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Abstract 

 
Blockchains permit to store information in a 

tamper-resistant and irrevocable manner by reverting 

to distributed computing and cryptographic 

technologies. The primary purpose is to keep track of 

the ownership of tangible and intangible assets. In the 

paper at hand we apply these concepts and 

technologies to the domain of knowledge management. 

Based on the explication of knowledge in the form of 

enterprise models this permits the application of so-

called knowledge proofs for a. enabling the 

transparent monitoring of knowledge evolution, b. 

tracking the provenance, ownership, and relationships 

of knowledge in an organization, c. establishing 

delegation schemes for knowledge management, and d. 

ensuring the existence of patterns in models via zero-

knowledge proofs. To validate the technical feasibility 

of the approach a first technical implementation is 

described and applied to a fictitious use case.  

 

 

1. Introduction  

 
In the last years, the increasing adoption of the 

virtual currency Bitcoin has sparked interest in the 

underlying technologies that enable the secure 

exchange of assets in an electronic manner [3]. At the 

core of these so-called blockchain technologies stand 

protocols that define the exchange and storage of 

information using cryptography. These ensure the 

tamper-resistant, decentralized, and irrevocable storage 

of transactions between parties in a transparent and 

entirely virtual, electronic environment [24]. Although 

the primary area of application is in the financial 

domain, several proposals have been made to apply 

blockchain technologies to other fields. Examples 

include the internet of things for storing the 

communication between smart devices, the verification 

of the authenticity of products in e-commerce or the 

decentralized storage of information about the domain 

name system (DNS) [26]. 

When extending the notion of assets in general to 

the very core of organizations, one immediately 

recognizes knowledge as one of the most important and 

valuable resources and a critical factor for remaining 

competitive [5, 15]. Similar as for financial value, also 

knowledge as the intellectual capital of an organization 

needs to be securely stored and, if necessary, shared 

between parties [25]. In addition, it is vital to track the 

provenance and ownership of knowledge as well as 

manage its distributed elicitation and its evolution in 

order to make it available to all relevant parties. 

Based on these similarities between knowledge and 

electronic assets, we will report about an exploratory 

research approach for applying the concepts of 

blockchain technologies to the area of knowledge 

management. For accomplishing the transition between 

knowledge products such as know-what, know-why, 

know-who, and know-when and electronically 

processable information products we revert to 

conceptual models [21, 30]. These permit on the one 

hand to represent explicit, clearly formulated types of 

knowledge in a machine-processable format [22, 6]. 

Thereby the major benefit is, that the Blockchain 

technologies enable us to identify the actors who 

created or modified the models (know-who) as well as 

to proof the provenance of their content (know-what) 

without revealing it in the fashion of zero-knowledge 

proofs. Thereby, the people behind the models and 

their knowledge can be accessed as well, e.g. to further 

investigate the know-why. By using blockchain 

technologies, the content of models will be stored in a 

tamper-resistant and irrevocable format. This includes 

the storage of explicit permissions for accessing and 

modifying their content as well as time-stamps, thus 

enabling the recording of the know-when. This 

corresponds to the considerations made for security in 

knowledge management regarding confidentiality, 

integrity, and availability [16]. This type of a 

blockchain will be denoted as Knowledge Blockchain. 
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The remainder of the paper is organized as follows. 

In Section 2 we will give an introduction to blockchain 

technologies to provide the foundations for Knowledge 

Blockchains. The approach itself will be described in 

Section 3. In Section 4, a prototypical implementation 

will be presented to form the basis for a use case in 

Section 5. Work related to our approach will be 

discussed in Section 6, followed by a conclusion in 

Section 7. 

 

2. Foundations 

 
In this section, we briefly introduce fundamental 

blockchain concepts and the according terminology as 

it is commonly used today. 

