
A Comparison of Task Parallel Frameworks based on Implicit Dependencies in
Multi-core Environments

Basilio B. Fraguela
Universidade da Coruña, A Coruña, Spain

Email: basilio.fraguela@udc.es

Abstract—The larger flexibility that task parallelism offers
with respect to data parallelism comes at the cost of a higher
complexity due to the variety of tasks and the arbitrary pat-
terns of dependences that they can exhibit. These dependencies
should be expressed not only correctly, but optimally, i.e. avoid-
ing over-constraints, in order to obtain the maximum perfor-
mance from the underlying hardware. There have been many
proposals to facilitate this non-trivial task, particularly within
the scope of nowadays ubiquitous multi-core architectures.
A very interesting family of solutions because of their large
scope of application, ease of use and potential performance
are those in which the user declares the dependences of each
task, and lets the parallel programming framework figure out
which are the concrete dependences that appear at runtime
and schedule accordingly the parallel tasks. Nevertheless, as
far as we know, there are no comparative studies of them that
help users identify their relative advantages. In this paper we
describe and evaluate four tools of this class discussing the
strengths and weaknesses we have found in their use.

Keywords-programmability; task parallelism; dependencies;
programming models

I. INTRODUCTION

Many applications require the exploitation of task paral-
lelism to benefit from all the parallelism they can expose,
and sometimes, just to be parallelized at all. With the need
to express different parallel tasks comes the requirement
to properly schedule and synchronize them according to
the arbitrary patterns of dependences that they can exhibit.
There is also of course the option to resort to speculation
under Transactional Memory [20] or Thread Level Specula-
tion [28]. However, speculation typically has non-negligible
costs and a wide range of applications can be in fact
successfully parallelized by properly ordering the execution
of their tasks so that their dependencies are fulfilled. While
this has been done using low level approaches since the early
days of parallel computing, the growing need to parallelize
every kind of application together with the large availability
of parallel systems, particularly since the appearance of
multi-core processors, led to the proposal of high-level ap-
proaches that facilitate this task. Some of the most advanced
programming tools in this category are those in which the
users just declare, as implicitly as possible, the dependencies
of their tasks, but without specifying how they must be
met, letting instead the underlying compiler and/or runtime
automatically manage them. The fact that these tools require

minimum effort from the developers, while they allow to
build extremely complex task graphs and provide maximum
parallelism thanks to the graph scheduling algorithms they
implement, makes them particularly interesting.

Despite the relevance of this approach, we have not found
comparative studies of the existing practical alternatives
of this kind beyond some performance comparisons [36].
For this reason this paper tackles this issue describing
and comparing some of the high-level approaches available
nowadays with a particular focus on their semantics and ease
of use, our main aim being to help identify the best tool
for each problem at hand. Also, while there are proposals
that extend these ideas to clusters and hybrid systems,
this study is restricted to the widely available multi-core
systems that are ubiquitous nowadays, so that the problems
related to heterogeneity and distributed-memory are not
considered. This way, we set some basic criteria to choose
the programming environments for our comparison:

• Allow users to implicitly declare the task dependen-
cies, automatically taking care of the concrete implied
synchronizations and scheduling.

• Provide a high-level API (i.e. oriented to final pro-
grammers), and be both publicly available and well
documented.

• Be usable in some programming language among the
most widely used in the literature/research on parallel
applications, mainly in the fields of scientific and engi-
neering computing. Besides, for fairness the compari-
son should use the same language for all the tools. This
implicitly discards proposals based on new languages,
which besides being more complex to compare fairly,
tend to have lower rates of adoption than compiler
directives and libraries, as these latter alternatives better
facilitate the reuse of existing codes.

• Do not require the usage of concepts or APIs related to
distributed computing, which would distort the purely
shared-memory based comparison.

Based on these criteria, four tools were chosen. A popular
strategy for the declaration of task dependences is the
annotation of the inputs and the outputs of each task together
with a valid order of execution, implicitly given by the
sequential execution of the tasks. Since the inclusion of

6202

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41914
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

dependencies for tasks in OpenMP 4.0 [26] this standard
is the most widespread option that supports this paradigm,
and thus the first we study. A very active and related project,
which in fact pushed for the adoption of dependent tasks in
OpenMP [11], is OmpSs, which integrates features from the
StarSS family of programming models [27]. While OpenMP
and OmpSs cover well the space of compiler directives in
our scope of interest, the area of libraries is much more
sparse. Because our focus here is on the semantics and the
programming style, we will discuss the two libraries that fit
our criteria and that we find to be more original in their
approach. Both of them are based on C++, which is not
surprising given the excellent properties of this language
to enable high performance coupled with ease of use. In
fact, the first library, DepSpawn [16], heavily relies on the
properties of this language to minimize the effort of the
programmer. The second library is Intel R© CnC (Concurrent
Collections) [6], [8], whose main interest lies in its very
original approach for the specification of the dependences.

The rest of this paper is organized as follows. Section II
describes the main characteristics of the frameworks ana-
lyzed. They are then compared in terms of performance
and programmability in Section III. This is followed by a
discussion on related work in Section IV, and the last Section
is devoted to our conclusions.

II. FRAMEWORKS

The frameworks analyzed are now described in turn. In
all the cases we only center on the creation of dependent
tasks, skipping other possible functionalities, even if they are
needed to exploit this paradigm. A clear example are explicit
synchronizations, which are required even if only to make
sure that all the parallel tasks have completed before leaving
the program. Also, since the libraries tested are based on
C++, making it the natural language for our comparison, the
specific problems found in the use of the compiler directives
in this language will be described.

