
Applying End User Software Product Line Engineering for Smart Spaces

Vasilios Tzeremes

Department of Computer Science

 George Mason University

Fairfax, VA 22030, USA

vtzereme@gmu.edu

Hassan Gomaa

Department of Computer Science

George Mason University

Fairfax, VA 22030, USA

hgomaa@gmu.edu

Abstract
Smart spaces are physical environments equipped

with pervasive technology that sense and react to

human activities and changes in the environment.

End User Development (EUD) skills vary significant-

ly among end users who want to develop software

applications for their smart spaces. This paper pre-

sents a systematic approach for adopting reuse in

EUD for smart spaces by using Software Product

Line (SPL) concepts. End User (EU) SPL designers

develop EU SPLs for smart spaces whereas end users

derive their individual smart space applications from

these SPLs. In particular, this paper presents a sys-

tematic approach for EU SPL designers to develop

EU SPLs and end users to derive software applica-

tions for their spaces, an EUD environment that sup-

ports EU SPL development and application deriva-

tion, and a testing approach for testing EU SPLs and

derived applications.

1. Introduction

The growing adoption of ubiquitous computing

and the Internet of Things (IoT) have contributed to

the advancement of smart spaces. Smart spaces are

environments equipped with visual and audio sensing

systems, pervasive devices, sensors, and networks

that can perceive and react to people, sense on-going

human activities and respond to them [1]. In smart

spaces, ubiquitous computing focuses on the interac-

tion of end users with the environment, whereas the

IoT focuses on the interconnection of devices and

services. EUD environments for smart spaces aim to

enable end users to take advantage of the device con-

nectivity and end user friendly user interfaces to cre-

ate applications such as scheduling tasks, conven-

ience through automation, energy management effi-

ciency, health and assisted living [2].

 A problem with existing EUD solutions is that

they either target a specific group of end users or they

assume end users have a baseline technical back-

ground. In fact, end users have different computer

skills, personality characteristics, professional train-

ings [3] etc. Technical end users and domain experts,

who have the technical ability to integrate pervasive

technology in smart settings, can create sophisticated

software for their smart spaces. Alternatively, profes-

sional software engineers can work with domain

experts and end users to design and develop EU

software. Less technical end users find it difficult to

create software for their smart spaces due to a lack of

technical knowledge, domain expertise, and/or diffi-

culties using EUD environments for smart spaces [4].

It would therefore be beneficial to enable end users to

reuse the work of technical experts to create software

applications for their spaces.

Several quality issues have been reported in ap-

plications created by end users. Some of these in-

clude errors in the logic, compatibility issues, etc. [5].

The domain of End User Software Engineering

(EUSE) is derived from software engineering and

provides systematic approaches for end users to cre-

ate quality software. Reuse is also one of the areas

that EUSE identifies as promising for improving end

user software quality and promoting end user devel-

opment because typical end users do not design their

software applications for reuse [5]. SPL technology

addresses software reuse of requirements, designs

and implementations. The problem is that current

SPL methods target professional software engineers

rather than end users. In an end user environment,

the development process is more agile. End users are

not familiar with prescriptive SPL methods and there-

fore changes are needed to define a SPL method to

target end users. By adopting reuse, end users would

avoid duplicating the work of others to create similar

applications. In addition, reuse of more sophisticated

and stable end user applications would increase adop-

tion of EUD for smart spaces [6].

This paper describes a systematic EUD reuse ap-

proach and environment for smart spaces by using

SPL concepts. Section 2 provides the rationale for the

approach. Section 3 provides an overview of the EU

SPL process for smart spaces. Section 4 describes the

End User Software Product Line Prototype

(EUSPLP) Development Environment used to devel-

op EU SPLs and derive applications for smart spaces.

Section 5 presents a testing approach for testing EU

SPLs and derived applications. Section 6 describes

the evaluation approach for this work utilizing the

smart home EU SPL case study created by this re-

search. Section 7 compares this research with related

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50610
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5756

work. Finally, section 8 provides conclusions and

discusses future work.

2. Motivation for EU SPL Development

There are several issues in developing end user

applications for smart spaces that can be addressed

by applying the EU SPL approach described in this

paper. One issue is EUD cost. In current EUD ap-

proaches for smart spaces, development cost increas-

es with each application since there is no reuse, and

hence applications from the same domain have to be

re-developed for different EUD environments and

smart spaces. By utilizing the EU SPL approach,

there is an initial cost to design and develop the EU

SPL. However, the EU application development cost

will be lower, since several applications can be de-

rived from the EU SPL to satisfy end user require-

ments for individual smart spaces.

Another issue is that current EUD approaches do

not address variability in end user technical back-

grounds and development capabilities. Current EUD

environments provide a common user interface for all

end users to design and develop applications for

smart spaces. They do not address non-technical end

user issues in developing EU applications. The EU

SPL development environment developed by this

research provides different user interface and work-

flows for technical SPL designers to create EU SPLs,

whereas it provides a simpler user interface for end

users to derive applications.