 

2.1. Blockchain Technologies 

 
At the core of technologies required for realizing 

blockchains are cryptographic hash functions and 

public key cryptosystems. A cryptographic hash 

function H(M) permits summarizing a message M of 

any length with a fixed length pseudo-random output 

value V, e.g. with a length of 256 bit. Cryptographic 

hash functions satisfy the properties of collision and 

preimage resistance. This means that it is 

computationally infeasible to a. find two messages M, 

M’ which produce equal hash values as in H(M) =  

H(M’), b. compute M from V, and c. to derive M’ from 

an existing M so that H(M) =  H(M’) holds [24]. 

For summarizing two messages M1 and M2, it is trivial 

to apply a hash function to the concatenation of their 

individual hash values V1 and V2 as in HV1||V2 = 

H(H(M1)||H(M2)). In this fashion, values of a set V 

with |V| mod 2 = 0 can be hashed pairwise to create 

|V|/2 hash values, which are subjected to the same 

operation recursively so that a binary tree is created. 

The leafs of the resulting binary tree are individual 

values, whereas any node summarizes its two children 

and the root summarizes all values of the tree. These 

trees are called Merkle trees based on their inventor 

[23]. Theoretically, it would be possible to concatenate 

more than two hash values, however, the binary tree 

suggested by Merkle has the advantage of allowing a 

traversal in logarithmic space and time as demonstrated 

by Szydlo [29]. To prove that an element of V is 

included in the Merkle tree, at most log2(|V|)∗2 

operations need to be carried out. In the fashion of 

zero-knowledge proofs, this can be leveraged to 

efficiently show that a message is part of the Merkle 

tree. To prove membership of a message, other 

messages do not need to be known, as it is sufficient to 

know the hash values of the Merkle tree. To prove this 

for M1, its hash value V1 is re-calculated, concatenated 

to the existing hash value of its neighbor V2 and 

hashed as in H(V1||V2). The resulting hash value needs 

to be equal to the one stored as parent of V1 in the 

Merkle tree. This operation is applied recursively until 

the root hash is reached. This means that on every level 

of the tree, excluding the root, only the hash value in 

the neighbor node needs to be known to conduct the 

proof. 

Further, by reverting to public key cryptography 

additional information security features are provided. 

In a public key cryptosystem, confidentiality of 

messages can be achieved without a pre-shared secret. 

For achieving this, a sender and a receiver of a 

message both have pairs of public and private keys. A 

crypto-algorithm then allows for a. the encryption of a 

message using the public key of the receiver, who 

decrypts it with his corresponding private key, and b. 

the signing of a message with the private key of the 

sender so that the receiver can verify the signature 

using the sender’s public key [24]. 

By putting cryptographic hash functions and public 

key cryptosystems together, the basic functions of 

blockchains can be described. In particular, 

blockchains store data in a way that allows for efficient 

integrity checks by linking individual blocks – i.e. 

information parts – using hash values, so that any 

Block Bi with i > 0 contains a hash value that 

summarizes the preceding block Bi−1. The last block of 

the resulting chain therefore summarizes the whole 

chain which is linked back to B0, commonly referred to 

as genesis block. A block Bi consists of a block header 

and data. Data is a Merkle tree which contains 

individual data values as leaf nodes, summarized by 

the root hash value MRi. The block header consists of 

MRi and the hash value of the preceding block header 

BHi−1. Thus, a block Bi can be summarized by hashing 

its block header BHi using H(H(BHi−1)||MRi). The 

whole chain is summarized by the block header of its 

last block. A modification of any data value in Bi 

would result in a changed hash value H(BHi) which 

breaks the chain, i.e. Bi+1 is no longer linked to Bi, as 

BHi+1 no longer contains the hash value of the 

preceding block. Integrity of all data in the chain can 

be assumed if the hash value of the block header of the 

last block remains unchanged. This makes blockchains 

well suited to store data in an immutable and thus 

tamper-resistant fashion. 