A. OpenMP

The well-known OpenMP standard extended in [26] the
task construct introduced in version 3.0 [2] with support
for task dependences by means of the depend clause. The
clause allows to define lists of data items that are only
inputs, only outputs, or both input and outputs using the
notation depend(dependence-type : list) where
dependence-type is in, out or inout and the data
items can be variables or array sections. The annotated task
will be scheduled for execution only when the dependences
expressed by those data items are satisfied with respect to
preceding tasks in the same task region, i.e., with the same
parent.

Two of the limitations of this approach have been dis-
cussed in [36]. For example, this mechanism alone does
not allow to use dependent tasks for reduction processes,

forcing to use other OpenMP functionalities such as atomic
operations or critical sections, or resort to other high level
constructs such as section or for. The other issue
is related to the specification of multi-dimensional array
regions when instead of a static or variable length array
we have a pointer, although this can be solved casting the
pointer.

We find much more relevant other limitations. For ex-
ample, the standard requires the dependent items to have
either identical or disjoint storage. This means that if array
sections appear in the lists of dependences, they must be
either identical or disjunct. Similarly, the standard explicitly
states that a variable that is part of another variable (such
as a field of a structure) but is not an array element or an
array section cannot appear in a depend clause, which again
points to the unavailability of tests on partial overlaps of
objects. In fact OpenMP does not allow data members in its
clauses, which restricts the usefulness of this framework in
programs with composite data types other than arrays.

A problem of OpenMP that is specific to C++ is its treat-
ment of references. While references are implemented under
the hood by means of pointers, this is never exposed to the
programmers, who just see and use them as alias to existing
data items. OpenMP however considers references as what
they are actually for the compiler (pointers) and in fact pro-
hibits reference types for private, firstprivate and
threadprivate variables, because the compiler would
privatize the reference, not the object accessed through it,
giving place to a wrong behavior. For the same reasons,
references, which are heavily used in C++ applications both
for performance and programmability reasons, are not suited
to express dependences for OpenMP tasks.

B. OmpSs

Dependent tasks are the core of the OmpSs programming
model [27], [3]. Task creation follows the OpenMP syntax
with a slight difference in the specification of dependencies.
Namely, they are provided using three different clauses
in(list), out(list) and inout(list), which ex-
press input, output and both input and output dependences on
the memory positions provided in the list, respectively. The
dependences are enforced with respect to preceding tasks
built in the same task or outside any task code, as OmpSs
programs assume that their execution begins with a master
thread that can spawn tasks to other threads at any point. A
more interesting difference is that OmpSs allows to annotate
a function declaration or definition with a task pragma
that specifies its dependencies on its formal parameters. This
automatically turns every invocation of the function into a
dependent task, the dependency on each actual argument
being the one specified for its associated formal parameter.

Contrary to OpenMP, OmpSs tasks support the
reduction clause and their lists of dependencies
allows to specify data members as well as expressions that

6203

provide data items (e.g. *ptr or b.mx[i][j]). Another
advantage is that it allows to express dependencies on C++
references with the intuitive and natural semantics that the
dependence is on the object aliased by the reference. A
restriction in common with OpenMP is though that both
tools only correctly support dependences on array sections,
and in general data items, that completely overlap, as
although overlapped memory region detection has been
implemented for clusters in [5], the currently available
compiler (15.06) and public specification [3] do not provide
it. This way, the support of data members in its clauses is
dangerous, as tasks that operate on a member of an object
can run in parallel with other tasks that modify the whole
object, including that member.

Although this is not a fundamental but a technological
issue, it is worth mentioning that relevant limitations of
OmpSs with respect to the other approaches are that the
current version only works in Unix and that it does not
support the increasingly adopted C++11 and C++14 stan-
dards. This is unfortunate as these new standards largely
help in the development of every kind of applications,
and in particular scientific and parallel applications, thanks
to a large number of critical improvements such as the
definition of a multithreading memory model, rvalue and
move semantics (which avoid costly copying processes),
lambda functions, etc.

C. DepSpawn

C++ is one of the languages more heavily used for parallel
computing given the high performance it can provide, its
flexibility, the large number of existing libraries and the rich
support of different programming paradigms it provides. The
DepSpawn library [16] takes advantage of these properties,
particularly the template metaprogramming, to simplify to
the maximum the creation of dependent tasks. This proposal
requires the parallel tasks to be function calls and it infers
their dependencies from the types of the formal parameters
of the functions, so that no user intervention is required.
Namely, arguments passed by value are inherently only
inputs, as the function cannot modify the original argument
provided. Similarly, arguments passed by reference are both
inputs and outputs, because the function can both read and
modify the argument provided by the caller. An exception
are arguments passed by constant reference (const&),
which indicate that although the function can access the
argument provided by the caller, it will not modify it, which
makes the argument read-only, and thus only input to the
function. Users only need a keyword, spawn, to generate
tasks. Namely, spawn(f, a, b, ...) generates a par-
allel task for the execution of f(a, b, ...) that respects
the dependencies on the arguments provided according to the
nature of their corresponding formal parameters in f.

DepSpawn supports dependencies on reference arguments
following the same semantics as OmpSs, that is, establishing

the dependence on the object aliased by the reference. Also,
because it tracks the actual arguments provided by the
caller, the task arguments can be arbitrarily complex C++
expressions. Contrary to the compiler directives described
before, DepSpawn tasks respect dependencies with respect
to any task spawned before them, no matter they come from
the same parent or not. Because the order of execution with
respect to subtasks from other parents is unknown, what this
means in practice is that tasks satisfy the data dependencies
with respect to preceding tasks of the same parent, as we
would expect in any environment of this kind, and they
are mutually exclusive with other parallel tasks when at
least one of them writes in a common memory position.
This allows to use dependent tasks for reduction processes
and critical sections. Another important difference is that
DepSpawn detects partial overlaps on the memory regions
of the task arguments. In the case of generic subarrays that
do not occupy a consecutive memory region, or where their
size cannot be inferred from their data type (e.g. a pointer to
a array), the library requires the arrays to be handled by an
Array class it provides that is derived from the Blitz++
library [35]. With this mechanism, it supports dependent
tasks on arbitrary (sub)arrays of up to 10 dimensions.

