

Knowledge Blockchains: Applying Blockchain Technologies to

Enterprise Modeling

Hans-Georg Fill

Information Systems – System Development and

Database Application Group

University of Bamberg

 hans-georg.fill@uni-bamberg.de

Felix Härer

Information Systems – System Development and

Database Application Group

University of Bamberg

felix.haerer@uni-bamberg.de

Abstract

Blockchains permit to store information in a

tamper-resistant and irrevocable manner by reverting

to distributed computing and cryptographic

technologies. The primary purpose is to keep track of

the ownership of tangible and intangible assets. In the

paper at hand we apply these concepts and

technologies to the domain of knowledge management.

Based on the explication of knowledge in the form of

enterprise models this permits the application of so-

called knowledge proofs for a. enabling the

transparent monitoring of knowledge evolution, b.

tracking the provenance, ownership, and relationships

of knowledge in an organization, c. establishing

delegation schemes for knowledge management, and d.

ensuring the existence of patterns in models via zero-

knowledge proofs. To validate the technical feasibility

of the approach a first technical implementation is

described and applied to a fictitious use case.

1. Introduction

In the last years, the increasing adoption of the

virtual currency Bitcoin has sparked interest in the

underlying technologies that enable the secure

exchange of assets in an electronic manner [3]. At the

core of these so-called blockchain technologies stand

protocols that define the exchange and storage of

information using cryptography. These ensure the

tamper-resistant, decentralized, and irrevocable storage

of transactions between parties in a transparent and

entirely virtual, electronic environment [24]. Although

the primary area of application is in the financial

domain, several proposals have been made to apply

blockchain technologies to other fields. Examples

include the internet of things for storing the

communication between smart devices, the verification

of the authenticity of products in e-commerce or the

decentralized storage of information about the domain

name system (DNS) [26].

When extending the notion of assets in general to

the very core of organizations, one immediately

recognizes knowledge as one of the most important and

valuable resources and a critical factor for remaining

competitive [5, 15]. Similar as for financial value, also

knowledge as the intellectual capital of an organization

needs to be securely stored and, if necessary, shared

between parties [25]. In addition, it is vital to track the

provenance and ownership of knowledge as well as

manage its distributed elicitation and its evolution in

order to make it available to all relevant parties.

Based on these similarities between knowledge and

electronic assets, we will report about an exploratory

research approach for applying the concepts of

blockchain technologies to the area of knowledge

management. For accomplishing the transition between

knowledge products such as know-what, know-why,

know-who, and know-when and electronically

processable information products we revert to

conceptual models [21, 30]. These permit on the one

hand to represent explicit, clearly formulated types of

knowledge in a machine-processable format [22, 6].

Thereby the major benefit is, that the Blockchain

technologies enable us to identify the actors who

created or modified the models (know-who) as well as

to proof the provenance of their content (know-what)

without revealing it in the fashion of zero-knowledge

proofs. Thereby, the people behind the models and

their knowledge can be accessed as well, e.g. to further

investigate the know-why. By using blockchain

technologies, the content of models will be stored in a

tamper-resistant and irrevocable format. This includes

the storage of explicit permissions for accessing and

modifying their content as well as time-stamps, thus

enabling the recording of the know-when. This

corresponds to the considerations made for security in

knowledge management regarding confidentiality,

integrity, and availability [16]. This type of a

blockchain will be denoted as Knowledge Blockchain.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50398
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 4045

mailto:emailaddress@xxx.xxx

The remainder of the paper is organized as follows.

In Section 2 we will give an introduction to blockchain

technologies to provide the foundations for Knowledge

Blockchains. The approach itself will be described in

Section 3. In Section 4, a prototypical implementation

will be presented to form the basis for a use case in

Section 5. Work related to our approach will be

discussed in Section 6, followed by a conclusion in

Section 7.

2. Foundations

In this section, we briefly introduce fundamental

blockchain concepts and the according terminology as

it is commonly used today.