Software reuse is limited in current EUD ap-

proaches. End users do not develop applications with

the goal to reuse and even if they do, current EUD

environments do not provide mechanisms for appli-

cation reuse. Furthermore, end user applications have

to be redeveloped for different EUD environments

and smart spaces. On the other hand, EU SPLs pro-

mote reuse by designing and developing product line

features that are realized by common, optional, and

variant components and connectors. End user appli-

cations are derived by selecting EU SPL features for

different EUD environments and smart spaces.

Requirements in EUD are usually unplanned and

undocumented. End user requirements are too per-

sonalized to create applications that can be reused by

other end users for different EUD environments.

Furthermore, end users focus on implementation

without taking the time to document requirements.

Utilizing a systematic EU SPL approach, require-

ments are collected and documented through the EU

SPL requirements elicitation process. Requirements

are used to define the EU SPL features, feature

groups and feature dependencies. Features are select-

ed by end users to tailor the EU application to their

needs.

Software design in end user applications is typi-

cally ad hoc. Non-technical end users are not familiar

with software design methods and frequently develop

low quality applications. Software design is an inte-

gral part of the EU SPL process. Technical EU SPL

designers design product line features, feature de-

pendencies, feature groups, software architectures,

and reusable components that support different EUD

environments and smart spaces. Non-technical end

users reuse software designs by selecting features and

components to derive applications for their smart

spaces.

It can be challenging for non-technical end users

to develop applications utilizing existing EUD envi-

ronments for smart spaces. EUD difficulty increases

with the complexity of the EU application. In EU

SPLs, software development is performed by tech-

nical experts. End users derive complex applications

for their spaces by selecting and configuring EU SPL

features. A user study described by the authors [29]

showed the feasibility of having non-technical end

users select features from an EU SPL feature model

and modify the feature model.

End user applications by non-technical end users

are simplistic in nature. EUD environments for smart

spaces provide limited user interfaces for developing

complex applications. In EU SPLs, application func-

tionalities are organized as SPL features that are real-

ized by common and variable components and con-

nectors. During application derivation, selected fea-

tures and the corresponding software architecture are

used to compose a highly configurable application.

In EUD, software testing is typically haphazard,

leading to quality issues in applications developed by

non-technical end users. The EU SPL process pro-

vides a systematic testing approach that can be used

to test EU SPLs, derived applications, and end user

application deployment in smart spaces

 3. EU SPL Process for Smart Spaces

The EU SPL process provides a systematic ap-

proach for EU SPL designers, who can be technical

end users and/or domain experts, working with pro-

fessional software engineers, to design and develop

EU SPLs for smart spaces that end users can use to

derive applications for their smart spaces. Figure 1

shows the EU SPL process. Similar to conventional

SPL engineering processes [7], the EU SPL process

consists of two sub-processes: (a) the End User Prod-

uct Line Engineering (EUPLE) process in which the

end user software product line is created, and (b) the

End User Application Engineering (EUAE) process

in which software applications are derived.

During the EUPLE process, EU SPL designers

work with end users to collect requirements, define

the product line scope, and create the product line

feature model using the EU SPL requirements elicita-

tion process. The feature model captures all the fea-

tures of the product line and the dependency between

them. After the requirements are created, analysis

modeling is performed to define the reusable compo-

Page 5757

nents and component interactions needed to realize

each feature. During design modeling, the EU SPL

architecture is created, feature/component dependen-

cy is determined, and component interfaces are de-

fined. During EU SPL implementation, product line

components are coded. Finally, during EU SPL test-

ing, test cases are defined for the EU SPL features

and feature combinations. There is feedback between

the different phases of EUPLE. In particular, issues

and software defects identified during EU SPL test-

ing are communicated to the corresponding phases

where the issue was introduced. For example, if dur-

ing testing, a software defect is found that is caused

by conflicting features, the issue will be communi-

cated to the EU Analysis Modeling, EU SPL Design

Modeling and EU SPL Implementation phases. All

artifacts created during the EU SPL engineering are

stored in the End User SPL Repository.

During (EU) Application Engineering, end users

select the product line features they need from the EU

SPL and derive end user applications for their smart

spaces. In detail, end users utilize the End User Ap-

plication Requirements Selection process, to select

the product line features from the EU SPL feature

model needed for their spaces. Based on the end us-

er’s selections, the end user application architecture,

components and test cases are derived from the EU

SPL Repository. The EU Application Testing process

ensures that the test cases are executed successfully

against the derived applications. Finally, the derived

application is deployed to the end user smart space

platform. End users communicate defects and new

requirements back to EU SPL designers for future

product line releases.

3.1. End User Product Line Engineering

The EUPLE process is composed of the (a) EU

SPL Requirements Elicitation, (b) EU SPL Analysis

Modeling, (c) EU SPL Design Modeling, (d) EU SPL

Implementation, and (e) EU SPL User Application

Testing sub-processes.

