) and the total amount;
Precision (P): relation between the true positives and all
the positives (true and false).

These supplementary metrics are computed as:

S = TP
TP+FN Sp = TN

FP+TN

P = TP
TP+FP A = TP+TN

TP+TN+FP+FN

Data used. We chose a dataset collected by the actual
FMSoS over four days, from November 23th 2015 to
November 27th 2015. This interval was important because
during these months a number of floods occurred. This
enabled us to establish whether or not our simulation results
in a diversity of situations. We established a 4-window
strategy implemented at the gateways that receive data from
constituents to confirm floods. For each set of four data
that subsequently arrives, the gateway checks them. For the
period studied, the river had an average rise from 35 to 50
cm, depending on the location. Thus, in this context, the
threshold of a flood is defined as a rise of 100 cm or more.
If at least one pair of data that arrived have both their depth
levels at least 100 cm (the threshold established for that city),
a flood alarm is triggered. Table III illustrates a numerical
instance. It corresponds to real data that arrived sequentially
at the gateway. Data that arrive are chronologically ordered,
and pairs of data are analyzed. If at least one pair has two
measures equal or greater than 100 cm, a flood is confirmed.
Subsequent measures will confirm if it is an actual flood or
not.

Table III: A sample of data collected by a sensor and sent to a gateway.

sample id sensor timestamp depth
(cm)

#1 S2 2015-11-23 01:58 58

Data were stored in text files and delivered by the stimuli
generators along the FMSoS, feeding the simulation. These
stimuli generators delivered 1,000 samples for each sensor.
Timestamps represented that each data sample was sent
every five minutes for each sensor (i.e., 12 samples by
hour, 288 per day, totalizing 3,47 days of data simulated).
We also considered an amount of 1,000 samples for each
crowd-sourcing system that is part of the SoS. We adapted
our dataset so to have similar data for stimuli generators
for crowd-sourcing systems and drones. For crowd-sourcing
systems, the aforementioned scale was used to classify risk
between 0 and 6. Zero means that crowd-sourcing systems
is not contributing to flood diagnosis. We mapped the height
of water in original data to a scale of risk between 1 and
6, 1 being no risk, and 6 being flood effectively occurring.
Human users can classify a risk between these values
according to what he/she sees. So we could imitate how
people would react and behave according to the changes in
water level registered before by sensors. Then, we created
a dataset corresponding to the data used to feed sensors.
For drones, we used 5,000 data per drone. Each drone has
an autonomy to fly 2,500 meters and return to the basis.
This flight usually lasts five minutes, monitoring the same
portion of the river, and returning to recharge and transmit
data. We set up 18 drones to monitor the entire extension
of the river (45 kilometers). The drone flies 2500m in five
minutes, that is, 500 meters per minute. This makes one
measurement per minute. As this is done 1,000 times, it

Page 5783

corresponds to 5,000 samples by drone. So drones have five
times more data than sensors (90,000 samples). Each drone
data sample was delivered every five minutes, totalizing
this amount for the entire days that we consider in our
sample. Then, we worked on a set of 141,000 data samples
(42,000 for sensors, 9,000 for crowd-sourcing system, and
90,000 for drones). As the SoS has 69 constituents and
18 gateways, an average of almost four constituents are
connected to each gateway. Any gateway can deliver a
flood alert individually, whilst the existence of a flood will
be confirmed by the subsequent flood alert given by other
gateways due to the increase in the water level.
Reporting on Case 1. Day November 23th was the most
relevant day. Other days exhibited levels higher than 100
cm, but only as a momentary occurrence. Stimuli generators
were capable of delivering the data throughout simulation
execution. As data were distributed equally between each
gateway and its nearest neighbors, around 7,833 samples
(141,000 by 18 gateways) were transmitted by each gateway
during the entire simulation. As each gateway data group
used the four-window strategy, around 1,958 groups of data
were analyzed by each gateway in order to ascertain the
existence of true or false positives or negatives. Next we
discuss the answers to the research questions.

RQ1. Was the transformation successful?
The simulation run accordingly with no failures. Thus, we
can consider that the transformation was feasible and well-
succeeded for this particular context. Further applications
should be tested. For now, M1 is equals to 0.00%.