2.1. Blockchain Technologies

At the core of technologies required for realizing

blockchains are cryptographic hash functions and

public key cryptosystems. A cryptographic hash

function H(M) permits summarizing a message M of

any length with a fixed length pseudo-random output

value V, e.g. with a length of 256 bit. Cryptographic

hash functions satisfy the properties of collision and

preimage resistance. This means that it is

computationally infeasible to a. find two messages M,

M’ which produce equal hash values as in H(M) =

H(M’), b. compute M from V, and c. to derive M’ from

an existing M so that H(M) = H(M’) holds [24].

For summarizing two messages M1 and M2, it is trivial

to apply a hash function to the concatenation of their

individual hash values V1 and V2 as in HV1||V2 =

H(H(M1)||H(M2)). In this fashion, values of a set V

with |V| mod 2 = 0 can be hashed pairwise to create

|V|/2 hash values, which are subjected to the same

operation recursively so that a binary tree is created.

The leafs of the resulting binary tree are individual

values, whereas any node summarizes its two children

and the root summarizes all values of the tree. These

trees are called Merkle trees based on their inventor

[23]. Theoretically, it would be possible to concatenate

more than two hash values, however, the binary tree

suggested by Merkle has the advantage of allowing a

traversal in logarithmic space and time as demonstrated

by Szydlo [29]. To prove that an element of V is

included in the Merkle tree, at most log2(|V|)∗2

operations need to be carried out. In the fashion of

zero-knowledge proofs, this can be leveraged to

efficiently show that a message is part of the Merkle

tree. To prove membership of a message, other

messages do not need to be known, as it is sufficient to

know the hash values of the Merkle tree. To prove this

for M1, its hash value V1 is re-calculated, concatenated

to the existing hash value of its neighbor V2 and

hashed as in H(V1||V2). The resulting hash value needs

to be equal to the one stored as parent of V1 in the

Merkle tree. This operation is applied recursively until

the root hash is reached. This means that on every level

of the tree, excluding the root, only the hash value in

the neighbor node needs to be known to conduct the

proof.

Further, by reverting to public key cryptography

additional information security features are provided.

In a public key cryptosystem, confidentiality of

messages can be achieved without a pre-shared secret.

For achieving this, a sender and a receiver of a

message both have pairs of public and private keys. A

crypto-algorithm then allows for a. the encryption of a

message using the public key of the receiver, who

decrypts it with his corresponding private key, and b.

the signing of a message with the private key of the

sender so that the receiver can verify the signature

using the sender’s public key [24].

By putting cryptographic hash functions and public

key cryptosystems together, the basic functions of

blockchains can be described. In particular,

blockchains store data in a way that allows for efficient

integrity checks by linking individual blocks – i.e.

information parts – using hash values, so that any

Block Bi with i > 0 contains a hash value that

summarizes the preceding block Bi−1. The last block of

the resulting chain therefore summarizes the whole

chain which is linked back to B0, commonly referred to

as genesis block. A block Bi consists of a block header

and data. Data is a Merkle tree which contains

individual data values as leaf nodes, summarized by

the root hash value MRi. The block header consists of

MRi and the hash value of the preceding block header

BHi−1. Thus, a block Bi can be summarized by hashing

its block header BHi using H(H(BHi−1)||MRi). The

whole chain is summarized by the block header of its

last block. A modification of any data value in Bi

would result in a changed hash value H(BHi) which

breaks the chain, i.e. Bi+1 is no longer linked to Bi, as

BHi+1 no longer contains the hash value of the

preceding block. Integrity of all data in the chain can

be assumed if the hash value of the block header of the

last block remains unchanged. This makes blockchains

well suited to store data in an immutable and thus

tamper-resistant fashion.

Any new block is appended as part of a mining

process which enforces the specific rules of a

blockchain. Entities carrying out the mining will record

new data to be stored in the blockchain and check

whether or not the protocol is violated by that data. In

case that changes shall be applied to information stored

in the blockchain, transactions are specified and sent to

the miners. The transactions need to contain

Page 4046

information about the data to be changed (e.g. a

transfer of financial assets in bitcoin) and the

corresponding identity wishing to conduct that change.