Finally, this library relies on the Intel TBB [29] for
its internal threading systems and requires a compiler that
supports C++11, being thus portable to the vast majority of
parallel computers and main operating systems.

D. Intel R© Concurrent Collections (CnC) for C++

The CnC approach to build general task based-
applications following a declarative model for the dependen-
cies is very different from the previous ones [6], [8]. Instead
of annotating or learning the inputs and outputs of each
task, and their correct ordering in a sequential execution,
CnC builds a graph of tasks, called steps, that communicate
with each other by means of data items and control tags.
These three kinds of elements are organized in sets, called
collections, in which each individual element is identified by
means of a unique tag, which is a tuple of tag components;
typically integers. In the case of control tags, they are their
own identifier. The steps produce and/or consume data items
by pushing and/or retrieving them from their collections,
respectively, always identifying them by their associated
tags. The role of tag collections is to prescribe the execution
of steps. This means that they specify whether a given step
instance, which is an individual concrete execution of a
step/task identified by a control tag, can proceed or not,
but not when this will be done. Each tag collection can
prescribe one or several step collections. The prescription is
made by pushing into the tag collection the tag associated
to that/those step(s). All the operations on collections take
place during the execution of the steps under the control of
the programmer, and the runtime executes a step instance,
at some point, after it has been prescribed.

6204

{1→x1,, n→xn}

X

{1→y1,, n→yn}
Y

{1, ..., n}

 with tag t {
 x = X.get(t);
 xa = alpha * x;
 XA.put(t, xa);
 T2.put(t);
 }

{1→xa1,, n→xan}

XA

T1 {1, ..., n}T2

 with tag t {
 xa = XA.get(t);
 y = Y.get(t);
 z = xa + y;
 Z.put(t, z);
 }

{1→z1,, n→zn}

Z
S1 S2

Figure 1. CnC SAXPY example

Figure 1 shows schematically a possible SAXPY (yi =
yi + αxi) CnC implementation where the shadowed col-
lections are initialized by the environment while the other
ones are filled by the algorithm, and the result is stored in a
different collection Z to simplify the example. All the tags
are integers and a→ b means that tag a is associated to item
b. Each tag t in T1 triggers the execution of a step S1 with
that tag, which computes αxt and inserts it in collection XA.
By inserting the tag t in T2, it enables the execution of a
step S2 with that tag. Such step adds αxt to yt, putting the
result in the output collection Z.

While the use of the elements just described suffices
to build any CnC program, the library offers a series of
tuners (https://icnc.github.io/api/index.html) that allow pro-
grammers to specify additional information to the runtime
to optimize the execution. For example, they can specify
which are the exact data items required by a step instance, so
that it is only launched when they are all available. Another
example is to specify how many times will the program use
a given data item so that it can be deallocated after the last
usage, as otherwise the runtime cannot know when it is no
longer needed.

A very interesting property of CnC is that, unlike the
previous approaches, it supports distributed-memory envi-
ronments1, although this requires additional coding. The
threading is based on Intel TBB [29], so similar comments
about portability as in DepSpawn apply, except that C++11
support is not required.

III. EVALUATION

As in this study we are mostly interested in the extent
to which these approaches simplify the development of
applications based on dependent tasks, a programmability
comparison will be first made, followed by a performance
evaluation. By far, the most common codes found in evalu-
ations of tools of this kind are matrix operations performed
by blocks [8], [16], [36]. This is not surprising, as this
class of algorithms can present very complex patterns of
task dependencies that are both the largest challenge and the
largest opportunity for performance improvement for these

1As seen in [5], OmpSs supports clusters, but that version is not publicly
available at the moment of writing this paper.

tools, particularly when compared to approaches that cannot
support arbitrary patterns of dependencies. As a result, our
analysis is also based on algorithms of this kind that can be
parallelized with any of the four tools.

Another preoccupation for the evaluation is of course
fairness. While the author is well versed in the use of the
first three tools presented, which are besides quite straight-
forward to use, his degree of expertise with CnC, particularly
with its tuners, was smaller. For this reason, in order to
ensure the quality and fairness of the comparison, two
optimized (i.e. with tuners) codes distributed with the Intel
CnC were used. The original codes included elements related
to distributed computing, which were carefully cleaned so
that the baselines only include code to run in shared-
memory environments. The two codes are highly optimized.
In fact one of them was used in [33] for a deep analysis
of the performance of CnC using the same structure and
tuners. The other three versions were developed from these
cleaned codes in an analogous style, so that the differences
among them can only be attributed to the tool used for the
parallelization. This also implies that since DepSpawn and
CnC are based on C++, all the versions are written in this
language, so that language differences do not affect the com-
parison either. The two codes are a right-looking Cholesky
decomposition of a lower triangular matrix and an in-place
matrix inversion based on Gauss-Jordan elimination. In both
algorithms, written in terms of tiles in Fig. 2, the basic linear
functions (syrk, gemm) are provided by calls to a external
BLAS library.