RQ2. How accurate was the simulation in supporting
the monitoring of an SoS operation?
The simulation took six hours and 20 minutes to run on
an Intel core i5-3230M 2.60GHz (x64) processor, with 4
GB of RAM Memory, 1TB of HD, and running Ubuntu
16.04 with 64 bits. The data corresponds to four days of
monitoring data from a specific real river. This step was
evaluated according to the metrics established in RQ2. 16
true positives occurred, since during the considered period,
besides one effective flood (November 23th), in which the
level of water reached almost 7 meters. A total of 1,942
true negatives correctly arise. Nor false positives nor false
negatives occurred. The river that crosses the city has an
average level of 35 to 50 centimeters (cm), depending on
the location. For this context, the threshold of a flood is
considered about 100 cm. For all situations in which a real
condition of threat of flood occurred, the flood alert emerged
as a result of the constituents interoperability. Then, at
least in this case study, the Sensitivity (S), Specificity (Sp),
Accuracy (A), and Precision (P) are all equal to 100%. The
flood alert was triggered with high accuracy, conforming to
the pre-established purposes of the investigation. Therefore,
our results imply a high level of confidence and feasibility.

B. Case 2: Analysis of FMSoS Dynamic Architecture

Along the SoS runtime, constituents can join or leave
the SoS, raising different architectural configurations (coali-
tions). The purpose of Case 2 is twofold: (i) to assess
whether our approach enables to transform, simulate, and
evaluate a SoS software architecture specification by com-
paring different architectural configurations, and (ii) to eval-
uate if our approach supports simulation of SoS operation,
considering its dynamic architecture, showing at runtime
how the SoS software architecture evolves by the addition
or removal of constituents. Based on this goal, the research
question for this case is:
RQ3. Does ASAS support the simulation and evaluation
of different architecture configurations for SoS software
architecture? For this case, drones and drone bases were not
considered. We defined the following variables to attempt
to address RQ3: scale (S), i.e., number and diversity of
constituents, architectural configurations (AC), to analyze
which one offers best results, and the number of external
interfaces (NEI), i.e., how many gateways interface with
external systems.
Rationale. RQ3 is posed to investigate whether our approach
supports the comparison of different architectural configura-
tions leveraging SoS operation. It is hoped that this would
enable one to select the configuration that best suits the
needs of the SoS as well as defining custom strategies
for maintaininging SoS quality, in spite of a changing
operational environment.
Metrics: (i) the percentage of data samples that were
correctly transmitted along each architectural configuration,
and (ii) the percentage of flood alerts that were triggered
(accuracy).
Data used. Data were provided by a real project that
combine crowd-sourcing and sensor data for detecting floods
[9]. We chose a comprehensive data sample collected from
November 23th 2015 to November 27th 2015, a period in
which there were intense rains and floods.
Simulation. We were able to analyze whether our simu-
lation results conform to the expected FMSoS behavior,
i.e., sending a flood alert whenever collected data exceeded
a predetermined threshold. We analyzed 50 different ar-
chitectural configurations, varying the number of sensors,
crowd-sourcing systems, and gateways (as well as media-
tors dynamically appearing between constituents). All 50
architectural configurations were evaluated, starting with
a configuration with four sensors, one gateway, and zero
crowd-sourcing systems (besides the necessary mediators).
Progressively, the number of sensors was increased, followed
by the number of gateways and crowd-sourcing systems.
Analysis of collected data. Since results of this simulation
are stored in log files, it was possible to calculate the
corresponding value of the aforementioned metrics. After
that, we compared these values to select configurations with

Page 5784

Figure 2: Relation between percentage of data received in gateways and
alerts triggered.

the best results.
Reporting. Figure 2 summarizes the simulation outcome,
taking into account (i) the percentage of the 1000 data
samples fed to each of the sensors that were correctly
transmitted along the SoS architecture until the gateways
considering the variation in the number of constituents, and
(ii) the percentage of flood alerts that were triggered. It
was observed that data loss increased with the number of
sensors, reducing both the reliability of data transmission
and triggered alerts (Point 2). This loss was alleviated by
increasing the number of gateways, which increased the
numbers of transmission rate and triggered alerts. When
the architecture configuration had 40 constituents (Point
3), i.e., 30 sensors and 10 gateways (without considering
mediators), the number of crowd-sourcing systems was in-
creased as well. However, despite the expectation, increasing
the number of crowd-sourcing systems did not increase
the transmission rate, nor the number of alerts triggered
because of the bottleneck of the gateways. Results improved
again when the number of crowd-sourcing systems was
fixed at 20 (Point 4), and the number of gateways was
increased to 20 (Point 5), with 30 sensors, 20 gateways,
and 20 crowd-sourcing systems (70 constituents, without
considering mediators). It was also possible to observe that
the rate of alerts correctly triggered was close to the rate of
data effectively transmitted.