The identity is ensured through digital signatures based

on the above described public key cryptosystems. In

the case of distributed, public blockchains that operate

in a so-called permission-less fashion, miners are

selected randomly based on the presentation of

solutions for cryptographic puzzles. These puzzles are

computationally hard deciphering problems that can

only be solved by trying a number of possible solutions

(proof of work). If a miner finds a solution, it is entitled

to add information to the blockchain. Further details on

the mining process can be found in [24].

In contrast to public blockchains, private or

permissioned blockchains are not necessarily

distributed. As a consequence, the access to miners is

restricted and transactions need to authenticate

themselves against the miner. Furthermore, domain-

specific rules for the mining process and for generating

new blocks can be defined so that an organization may

use its own rules and models when data is added to the

blockchain. This includes detailed specification of

permissions for all identities interacting with the

blockchain.

3. The Concept of Knowledge Blockchains

With the foundations described in the previous

section we can now advance to the presentation of

Knowledge Blockchains. The concept is based on the

assumption that knowledge can - at least partially - be

made explicit in the form of conceptual models. This

view is common to many approaches in the area of

enterprise modeling where knowledge about

organizational entities such as business processes, IT

systems, data, ontologies, actors and the like is today

documented in the form of semi-formal or formal

conceptual models [17]. These models can be

processed by algorithms and humans alike in the sense

of knowledge Information Systems and thus act not

only as a basis for communication but also as input for

machine-based analyses and simulations [1].

The massive use of enterprise models in

organizations requires careful management and

appropriate IT support. In cases where a single

organization already stores several hundreds or

thousands of such models [28], the challenge becomes

not only to technically handle the contained

information and make it accessible to users but also to

provide mechanisms for adequately handling

knowledge aspects [14, 21]. In this context, the

concepts and technologies behind blockchains offer an

extension to the traditional handling of enterprise

models. Especially, the core aspect of blockchains to

ensure irrevocable, tamper-resistant storage of

information in a transparent way without trusted third

parties has the potential to fundamentally change the

way how knowledge in the form of enterprise models

is stored and processed in and across organizations.

As shown in Figure 1, Knowledge Blockchains

store information in knowledge blocks that contain

cryptographically-validated information parts. In line

with the mechanisms in typical blockchains today,

these information parts are structured themselves in the

form of binary hash trees that permit to efficiently

ensure the integrity of the knowledge blocks. If

changes to the information shall be made, transactions

are sent to the blockchain and processed by miners in

the mining process. Thereby, it is checked whether all

rules defined for the changes to be conducted are met.

Figure 1: Concept of Knowledge Blockchains

Page 4047

In the following we will describe the required

extensions for enterprise modeling languages in order

to use them in Knowledge Blockchains. This will be

followed by the presentation of the structures of blocks

and the mechanisms for permission management and

delegation. For processing blocks, a specific mining

procedure will be added that ensures the integrity of

the Knowledge Blockchain and permits the application

of so-called knowledge proofs. These will stand for the

concrete application of the Knowledge Blockchain to

tasks in knowledge management.

3.1. Required Extensions of Modeling

Languages

When realizing a modeling language in a modeling

tool, it typically depends on the underlying tool-

platform how the language is to be implemented [20].

The extensions of such modeling languages/knowledge

representations as required for Knowledge Blockchains

abstract from the technical implementation and define

generic attributes that need to be available. With the

description of a concrete implementation in Section 4

we will show how these attributes can be translated to

a technical platform.

A fundamental requirement for Knowledge

Blockchains is the ability to uniquely identify any

element in a conceptual model. Therefore, we revert to

UUID (universally-unique-identifiers) attributes for

model types, classes and relationclasses in the

modeling language – see Figure 2. Any instance of

these entities then needs to contain a correct UUID

value to distinguish it from any other element. This

also applies to the description of relations via from and

to attributes and the containedInModel attribute to

identify the assignment to a concrete model.

Furthermore, attributes for containing hash values of

attribute names and values (Attribute-Hash) and for all

objects contained in a model (Object-Hash) are added.