A. Programmability

Measuring and analyzing programmability is a very com-
plex task with many aspects involved. The ideal strategy
is probably to study it based on the development times,
quality of the code written, opinions, etc. of teams of
programmers [34], preferably with a degree of experience
in the approaches tested that is as similar as possible among
the developers involved, but unfortunately such teams are
seldom available. For this reason, an approach followed
by many authors is to rely on objective metrics extracted
from the source code, as they are reproducible and avoid
subjective impressions. We follow this strategy measuring

6205

https://icnc.github.io/api/index.html

Table I
COMPLEXITY METRICS FOR THE BASELINES AND ABSOLUTE INCREASES FOR THE DIFFERENT PARALLELIZATION STRATEGIES. SL STANDS FOR

SLOCS AND PE FOR PROGRAMMING EFFORT (IN THOUSANDS).

Algorithm Baseline OpenMP OmpSs-inv OmpSs-decl DepSpawn CnC CnC-untuned
SL PE ∆SL ∆PE ∆SL ∆PE ∆SL ∆PE ∆SL ∆PE ∆SL ∆PE ∆SL ∆PE

Cholesky 148 1022 9 170 6 166 6 69 3 53 125 1136 107 996
Inversion 255 1673 11 153 8 124 8 83 8 78 147 2324 108 1381

for(i = 0; i < dim; i++) {
A[i][i] = potrf(A[i][i]);
for(r = i+1; r < dim; r++) {

A[r][i] = trsm(A[i][i], A[r][i]);
}
for(j = i+1; j < dim; j++) {

A[j][j] = dsyrk(A[j][i], A[j][j]);
for(r = j+1; r < dim; r++) {

A[r][j] = A[r][j] + A[r][i] ∗ A[j][i];
}
}
}

(a) Cholesky factorization

for(i = 0; i < dim; i++) {
A[i][i] = inverse(A[i][i]);
for (j = 0; j < dim; j++) {

if (j != i)
A[i][j] = A[i][i] ∗ A[i][j];

}
for(r = 0; r < dim; r++) {

if(r != i) {
for (j = 0; j < dim; j++) {

if (j != i)
A[r][j] = A[r][j] − A[r][i] ∗ A[i][j];

}
A[r][i] = − A[r][i] ∗ A[i][i];
}
}
}

(b) Matrix inversion

Figure 2. Algorithms tested, where dim is the number of tiles per
dimension

two metrics in the codes. The first one are the source lines
of code excluding comments and empty lines (SLOCs). The
second one is the Halstead programming effort [18], which
estimates the development cost of a code by means of a
reasoned formula based on the number of unique operands,
unique operators, total operands and total operators found
in the code. For this, the formula regards as operands the
constants and identifiers, while the symbols or combinations
of symbols that affect the value or ordering of operands con-
stitute the operators. In our opinion the programming effort
approximates better the complexity faced by programmers
than the SLOCs, as it is well known that lines of code can
widely vary in complexity.

Table I shows the value of the complexity metrics for
the baseline sequential versions, which include a generic
class to represent tiles, and their absolute increases when
they are parallelized with each one of the tools discussed.
As explained in Sect. II-B, in the case of OmpSs, tasks
associated to function invocations can be annotated either in
the function invocation or in the function declaration, which
automatically turns all the invocations to the function into
parallel tasks. Both approaches, which we will call in the
rest of the paper OmpSs-inv and OmpSs-decl, respectively,
have been measured for completeness in Table I. While
both alternatives require the same number of SLOCs in our
codes, OmpSs-decl reduces the programming effort because
its dependency clauses are based on the formal parameters
rather than on the actual arguments, which usually have a
more complex form. The problem with this approach is that
the fact that the function becomes a parallel task wherever it
appears in the application can be dangerous and undesired.
In the case of CnC, since the programming cost of the tuners
is non-negligible, we also developed an untuned version by
cleaning everything related to tuners from the codes. CnC
requires users to define many classes and objects that do not
exist in other programs, such as the collections or the tags.
It also enforces new protocols such as the access to data
by means of retrievals from collections or the execution of
new steps by adding new tags to control collections. These
activities and concepts require much more coding than the
other alternatives, on which we focus now.

The usage of OpenMP, OmpSs and DepSpawn is illus-
trated in Fig. 3 by means of analogous excerpts of our
implementation of the matrix inversion code. In the case
of OmpSs, the OmpSs-inv version is shown, so that the
differences appear in the same places and the codes are
more directly comparable. In these codes the matrix is
stored in the same way as in the CnC codes, namely in a
unidimensional dynamically allocated array called tiles,
where each element is an object of the tile class mentioned
before. The matrix tiles are stored by rows in the array, so
that if the matrix has dim×dim tiles, the tile (i,j) is located
in the position dim×i+j. The examples show the same
tendencies as the global programmability metrics in Table I,
where OpenMP is the most expensive, particularly in terms
of programming effort, followed by OmpSs. One reason
for the larger complexity of OpenMP are its restrictions on
what can be specified in the dependency lists, such as the

6206

1 #pragma omp parallel
2 #pragma omp single
3 {
4 for (int i = 0; i < dim; i++) {
5 tile∗ const pivot = &tiles[dim∗i+i];
6
7 #pragma omp task depend(inout:pivot[0])
8 pivot[0] = inverse(pivot[0]);
9

10 ...
11
12 for (int r = 0; r < dim; r++) {
13 if (r == i) continue;
14
15 tile∗ const tin = &tiles[dim∗r+i];
16
17 for (int j = 0; j < dim; j++) {
18 if (j == i) continue;
19
20 #pragma omp task depend(inout:tiles[dim∗r+j])

depend(in:tin[0], tiles[dim∗i+j])
21 multiply subtract in place(tiles[dim∗r+j],

tin[0], tiles[dim∗i+j]);
22
23 }
24
25 ...
26 }
27
28 }
29 } // end omp single, omp parallel

(a) OpenMP

1 for (int i = 0; i < dim; i++) {
2 tile& pivot = tiles[dim∗i+i];
3
4 #pragma omp task inout(pivot)
5 pivot = inverse(pivot);
6
7 ...
8
9 for (int r = 0; r < dim; r++) {