3.1.1. EU SPL Requirements Elicitation

EU SPL requirements elicitation helps define the

overall scope of the product line. EU SPL designers

with domain expertise work with end users to collect

and document SPL requirements and feature mod-

el.EU SPL designers document end user requirements

using Use Case modeling. Typical actors in smart

spaces are humans. For instance, in a smart home

SPL, depending on whether a person is a home resi-

dent or an intruder, the smart home can react in dif-

ferent ways. In addition to humans, smart spaces

heavily depend on sensors, actuators, devices, and

external systems to identify changes to the environ-

ment. For instance, a moisture sensor reading might

be significant enough to notify a house resident of a

possible flood. EU SPL designers document kernel

use cases first followed by optional and alternative

use cases.

Product line features are requirements or charac-

teristics that are provided by one or more members of

the SPL [7]. Feature modeling is used to capture

feature commonality / variability and feature depend-

encies within the EU SPL. In addition, as part of this

research, feature modeling was extended to capture

feature dependencies in EUD environments (plat-

forms) [8]. Product line features can be (a) platform

independent to indicate that a feature does not depend

on components or functionalities of a specific EUD

environment, or (b) platform specific to indicate that

a feature depends on components or functionalities of

a specific EUD environment e.g., TeC, Jigsaw.

Feature models are derived by use case modeling.

In a feature model, features are organized (a) as

common or variable, (b) in feature groups, and (c) as

parameterized features. Common features are features

that exist in all products derived from the EU SPL.

Variable features exist only in some SPL members.

Variable features are further categorized as optional

or alternative features. Optional features are noncom-

pulsory features that depend on other common or

variant features. Alternative features are used to

describe mutually exclusive features.

Feature groups are used for grouping similar fea-

tures. Feature groups can be classified as: (a) exactly-

one-of, (b) zero-or-one-of, (c) at-least-one-of and (d)

zero-or-more-of. Exactly-one-of feature groups indi-

cate that only one feature from a feature group can be

present in an end user application. Exactly-one-of

feature groups are used to group alternative features,

exactly one of which must be selected during applica-

tion derivation. Zero-or-one-of feature groups are

also used to group alternative features, one or none of

which can be selected during application derivation.

At-least-one-of feature groups are used to indicate

that at least one feature of the feature group must be

selected during application derivation. Zero-or-more-

of feature groups are used to indicate that zero or

Figure 1 End User Software Product Line

Process

Page 5758

more features of the feature group can be selected

during application derivation.

Parameterized features are features that can be

configured at application deployment time. In the

feature model, features are decorated with the «plat-

form-specific» and «platform-independent» UML

stereotypes to indicate whether a feature is specific to

an EUD environment.

3.1.2. EU SPL Analysis Modeling

EU SPL Analysis modeling consists of static

modeling, component structuring, dynamic modeling

and feature/component modeling. The EU SPL static

model captures the product line components needed

to realize the use cases defined and feature model. In

addition, component structuring is performed to cap-

ture the component reuse stereotype, role stereotype

and platform dependencies. This research used UML

stereotypes to classify the EU SPL components. To

capture component reuse characteristics, the follow-

ing reuse stereotypes are used: «kernel», «optional»,

«variant», «default». This research uses the PLUS

method role stereotypes to capture the application

purpose of each component [7]. For example, a com-

ponent can be «entity», «control», «timer», etc.

Components that are only applicable to specific EUD

environments are annotated with the «platform-

specific» stereotype.

EU SPL designers use dynamic modeling to cap-

ture the object interactions needed to satisfy EU SPL

features. UML sequence diagrams are used to model

object interactions. Sequence diagrams model the

message interaction of objects based on a time se-

quence [9]. Sequence diagrams are developed for all

features defined in the feature model of the EU SPL.

Feature/component modeling is used for mapping

features to the components need to realize the feature.

This research utilized a table structure to capture this

type of relationship.

3.1.3. EU SPL Design Modeling

EU SPL Analysis modeling focus on the analysis

of the problem domain, EU SPL Design modeling

maps the EU SPL Analysis model to the solution

domain [10]. During EU SPL Design modeling the

component inter-feature communication, component

relationships and component interface models are

defined.

As EU SPL designers define features and the

components that implement each feature, they might

determine situations where components of one fea-

ture need to communicate with components of other

features to accomplish a task. This research utilized

the subscription/notification design pattern for inter-

feature component communication. The idea is that

instead of components sending messages directly to

each other, message broker components are provided

as intermediaries. Components can send messages to

the message broker, which then notifies subscribed

components that have registered with the message

broker.

UML component diagrams are used by EU SPL

designers to capture (a) components available in a

smart home, (b) component relationships, and (c)

provided and required interfaces needed for compo-

nents to communicate with each other.

 The components are decorated with UML stereo-

types to indicate whether a component is kernel, op-

tional, or variant. Furthermore additional stereotypes

are used to capture the role of each component. For

instance, a component can be is a «message-broker»

component, a «coordinator» component etc. Compo-

nents can also have a multiplicity indicator to indi-

cate the number of component instances in a smart

space. For example, components can have 1…* mul-

tiplicity that indicates that there are one or more

component instances in the smart space. The connec-

tions between components also indicate the required

and provided interfaces between components.