Any new block is appended as part of a mining 

process which enforces the specific rules of a 

blockchain. Entities carrying out the mining will record 

new data to be stored in the blockchain and check 

whether or not the protocol is violated by that data. In 

case that changes shall be applied to information stored 

in the blockchain, transactions are specified and sent to 

the miners. The transactions need to contain 
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information about the data to be changed (e.g. a 

transfer of financial assets in bitcoin) and the 

corresponding identity wishing to conduct that change. 

The identity is ensured through digital signatures based 

on the above described public key cryptosystems. In 

the case of distributed, public blockchains that operate 

in a so-called permission-less fashion, miners are 

selected randomly based on the presentation of 

solutions for cryptographic puzzles. These puzzles are 

computationally hard deciphering problems that can 

only be solved by trying a number of possible solutions 

(proof of work). If a miner finds a solution, it is entitled 

to add information to the blockchain. Further details on 

the mining process can be found in [24]. 

In contrast to public blockchains, private or 

permissioned blockchains are not necessarily 

distributed. As a consequence, the access to miners is 

restricted and transactions need to authenticate 

themselves against the miner. Furthermore, domain-

specific rules for the mining process and for generating 

new blocks can be defined so that an organization may 

use its own rules and models when data is added to the 

blockchain. This includes detailed specification of 

permissions for all identities interacting with the 

blockchain. 

 

3. The Concept of Knowledge Blockchains 

 
With the foundations described in the previous 

section we can now advance to the presentation of 

Knowledge Blockchains. The concept is based on the 

assumption that knowledge can - at least partially - be 

made explicit in the form of conceptual models. This 

view is common to many approaches in the area of 

enterprise modeling where knowledge about 

organizational entities such as business processes, IT 

systems, data, ontologies, actors and the like is today 

documented in the form of semi-formal or formal 

conceptual models [17]. These models can be 

processed by algorithms and humans alike in the sense 

of knowledge Information Systems and thus act not 

only as a basis for communication but also as input for 

machine-based analyses and simulations [1]. 

The massive use of enterprise models in 

organizations requires careful management and 

appropriate IT support. In cases where a single 

organization already stores several hundreds or 

thousands of such models [28], the challenge becomes 

not only to technically handle the contained 

information and make it accessible to users but also to 

provide mechanisms for adequately handling 

knowledge aspects [14, 21]. In this context, the 

concepts and technologies behind blockchains offer an 

extension to the traditional handling of enterprise 

models. Especially, the core aspect of blockchains to 

ensure irrevocable, tamper-resistant storage of 

information in a transparent way without trusted third 

parties has the potential to fundamentally change the 

way how knowledge in the form of enterprise models 

is stored and processed in and across organizations. 

As shown in Figure 1, Knowledge Blockchains 

store information in knowledge blocks that contain 

cryptographically-validated information parts. In line 

with the mechanisms in typical blockchains today, 

these information parts are structured themselves in the 

form of binary hash trees that permit to efficiently 

ensure the integrity of the knowledge blocks. If 

changes to the information shall be made, transactions 

are sent to the blockchain and processed by miners in 

the mining process. Thereby, it is checked whether all 

rules defined for the changes to be conducted are met. 

Figure 1: Concept of Knowledge Blockchains 
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In the following we will describe the required 

extensions for enterprise modeling languages in order 

to use them in Knowledge Blockchains. This will be 

followed by the presentation of the structures of blocks 

and the mechanisms for permission management and 

delegation. For processing blocks, a specific mining 

procedure will be added that ensures the integrity of 

the Knowledge Blockchain and permits the application 

of so-called knowledge proofs. These will stand for the 

concrete application of the Knowledge Blockchain to 

tasks in knowledge management.  

 
3.1. Required Extensions of Modeling 

Languages 

 
When realizing a modeling language in a modeling 

tool, it typically depends on the underlying tool-

platform how the language is to be implemented [20]. 