10 if (r == i) continue;
11
12 tile& tin = tiles[dim∗r+i];
13
14 for (int j = 0; j < dim; j++) {
15 if (j == i) continue;
16
17 #pragma omp task inout(tiles[dim∗r+j])

in(tin, tiles[dim∗i+j])
18 multiply subtract in place(tiles[dim∗r+j],

tin, tiles[dim∗i+j]);
19 }
20
21 ...
22 }
23 }
24
25 #pragma omp taskwait

(b) OmpSs

1 for (int i = 0; i < dim; i++) {
2 tile& pivot = tiles[dim∗i+i];
3
4 spawn([] (tile &t) { t = inverse(t); },
5 pivot);
6
7 ...
8
9 for (int r = 0; r < dim; r++) {

10 if (r == i) continue;
11
12 tile& tin = tiles[dim∗r+i];
13
14 for (int j = 0; j < dim; j++) {
15 if (j == i) continue;
16
17 spawn(multiply subtract in place,
18 tiles[dim∗r+j], tin, tiles[dim∗i+j]);
19 }
20
21 ...
22 }
23 }
24
25 wait for all();

(c) DepSpawn

Figure 3. Excerpts from the matrix inversion code implementations in OpenMP, OmpSs and DepSpawn.

non-support of C++ references or expressions that provide
data to access other than scalars and array sections. For
example, as shown in Fig. 2(b), in the matrix inversion
code the tile (i,i) is used in three different places, and
we have measured that the SLOC increase associated to
defining a reference to it (one line) is much less, even in
relative terms, than the Halstead programming effort cost
due to selecting three times this tile from the tiles array.
This also matches the intuition that naming an entity that
is used several times makes the code more readable and
maintainable. As a result the OmpSs and DepSpawn versions
define a reference called pivot to this tile in line 2 of their
codes in Fig. 3. In OpenMP the best we can do is to use
a pointer, defined in line 5, which must be indexed to play
the same role. While according to our measurements this
is still an improvement with respect to the repeated access
to the underlying tile, the solution is clearly less elegant
and introduces more complexity than the use of a reference.
OpenMP also needs to enclose the parallel algorithms in
a parallel region and a top-level sequential task (lines 1-3
and last line in Fig. 3(a)) that are not needed in OmpSs and
DepSpawn. In exchange, these two latter alternatives require
an explicit synchronization in their last line to make sure that
all the tasks have finished, while for OpenMP this is implicit
once we exit the parallel region.

Other important difference among these approaches is
that OpenMP and OmpSs require to annotate with a sep-
arate pragma the dependencies of a task, which involves
more specifications and analysis than the use of spawn
in DepSpawn. But while they can mark as tasks individual
statements or code blocks, DepSpawn requires its tasks to
be function calls. The fact that this library supports any
kind of function, including the convenient C++11 lambda
functions, ameliorates this restriction, although the result
is arguably less readable than the use of directives. Our
metrics reflect this, as depending on the concrete situation
the programming effort of these lambdas goes from similar
to noticeably larger than that of directives, particularly those
of OmpSs. Our example in Fig. 3 includes both a task whose
most natural expression is not a function call and another
one that is a function invocation in order to help to illustrate
these differences. The first task is the replacement of the
pivot tile by its inverse (including the computation of such
inverse). This is naturally expressed by an assignment to the
pivot tile of the result of the function call that computes its
inverse. In OpenMP and OmpSs we label this assignment as
a task for which the pivot is both the input and the output.
DepSpawn requires a function call, so we could isolate this
block as a separate traditional function or, as in the example,
we could express it as a C++ lambda function. Notice

6207

how the non-constness of the function formal parameter
indicates that it can both read and modify its argument,
which is the pivot. The second task is an invocation to
a function multiply_subtract_in_place(a,b,c),
which computes a=a-b×c. Here OpenMP and OmpSs fol-
low the same pattern as before, while DepSpawn benefits
from the existence of the function, which makes the spawn
much simpler. Regarding the OmpSs-decl style, if this were
the only place where this function is used in the application,
or the user added the compiler directives necessary to allow
all its other uses to run safely in parallel, the OmpSs
version could avoid the annotations in the invocations of
this function just by declaring it as

#pragma omp task inout(a) in(b, c)
void multiply subtract in place(tile &a, const tile& b, const tile& c);

Comparing this directive to line 17 in Fig. 3(b) explains the
noticeable decrease of the programming effort of OmpSs-
decl with respect to OmpSs-inv in Table I. This justifies
the annotation of function declarations as a worthwhile
feature of OmpSs. Still, making a function automatically
parallel wherever it appears has dangers, such as if a user
forgets its parallel nature in another context, and it implies
synchronization requirements in all the uses of the function.
Both issues should not be underestimated, particularly in
large software projects and libraries.

Altogether, the tendency observed is that the best met-
rics are achieved by DepSpawn, followed by OmpSs-decl,
OmpSs-inv, and OpenMP in this order, the differences be-
tween them being medium to small. Focusing on the nature
of the codes, when function calls predominate in them,
which is the case in Cholesky, DepSpawn offers the best
programmability for the two metrics measured. But when
it is more natural to express a meaningful portion of the
tasks as statements or blocks, which is the style in which
the matrix inversion code is written, things can be different.
For example, according to Table I, in this algorithm the
programming effort advantage of DepSpawn with respect
to the other alternatives was smaller and it matched OmpSs
in terms of SLOCs, the reason being the (lambda) function
declarations not required by the compiler directives for code
blocks.