EU SPL implementation is the process for im-

plementing the code of each SPL component.

3.2. End User Application Engineering

 The EUAE process is composed of the (a) End

User Application Requirements Selection, (b) End

User Application Derivation, (c) End User Applica-

tion Deployment and (d) End User Application Test-

ing sub-processes.

The End User Application Requirements Selec-

tion process is used by end users to specify the re-

quired SPL features for their spaces. The selected

features need to be compatible with other features

selected from the EU SPL. For instance, an end user

cannot select two alternative features or select zero

features from an at-least-one-of feature group. The

outcome of the EU application requirements process

is a derived feature model that captures the features

selected by the end user.

The End User Application Derivation process is

responsible for deriving the end user application

based on the end user feature selections. In detail, the

components, component connectors, and component

configuration parameters that realize the selected

features are derived from the EU SPL Repository to

create the application architecture.

The End User Application Deployment process

involves end users deploying the derived applications

to their smart spaces. During application deployment,

EUD environments map and deploy the derived ap-

plication to a set of devices available in the smart

space.

4. End User Software Product Line Proto-

type Development Environment

Page 5759

The End User Software Product Line Prototype

(EUSPLP) development environment was created to

validate this research. The EUSPLP environment was

designed to support end users and extend EUD envi-

ronments for smart spaces with SPL capability. The

environment provides end user oriented interfaces to

enable EU SPL designers to develop the End User

SPL and end users to derive applications that can

execute in a TeC EUD environment.

TeC is an event driven generic architectural style

that enables end users to design and deploy personal-

ized software for their spaces. It provides a diagram-

matic language for application creation of a collec-

tion of activities that work together to achieve a

common goal [11].

To evaluate the EUSPLP, we developed several

EU SPLs for smart spaces utilizing the prototype,

derived applications from the product lines created,

and deployed derived applications to the TeC EUD

environment Android simulator [12].

4.1. EUSPLP System Architecture

Figure 2 shows the EUSPLP subsystem architec-

ture and processes. The EUSPLP subsystem is com-

posed of four subsystems: (1) EU SPL Development,

(2) Application Derivation, (3) Application Distribu-

tor, and (4) TeC EUSPLP Adaptor. EU SPL Devel-

opment subsystem provides the user interface, ser-

vices, and storage mechanisms for EU SPL designers

to create and edit end user product lines. The Appli-

cation Derivation subsystem provides the user inter-

face, services and storage mechanisms for end users

to derive TeC applications. The Application Distribu-

tor subsystem provides services for external systems

to query and retrieve the derived application. The

TeC EUSPLP Adaptor subsystem is responsible for

acquiring the application derivation specification

from the Application Distribution subsystem and

sending it to the target TeC EUD environment to be

stored in the TeC database. End users utilize the TeC

EUD environment to complete the application de-

ployment.

The EUSPLP supports three major processes

shown in Figure 2: (1) EU SPL Development, (2)

Application Derivation, and (3) Application Deploy-

ment. The EU SPL Development process enables end

users to develop and store EU SPLs that are used for

deriving EU applications. The Application Derivation

process enables end users to derive applications for

their smart spaces. Finally, the Application deploy-

ment process enables end users to import derived

applications to the TeC environment and deploy them

to their smart spaces.

4.2. EU SPL Development

Figure 3 shows the user interface of the EU SPL

Editor used to develop EU SPLs. The user interface

utilizes an interactive tree structure for representing

the EU SPL feature model and a drag and drop inter-

face for component designs to make it easier for EU

SPL designers to use. The user interface consists of:

(1) The Feature Model section, (2) The Feature Ar-

chitecture section, (3) The Component Types section,

and (4) The Connector Parameter Table.

The Feature Model section was implemented in

JavaScript by customizing and extending the jsTree

[13] tree plugin of the jQuery technology. The Fea-

ture Model organizes product line features and fea-

ture groups in a tree structure. Each feature is deco-

rated with a feature symbol to indicate the feature

type. Common features are represented with the ex-

clamation point “!” symbol. Optional features are

represented with the question mark “?” symbol. Al-

ternative and default features are represented respec-

tively with the black “×” and white “×” symbols. The

feature groups supported by the prototype are (a)

zero-or-more (b) zero-or-one (c) one or more and (d)

exactly-one. The EUSPLP uses the crow’s foot nota-

tion [14] to capture the cardinality of a feature group.

The reason that Crow’s foot notation was used in the

EUSPLP was because the notation is widely used to

represent entity relationships in data models.