The extensions of such modeling languages/knowledge 

representations as required for Knowledge Blockchains 

abstract from the technical implementation and define 

generic attributes that need to be available. With the 

description of a concrete implementation in Section 4 

we will show how these attributes can be translated to 

a technical platform.  

 

A fundamental requirement for Knowledge 

Blockchains is the ability to uniquely identify any 

element in a conceptual model. Therefore, we revert to 

UUID (universally-unique-identifiers) attributes for 

model types, classes and relationclasses in the 

modeling language – see Figure 2. Any instance of 

these entities then needs to contain a correct UUID 

value to distinguish it from any other element. This 

also applies to the description of relations via from and 

to attributes and the containedInModel attribute to 

identify the assignment to a concrete model. 

Furthermore, attributes for containing hash values of 

attribute names and values (Attribute-Hash) and for all 

objects contained in a model (Object-Hash) are added. 

In the process of mining, these hash values will be 

calculated in the form of a Merkle tree as shown in 

Figure 3. 

 
3.2. Representation of Blocks 

 
For any blockchain-based application it needs to be 

decided how information is represented and stored on 

the chain. The structure derived for blocks in 

Knowledge Blockchains is shown in Figure 4. At the 

bottom two Merkle trees are contained in each block: 

one for representing the hashes of the content of 

enterprise models and the other one for storing the 

hashes about permissions. The latter aspect will be 

discussed in the following Section 3.3. For both trees, 

also the Merkle root hash is available which becomes 

part of the Block-Header. In the Block-Header, the 

hash of the Previous Block, a Timestamp, and the full 

content of the models and permissions in XML format 

is further added. For operating in distributed 

environments under the paradigm of permission-less 

ledgers, a Nonce (number used only once) is optionally 

available. This is used to solve cryptographic puzzles 

for deciding on the next miner to add a block to the 

chain – for details see [24]. All data in the Block-

Header except the Nonce and the Timestamp is signed 

with the private key of the party submitting a 

transaction to produce a digital signature. The resulting 

hash value is stored in the Header-Signature. In this 

way, the identity of the submitting party is tied to a 

block. When a miner has solved the cryptographic 

Figure 2: Extensions of modeling language 

constructs for enabling Knowledge Blockchains and 

two sample entities of the BPMN modeling 

language 

Figure 3: Model Merkle tree 
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puzzle and successfully checked the information 

contained in the block, it adds the Nonce and the 

Timestamp values, computes a hash value of the whole 

block and signs this hash value with its private key. 

These values are then contained in Block-Hash and 

Block-Signature. 

 
3.3. Permission Management and Delegation 

 

An essential feature of Knowledge Blockchains is 

to specify in a very detailed way who is allowed to 

conduct which changes on the blockchain. These rights 

are described in permission models which are an 

inherent part of every block. As shown in Figure 5, 

three types of permissions are currently available: 

Create and Delete Permissions that assign an identity 

to create or delete models, objects, relations, and 

attribute values and Transfer Permissions that allow an 

identity to transfer some or all of its permissions to 

another identity. 

Identities in the permission model are represented 

by their Public Keys. In the genesis (initial) block of 

Knowledge Blockchains all permissions for all entities 

are assigned to the creator of the blockchain. He or she 

can then decide through subsequent transactions if and 

how these rights are to be delegated to other identities. 

 
3.4. Mining Rules 
 

When new transactions are sent to the blockchain 

they are checked for their conformance to the rules set 

by the permission model in the previous block. The 

mining may either be conducted by authenticated 

miners in the case of a permissioned Knowledge 

Blockchain or by randomly selected miners in case of 

permission-less Knowledge Blockchains. 

For conducting the checks during the mining as 

shown in Figure 6, it is assumed that for each model 

submitted in the transaction, hash values have been 

computed a. for the attributes of objects and relations, 

for all objects and relations in a model, and for all 

combinations of objects, relations, or models and their 

corresponding UUIDs, and b. for all combinations of 

these hash values, thereby forming a Merkle tree up to 

the Merkle root hash. The same is assumed for the 

submitted permission models, again up to the Merkle 

root hash. 