B. Performance

We used two Linux systems in our tests. The first one has
2 Intel Xeon E5-2660 Sandy Bridge processors at 2.2Ghz
with 8 cores and 20MB L3 cache each, and 64GB of DDR3
memory. The second one has 2 Intel Xeon E5-2680 Haswell
processors at 2.5GHz, with 12 cores and 30MB L3 cache
each, and 64GB of DDR4 memory. The compilers used
are g++ 4.9.2 and 4.9.1, respectively, with optimization flag
O3. These compilers provide the OpenMP support tested.
It must be noted that, being a standard, there are many
implementations of OpenMP. The implementation tested,

2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

Matrix Size

G
F

lo
p
s

Omp
OmpSs
DepSpawn
CnC
CnC untuned

Figure 4. Cholesky performance in the Sandy Brigde platform

2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

Matrix Size

G
F

lo
p
s

Omp
OmpSs
DepSpawn
CnC
CnC untuned

Figure 5. Cholesky performance in the Haswell platform

belonging to the ubiquitous gcc tool chain, is one of the
best supported and most popular and widely used ones,
being thus very representative. For OmpSs we installed its
compiler and runtime version 15.06, while the DepSpawn
and Intel CnC versions are 1.0 and 1.0.100, respectively.
The BLAS functions used were provided by the high
quality OpenBLAS library v0.2.14 and all the experiments
were made using double-precision floating point data. We
found no performance differences between OmpSs-inv and
OmpSs-decl, so they are discussed jointly in this Section.

Figures 4 and 5 show the performance that our five
versions of the Cholesky factorization achieve in the two
platforms tested as a function of the matrix size when using
all the cores they provide, 16 in the Sandy Bridge system
and 24 in the Haswell system. Each experiment was run
using tiles of size 200 × 200, 250 × 250, 400 × 400 and
500× 500, and repeating the measurement three times. The
figure reports at each point the best performance achieved
for any tile size. Figures 6 and 7 show the performance of
the matrix inversion algorithm obtained following the same

6208

2000 4000 6000 8000 10000 12000
50

100

150

200

250

Matrix Size

G
F

lo
p
s

Omp
OmpSs
DepSpawn
CnC
CnC untuned

Figure 6. Matrix inversion performance in the Sandy Brigde platform

2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

Matrix Size

G
F

lo
p
s

Omp
OmpSs
DepSpawn
CnC
CnC untuned

Figure 7. Matrix inversion performance in the Haswell platform

methodology. Interestingly, while the tuners played no clear
role for CnC in the first algorithm, they were crucial in the
matrix inversion. But even with them, CnC tends to be in the
low range of performance, because of the larger complexity
of its programs, which require additional operations.

As mentioned before, a deep analysis of the performance
and overheads of CnC in the matrix inversion code can be
found in [33]. Although it is not possible to directly compare
their results with ours due to the differences in hardware,
software versions and linear algebra kernels used, there are
some similarities. For example, the overhead they measure
for the tuned CnC with respect to the underlying TBB (12%-
15%) is similar to the speed difference we measured for this
code with respect to the also TBB-based DepSpawn, 7%-
13% in the Sandy Bridge and 8%-21% in the Haswell. In our
experiments, however, the tuners increased the performance
of this CnC code by 11% in the Sandy Bridge and 23%
in the Haswell, while the improvement in [33] was a more
modest 6%. We attribute this latter fact mostly to the larger
number of cores we use (16 and 24 vs 8) and the higher

quality of the very optimized BLAS dgemm routine we use,
which accounts for the vast majority of the runtime (all the
computations except inverse in Fig. 2(b)), as both facts
stress much more the runtime system of the parallelizing
solution used.

There is not a clear performance relation among the other
alternatives. The maximum performance difference among
them for Cholesky happens for the smallest matrix size, and
it is 14% in the Sandy Bridge and 11% in the Haswell.
Also, while DepSpawn is always the slowest one in the
Sandy Bridge for this algorithm, there is a virtual match
among the three versions in the Haswell, with OpenMP
achieving the lowest performance for half of the matrix
sizes. The maximum performance difference in the matrix
inversion between the slowest and the fastest alternative in
this group grows to 18% and 23% in the Sandy Bridge
and Haswell platforms, respectively, and they happen for the
4000 × 4000 matrix. Although there is not a clear pattern
among OpenMP, OmpSs and DepSpawn for this algorithm
in the Sandy Bridge, this is not the case in the Haswell.
Here, OpmpSs consistently offers the best performance and
DepSpawn usually has an intermediate, or almost identical
position with respect to OpenMP.

IV. RELATED WORK

A line of research related to this work are parallel
skeletons [9], [17], as they are higher order functions that
implement the flow of execution, parallelism, synchroniza-
tion and data communications of typical strategies for the
parallel resolution of problems. This way, the use of a given
skeleton implicitly expresses all the dependences among the
parallel tasks that conform it and it is responsible for all
the details of the underlying parallelization. Nevertheless,
because skeletons implement fixed collections of preset
patterns, they are not general enough to optimally express
any task graph, which is an essential part of our motivation.

CnC was compared to other approaches in [8], but only in
terms of performance, and it did not include other program-
ming tools based on implicit dependences and synchroniza-
tions. More recently, the performance of different runtimes
for OpenMP dependent tasks and multithreaded libraries was
compared in [36]. As for the programmability issues, the
general ease of use of OpenMP has been discussed in [23],
[15], and lists of typical mistakes and good practices have
been compiled in [32]. A motivation, design description
and performance evaluation of OpenMP 3.0 tasks is found
in [2]. The manuscript precedes the inclusion of the depend
clause in OpenMP 4.0, and thus it does not cover the
implicit dependencies it enables, critical for our work. This
latter observation also pertains to [25], which compares
task parallelism under several parallel frameworks based on
explicit synchronizations, including OpenMP 3.0 and TBB,
which is the backend for the two libraries we have tested.