The Feature Architecture section shown in Figure

3 is used to capture the component/connector specifi-

<<subsystem>>

EU SPL

Development

<<subsystem>>

Application

Derivation

EU SPL Designer

End User

EUSPLP
<<subsystem>>

EU SPL
(JSON)

EU SPL VIEW
(JSON)

TeC App
(JSON)

1. Submit EU SPL 1.2 Store TeC PSPL

2. Submit Feature
Selection

2.1 Extract TeC App
(PSPL PSP)

2.2 Store TeC App
(PSP)

3.4 TeC App
(JSON)

Smart Space TeC

Components/

Devices4.2 Instruct TeC
Components

Application
Deployment Process

EU SPL Development
Process

Application
Derivation Process

<<subsystem>>

Application

Distributor

End User

<<subsystem>>

TeC

<<subsystem>>

TeC EUSPLP

Adaptor

TeC
Database

3. Import
Application to

TeC

3.2 Retrieve TeC App

3.5 Store
TeC App

4. Deploy
TeC App

3.1 Request
TeC App

4.1 Retrieve
TeC App

3.6 Store App

3.3 TeC App

1.1 Store EU SPL Visual
Representation (PIPL)

<<operating-system>>

Android

Figure 2 EUSPLP Subsystem Architecture and

Processes

Page 5760

cation that realizes each feature. This section utilizes

a drag and drop interface, because it is widely used

by end users [15]. EU SPL designers can drag and

drop components to the feature architecture section

and connect them together. The feature architecture

section was created in this research by customizing

and extending the community edition of the

jsPlumb[16] JavaScript Library.

The Parameter Table section specifies all parame-

ters that need to be configured either by the EU SPL

designer or by the end users during application deri-

vation. The parameter table user interface is created

by extending the editablegrid [17] JavaScript librar-

ies. The Parameter Table displays all component

connector properties applicable to a selected feature

from the feature model. The table gets auto populated

with the relevant component parameters as EU SPL

designers connect components in the Feature Archi-

tecture section.

After SPL designers complete creating the prod-

uct line features, they submit the EU SPL to the EU

SPL Development subsystem for storage. The EU

SPL Development subsystem first stores the EU SPL

visual representation shown on step “1.1 Store EU

SPL Visual Representation” in Figure 2. Then the EU

SPL Development subsystem transforms the EU SPL

visual representation to a Java object structure repre-

senting the SPL. The Java objects are serialized to

JavaScript Object Notation (JSON) [18] objects in

the file system for long term storage shown on step

“1.2 Store TEC PSPL” in in Figure 2. JSON is a

lightweight human readable data format alternative to

XML.

Figure 3 shows the EU SPL for the smart home

case study that was developed as part of this research

in the EUSPLP. The smart home EU SPL Feature

Model section consists of different features and fea-

ture groups. For instance the smart home EU SPL has

one common feature called “Smart Home”. The EU

SPL contains the exactly-one-of feature group

“Phone Alert” that depends on the “Smart Home”

feature. The “Phone Alert” feature group contains

two alternative features the “Audio” and “Video”.

Another example is the one-or-more feature group

“Net Notifications” that also depends on the “Smart

Home” feature and contains two features that can

exist together in derived applications, the “Text” and

“Email” features. The Feature Architecture section in

Figure 3 shows the component architecture of

“Email” feature. The component types section shows

the component types that can realize each feature.

Finally, the Connector Parameter table in Figure 3

shows all the configuration parameters of the “Email”

feature.

4.3. End User Application Derivation

 During application derivation, end users are pre-

sented with the end user view of the feature model,

the Feature Selection Section, the Application Archi-

tecture section and the Application Parameter table

shown in Figure 4. End users select the desired fea-

tures for their EU application and the EUSPLP auto-

matically derives the application architecture.

The nodes of the feature selection section repre-

sent common, optional and alternative features.

Checkboxes represent optional features and radio

boxes represent alternative features. Common fea-

tures are represented as pre-selected checkboxes. End

Figure 3 EUSPLP - EU SPL Editor User Interface

Page 5761

users, based on their requirements and their smart

space configurations, select a feature combination

from the feature model, configure the feature parame-

ter table and submit their selections to the EUSPLP

Application Derivation subsystem as shown on step

“2 Submit Feature Selection” in Figure 2. The

Application Derivation subsystem extracts the com-

ponent architecture of the selected features from the

SPL and composes the end user application as shown

on step 2.1 in Figure 2. The end user application

(TeC App) is serialized to JSON in the file system

shown on step 2.2 in Figure 2.

4.4. End User Application Deployment

 During application deployment, end users utilize

the TeC EUSPLP adaptor to import the derived ap-

plication to their TeC EUD environment as shown on

steps 3 to 3.6 in Figure 2. Figure 4 shows the

EUSPLP Feature Selection User Interface for the

smart home product line. In this example three fea-

tures are selected from the smart home product line:

“Audio”, “Text” and “Door”. The left side of Figure

4 shows the application architecture of the selected

features. Based on the selected features the EU appli-

cation JSON representation for the TeC environment

is derived. The EU application JSON is distributed to

the TeC Android platform simulator when the EU

application is deployed.

5. EU SPL Testing Approach

As part of this research an overall testing ap-

proach was defined to test EU SPLs and derived ap-

plications. The EU SPL Testing Approach is a hybrid

approach that builds on the testing methods described

by Abu-Matar [18] and Olimpiew [19]. Abu-Matar

used static SPL consistency test cases to test SPLs

and derived applications created in his research.