The outcome of the mining process is that either the 

requested changes are conducted and a new block is 

added to the Knowledge Blockchain. Or, that 

permissions have been found to be invalid and the 

transaction is declined. 

 

3.5. Knowledge Proofs 
 

By building upon the description of the properties 

of Knowledge Blockchains we can now advance to the 

discussion of their application in knowledge 

management based on the aforementioned knowledge 

products [21]. The first application domain is the 

transparent monitoring of knowledge evolution, 

respectively the dimensions of know-what and know-

when. For tracking the evolution of knowledge as 

represented in the form of enterprise models, 

Knowledge Blockchains permit to retrieve in detail 

how knowledge has evolved over time. This is possible 

through investigating the blocks containing all changes 

Figure 4: Structure of final knowledge blocks 

Figure 5: Structure of permission models 
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in models and conducting proof procedures for 

checking the integrity of all model contents. 

 

This directly leads to the second application 

domain for tracking the provenance, ownership, and 

relationships of knowledge in an organization. Not 

only can the structure of knowledge in the form of 

enterprise models be analyzed in a reliable manner. 

Through the availability of digital signatures for the 

blocks in the Knowledge Blockchain it can also be 

verified who has conducted which change and who has 

empowered that person to do so (delegation schemes). 

This aspect covers the know-who and know-why. 

Finally, proofs can be conducted to ensure that 

certain patterns are contained in existing enterprise 

models. By computing the hash values for a given 

model pattern and applying corresponding Merkle 

proofs, it can be verified whether a model pattern is 

contained in a model on the Knowledge Blockchain. In 

this way, it can be proven – e.g. to external authorities 

– that certain knowledge is present in an organization 

and that it is used in a specific way, e.g. as part of the 

compliance checking of business processes through 

auditors (know-what, know-who, know-when). Such a 

proof covers the existence of individual model 

elements only, to support part of a potentially more 

complex compliance check. In reference to zero-

knowledge proofs, the existence of knowledge as part 

of a model may be proven without revealing the 

contents of the model. In order to prove the existence 

of a model element, its attribute data is specified and a 

hash function is applied to it, possibly by auditors.  

To conduct the proof as described in Section 2, 

knowledge of the Merkle tree which stores the model is 

sufficient (Figure 3). Thus, attribute data may be 

removed before the audit. As of now, pattern matching 

uses an exact match approach. 

 

4. Prototypical Implementation 

 
To demonstrate the applicability of a Knowledge 

Blockchain and to show that such a system can be 

implemented in practice, we created a prototypical 

implementation. The prototype does not cover all 

mentioned functionalities and primarily serves as a 

testbed and simulation environment for experimenting 

with the concept of Knowledge Blockchains. We 

discuss the components of the implementation, its 

capabilities and limitations as well as further 

development. 

As a basis for the implementation we chose the 

ADOxx meta modeling platform [12]. This choice was 

due to the prior successful application in many industry 

and research projects. The core component is an 

ADOxx library consisting of three model-types to 

specify blockchains, business process models in 

BPMN, and permission models. For illustrative 

purposes, all model types have been assigned a 

graphical notation. The library has been extended with 

algorithms for a. sending block proposals in the form 

of transactions, b. mining new blocks, and c. verifying 

existing blocks. A custom-developed dynamic link 

library (DLL) is used to generate UUIDs, calculate 

SHA-256 hash values1 and as an interface to the 

OpenSSL library for elliptic curve cryptography (ECC) 

for public key cryptosystems [18].  