Good results occurred when FMSoS has many con-
stituents, but these results are not better than when FMSoS
has only five constituents. Hence, unless there is a situation
in which a geographic area to be covered is too large, using
a small number of constituents can achieve the same results
than using a large number, at least for this domain, these
configurations defined, and these types of constituents. Fi-
nally, we conclude that our approach successfully supported
the automatic generation of simulation models for FMSoS
specifications, and facilitated the evaluation of different
architectural configurations.
Discussion. We concluded that for the improvement of

FMSoS operation, gateways were the critical element to
improve its operation. Moreover, the use of four sensors
is as good as 70 constituents. This result is also important
because it enables architects to spend significantly less effort
and money by using only a few sensors to develop software
and devices to design such an SoS. It would not have been
possible to draw this conclusion at the design stage without
anticipating the benefits that ASAS provides. Moreover,
data loss happens in simulation because network services
that guarantee data delivery (such as TCP) are not natively
implemented in simulation formalisms. As SoS dynamic
architectures enable changing and to diversifying the number
of constituents, the solution generated by our proposed
approach can be easily scaled, as shown in our case study.
DEVS does not hold an specific data type for the environ-
ment modeling in its syntax. Moreover, all constituents are
modeled as a same type of model (atomic model) in DEVS,
reducing precision in architectural description. SoSADL, in
turn, overcomes all the aforementioned DEVS drawbacks,
except for simulation [14]. We also claim that we contribute
to productivity and reuse in SoS engineering. Programming
the model transformation to automatically produce simula-
tion models by one specialist with integral dedication took
around four months of work. Despite the learning curve
associated with DEVS modeling, Xtend programming, and
domain-specific knowledge to adapt model transformations,
the model transformation can be reused in a myriad of other
domains. Otherwise, producing simulation models for each
type of constituent of an SoS and for the SoS architecture
itself can take a similar amount of time, besides the time to
model the SoS itself. Hence, this effort can be reduced to
the specification of SoS models by using our approach.

C. Threats to Validity

We can mention some threats to the validity for Case 1:
the scale of our evaluation, the verification of correctness
of the transformation rules, and the topology of the SoS.
Our solution can scale, as scaling SoS consists of the
specification of further bindings in the coalitions in SoSADL
and replications of atomic models in DEVS. Regarding
transformation correctness, we established correspondences
between entities in both models and the resulting simulation
model relieves the threat, showing a solution. Further inves-
tigations of topologies and different number of constituents
will be carried out. Due to the limited time window and the
suitability of the period for our purposes, the selection of
the data might present a possible bias. However, the limited
period has a plurality of inputs.

For Case 2, we identified the following threats to our
study: (i) data selected to feed the simulation: Data were se-
lected from a real case conducted in a smart sensors network
and a crowd-sourcing system deployed in an actual city.
We merged these data during SoS operation by feeding the
respective constituents to the stimuli generators. The 1000

Page 5785

observations were collected during four days encompassing
flooding occurrences. Hence, this threat was mitigated; (ii)
scaling: Scale is not a problem since our simulation can han-
dle a larger number of constituents. However, this hampers
data visualization and processing, as a large number of con-
stituents is difficult to visualize in a simulation and a more
powerful processor would be required to execute simulation
of a larger SoS. However, these problems are reduced as
the resulting data are saved in spreadsheets to be properly
analyzed; (iii) the order in which we performed changes in
the architecture and the set of changes that we proposed
to perform on the architecture: Different changes could be
performed, substituting or eliminating constituents, or even
reorganizing SoS configuration. However, the purpose of
this study was to check if our approach could successfully
support the automatic generation of functional simulation
models and the analysis of different architectural configura-
tions according to predetermined metrics. Then, this threat
did not influence our results. Further investigation about
other dynamic architecture operators must be conducted, in
particular, related to substitution and deletion of constituents
and architecture reorganization as well.

V. FINAL REMARKS

This paper presented ASAS, an approach that automat-
ically generates simulation models by means of a model
transformation from SoS architecture descriptions expressed
in SoSADL to DEVS. Our approach supports the analysis
of alternative architectural configurations at runtime, thus
enabling to leverage SoS operation by identifying best archi-
tectural configurations. Simulation models can certainly vary
depending on which systems constitutes the SoS. Indeed,
our approach is domain-independent. Hence, we claim that
ASAS can be adopted to transform static models represented
in SoSADL to dynamic simulation models of SoS.