Olimpiew described an approach for defining test

cases for each feature that can be retrieved and exe-

cuted during application derivation. Similarly, the

test cases created in this research consist of: con-

sistency test cases for testing the EU SPL and the

derived applications; and test cases for each feature

that can be executed during product line creation,

application derivation and application deployment.

Figure 5 shows the overall EU SPL Testing Ap-

proach used to test EU SPLs and derived applica-

tions. The testing approach is composed of: (a) EU

SPL Testing, (b) EU Application Testing, and (c) EU

Application Deployment Testing processes. The EU

SPL Testing process, which is used for testing the

SPL, consists of EU SPL Feature-based Consistency

Checking and Feature-based Integration Testing. EU

SPL Feature-based Consistency Checking executes

static test cases to verify feature and feature group

dependencies. Feature-based Integration consists of

integration test cases defined by EU SPL designers to

test the EU SPL. In particular, integration test cases

are developed for every feature and feature combina-

tion in the EU SPL to test the component intercon-

nections. As shown in Figure 5, Feature-based Inte-

gration test cases are stored in the EU SPL Reposito-

ry for usage during application derivation.

The EU Application Testing Process, which is re-

sponsible for testing applications derived from the

EU SPL, consists of EU Application Feature-based

Consistency Checking and EU Application Feature-

Figure 4 EUSPLP Feature Selection User Interface

Page 5762

based Integration Testing. EU Application Feature-

based Consistency Checking contains static test cases

used to verify the compatibility of features that com-

prise the derived application. EU Application Fea-

ture-based Integration involves executing integration

test cases to test the component architecture and im-

plementation of the derived application. The inte-

gration test cases are a subset of the EU SPL integra-

tion test cases and are based on the selected features

that comprise the derived application. As shown in

Figure 5, Feature-based Integration test cases to test

the derived application are selected from the EU SPL

Repository corresponding to the features selected by

the end user.

The EU Application Deployment Testing Process

shown in Figure 5, is responsible for testing the dis-

tributed deployment and execution of the TeC de-

rived application. In detail, during the deployment

testing process, EU Application Deployment Feature-

based Integration Testing involves executing integra-

tion test cases to test the deployment and execution of

components and their interconnections in the envi-

ronment. The integration test cases are the same ones

used during EU Application Feature-based Integra-

tion Testing. The integration test cases are reused to

test the deployment of the derived application.

The Feature-based integration test cases provide

test coverage of each feature and component during

EU SPL Testing, EU Application Testing and EU

Application Deployment Testing. In particular test

cases are developed to: (a) test each component (b)

test each feature by testing the components and con-

nectors that realize the feature (c) If a feature depends

on other features, test the feature in combination with

the features it depends on.

6. Evaluation
To validate this research a smart home EU SPL

case study was created with 24 common and variant

features organized in different feature groups. In

addition, 32 kernel and variant components were

created to realize these features. The case study has

features from the domains of home automation, home

security, home notifications, home maintenance,

resident comfort and energy conservation.

The case study was developed following the EU

SPL Engineering process. In particular, the End User

Product Line Engineering process was used to design

and develop the case study and the End User Appli-

cation Engineering process was used to derive appli-

cations. All features of the smart home EU SPL case

study were implemented using the prototype’s EU

SPL development subsystem. In addition, several

applications were derived from the smart home EU

SPL using the application derivation interface of the

EUSPLP. The derived applications were deployed to

the TeC Android simulator.

To test the smart home EU SPL this research de-

veloped and executed 32 EU SPL feature-based con-

sistency test cases. Examples of EU SPL consistency

test cases are “Zero-or-more-of Feature Group con-

tains Optional Feature”, “Common Feature contains

Kernel Component”, etc. Furthermore 79 feature-

based integration test cases were developed and exe-

cuted to test individual component connectors, multi-

component interactions of dependent features and

feature interactions. To execute both consistency and

feature-bases test cases, this research developed a

testing framework that can simulate a TeC EUD en-

vironment. All consistency and feature-bases test

EU SPL Testing Process

EU Application
Testing Process

EU SPL Repository

EU SPL
Designer

EU Application
Feature-based

Integration Testing

EU Application
Feature-based

Consistency Checking

Feature-based
Integration Testing

Derived
Application

Feature-based Integration Test Cases Feature Tests

EU SPL
Feature-based

Consistency Checking

EU SPL Feature Model
EU SPL Component Architecture

Feature-based
Integration
Test Cases

End User

EU Application Deployment
Testing Process

EU Application Deployment
Feature-based Integration

Testing

End User Application
(PSP) Feature-based

Integration Test Cases

Figure 5 Overall EU SPL Testing Approach

Page 5763

cases were executed successfully in the smart home

EU SPL case study using the testing framework.

For testing derived applications from the smart

home case study, 13 EU application consistency test

cases were developed to ensure the validity of the

application feature selection. An example of a con-

sistency test case is “All Common Features were

selected”. In addition, the applicable feature-based

integration test cases for the features that comprise

the derived application were used to test the compo-

nent architecture and implementation of the applica-

tion. The testing framework was used to execute

consistency and feature based test cases. For all de-

rived applications of the smart home EU SPL, all

consistency and feature based test cases were execut-

ed successfully.