In the process of mining, these hash values will be

calculated in the form of a Merkle tree as shown in

Figure 3.

3.2. Representation of Blocks

For any blockchain-based application it needs to be

decided how information is represented and stored on

the chain. The structure derived for blocks in

Knowledge Blockchains is shown in Figure 4. At the

bottom two Merkle trees are contained in each block:

one for representing the hashes of the content of

enterprise models and the other one for storing the

hashes about permissions. The latter aspect will be

discussed in the following Section 3.3. For both trees,

also the Merkle root hash is available which becomes

part of the Block-Header. In the Block-Header, the

hash of the Previous Block, a Timestamp, and the full

content of the models and permissions in XML format

is further added. For operating in distributed

environments under the paradigm of permission-less

ledgers, a Nonce (number used only once) is optionally

available. This is used to solve cryptographic puzzles

for deciding on the next miner to add a block to the

chain – for details see [24]. All data in the Block-

Header except the Nonce and the Timestamp is signed

with the private key of the party submitting a

transaction to produce a digital signature. The resulting

hash value is stored in the Header-Signature. In this

way, the identity of the submitting party is tied to a

block. When a miner has solved the cryptographic

Figure 2: Extensions of modeling language

constructs for enabling Knowledge Blockchains and

two sample entities of the BPMN modeling

language

Figure 3: Model Merkle tree

Page 4048

puzzle and successfully checked the information

contained in the block, it adds the Nonce and the

Timestamp values, computes a hash value of the whole

block and signs this hash value with its private key.

These values are then contained in Block-Hash and

Block-Signature.

3.3. Permission Management and Delegation

An essential feature of Knowledge Blockchains is

to specify in a very detailed way who is allowed to

conduct which changes on the blockchain. These rights

are described in permission models which are an

inherent part of every block. As shown in Figure 5,

three types of permissions are currently available:

Create and Delete Permissions that assign an identity

to create or delete models, objects, relations, and

attribute values and Transfer Permissions that allow an

identity to transfer some or all of its permissions to

another identity.

Identities in the permission model are represented

by their Public Keys. In the genesis (initial) block of

Knowledge Blockchains all permissions for all entities

are assigned to the creator of the blockchain. He or she

can then decide through subsequent transactions if and

how these rights are to be delegated to other identities.

3.4. Mining Rules

When new transactions are sent to the blockchain

they are checked for their conformance to the rules set

by the permission model in the previous block. The

mining may either be conducted by authenticated

miners in the case of a permissioned Knowledge

Blockchain or by randomly selected miners in case of

permission-less Knowledge Blockchains.

For conducting the checks during the mining as

shown in Figure 6, it is assumed that for each model

submitted in the transaction, hash values have been

computed a. for the attributes of objects and relations,

for all objects and relations in a model, and for all

combinations of objects, relations, or models and their

corresponding UUIDs, and b. for all combinations of

these hash values, thereby forming a Merkle tree up to

the Merkle root hash. The same is assumed for the

submitted permission models, again up to the Merkle

root hash.

The outcome of the mining process is that either the

requested changes are conducted and a new block is

added to the Knowledge Blockchain. Or, that

permissions have been found to be invalid and the

transaction is declined.

3.5. Knowledge Proofs

By building upon the description of the properties

of Knowledge Blockchains we can now advance to the

discussion of their application in knowledge

management based on the aforementioned knowledge

products [21]. The first application domain is the

transparent monitoring of knowledge evolution,

respectively the dimensions of know-what and know-

when. For tracking the evolution of knowledge as

represented in the form of enterprise models,

Knowledge Blockchains permit to retrieve in detail

how knowledge has evolved over time. This is possible

through investigating the blocks containing all changes

Figure 4: Structure of final knowledge blocks

Figure 5: Structure of permission models

Page 4049

in models and conducting proof procedures for

checking the integrity of all model contents.

This directly leads to the second application

domain for tracking the provenance, ownership, and

relationships of knowledge in an organization. Not

only can the structure of knowledge in the form of

enterprise models be analyzed in a reliable manner.