 

                                                 
1 NIST: Secure hash standard (shs). Retrieved 31-05-2017. 

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf 

Figure 6: Verification of mining rules in Knowledge 

Blockchains 
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By using the ADOxx library, a new Knowledge 

Blockchain can be created by specifying a blockchain 

owner with a public-private-key-pair. Basic business 

process models can currently be constructed using 

BPMN Task and Gateway elements, connected by 

sequence flows. Permissions are specified and assigned 

to identities, for which public- and private-keys are 

created. When sending a block proposal, business 

processes and a permission model are specified, stored 

in Merkle trees and signed. Mining is initiated by a 

designated miner; in this process, the platform enforces 

permissions concerning the creation of process 

elements and permission delegation. Further 

permissions will be added in the future. As a 

conceptual demonstration, we implemented a 

permissioned blockchain in a local environment. For 

the future, it is planned to evaluate also a distributed 

version in a permission-less fashion. 

 

5. Description of a Fictitious Use Case and 

Discussion 

 
For illustrating the application of the concept of 

Knowledge Blockchains we will revert in the following 

to a fictitious use case.  

It builds upon a scenario in the domain of banks 

that has been used for scientific research before [11]. 

In this scenario, the steps and decisions for opening an 

account at a bank are described. This information 

represents the knowledge about this process that can be 

made explicit and that shall be documented in the form 

of conceptual enterprise models. 

In the context of Knowledge Blockchains, the first 

step is to initiate the blockchain and decide which 

modeling language to use. In our case this is 

accomplished by the CEO of the respective bank who 

acts as the blockchain owner and who decides to 

collect knowledge about the business processes in her 

company using the BPMN modeling language. For the 

purpose of simplicity, she chooses to use a 

permissioned blockchain that is only available within 

the company and managed by one central miner. Upon 

creation of the blockchain, the CEO with her identity 

in the form of her public key is assigned all create, 

delete, and transfer rights in a permission model - see 

Figure 8. This information is stored in the genesis 

block upon calculating the permission model Merkle 

tree. The genesis block is thereby created and signed 

by the miner. Subsequently, the CEO decides to 

delegate the right to create BPMN models to an 

employee. 

Figure 7: Screenshot of the prototype in ADOxx showing instances of a blockchain model type (upper left), a 

permission model type (far right), and a sample business process as a BPMN model (lower left) 
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The identity of this Employee A in the form of the 

corresponding public key together with a Create-

Permission is thus added to a copy of the permission 

model, which is obtained from the previous block. This 

is shown in the lower part of Figure 8. The updated 

permission model is then submitted to the miner as a 

new transaction. For this purpose, the CEO has to sign 

the proposed block with the private key of her digital 

signature. The miner checks the signature and whether 

this identity is allowed to conduct the changes based on 

the last permission model. As this is the case for the 

CEO identity, the block proposal is accepted and the 

new permission model becomes part of the blockchain. 

Equipped with the new rights, Employee A can 

now create BPMN model elements and submit them to 

the blockchain. Upon the receipt of the block proposal, 

the miner verifies the identity and the permissions and 

adds the information to the Knowledge Blockchain. 

This results in further blocks in the Knowledge 

Blockchain that represent the content of the business 

process model as shown in Figure 9. 

The following tasks can now be accomplished 

based on the information stored in the blockchain. 

First, it can be transparently monitored by all parties 

with access to the Knowledge Blockchain, how the 

represented knowledge evolves, how new entities are 

added, and who is responsible for adding them. 

Besides this identification of the provenance of 

knowledge, also the delegation scheme behind the 

Knowledge Blockchain becomes visible. It can exactly 

be tracked, when the CEO delegated the mentioned 

Create-Permission and to whom. If necessary, process 

model patterns can be specified and tested for their 

containment in the Knowledge Blockchain without 

revealing the content of the BPMN model (zero-

knowledge proof). By reverting to the example of the 

account opening process this could be the task ”Ask 

customer for ID”, which is complimentary for any 

bank to check the identity of a future customer. In the 

current version of the Knowledge Blockchain, 

according attribute hash values could be calculated for 

this pattern and compared with the Merkle tree stored 

in the most recent block to proof its existence. 