Future work might include (i) reproducing the case study
in other scenarios, (ii) developing a deeper understanding
of the results achieved, especially with different types of
constituents; (iii) investigating if the ratio between the num-
ber of gateways and the number of constituents influences
the data transmission ratio; and (iv) developing artificial
intelligence and inference mechanisms (such as neural net-
works) to trainee the SoS and teach it how to maintain
beneficial architectural configurations identified with the
ASAS approach. We claim that the ASAS approach can be
adopted as a platform to represent different facets of a smart
city and other SoS applications, such as coupling distinct
models (such as a transportation model and a building
energy demand model), establishing new interoperability
links to achieve and offer more complex solutions. Other
domains can benefit of our approach, as SoS can be modeled
in SosADL and automatically transformed to simulation
models. Potential domains include health care smart systems,

smart buildings, smart farms, aerospace exploration SoS, and
autonomic cars.

ACKNOWLEDGMENTS

This work is supported by São Paulo Research Foun-
dation (FAPESP), grants 2012/24290-5, 2013/20317-9,
2014/02244-7, and 2017/06195-9. We also thank professor
Les Foulds (INF-UFG) by the precious advises and language
review.

REFERENCES

[1] B. Boehm. “A View of 20th and 21st Century Software Engineer-
ing”. In: ICSE ’06. Shanghai, China: ACM, 2006, pp. 12–29.

[2] E. Cavalcante, F. Oquendo, and T. V. Batista. “Architecture-based
code generation: from π-ADL architecture descriptions to imple-
mentations in the Go language”. In: ECSA. Vienna, Austria, 2014,
pp. 130–145.

[3] E. Cavalcante et al. “Statistical Model Checking of Dynamic
Software Architectures”. In: ECSA. Copenhagen, Denmark, 2016,
pp. 185–200.

[4] K. Falkner et al. “Model-driven performance prediction of systems
of systems”. In: Software & Systems Modeling (2016), pp. 1–27.

[5] B. B. N. de França and G. H. Travassos. “Experimentation with
dynamic simulation models in software engineering: planning and
reporting guidelines”. In: Empirical Software Engineering 21.3
(2016), pp. 1302–1345.

[6] V. V. Graciano Neto. “Validating Emergent Behaviors in Systems-
of-Systems through Model Transformations”. In: ACM Student Re-
search Competition at MODELS. Saint Malo, France, 2016, pp. 1–6.

[7] V. V. Graciano Neto. “A Model-Based Approach Towards the
Building of Trustworthy Software-Intensive Systems-of-Systems”.
In: ICSE Companion 2017. Buenos Aires, Argentina: IEEE, 2017,
pp. 425–428. DOI: 10.1109/ICSE-C.2017.28.

[8] M. Guessi et al. “A systematic literature review on the description of
software architectures for systems of systems”. In: SAC. Salamanca,
Spain, 2015, pp. 1433–1440.

[9] F. E. Horita et al. “Development of a spatial decision support system
for flood risk management in Brazil that combines volunteered geo-
graphic information with wireless sensor networks”. In: Computers
& Geosciences 80 (2015), pp. 84 –94.

[10] M. Jamshidi. “System of Systems - Innovations for 21st Century”.
In: ICIIS. 2008, pp. 6–7.

[11] M. W. Maier. “Architecting principles for systems-of-systems”. In:
Systems Engineering 1.4 (1998), pp. 267–284.

[12] R. Malhotra. Empirical research in software engineering: concepts,
analysis, and applications. CRC Press, 2016.

[13] C. B. Nielsen et al. “Systems of Systems Engineering: Basic
Concepts, Model-Based Techniques, and Research Directions”. In:
ACM Comput. Surv. 48.2 (Sept. 2015), 18:1–18:41.

[14] F. Oquendo. “Formally Describing the Software Architecture of
Systems-of-Systems with SosADL”. In: SOSE. Kongsberg, Norway,
2016, pp. 1–6.

[15] F. Oquendo. “Software Architecture Challenges and Emerging
Research in Software-Intensive Systems-of-Systems”. In: ECSA.
Copenhagen, Denmark, 2016, pp. 3–21.

[16] P. Runeson and M. Höst. “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering”. In: Empirical Softw.
Engg. 14.2 (Apr. 2009), pp. 131–164. ISSN: 1382-3256.

[17] D. Wachholder and C. Stary. “Enabling emergent behavior in
systems-of-systems through bigraph-based modeling”. In: SOSE.
San Antonio, USA, 2015, pp. 334–339.

[18] G. Wiederhold. “Mediators in the architecture of future information
systems”. In: Computer 25.3 (1992), pp. 38–49.

[19] X. Xia et al. “A Model-Driven Approach for Evaluating System of
Systems”. In: ICECCS. Singapore, 2013, pp. 56–64.

[20] B. P. Zeigler et al. Guide to Modeling and Simulation of Systems of
Systems. Springer, 2012.

Page 5786