Through the availability of digital signatures for the

blocks in the Knowledge Blockchain it can also be

verified who has conducted which change and who has

empowered that person to do so (delegation schemes).

This aspect covers the know-who and know-why.

Finally, proofs can be conducted to ensure that

certain patterns are contained in existing enterprise

models. By computing the hash values for a given

model pattern and applying corresponding Merkle

proofs, it can be verified whether a model pattern is

contained in a model on the Knowledge Blockchain. In

this way, it can be proven – e.g. to external authorities

– that certain knowledge is present in an organization

and that it is used in a specific way, e.g. as part of the

compliance checking of business processes through

auditors (know-what, know-who, know-when). Such a

proof covers the existence of individual model

elements only, to support part of a potentially more

complex compliance check. In reference to zero-

knowledge proofs, the existence of knowledge as part

of a model may be proven without revealing the

contents of the model. In order to prove the existence

of a model element, its attribute data is specified and a

hash function is applied to it, possibly by auditors.

To conduct the proof as described in Section 2,

knowledge of the Merkle tree which stores the model is

sufficient (Figure 3). Thus, attribute data may be

removed before the audit. As of now, pattern matching

uses an exact match approach.

4. Prototypical Implementation

To demonstrate the applicability of a Knowledge

Blockchain and to show that such a system can be

implemented in practice, we created a prototypical

implementation. The prototype does not cover all

mentioned functionalities and primarily serves as a

testbed and simulation environment for experimenting

with the concept of Knowledge Blockchains. We

discuss the components of the implementation, its

capabilities and limitations as well as further

development.

As a basis for the implementation we chose the

ADOxx meta modeling platform [12]. This choice was

due to the prior successful application in many industry

and research projects. The core component is an

ADOxx library consisting of three model-types to

specify blockchains, business process models in

BPMN, and permission models. For illustrative

purposes, all model types have been assigned a

graphical notation. The library has been extended with

algorithms for a. sending block proposals in the form

of transactions, b. mining new blocks, and c. verifying

existing blocks. A custom-developed dynamic link

library (DLL) is used to generate UUIDs, calculate

SHA-256 hash values1 and as an interface to the

OpenSSL library for elliptic curve cryptography (ECC)

for public key cryptosystems [18].

1 NIST: Secure hash standard (shs). Retrieved 31-05-2017.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Figure 6: Verification of mining rules in Knowledge

Blockchains

Page 4050

By using the ADOxx library, a new Knowledge

Blockchain can be created by specifying a blockchain

owner with a public-private-key-pair. Basic business

process models can currently be constructed using

BPMN Task and Gateway elements, connected by

sequence flows. Permissions are specified and assigned

to identities, for which public- and private-keys are

created. When sending a block proposal, business

processes and a permission model are specified, stored

in Merkle trees and signed. Mining is initiated by a

designated miner; in this process, the platform enforces

permissions concerning the creation of process

elements and permission delegation. Further

permissions will be added in the future. As a

conceptual demonstration, we implemented a

permissioned blockchain in a local environment. For

the future, it is planned to evaluate also a distributed

version in a permission-less fashion.

5. Description of a Fictitious Use Case and

Discussion

For illustrating the application of the concept of

Knowledge Blockchains we will revert in the following

to a fictitious use case.

It builds upon a scenario in the domain of banks

that has been used for scientific research before [11].

In this scenario, the steps and decisions for opening an

account at a bank are described. This information

represents the knowledge about this process that can be

made explicit and that shall be documented in the form

of conceptual enterprise models.

In the context of Knowledge Blockchains, the first

step is to initiate the blockchain and decide which

modeling language to use. In our case this is

accomplished by the CEO of the respective bank who

acts as the blockchain owner and who decides to

collect knowledge about the business processes in her

company using the BPMN modeling language. For the

purpose of simplicity, she chooses to use a

permissioned blockchain that is only available within

the company and managed by one central miner. Upon

creation of the blockchain, the CEO with her identity

in the form of her public key is assigned all create,

delete, and transfer rights in a permission model - see

Figure 8. This information is stored in the genesis

block upon calculating the permission model Merkle

tree. The genesis block is thereby created and signed

by the miner. Subsequently, the CEO decides to

delegate the right to create BPMN models to an

employee.