 
6. Related Work 
  

Concerning existing approaches which make 

similar propositions with regard to the organization and 

evolution of knowledge as discussed for Knowledge 

Blockchains, we identified the following areas: 

approaches that allow to track changes in enterprise 

models with their provenances and allow to restrict and 

delegate access to models and collaborative modeling 

approaches and mechanisms in modeling tools for 

multi-user features. 

Document management and versioning control 

systems (VCS) allow storing any number of electronic 

documents, like source code files or models, in a well-

defined state as a version together with their author. 

Well-known VCS include systems using a centralized 

repository, such as CVS [7] and SVN [8]. Distributed 

Version Control Systems (DVCS) such as Git 

additionally permit users to create and synchronize 

distributed repositories and have grown in popularity 

[9]. While VCS offer version control at the level of 

individual files, they can also be used to 

collaboratively access models. Altmanninger et al. [2] 

evaluate various VCS for this purpose. They show that 

such systems usually allow comparisons of models and 

the detection of syntactic conflicts. For the purposes of 

knowledge evolution, such systems can be leveraged to 

track model changes together with their respective 

authors. The comparison can take model elements into 

account, while a commit or fetch of an artifact is 

conducted on a per-model-basis. Access to a repository 

can be restricted, however, it is not possible to restrict 

the modeling of individual models, model elements or 

to delegate such permissions.  
Collaborative modeling approaches such as COMA 

[27], DREAM [4], and CoMoMod by Dollmann et al. 
[10] are concerned with the collaboration during the 

creation of models to build models with multiple 

participants. Such approaches provide means to 

contribute to a model. However, knowledge evolution 

in the form of tracking model changes and access 

restrictions are not covered by these approaches. 

Figure 8: Sample instance of a permission model 

type 
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On a tool level, professional modeling tools such as 

ADOxx [12] or MetaEdit+ [19] provide multi-user 

features. Models can be organized in repositories and 

versioned. Much like in VCS, versions and authors of 

individual model versions may be tracked, however, 

there is no enforcement of individual access 

restrictions at the platform level. This means that there 

is no system-enforced process by which new models or 

model elements are proposed, checked against 

permissions and possibly added to a repository.  

With regard to existing approaches, version control 

systems are typically used to provide knowledge 

evolution features through extensions and 

implementations in modeling tools. The model creation 

process is covered by collaborative modeling 

approaches that focus on the creation process. A 

blockchain-based method facilitates collaborative 

aspects by allowing identities to make signed changes 

to models, which are incorporated only if platform-

enforced access rules allow it. Through the generation 

of irrevocable blocks with the changed models, 

versioning is implicit. In contrast to existing 

approaches, cryptography enforces access control and 

allows changes on a per model- and model-element-

basis that can be traced back to their provenance. 

 

7. Conclusion and Outlook 
 

     In this paper, we have presented the concept of 

Knowledge Blockchains for storing the knowledge 

expressed in enterprise models in an immutable and 

tamper-resistant way. It has been illustrated which 

benefits can be gained from such an approach in the 

context of knowledge management. The approach in its 

current stage contains several limitations that are to be 

tackled in future versions. For example, it is currently 

not foreseen to uniquely identify also the elements of 

the modeling language using UUIDs and to ensure the 

correct instantiation of models based on the modeling 

language. This is currently assumed to be implicitly 

handled by the used modeling platform. In addition, 

also the current implementation on the ADOxx 

platform has several shortcomings. First and foremost, 

the implementation so far only contains a subset of the 

required rules for checking the conformance of blocks 

during mining. 

Regarding future work, extensions of the UUID 

scheme using URI will be evaluated. In addition, the 

approach will be described in a more formal way, e.g. 

using a formalism such as FDMM [13], to ensure a 

common understanding of all technical details. 
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