6209

There are many other tools that support the paradigm
studied in this paper. For example, there has been extensive
research on this subject in the field of functional [21], [22]
and dataflow [10] programming, but we have focused on
imperative languages, as they are more commonly used in
parallel applications. While some imperative languages were
proposed based on this approach [30], [13], most of the
research on data-flow task programming developed libraries
with semantics similar to those of the tools discussed in
this paper. Examples are [7], exclusively focused on linear
algebra, [37], used in the backend of the PLASMA library,
or [1], particularly focused on heterogeneous computing.
There are also projects that provide both a library to build
tasks that express their dependencies by means of its API
datatypes [14] and a runtime for OpenMP [4].

Out of the scope of this work is the large set of proposals
to facilitate the creation and management of tasks that
require users to explicitly handle the dependencies and
synchronizations between them, at least when the tasks
dependencies do not form a simple pattern. Examples of
this kind of tools are [29], [12], [31], [24] to name a few.
The mechanisms used to specify the synchronizations and
dependencies between the tasks include language constructs,
keywords, library functions, etc.

V. CONCLUSIONS

Declaratively specifying the abstract dependencies of the
parallel tasks that conform our application and letting a
runtime automatically detect and enforce the actual depen-
dencies generated during the execution is a very attractive
alternative. This strategy not only requires less programmer
time and gives place to more maintainable codes that lower-
level more explicit alternatives, but it is widely applicable
and it allows an optimal exploitation of the underlying hard-
ware depending on the quality of the scheduling algorithms
of that runtime. While there are performance evaluations of
tools of this kind, we have not found discussions on the
relative advantages and limitations of proposals that support
this paradigm. We have thus tackled this issue in this paper.

Two families of compiler directives, OpenMP and OmpSs,
and two C++ libraries, DepSpawn and CnC, were analyzed.
As a result, this study mostly focused on this language,
extensively used in parallel computing. Our findings can
be summarized as follows. CnC was the option that clearly
required more programming effort and offered a more mod-
est performance, even when the applications were optimized
with tuners. It has though the unique advantage that it is the
only one that (publicly, at least) provides a path to execute
its applications in distributed-memory systems, although this
requires some additional coding. Therefore this is the tool
advised for hybrid and distributed memory environments, at
least while the OmpSs support for clusters is not publicly
available.

There was not a clear performance relation among the
other tools, and the differences between them were small
in most cases. In fact the average performance difference
between the slowest and the fastest implementation among
them in our tests was 8.8%. Regarding programmability,
DepSpawn was the best positioned, and OpenMP the worst
one, although there were no large differences either. In view
of this, OpenMP seems the default advised approach, given
its large support and portability, although the impossibility
to use references or expressions in the dependencies makes
it less friendly than OmpSs and DepSpawn. Another mean-
ingful shortcomings of OpenMP are the lack of support for
data members in its clauses and for annotating function
declarations. Finally, DepSpawn is the only option in this
group when we need to respect dependencies on arbitrarily
overlapping data items, including array regions, as it is the
only one that supports this feature.

Among the most interesting lines of development for these
tools are the support of distributed-memory systems for
those that are missing it, and the possible inclusion of fu-
tures [19] as another mechanism of implicit synchronization.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Economy
and Competitiveness of Spain and FEDER funds (80%) of
the European Union (Project TIN2013-42148-P) as well as
by the Xunta de Galicia under the Consolidation Program
of Competitive Reference Groups (Ref. GRC2013/055). The
author also wants to thank Dr. Thierry Gautier for his help
and CESGA (Galicia Supercomputing Center, Santiago de
Compostela, Spain) for providing access to the Intel Xeon
E5-2680 Haswell platform.

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier,
“StarPU: a unified platform for task scheduling on hetero-
geneous multicore architectures,” Concurrency and Compu-
tation: Practice and Experience, vol. 23, no. 2, pp. 187–198,
2011.

[2] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang, “The
design of openmp tasks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 3, pp. 404–418, March 2009.

[3] OmpSs Specification, Barcelona Supercomputing Center, Dec
2015.

[4] F. Broquedis, T. Gautier, and V. Danjean, OpenMP in a Het-
erogeneous World: 8th Intl. Workshop on OpenMP, (IWOMP
2012). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
ch. libKOMP, an Efficient OpenMP Runtime System for Both
Fork-Join and Data Flow Paradigms, pp. 102–115.

[5] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and
J. Labarta, “Implementing OmpSs support for regions of data
in architectures with multiple address spaces,” in 27th Intl.
Conf. on Supercomputing, ser. ICS ’13, 2013, pp. 359–368.

6210

[6] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “The con-
current collections programming model,” Dept. of Computer
Science, Rice University, Tech. Rep. TR 10-12, 2010.

[7] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ortı́,
G. Quintana-Ortı́, and R. van de Geijn, “SuperMatrix: a
multithreaded runtime scheduling system for algorithms-by-
blocks,” in 13th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, ser. PPoPP’08, 2008, pp.
123–132.

[8] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Per-
formance evaluation of concurrent collections on high-
performance multicore computing systems,” in 2010 IEEE
Intl. Symp. on Parallel Distributed Processing (IPDPS), 2010,
pp. 1–12.

[9] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, 1991.

[10] J. B. Dennis, “Data flow supercomputers,” Computer, vol. 13,
no. 11, pp. 48–56, Nov 1980.

[11] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta,
“A proposal to extend the OpenMP tasking model with
dependent tasks,” Intl. J. Parallel Program., vol. 37, no. 3,
pp. 292–305, 2009.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall, “The imple-
mentation of the Cilk-5 multithreaded language,” in ACM
SIGPLAN 1998 Conf. on Programming Language Design and
Implementation, ser. PLDI ’98, 1998, pp. 212–223.