Finally, to test the deployment of the derived ap-

plications, the feature based test cases from EU ap-

plication testing were executed in the TeC Android

simulator utilizing the simulator’s testing interface.

For all the derived applications from the smart home

case study that were deployed to the TeC simulator,

all test cases executed successfully.

7. Related Work

Our research builds on prior work in EUD envi-

ronments for smart spaces, SPL methods, and current

SPL approaches for end users and smart spaces. The

functionality provided by EUD environments for

smart spaces can be grouped in two general areas:

smart space configuration and context aware envi-

ronments. Smart space configuration environments

enable end users to control and combine functionality

of devices. Jigsaw[20], and Puzzle [21] are some

examples. Context aware environments create rules

based on user context (activity, location, identity,

time) and device functions. PIP [22], FedNet [4],

GALLAG Strip[23], and TeC [11] are some exam-

ples. Current EUD environments for smart spaces do

not address reuse. End user applications are created

for specific environments and are not portable to

other environments. For instance, an end user appli-

cation for TeC is only applicable for the TeC EUD

environment and cannot be reused for Jigsaw. In

contrast, our research extended existing EUD envi-

ronments for smart spaces with product line support.

SPL methods such as ISO ISO/IEC 26550 [24],

PLUS [29], COPA [25], and KobrA[26] address the

problem of modeling variability in SPLs and provide

processes to design SPLs and derive applications

from them. The research described in this paper has

extended current SPL approaches to provide support

for EUD development and smart spaces.

Current research on utilizing SPL concepts for

end users and smart spaces includes SimPL [27] and

Perez et al.[28]. As with our research, SimPL uses

components, connectors and triggers to create appli-

cation logic. Perez et al. utilize variability engineer-

ing for professional engineers to cooperate with end

users to capture end user requirements for smart

spaces. Our research extends Perez’s work beyond

requirements elicitation for SPLs by utilizing visual

languages and application models of EUD environ-

ments to create SPLs for smart spaces.

8. Conclusions and Future Work

This paper has described a systematic approach

and development environment for designing, devel-

oping, and testing EU SPLs that end users can use to

derive applications for their smart spaces. This ap-

proach offloads from the end user the task of devel-

oping the SPL software. Instead, the end user selects

features from a feature model and the environment

derives the application architecture and implementa-

tion. A user study [29] showed the feasibility of this

approach. This research defined the EU SPL process,

which provides a step by step process for designing,

developing, and testing EU SPLs. The EU SPL pro-

cess extended existing SPL approaches to end user

development and smart spaces, as well as for deriving

EU applications. The EUSPLP development envi-

ronment was developed to enable the implementation

of EU SPLs and application derivation for smart

spaces. A testing approach was developed to test the

EU SPLs and derived applications created using the

EUSPLP development environment. The overall

contributions of this research are the End User Prod-

uct Line Engineering process, the EUSPLP develop-

ment environment, and the EU SPL testing approach.

This research will continue by investigating and

expanding the EUSPLP environment with smart

space security models for EUSPLs. Another area for

extending this research is end user visual languages

for EU SPLs. This research performed a preliminary

user study [29] to investigate different visual symbols

for representing feature types, user interfaces for

creating EU SPLs, and deriving applications for

smart spaces. An extension of the original user study

could be conducted to evaluate and enhance the

EUSPLP visual language and user interface. EU SPL

testing is another area for future research. The testing

framework developed in this research could be en-

hanced by investigating approaches to automatically

generate test cases based on feature dependencies and

component relationships, in addition to test cases

provided by EU SPL designers.

9. References

[1] R. Singh, P. Bhargava, and S. Kain, “State of the art

smart spaces: application models and software infra-

structure,” ACM Ubiquity, p. 7:2–7:9, Sep-2006.

[2] P. Rashidi and D. J. Cook, “Keeping the Resident in

the Loop: Adapting the Smart Home to the User,”

Trans. Sys. Man Cyber. pp. 949–959, Sep. 2009.

Page 5764

[3] L. Beckwith and M. Burnett, “Gender: An important

factor in end-user programming environments?,” in

Proceeding of IEEE Symposium on Visual Lan-

guages - HCI Rome, Italy, 2004, pp. 107–114.

[4] F. Kawsar, T. Nakajima, and K. Fujinami, “Deploy

Spontaneously: Supporting End-Users in Building

and Enhancing a Smart Home,” in Proceedings of

the 10th International Conference in Ubiquitous

Computing, Seoul, South Korea, 2008, pp. 282–291.

[5] M. Burnett, “What Is End-User Software Engineer-

ing and Why Does It Matter?,” in Proceedings of the

2nd Intern. Symp. on EUD, 2009, pp. 15–28.

[6] V. Tzeremes and H. Gomaa, “A Software Product

Line Approach for End User Development of Smart

Spaces,” in Proceedings of the 5th International

Workshop on Product LinE Approaches in Software

Engineering, NJ, USA, 2015, pp. 23–26.