Figure 7: Screenshot of the prototype in ADOxx showing instances of a blockchain model type (upper left), a

permission model type (far right), and a sample business process as a BPMN model (lower left)

Page 4051

The identity of this Employee A in the form of the

corresponding public key together with a Create-

Permission is thus added to a copy of the permission

model, which is obtained from the previous block. This

is shown in the lower part of Figure 8. The updated

permission model is then submitted to the miner as a

new transaction. For this purpose, the CEO has to sign

the proposed block with the private key of her digital

signature. The miner checks the signature and whether

this identity is allowed to conduct the changes based on

the last permission model. As this is the case for the

CEO identity, the block proposal is accepted and the

new permission model becomes part of the blockchain.

Equipped with the new rights, Employee A can

now create BPMN model elements and submit them to

the blockchain. Upon the receipt of the block proposal,

the miner verifies the identity and the permissions and

adds the information to the Knowledge Blockchain.

This results in further blocks in the Knowledge

Blockchain that represent the content of the business

process model as shown in Figure 9.

The following tasks can now be accomplished

based on the information stored in the blockchain.

First, it can be transparently monitored by all parties

with access to the Knowledge Blockchain, how the

represented knowledge evolves, how new entities are

added, and who is responsible for adding them.

Besides this identification of the provenance of

knowledge, also the delegation scheme behind the

Knowledge Blockchain becomes visible. It can exactly

be tracked, when the CEO delegated the mentioned

Create-Permission and to whom. If necessary, process

model patterns can be specified and tested for their

containment in the Knowledge Blockchain without

revealing the content of the BPMN model (zero-

knowledge proof). By reverting to the example of the

account opening process this could be the task ”Ask

customer for ID”, which is complimentary for any

bank to check the identity of a future customer. In the

current version of the Knowledge Blockchain,

according attribute hash values could be calculated for

this pattern and compared with the Merkle tree stored

in the most recent block to proof its existence.

6. Related Work

Concerning existing approaches which make

similar propositions with regard to the organization and

evolution of knowledge as discussed for Knowledge

Blockchains, we identified the following areas:

approaches that allow to track changes in enterprise

models with their provenances and allow to restrict and

delegate access to models and collaborative modeling

approaches and mechanisms in modeling tools for

multi-user features.

Document management and versioning control

systems (VCS) allow storing any number of electronic

documents, like source code files or models, in a well-

defined state as a version together with their author.

Well-known VCS include systems using a centralized

repository, such as CVS [7] and SVN [8]. Distributed

Version Control Systems (DVCS) such as Git

additionally permit users to create and synchronize

distributed repositories and have grown in popularity

[9]. While VCS offer version control at the level of

individual files, they can also be used to

collaboratively access models. Altmanninger et al. [2]

evaluate various VCS for this purpose. They show that

such systems usually allow comparisons of models and

the detection of syntactic conflicts. For the purposes of

knowledge evolution, such systems can be leveraged to

track model changes together with their respective

authors. The comparison can take model elements into

account, while a commit or fetch of an artifact is

conducted on a per-model-basis. Access to a repository

can be restricted, however, it is not possible to restrict

the modeling of individual models, model elements or

to delegate such permissions.
Collaborative modeling approaches such as COMA

[27], DREAM [4], and CoMoMod by Dollmann et al.
[10] are concerned with the collaboration during the

creation of models to build models with multiple

participants. Such approaches provide means to

contribute to a model. However, knowledge evolution

in the form of tracking model changes and access

restrictions are not covered by these approaches.

Figure 8: Sample instance of a permission model

type

Page 4052

On a tool level, professional modeling tools such as

ADOxx [12] or MetaEdit+ [19] provide multi-user

features. Models can be organized in repositories and

versioned. Much like in VCS, versions and authors of

individual model versions may be tracked, however,

there is no enforcement of individual access

restrictions at the platform level. This means that there

is no system-enforced process by which new models or

model elements are proposed, checked against

permissions and possibly added to a repository.