[13] F. Galilee, G. Cavalheiro, J.-L. Roch, and M. Doreille,
“Athapascan-1: On-line building data flow graph in a parallel
language,” in 1998 intl. conf. on Parallel Architectures and
Compilation Techniques (PACT’98)., Oct 1998, pp. 88–95.

[14] T. Gautier, J. Lima, N. Maillard, and B. Raffin, “XKaapi: A
runtime system for data-flow task programming on hetero-
geneous architectures,” in IEEE 27th Intl. Symp. on Parallel
Distributed Processing (IPDPS), 2013, pp. 1299–1308.

[15] R. Gonçalves, M. Amaris, T. K. Okada, P. Bruel, and A. Gold-
man, “OpenMP is not as easy as it appears,” in 49th Hawaii
Intl. Conf. on System Sciences (HICSS 2016), jan 2016, pp.
5742–5751.

[16] C. H. González and B. B. Fraguela, “A framework for
argument-based task synchronization with automatic detec-
tion of dependencies,” Parallel Computing, vol. 39, no. 9,
pp. 475–489, 2013.

[17] S. Gorlatch and M. Cole, “Parallel skeletons,” in Encyclo-
pedia of Parallel Computing, D. Padua, Ed. Springer US,
2011, pp. 1417–1422.

[18] M. H. Halstead, Elements of Software Science. New York,
NY, USA: Elsevier, 1977.

[19] R. H. Halstead, Jr., “MULTILISP: A language for concurrent
symbolic computation,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 4, pp. 501–538, Oct. 1985.

[20] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory:
Architectural support for lock-free data structures,” in 20th
Annual Intl. Symp. on Computer Architecture, 1993, pp. 289–
300.

[21] R. Loogen, Y. Ortega-Mallén, and R. Peña Marı́, “Parallel
functional programming in Eden,” J. Funct. Program., vol. 15,
no. 3, pp. 431–475, May 2005.

[22] S. Marlow, P. Maier, H.-W. Loidl, M. Aswad, and P. Trinder,

“Seq no more: better strategies for parallel Haskell,” SIG-
PLAN Not., vol. 45, no. 11, pp. 91–102, Sep 2010.

[23] T. G. Mattson, “How good is OpenMP,” Sci. Program.,
vol. 11, no. 2, pp. 81–93, Apr. 2003.

[24] S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical workstealing
on manycore clusters,” in Fifth Conf. on Partitioned Global
Address Space Programming Models (PGAS 2011), Oct 2011.

[25] S. Olivier and J. Prins, “Comparison of OpenMP 3.0 and other
task parallel frameworks on unbalanced task graphs,” Intl. J.
Parallel Program., vol. 38, no. 5-6, pp. 341–360, 2010.

[26] OpenMP Architecture Review Board, “OpenMP application
program interface version 4.0,” July 2013. [Online].
Available: http://www.openmp.org/mp-documents/OpenMP4.
0.0.pdf

[27] J. Perez, R. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core architec-
tures,” in 2008 IEEE Intl. Conf. on Cluster Computing, Oct
2008, pp. 142–151.

[28] L. Rauchwerger and D. Padua, “The LRPD test: speculative
run-time parallelization of loops with privatization and reduc-
tion parallelization,” IEEE Trans. on Parallel and Distributed
Systems, vol. 10, no. 2, pp. 160–180, 1999.

[29] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism, 1st ed. O’Reilly, 2007.

[30] M. Rinard, D. Scales, and M. Lam, “Jade: a high-level,
machine-independent language for parallel programming,”
Computer, vol. 26, no. 6, pp. 28–38, 1993.

[31] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove, “X10 language specification,” IBM, Tech. Rep.,
Dec 2015. [Online]. Available: http://x10.sourceforge.net/
documentation/languagespec/x10-latest.pdf

[32] M. Süß and C. Leopold, “Common mistakes in OpenMP and
how to avoid them: A collection of best practices,” in 2005
and 2006 Intl. Conf. on OpenMP Shared Memory Parallel
Programming, ser. IWOMP’05/IWOMP’06, 2008, pp. 312–
323.

[33] P. Tang, “Measuring the overhead of Intel C++ Concurrent
Collections over Threading Building Blocks for Gauss-Jordan
elimination,” Concurrency and Computation: Practice and
Experience, vol. 24, no. 18, pp. 2282–2301, 2012.

[34] C. Teijeiro, G. L. Taboada, J. Touriño, B. B. Fraguela,
R. Doallo, D. A. Mallón, A. Gómez, J. C. Mouriño, and
B. Wibecan, “Evaluation of UPC programmability using
classroom studies,” in 3rd Conf. on Partitioned Global Ad-
dress Space Programing Models, ser. PGAS ’09, 2009, pp.
10:1–10:7.

[35] T. L. Veldhuizen, “Arrays in Blitz++,” in 2nd Intl. Scientific
Computing in Object-Oriented Parallel Environments (IS-
COPE98). Springer-Verlag, 1998, pp. 223–230.

[36] P. Virouleau, P. Brunet, F. Broquedis, N. Furmento,
S. Thibault, O. Aumage, and T. Gautier, 10th Intl. Workshop
on OpenMP (IWOMP 2014). Springer International Publish-
ing, 2014, ch. Evaluation of OpenMP Dependent Tasks with
the KASTORS Benchmark Suite, pp. 16–29.

[37] A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users guide:
Queueing and runtime for kernels,” Dept. of Computer Sci-
ence, University of Tennessee, Tech. Rep. TR ICL-UT-11-02,
2011.

6211

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