[7] H. Gomaa, Designing Software Product Lines with

UML: From Use Cases to Pattern-Based Software

Architectures. Addison-Wesley Professional, 2005.

[8] V. Tzeremes and H. Gomaa, “A Multi-platform End

User Software Product Line Meta-model for Smart

Environments,” in Proceedings of the 11th Interna-

tional Joint Conference on Software Technologies

ICSOFT-EA, Lisbon, Portugal, 2016, pp. 290–297.

[9] J. Rumbaugh, I. Jacobson, and G. Booch, Unified

Modeling Language Reference Manual, The (2Nd

Edition). Pearson Higher Education, 2004.

[10] H. Gomaa, Real-Time Software Design for Embed-

ded Systems. Cambridge, 2016.

[11] J. P. Sousa, “Foundations of Team Computing:

Enabling End Users to Assemble Software for

Ubiquitous Computing,” in International Conference

on Complex, Intelligent and Software Intensive Sys-

tems, Krakow, Poland, 2010, pp. 9–16.

[12] J. P. Sousa, X. Shen, V. Tzeremes, and F. Hodum,

“TeC apps for smart spaces: simple, decentralized,

resilient, and self-healing,” ACM Conference on

Ubiquitous Comp., PA, USA, 2012, pp. 637–638.

[13] J. Duckett, JavaScript and JQuery: Interactive Front-

End Web Development, Wiley Publishing, 2014.

[14] R. Barker, Case Method: Entity Relationship Model-

ling, 1st ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 1990.

[15] C. Appert, O. Chapuis, E. Pietriga, and M.-J. Lobo,

“Reciprocal Drag-and-Drop,” ACM Trans. Com-

put.-HCI., vol. 22, no. 6, p. 29:1–29:36, Sep. 2015.

[16] S. Porritt, The jsPlumb JavaScript library. 2016.

[17] P. Máca, Editablegrid. Webismymind, 2016.

[18] M. Abu-Matar and H. Gomaa, “An Automated

Framework for Variability Management of Service-

Oriented Software Product Lines,” in Service Ori-

ented System Engineering (SOSE), 2013 IEEE 7th

International Symposium on, 2013, pp. 260–267.

[19] E. M. Olimpiew and H. Gomaa, “Reusable Model-

Based Testing,” in Formal Foundations of Reuse

and Domain Engineering: 11th International Confer-

ence on Software Reuse, ICSR 2009, Falls Church,

VA, USA, Springer, 2009, pp. 76–85.

[20] J. Humble et al., “Playing with the Bits User-

Configuration of Ubiquitous Domestic Environ-

ments,” in Proceedings of the 5th Intern. Conference

in Ubiq. Comp., Seattle, WA, 2003, pp. 256–263.

[21] J. Danado and F. Paternò, “Puzzle: a visual-based

environment for end user development in touch-

based mobile phones,” in Human-Centered Software

Engineering, Springer, 2012, pp. 199–216.

[22] J. Chin, V. Callaghan, and G. Clarke, “End-user

Customization of Intelligent Environments,” in

Handbook of Ambient Intelligence and Smart Envi-

ronments, Springer US, 2010, pp. 371–407.

[23] J. Lee, L. Garduño, E. Walker, and W. Burleson, “A

Tangible Programming Tool for Creation of Con-

text-Aware Applications,” in Proceedings of the In-

ternational Joint Conference on Pervasive and Ubiq-

uitous Computing, 2013, p. 391.

[24] ISO/IEC 26550:2016, “Software and systems engi-

neering – Reference model for product line engi-

neering and management,” International Organiza-

tion for Standardization, Geneva, Switzerland, ISO

ISO/IEC 26550, 2016.

[25] P. America, H. Obbink, J. Muller, and R. van Om-

mering, “COPA: A Component-Oriented Platform

Architecting Method for Families of Software In-

tensive Electronic Products,” in First Conference on

SPLE, Denver, Colorado, 2000.

[26] C. Atkinson and D. Muthig, “Component-Based

Product-Line Engineering with the UML,” in Soft-

ware Reuse: Methods, Techniques, and Tools, vol.

2319, Springer, 2002, pp. 155–182.

[27] A. Malaer and M. Lampe, “SimPL: A Simple Soft-

ware Production Line for End User Development,”

in 15th Asia-Pacific Software Engineering Confer-

ence, Beijing, China, 2008, pp. 179–186.

[28] F. Perez and P. Valderas, “Allowing End-Users to

Actively Participate within the Elicitation of Perva-

sive System Requirements through Immediate Visu-

alization,” in Proceedings of the 4th International

Workshop on Requirements Engineering Visualiza-

tion, Atlanta, Georgia, USA, 2009, pp. 31–40.

[29] V. Tzeremes and H. Gomaa, “XANA: An End User

Software Product Line Framework for Smart Spac-

es,” in 2016 49th Hawaii International Conference

on System Sciences (HICSS), 2016, pp. 5831–5840.

Page 5765