With regard to existing approaches, version control

systems are typically used to provide knowledge

evolution features through extensions and

implementations in modeling tools. The model creation

process is covered by collaborative modeling

approaches that focus on the creation process. A

blockchain-based method facilitates collaborative

aspects by allowing identities to make signed changes

to models, which are incorporated only if platform-

enforced access rules allow it. Through the generation

of irrevocable blocks with the changed models,

versioning is implicit. In contrast to existing

approaches, cryptography enforces access control and

allows changes on a per model- and model-element-

basis that can be traced back to their provenance.

7. Conclusion and Outlook

 In this paper, we have presented the concept of

Knowledge Blockchains for storing the knowledge

expressed in enterprise models in an immutable and

tamper-resistant way. It has been illustrated which

benefits can be gained from such an approach in the

context of knowledge management. The approach in its

current stage contains several limitations that are to be

tackled in future versions. For example, it is currently

not foreseen to uniquely identify also the elements of

the modeling language using UUIDs and to ensure the

correct instantiation of models based on the modeling

language. This is currently assumed to be implicitly

handled by the used modeling platform. In addition,

also the current implementation on the ADOxx

platform has several shortcomings. First and foremost,

the implementation so far only contains a subset of the

required rules for checking the conformance of blocks

during mining.

Regarding future work, extensions of the UUID

scheme using URI will be evaluated. In addition, the

approach will be described in a more formal way, e.g.

using a formalism such as FDMM [13], to ensure a

common understanding of all technical details.

8. References

 [1] S. Alter, “A work system perspective on organizational

design and enterprise engineering,” Organizational Design

and Enterprise Engineering, vol. 1, no. 1, pp. 13–20, 2017.

[2] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey

on model versioning approaches,” International Journal of

Web Information Systems, vol. 5, no. 3, pp. 271–304, 2009.

[3] A. Bariviera, M. Basgall, W. Hasperue, and M. Naiouf,

“Some stylized facts of the bitcoin market,” Physica A, 484,

DOI:10.1016/j.physa.2017.04.159, 2017.

[4] L. Boaro, E. Glorio, F. Pagliarecci, and L. Spalazzi,

“Business process design framework for B2B collaboration,”

in 2011 International Conference on Collaboration

Technologies and Systems (CTS). IEEE, 2011, pp. 633–635.

Figure 9: Detailed view of the sample instance of the Knowledge Blockchain model type in ADOxx

Page 4053

[5] A. Bollinger and R. Smith, “Managing organizational

knowledge as a strategic asset,” Journal of Knowledge

Management, vol. 5, no. 1, pp. 8–18, 2001.

[6] D. Bork and H.-G. Fill, “Formal Aspects of Enterprise

Modeling Methods: A Comparison Framework,” in 47th

Hawaii International Conference on System Sciences. IEEE,

2014, pp. 3400–3409.

[7] P. Cederqvist, “Version management with CVS”.

Linkoping, Sweden. Signum Support, ftp://www.zedz.net/

pub/security/development/source-control/cvs/nightly-snap

shots/feature/cederqvist-1.12.13.1.pdf, retrieved 2017-05-29.

[8] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato,

Version Control with Subversion. O’Reilly Media,

Sebastopol, 2004.

[9] B. de Alwis and J. Sillito, “Why are software projects

moving from centralized to decentralized version control

systems?” in ICSE Workshop on Cooperative and Human

Aspects on Software Engineering. IEEE, 2009, pp. 36–39.

[10] T. Dollmann, C. Houy, P. Fettke, and P. Loos,

“Collaborative business process modeling with comomod - a

toolkit for model integration in distributed cooperation

environments,” in 2011 IEEE 20th International Workshops

on Enabling Technologies: Infrastructure for Collaborative

Enterprises. IEEE, 2011, pp. 217–222.

[11] H.-G. Fill, “An Approach for Analyzing the Effects of

Risks on Business Processes Using Semantic Annotations”,

in European Conference on Information Systems. AIS, 2012.

[12] H.-G. Fill and D. Karagiannis, “On the

Conceptualisation of Modelling Methods Using the ADOxx

Meta Modelling Platform,” Enterprise Modelling and

Information Systems Architectures, vol. 8, no. 1, pp. 4–25,

2013.

[13] H.-G. Fill, T. Redmond, and D. Karagiannis, “FDMM:

A Formalism for Describing ADOxx Meta Models and

Models,” in Proceedings of ICEIS 2012, Wroclaw, Poland,

L. Maciaszek, A. Cuzzocrea, and J. Cordeiro, Eds., 2012,

vol. 3, pp. 133–144.

[14] M. Goul and K. Corral, “Enterprise model management

and next generation decision support,” Decision Support

Systems, vol. 43, pp. 915–932, 2007.

[15] M. Jennex, S. Smolnik, and D. Croasdell, “The Search

for Knowledge Management Success,” in 49th Hawaii

International Conference on System Sciences. IEEE, 2016.

[16] M. Jennex and S. Zyngier. Security as a contributor to

knowledge management success. Information Systems

Frontiers, 9(5), pp. 493-504, 2007.

[17] D. Karagiannis, H. Mayr, and J. Mylopoulos, Domain-

specific conceptual modeling - Concepts, Methods and

Tools. Springer, 2016.

[18] E. Kasper, “Fast elliptic curve cryptography in¨

openssl,” in Financial Cryptography and Data Security: FC

2011 Workshops, RLCPS and WECSR 2011. Springer, 2012,

pp. 27–39.

[19] S. Kelly, K. Lyytinen, M. Rossi, and J. P. Tolvanen,

“Metaedit+ at the age of 20,” in Seminal Contributions to

Information Systems Engineering. Springer Berlin

Heidelberg, 2013, pp. 131– 137.

[20] H. Kern, A. Hummel, and S. Kuehne, “Towards a

comparative analysis of meta-metamodels,” in SPLASH ’11

Workshops Proceedings. Portland, USA: ACM, 2011, pp. 7–

12.

[21] T. Le Dinh, T. Rickenberg, H.-G. Fill, and M. Breitner,

“Enterprise content management systems as a knowledge

infrastructure: The knowledgebased content management

framework,” International Journal of e-Collaboration, vol.

11, no. 3, pp. 49–70, 2015.

[22] R. Maier, Knowledge Management Systems:

Information and Communication Technologies for

Knowledge Management. Springer, 2004, Second Edition.

[23] R. C. Merkle, “A digital signature based on a

conventional encryption function,” in A Conference on the

Theory and Applications of Cryptographic Techniques on

Advances in Cryptology, ser. CRYPTO ’87. London, UK,

UK: Springer, 1988, pp. 369–378.

[24] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S.

Goldfeder, Bitcoin and Cryptocurrency Technologies.

Princeton University Press, 2016.

[25] M. Nemetz, “A meta-model for intellectual capital

reports,” in International Conference on Practical Aspects of

Knowledge Management. Springer, 2006.

[26] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck,

“Catchword: Blockchain,” Business & Information Systems

Engineering, vol. 59, no. 3, pp. 183– 187, 2017.

[27] P. Rittgen, “Collaborative modeling - a design science

approach,” in 42st Hawaii International International

Conference on Systems Science. IEEE Computer Society,

2009, pp. 1–10.

[28] M. Rosemann, “Potential pitfalls of process modeling:

part b,” Business Process Management Journal, vol. 12, no.

3, pp. 377–384, 2006.

[29] M. Szydlo, “Merkle tree traversal in log space and

time,” in Advances in Cryptology - EUROCRYPT 2004:

International Conference on the Theory and Applications of

Cryptographic Techniques, Springer, 2004, pp. 541–554.

[30] Y. Wand and R. Weber, “Research commentary:

Information systems and conceptual modeling - a research

agenda,” Information Systems Research, vol. 13, no. 4, pp.

363–376, 2002.

Page 4054

